
Charon: Declarative Provisioning and Deployment
Eelco Dolstra, Rob Vermaas, and Shea Levy

LogicBlox, Inc., Atlanta, GA, USA, {eelco.dolstra, rob.vermaas, shea.levy}@logicblox.com

Abstract—We introduce Charon, a tool for automated provi-
sioning and deployment of networks of machines from declarative
specifications. Building upon NixOS, a Linux distribution with
a purely functional configuration management model, Charon
specifications completely describe the desired configuration of
sets of “logical” machines, including all software packages and
services that need to be present on those machines, as well as
their desired “physical” characteristics. Given such specifications,
Charon will provision cloud resources (such as Amazon EC2
instances) as required, build and deploy packages, and activate
services. We argue why declarativity and integrated provisioning
and configuration management are important properties, and
describe our experience with Charon.

I. INTRODUCTION

An essential part of the software life cycle is to deploy soft-
ware to its target environment. In a cloud-based, infrastructure-
as-a-service setting, this also involves provisioning the cloud
resources that constitute the target environment. These actions
should be automated: given a specification of the desired
system configuration, a deployment tool should automatically
create the required cloud resources and deploy the necessary
software packages and configuration files.

In this paper we present Charon1, a tool for automated
provisioning and deployment of machines. Charon has several
important characteristics:

• It is declarative: it provisions and deploys sets of machines
from specifications that state the desired configuration of
each machine. Charon then figures out the actions neces-
sary to realise that configuration. Thus (with the exception
of mutable state such as database contents) there is no
difference between doing a new deployment or doing an
upgrade of an existing deployment: the resulting machine
configurations will be the same, allowing deployments to be
upgraded or reproduced reliably. This is in contrast to cloud
deployment tools with imperative configuration models,
e.g. Juju [1], where users configure a deployment by
executing a sequence of stateful commands (e.g. juju deploy
mysql). In such systems, the configuration is the result
of a set of (possibly untracked) actions by administrators,
making it hard to reproduce a configuration. (See [2] for a
discussion of the perils of statefulness.)
Charon builds upon NixOS [2], a Linux distribution that is
in turn based on Nix [3], a package manager that builds and
stores packages in a purely functional manner. Concretely
this means that multiple versions of packages can coexist
on a system, that packages can be upgraded or rolled back

1Available under the LGPLv3 license at https://github.com/NixOS/charon/.

atomically, that dependency specifications can be guaran-
teed to be complete, and so on. NixOS has a declarative,
stateless approach to describing the desired configuration
of a machine, making it an ideal basis for automated
configuration management of sets of machines. It also has
desirable properties such as (nearly) atomic upgrades and
the ability to roll back to previous configurations.
There are several prominent configuration management
systems with declarative models, such as Cfengine [4],
Puppet [5] and Chef [6]. However, the systems they manage
still have underlying imperative configuration models, such
as configuration files in /etc that are updated in place by
deployment actions. Thus the result of a deployment may
still depend on the previous configuration of the system.

• It performs provisioning. The integration of provisioning
and configuration management is important, because pro-
visioning affects configuration files: for instance, if we
instantiate an Amazon EC2 machine as part of a larger
deployment, it may be necessary to put the IP address or
host name of that machine in a configuration file on another
machine, and to ensure that any changes are propagated
properly. Charon takes care of this automatically.

• It allows abstracting over the target environment: the same
specification can be deployed to different cloud backends
(e.g. VirtualBox for testing and EC2 or OpenStack for
production). The configuration language is modular, so
backend-specific parameters (say, the EC2 instance type)
can be separated from the “logical” aspects of the deploy-
ment. The specifications also allow abstracting over net-
work connectivity: Charon ensures that machines can talk
to each other, e.g. by creating tunnels between machines
in different EC2 regions.
By contrast, Vagrant [7] provisions VirtualBox virtual
machines to set up test environments which can then be
configured by tools such as Chef; to deploy to (say) EC2,
other tools are required. With Charon, the same toolchain
supports both development and production use.

• It uses a single configuration formalism (Nix’s purely
functional language) for package management and system
configuration management. This makes it very easy to add
ad hoc packages to a deployment. It also allows powerful
abstractions to be expressed. For instance, common boiler-
plate code between machine definitions can be abstracted
away, and functions can be defined to generate part or all of
a network specification from higher-level parameters. How-
ever, the functional approach is less suited to automatically
finding optimal solutions to sets of constraints (e.g. to find
a deployment that satisfies a feature model [8]), as done

by ConfSolve [9].
In the remainder of this paper, we give an overview of

Charon, and discuss our experiences with it.

