Routing IPSec Tunnels to OpenVPN networks using OpenSWAN.

Lance Buttars

http://www.obscuritysystems.com/

OpenVPN and IPSec

- OpenVPN is not compatible with IPSec!
- OpenVPN != IPSec
- VPN does not always mean using IPSec
 - (but that is what the majority thinks)
- Using OpenSWAN you can bridge an OpenVPN network to a IPSec tunnel.

OpenVPN vs IPSec

OpenVPN

- Client Server
- Single Port
 - You pick the port
- Easy to setup.
- Easy to Troubleshoot
- More Secure than a standard PSK 3-DES
- Works in OpenVZ

IPSec

- Peer to Peer
- Multiple Ports
 - 50 for ESP or AH
 - 500 for ISAKMP
 - 4500 for NAT-T
- Does not work well with NAT
- Complicated
- Mostly uses PSK which can become outdated.
- Does not work in OpenVZ

OpenVPN Positive

- Easy RSA scripts can quickly and easily create certificates to issue connectivity.
- Server / Client infrastructure one point controls configuration and forces all others to comply.
- Uses a single port can switch between UDP and TCP.
- Compression can lead to faster Internet Connections.
- NAT is not a problem for OpenVPN.

OpenVPN Negative

- Not supported with most equipment.
- Not compatible with IPsec.
- Not understood well by people who don't use it.
- No RFC Number as of yet.

IPSec Positive

- Works on older equipment.
- Most places already have one version of it or another.
- Secure if setup correctly.
- RFC standard.

IPSec Negatives

- Hard to configure.
- Too many options.
- Hates NAT and NAT hates it.
- Peer to Peer architecture makes connection setup between two parties difficult.
- PSK results in insecure communication channels.
- Not compatible with OpenVPN.
- L2TP required for road warrior setup.

PPTP

(Point-to-Point Tunneling Protocol)

- DON'T USE IT!
- Requires GRE which can cause configuration issues.
- Can easily be broken by capturing DataStream.
- Lack of Two face authentication.
- After learning OpenVPN you will never need it.
- Uses MSCHAP2

ISO Layers

OpenVPN Setup

- Debian Path
- cd /usr/share/doc/openvpn/examples/easy-rsa/2.0/
- vim vars (Edit file)
 - Fill this file out like a form
- Source var
 - Loads environmental settings
- ./clean-all
 - WARNING: Only run once cleans key directory
- ./build-ca
 - Builds a Certificate Authority
- ./build-key-server server
 - Builds OpenVPN server certificate and key
- ./build-key client1
 - Builds client key and certificate
- ./build-dh
 - Diffie-Hellman

Security Files

- ca.crt
 - Given to every client to use to validate connection.
- ca.key
 - Keep Private (Keys to the VPN Kingdom)
- dh{n}.pem
 - server only Diffie Hellman parameters
- server.crt
 - Server Certificate
- server.key
 - Server Key
- client1.crt
 - Certificate for client
- client1.key
 - Key for client key private for client used to connect.

Open Settings /etc/openvpn/server.conf

- port 1923
 - Port Used to connect to Server
- proto udp
 - proto tcp /udp
 - ALWAYS USE UDP IF YOU CAN
 - TCP does not work well with tcp over tcp.
- dev tun
 - TAP/TUN
 - Type of VPN Tunnel Layer 3 or Layer 2
- ca /etc/openvpn/ca.crt
 - Certificate Path
- cert /etc/openvpn/test.crt
 - Certificate for Server
- key /etc/openvpn/test.key
 - Key for server
- dh /etc/openvpn/dh2048.pem
 - Dihellmen key for server

OpenVPN Setting Part 2

- server 172.16.x.x 255.255.255.0
 - Ip address pool
- ifconfig-pool-persist ipp.txt
 - Ip address pool log
- keepalive 10 120
 - Pings to check to see if other side is still up
- comp-lzo
 - Use comp-lzo compression
- user nobody
 - Service user
- group users
 - Service group
- status openvpn-status.log
 - verb 3

OpenVPN Setting Part 3

- client-to-client
- push "redirect-gateway def1 bypass-dhcp"
 - Only use if your setting up road warrior NATt'ed setup will change default gateway for all clients
- push "dhcp-option DNS 208.67.222.222"
- push "dhcp-option DNS x.x.x.1"
- push "route 172.x.x.0 255.255.255.0"
- push "route 10.x.x.0 255.255.225.0

Bridging and Routing between OpenSWAN and IPSec

IPSec Nuts and Bolts

- Encryption 3DES AES
 - Always use AES ,3DES has known attacks
- Diffie-Hellman Key Exchange
 - Keeps keys safe
- AH / ESP
 - Packet types
- Transport and Tunnel Mode
 - Layers
- Aggressive Mode /Main Mode
- Inter Key Exchange
 - Phase 1 / Phase 2
- The NAT Problem
 - NAT -t
- IKE daemon called Pluto.
- NETKEY, the 2.6 IPsec Stack
- Perfect Forward Secrecy

Authentication Header (AH)

- Guarantees connectionless integrity and data origin authentication of IP Packets
- Protects against replay attacks.
- Security Parameter Index(SPI)
 - Uniquely Identifies connection
- Sequence Number(SN)
 - Uniquely sets number for every packet.
- A cryptographic checksum. Integrity
 - check value (ICV)
 - MD5 or SHA1
- Hash Message Authentication Code (HMAC)
 - SPI + SN= ICV
- AH only provides authentication and does not encrypt the payload
- Since AH on its own does not offer encryption, it is hardly used at all.