II. OVERVIEW

A. NixOS
Charon deploys NixOS machines, so we start with a brief

overview of NixOS’ configuration model. In NixOS, machines
are configured by providing a file (typically /etc/nixos/con-
figuration.nix) that specifies the desired configuration of the
system. For instance, the following file specifies that we want
a machine that runs the Apache web server:
{ services.httpd.enable = true;
services.httpd.documentRoot = "/data";

}

Configuration changes are realised by running the com-
mand nixos-rebuild, which evaluates the system configuration,
builds all dependencies, and finally starts, restarts or stops
any new, changed or removed system services in the new
configuration. For instance, if the previous configuration had
services.httpd.enable = false, then running nixos-rebuild will
cause Apache httpd to be built or downloaded (if it wasn’t
already present in the system), an httpd.conf configuration file
to be generated, and finally httpd to be started.

NixOS builds on Nix, a purely functional package manager.
NixOS uses Nix to build packages and other static system con-
figuration artifacts such as configuration files in a reproducible
way. The file configuration.nix is essentially a parameter to a
Nix function that evaluates to a large dependency graph of
packages, configuration files and boot scripts in the Nix store,
together constituting the system. See [2] for details.

Nix stores these artifacts in the filesystem in loca-
tions such as /nix/store/wjbcr40b...-apache-httpd-2.2.23/, where
wjbcr40b... is a cryptographic hash of the dependencies of the
artifact (in this case, everything used to build Apache 2.2.23).
This property makes upgrading a NixOS system transactional:
for instance, if we update the Nix file that specifies the Apache
package to build version 2.4.3 and then run nixos-rebuild, a
new instance of Apache will be built in a different location in
the filesystem, e.g. /nix/store/jscp2ym2...-apache-httpd-2.4.3/.
The same applies the configuration files and service scripts
that refer to those paths. Thus, the old system configuration
is not overwritten, allowing efficient rollbacks and nearly
atomic upgrades. For instance, if the system crashes during
an upgrade, we either get the old configuration or the new
one, but not something in between.

B. Network Configurations
Charon extends NixOS’ configuration model to networks

of machines (where a “network” is a set of machines that
are deployed and managed together). A Charon specification
is essentially a set of NixOS machine configurations. For
instance, the following specifies a set of two machines – a
machine webserver that serves files stored in a directory on
the machine fileserver mounted via the Network Filesystem
(NFS):

{ webserver =
{ services.httpd.enable = true;
services.httpd.documentRoot = "/data";
fileSystems."/data" = # /data mountpoint
{ fsType = "nfs4";
device = "fileserver:/"; };

};
fileserver =
{ services.nfs.server.enable = true;
services.nfs.server.exports = "...";

};
}

We can now deploy this configuration. In the simplest
scenario, the logical machine configurations webserver and
fileserver are deployed to pre-existing (e.g. physical) NixOS
machines with corresponding host names. (This requires that
each machine is reachable via SSH.) Charon tracks the state
of deployments in a SQLite database. To create a new deploy-
ment, given a specification like the one above, we do:

$ charon create network.nix --name simple

This creates a new deployment named simple, defined by the
file network.nix shown above. We can then perform the actual
deployment:

$ charon deploy --name simple

This will build or download all the software dependencies of
the new configuration, copy them to the two target machines,
and then activate the new configuration by (re-)starting modi-
fied system services. For instance, on fileserver the NFS server
will be started, while on webserver the /data filesystem will
be mounted and Apache will be started.

Changing the configuration is a matter of changing the
specification and rerunning charon deploy. Due to the non-
destructive nature of the Nix package manager, it is possible
to roll back efficiently to a previous configuration by running
charon rollback.

C. Provisioning Machines

Provisioning cloud machines is done in almost the same
way; all that is needed is to tell Charon, in the network
specification, that a machine should be instantiated as a virtual
machine in a specific cloud environment. For instance, we can
add the following attributes to the definition of webserver and
fileserver in network.nix:

deployment.targetEnv = "ec2";
deployment.region = "eu-west-1";
deployment.instanceType = "m1.large";

Now when we run charon create and charon deploy, Charon
will notice (by consulting its state) that it has not created EC2
instances corresponding to the logical machines webserver
and fileserver yet. It will therefore fire up two basic NixOS
instances, wait until they are up and reachable via SSH,
and then build and deploy the specified configuration as
described above. Subsequent redeployments will “reuse” the
previously created instances; adding a new logical machine
to the specification and rerunning charon deploy will cause

the missing instance to be created; and removing a logical
machine from the specification and rerunning charon deploy
will cause the corresponding instance to be destroyed. Thus,
Charon’s general invariant is that after running charon deploy,
the actual configuration of the network is in sync with the
specified configuration.

Similarly, we can deploy the same specification as a set of
VirtualBox VMs running on the user’s system by specifying:

deployment.targetEnv = "virtualbox";

This is convenient for testing: the same “logical” specification
can be deployed to different environments for testing or
production use.

Charon specifications also abstract over the network connec-
tivity between machines: it can be assumed that each machine
in the network can reach every other machine through its
host name. Charon ensures this by generating an appropriate
/etc/hosts file on each machine. Thus, the NFS mount on
webserver (the line device = ”fileserver:/”) will work correctly,
even if webserver and fileserver are in (say) different EC2
regions. If necessary, machine configurations can refer to the
IP addresses of other logical machines through the attribute
nodes.machine.config.networking.privateIPv4.

This kind of abstraction allows interesting changes to the
network setup without affecting the logical specification. For
instance, by adding the single line

deployment.encryptedLinksTo = ["fileserver"];

to the specification of webserver, Charon then injects NixOS
configuration fragments to set up an encrypted VPN tunnel be-
tween the two machines, and to make the hostname fileserver
in /etc/hosts on webserver refer to fileserver’s VPN endpoint
address. Thus the NFS mount will subsequently run over an
encrypted connection.

D. MindMup Example

We now show a larger example of a Charon deployment:
a specification to deploy MindMup (http://mindmup.com), an
online open source application that allows users to create
mindmaps and share these with other users. MindMup is
a Ruby application designed to run on Amazon EC2 and
use Amazon S3 for storage. To make the example more
compelling, we deploy this application using a multi-machine
network that implements the common deployment pattern of
using multiple backend application servers with a reverse
proxy in front for fault tolerance and load balancing.

The MindMup network consists of three machines: a reverse
proxy server, and two application servers running the applica-
tion code. Figure 1 shows a Charon specification of the logical
aspects of of the MindMup deployment, i.e. the software pack-
ages and configuration required on each machine. The network
specification defines the three machines proxy, backend1 and
backend2.

The MindMup application code runs on the machines
backend1 and backend2, defined at 3 , which have the same
configuration. The mindmup function at 1 includes the NixOS

let
mindmup = 1

{ resources, nodes, ... }:
{ require = [./mindmup.nix];
services.mindmup.enable = true;
services.mindmup.siteURL = "http://${ 2

nodes.proxy.config.publicIPv4}/";
};

in {
backend1 = mindmup; 3

backend2 = mindmup;
proxy = 4

{ services.httpd.enable = true;
services.httpd.extraModules =
["proxy_balancer"]; 5

services.httpd.extraConfig = ’’
<Proxy balancer://cluster>
BalancerMember http://backend1:8080
BalancerMember http://backend2:8080

</Proxy>
ProxyPass / balancer://cluster/

’’;
};

}

Fig. 1. MindMup logical network specification

module for MindMup, and enables it to make sure the machine
will start the application code. It also defines the siteURL
option of the MindMup configuration, which is used to redirect
to the application after saving a mindmap. As we are running
with a reverse proxy, we want to redirect to the proxy,
which we do by injecting the public IP address of the proxy
machine 2 .

The proxy machine at 4 uses the httpd NixOS module,
which allows us to configure an Apache HTTP server. At 5 we
state that the proxy balancer Apache module should be loaded.
This allows Apache to act as a reverse proxy, configured by
specifying a BalancerMember for each backend.

Now we need to define the physical specification that states
how to instantiate the needed infrastructure. In addition to
virtual machines, Charon can provision other types of cloud
resources. In this case, we need the following:

• An Amazon S3 bucket to store the mindmaps.
• An Amazon EC2 keypair to securely connect to the

instances.
• An Amazon IAM role, a security policy to restrict access

to the S3 bucket.

Figure 2 shows the (somewhat abbreviated) physical net-
work specification of the MindMup deployment. All machines
and resources are provisioned in the us-east-1 EC2 region. The
specifications at 13 and 6 define the machines that we want
to instantiate on Amazon EC2 with its desired properties such
as type and region.

In addition, the non-machine resources are specified. The
IAM role definition at 12 ensures that different deployments
of the same application do not interfere with each other. The
role is defined to allow all S3 operations on the S3 bucket

let
region = "us-east-1";
accessKeyId = "mindmup";
mindmup = 6

{ deployment.targetEnv = "ec2";
deployment.ec2.region = region;
deployment.ec2.keyPair = 7

resources.ec2KeyPairs.mindmup-kp.name;
deployment.ec2.instanceProfile = 8

resources.iamRoles.mindmup-role.name;
services.mindmup.s3BucketName = 9

resources.s3Buckets.mindmup-s3.name;
};

in {
resources.s3Buckets.mindmup-bucket = 10

{ inherit region accessKeyId; };
resources.ec2KeyPairs.mindmup-kp = 11

{ inherit region accessKeyId; };
resources.iamRoles.mindmup-role = 12

{ inherit accessKeyId;
policy = ...;

};
backend1 = mindmup;
backend2 = mindmup;
proxy = 13

{ deployment.targetEnv = "ec2";
deployment.ec2.region = region; ...