Encapsulating Security Payload (ESP)

- Encrypts and Protects replay.
- Has SPI,SN and ICV.
- ESP now provides authentication.
- The only reason AH is separate form ESP is because of the US Export Restriction that were in effect when they were created.
- ESP is better.
- There is little or no need for AH.

IPSec Security Authority (SA)

- Contract Between two communicating entities.
 - Contains database for SPI
 - Sequence Number
 - Lifetime
 - Mode
 - Tunnel
 - Contains all configuration options

Internet Key Exchange (IKE)

- Phase 1 ISAKMP SA
 - Phase 1 deals with obtaining privacy through a Diffie-Hellman key exchange,
- Phase 2 Quick Mode
 - Establishes what Ciphers to use.
 - Which tunnel mode to use so on forth.
- Main Mode
 - Slower mode packets more fault tolerant
- Aggressive Mode
 - Faster less packets more error prone
- Pluto
 - Handles IKE Enable Pluto Debugging to trouble shoot IKE problems in great depth.

IPSec Modes

- Tunnel Mode
 - Used in most cases
 - Connection between two routers
 - Also know as an Encrypted route

- Transport Mode
 - Is used for LT2P
 - Used for transporting
 Layer 2 traffic.
 - only the payload of the IP packet is encrytped and authenticated.
 - The routing is intact,
 since the IP header is not modified or Encrypted

KLIPS vs NETKEYS

- Klips
 - Most compile OpenSWAN requires kernel modules
 - NETKEYS
 - A little confusing
 - Comes installed by default
 - Cannot view routes from netstat -r command
 - Does not create virtual interface.

L2TP

- Point to Point Protocol
 - Needs IPSEC for security
- Supported by Windows, Apple and almost all mobile devices.
- Hard to configure
- Uses port 1701

OpenSWAN Setup

- apt-get install openswan
- apt-get install Isof
- ipsec verify
- ipsec setup start
- ipsec.secrets
 - /etc, or /etc/ipsec/
 - Stores RSA keys and preshared secrets (PSKs)
- ipsec.conf
 - /etc, or sometimes in /etc/ipsec
 - Contains all configuration options

#!/bin/bash

```
# Disable send redirects
echo 0 > /proc/sys/net/ipv4/conf/all/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/default/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/eth0/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/eth1/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/lo/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/lo/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/ppp0/send_redirects
```

Disable accept redirects echo 0 > /proc/sys/net/ipv4/conf/all/accept_redirects echo 0 > /proc/sys/net/ipv4/conf/default/accept_redirects echo 0 > /proc/sys/net/ipv4/conf/eth0/accept_redirects echo 0 > /proc/sys/net/ipv4/conf/eth1/accept_redirects echo 0 > /proc/sys/net/ipv4/conf/lo/accept_redirects echo 0 > /proc/sys/net/ipv4/conf/lo/accept_redirects

- # /etc/ipsec.conf Openswan IPsec configuration file config setup
- # Debug-logging controls: "none" for (almost) none, "all" for lots.
- # klipsdebug=none
- #plutodebug="control parsing"
- # For Red Hat Enterprise Linux and Fedora, leave protostack=netkey
 nat traversal=yes
- virtual private=
- oe=off
- # Enable this if you see "failed to find any available worker"
- nhelpers=0
- #You may put your configuration (.conf) file in the "/etc/ ipsec.d/"

```
conn test
    type=tunnel
    authby = secret
    left = x.x.x.36
    leftsubnet =x.x.x.36/32
    leftsourceip = x.x.x.x36 (OpenVPN Network)
    leftid=x.x.x.181
    leftnexthop=%defaultroute
    rightid=x.x.x.38
    right=x.x.x.92
    rightsubnet=x.x.x.15/24 #(OpenSWAN Network)
    esp=aes256-sha1
    ike="aes256-sha1-modp1024"
    keyexchange = ike
    pfs = no
    auto = start
    lifetime=86400s
    aggrmode=no
```