};
}

Fig. 2. MindMup physical network specification

created as part of this deployment. Amazon IAM uses so-
called Amazon Resource Names (ARN) to refer to Amazon
provisioned resources. The role is applied at 8 to the backend
machines only, as the reverse proxy does not need to have
access to the S3 bucket. The EC2 keypair mindmup-kp is
defined at 11 and is applied to all machines in the network
(e.g. at 7). The S3 bucket mindmup-s3, used to store the
mindmaps, is defined at 10 . The application is configured to
use this bucket at 9 using a configuration option defined in
the MindMup NixOS module.

III. EXPERIENCE

LogicBlox develops a declarative cloud platform for the
development of a new class of enterprise applications that
combine transactions with analytics. We are using Charon
at LogicBlox both in testing and production use, deploying
to Amazon EC2 as well as to physical clusters. As our
applications have very specific software dependencies for the
different type of nodes, and typically involve large data sets
or computational requirements that require distribution over
a large number of machines, it is not an option to manually
install machines or to have a single EC2 disk image (AMI) to
handle all deployments.

Charon makes it easy to express this variability in our
deployments and ensures that they are automatic and repro-
ducible. The latter is especially important for disaster recovery.
It also ensures that it is easy to fire up test deployments

from our continuous build system. Since these are identical to
production deployments, the gap between development and op-
erational use is reduced (preventing the common phenomenon
of code being “thrown over the wall” to operations).

Charon also offers us the ease of enabling elasticity in
deployments in a declarative way, where the number of ma-
chines is scaled up or down depending on requirements (e.g. to
shard the database across a variable number of machines). For
instance, we can generalise the MindMup network to support a
variable number of backends: rather than hardcoding backend1
and backend2, we just write
let makeBackend = i: { ... };
in map makeBackend (range 0 n)

to generate a list of n backend machines. Similarly, the
configuration of the reverse proxy in Figure 1 can map over
this list to emit BalancerMember lines for each backend
machine. Changing n and running charon deploy will then
cause machines to be created or destroyed, and the proxy
configuration to be updated, as necessary.

We have used Charon to deploy clusters of up to 52
machines. Charon was primarily designed to improve the man-
ageability of many deployments with different configurations,
rather than a few large deployments of thousands of identical
machines. More work will be needed to support the latter.

Another scenario where Charon has shown its strength
is in allowing to easily define and run benchmarks in a
reproducible way on different configurations, such as varying
kernel versions, application versions, RAID setup and EC2
instance sizes. The NixOS module system and its declarativity
allow for easy composition of such variants.

IV. CONCLUSION

In this paper we have presented Charon, a tool for provision-
ing and deployment of networks of machines from declarative
specifications. It has several important properties, such as
reproducibility, integration of provisioning and deployment,
and abstraction over cloud backends. In future work, we
intend to improve management of mutable state, e.g., to allow
migration of machines between cloud backends or regions.

REFERENCES

[1] Canonical, “Juju – devops distilled,” https://juju.ubuntu.com/, 2013.
[2] E. Dolstra and A. Löh, “NixOS: A purely functional Linux distribution,”

in 13th ACM SIGPLAN Intl. Conf. on Functional Programming (ICFP
2008). ACM, Sep. 2008.

[3] E. Dolstra, E. Visser, and M. de Jonge, “Imposing a memory management
discipline on software deployment,” in 26th Intl. Conf. on Software
Engineering (ICSE 2004). IEEE Computer Society, May 2004, pp. 583–
592.

[4] M. Burgess, “Cfengine: a site configuration engine,” Computing Systems,
vol. 8, no. 3, 1995.

[5] Puppet Labs, “Puppet Labs: IT automation software for system adminis-
trators,” https://puppetlabs.com/, 2013.

[6] Opscode, “Chef,” http://www.opscode.com/chef/, 2013.
[7] M. Hashimoto, “Vagrant,” http://www.vagrantup.com/, 2013.
[8] C. Quinton, R. Rouvoy, and L. Duchien, “Leveraging feature models to

configure virtual appliances,” in Proceedings of the 2nd Intl. Workshop
on Cloud Computing Platforms. ACM, 2012, pp. 2:1–2:6.

[9] J. A. Hewson, P. Anderson, and A. D. Gordon, “A declarative approach
to automated configuration,” in Proceedings of the 26th Intl. Conf. on
Large Installation System Administration. USENIX, 2012, pp. 51–66.