Trouble Shooting OpenSWAN IPSec

- Ipsec barf
- Ipsec auto --status
- Enabling pluto debug or disable pluto debuging.

```
root@vpn2: /etc/openvpn
000 algorithm IKE dh group: id=2, name=OAKLEY GROUP MODP1024, bits=1024
000 algorithm IKE dh group: id=5, name=OAKLEY GROUP MODP1536, bits=1536
000 algorithm IKE dh group: id=14, name=OAKLEY GROUP MODP2048, bits=2048
000 algorithm IKE dh group: id=15, name=OAKLEY GROUP MODP3072, bits=3072
000 algorithm IKE dh group: id=16, name=OAKLEY GROUP MODP4096, bits=4096
000 algorithm IKE dh group: id=17, name=OAKLEY GROUP MODP6144, bits=6144
000 algorithm IKE dh group: id=18, name=OAKLEY GROUP MODP8192, bits=8192
000 stats db ops: {curr cnt, total cnt, maxsz} :context={0,2,64} trans={0,2,3072} attrs={0,2,2048}
000 "test": 50.57.136.192<50.57.136.192>[+S=C]...50.57.176.79<50.57.176.79>[+S=C]; erouted; eroute owner: #4
000 "test": mvip=unset; hisip=unset;
000 "test": ike life: 3600s; ipsec life: 86400s; rekey margin: 540s; rekey fuzz: 100%; keyingtries: 0
000 "test": policy: PSK+ENCRYPT+TUNNEL+UP+IKEv2ALLOW+1KOD+rKOD; prio: 32,32; interface: eth0;
000 "test": newest ISAKMP SA: #3; newest IPsec SA: #4;
000 "test": IKE algorithms wanted: AES CBC(7) 256-SHA1(2) 000-MODP1024(2); flags=-strict
000 "test": IKE algorithms found: AES CBC(7) 256-SHA1(2) 160-MODP1024(2)
000 "test": IKE algorithm newest: AES CBC 256-SHA1-MODP1024
000 "test": ESP algorithms wanted: AES(12) 256-SHA1(2) 000; flags=-strict
000 "test": ESP algorithms loaded: AES(12) 256-SHA1(2) 160
000 "test": ESP algorithm newest: AES 256-HMAC SHA1; pfsgroup=<N/A>
000 #4: "test":500 STATE QUICK R2 (IPsec SA established); EVENT SA REPLACE in 86062s; newest IPSEC; eroute owner; isakmp#3; idle; import:not set
000 #4: "test" esp.6c8bec7a@50.57.176.79 esp.1bb98d13@50.57.136.192 tun.0@50.57.176.79 tun.0@50.57.136.192 ref=0 refhim=4294901761
000 #3: "test":500 STATE MAIN R3 (sent MR3, ISAKMP SA established); EVENT SA REPLACE in 3262s; newest ISAKMP; lastdpd=-1s(seq in:0 out:0); idle; imp
000 #2: "test":500 STATE QUICK I2 (sent QI2, IPsec SA established); EVENT SA REPLACE in 85627s; isakmp#1; idle; import:admin initiate
000 #2: "test" esp.7381cee@50.57.176.79 esp.35c55020@50.57.136.192 tun.0@50.57.176.79 tun.0@50.57.136.192 ref=0 refhim=4294901761
000 #1: "test":500 STATE MAIN I4 (ISAKMP SA established); EVENT SA REPLACE in 2917s; lastdpd=-1s(seq in:0 out:0); idle; import:admin initiate
root@vpn2:/etc/openvpn#
```

OpenVPN Case Studies

- Virtual Private Servers
 - Interserver (http://www.interserver.net/)
 - 3mb up and down 376 mb ram \$6.00 a month.
 - » Los Angles ,CA
 - » Secaucus, NJ
 - Santrex (http://www.santrex.net/vps-hosting.php)
 - OffShore VPS \$9.00
 - Be Very Careful of Terms and Laws when crossing borders!
 - France
 - Germany
 - Luxembourg
 - Netherlands
 - Romania
 - Etc..

Road warrior Setup / Proxy setup

IPTables NATing OpenVPN Network

- iptables -t nat -A POSTROUTING -s 172.18.x.x/24 -j SNAT --to x.x.x.x
- iptables -A INPUT -p udp -m udp --dport 1074 -m state
 --state NEW -j ACCEPT
- iptables -A FORWARD -m state --state RELATED,ESTABLISHED -j ACCEPT
- iptables -A FORWARD -s 172.18.x.x/24 -j ACCEPT
- iptables -A FORWARD -j REJECT

Routing in Linux

- vim /etc/sysctl.conf
- # Controls IP packet forwarding
- net.ipv4.ip_forward = 1
- Systcl –p
- (don't always turn this on is off for a reason)

Server Tethering To OpenVPN Cloud Server.

OpenVPN Dial Back

Monitoring Services

OpenVPN Inception Layers?

Stunnel

- Encrypts Layer 4 in TLS/SSL RSA Encryption
 - openssl req -new -x509 -days 365 -nodes -config stunnel.cnf -out stunnel.pem -keyout stunnel.pem
 - openssl rsa -in original.pem -out new.pem

stunnel.conf

```
cert = /etc/stunnel/stunnel.pem
  setuid = nobody
  setgid = nobody
  pid = /tmp/stunnel.pid
  debug = 7
 output = stunnel.log
  [mysqls]
 accept = 3309
  connect = 3306
```

Obscurity Systems

- For Consulting or More Info My
 - Website
 - http://www.obscuritysystems.com/
 - Email
 - nemus@grayhatlabs.com
 - info@obscuritysystems.com
 - Phone Number
 - 801-828-3184
- Sllug Mailing list http://www.sllug.org/