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Abstract

We study six months of human mobility data, including WiFi and GPS traces recorded with high temporal

resolution, and find that time series of WiFi scans contain a strong latent location signal. In fact, due

to inherent stability and low entropy of human mobility, it is possible to assign location to WiFi access

points based on a very small number of GPS samples and then use these access points as location beacons.

Using just one GPS observation per day per person allows us to estimate the location of, and subsequently

use, WiFi access points to account for 80% of mobility across a population. These results reveal a great

opportunity for using ubiquitous WiFi routers for high-resolution outdoor positioning, but also significant

privacy implications of such side-channel location tracking.

Introduction

Due to the ubiquity of mobile devices, the collection of large-scale, longitudinal data about human mobility

is now commonplace [1]. High-resolution mobility of individuals and entire social systems can be captured

through a multitude of sensors available on modern smartphones, including GPS and sensing of nearby
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WiFi APs (access points or routers) and cell towers. Similarly, mobility data may be collected from systems

designed to enable communication and connectivity, such as mobile phone networks or WiFi systems (e.g.

at airports or on company campuses) [2, 3]. Additionally, large companies such as Google, Apple, Microsoft,

or Skyhook, combine WiFi access points with GPS data to improve positioning [4], a practice known as

‘wardriving’. While widely used, the exact utility and mechanics of wardriving are largely unknown, with

only narrow and non-systematic studies reported in the literature [5, 6]. As a consequence, it is generally not

known how WiFi networks can be used for sensing mobility on a societal scale; this knowledge is proprietary

to large companies.

In the scientific realm, the mobility patterns of entire social systems are important for modeling spreading

of epidemics on multiple scales: metropolitan networks [7, 8, 9] and global air traffic networks [10, 11]; traffic

forecasting [12]; understanding fundamental laws governing our lives, such as regularity [13], stability [14],

and predictability [15]. Predictability and stability of human mobility are also exploited by commercial

applications such as intelligent assistants; for example Google Now [16] is a mobile application, which learns

users’ habits to, among other services, conveniently provide directions to the next inferred location.

Mobility traces are highly unique and identify individuals with high accuracy [17]. Sensitive features

can be extracted from mobility data, including home and work locations, visited places, or personality

traits [18]. Moreover, location data are considered the most sensitive of all the commonly discussed personal

data collected from or via mobile phones [19].

Here, we show that a time sequence of WiFi access points is effectively equal to location data. Specifically,

having collected both GPS and WiFi data with high temporal resolution (median of 5 minutes for GPS and

16 seconds for WiFi) in a large study [20], we use six months of data for 63 participants to model how

lowering the rate of location sampling influences our ability to infer mobility. The study participants are

students with heterogeneous mobility patterns. They all attend lectures on campus located outside of the

city center, but live in dormitories and apartments scattered across the metro area at various distances from

the university.
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By mapping the WiFi data, we are able to quantify details of WiFi-based location tracking, which are

usually not available to the general public. We find that the geo-positioning inferred from WiFi access points

(APs or routers) could boost efficacy in other data collection contexts, such as research studies. In addition,

our findings have significant privacy implications, indicating that for practical purposes WiFi data should

be considered location data. As we argue in the following sections, this finding is not recognized in current

practices of data collection and handling.

Results

Ubiquitously available WiFi access points can be used as location beacons, identifying locations based on

BSSID (basic service set identifier, uniquely identifying every router) broadcast by APs. These locations are

not intrinsically geographical, as the APs do not have geographical coordinates attached. However, since the

placement of APs tends to remain fixed, mapping an AP to a location where it was seen once is sufficient to

associate all the subsequent scans from the user device with geographical coordinates. See Supplementary

Information for details on inferring the geographical locations of routers, as well as identifying (and discarding

data from) mobile access points.

WiFi networks are ubiquitous. In our population, 92% of all WiFi scans detect at least one access point,

and 33% detect more than 10 APs, as shown in Figure 1c. In densely-populated areas, an average of 25 APs

are visible in every scan, with population density explaining 50% of the variance of the number of APs, as

shown in Figure 1b. WiFi scans containing at least one visible AP can be used for discovering the location

of the user, with a typical spatial resolution on the order of tens of meters.

We investigate three approaches to using access points as location beacons, all of which enable WiFi-based

location tracking even with limited resources: (1) recovering APs’ locations from mobility traces collected

during an initial training period (exploiting the long-term stability of human mobility), (2) recovering APs’

locations from randomly sampled GPS updates (exploiting low entropy of human mobility, see Supplementary

Information for distinction between stability and low entropy), and (3) using only the most frequently
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Figure 1: WiFi routers are located where people live. a: Map of Greater Copenhagen Area, divided into parishes with

color indicating average number of routers discovered per scan; rectangle overlay indicates the city center. b: The number of

access points visible in each scan is correlated with the population density (r2 = 0.5). Even in low population density areas

there are several routers visible on average in each scan. Therefore, knowing the positions of only a subset of routers is enough

for precise location sensing. c: Distribution of number of routers per scan. In our dataset 92% of scans contain at least one

router.

observed APs for which location can be feasibly obtained from external databases. The task is to efficiently

assign geographical coordinates (latitude and longitude) to particular APs, so they can be used as beacons

for tracking user’s location. In the following sections, we refer to time coverage as the fraction of ten-minute

timebins, in which at least one router with a known location is observed.
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Stability of human mobility allows for efficient WiFi-based positioning.

Human mobility has been shown to remain stable over long periods of time [13]. We find that participants

in our study have stable routines, with locations visited in the first one, two, three, and four weeks of the

study still visited frequently six months later. Learning the locations of routers seen during the first seven

days (corresponding to ∼3.5% of the observations, shown in Figure 3a, left panel) provides APs’ locations

throughout the rest of the experiment sufficient for recovering ∼55% of users mobility until the Christmas

break around days 75-90. When the location of routers seen by each person is inferred using only this person’s

data (the personal-only WiFi database case, shown using an orange line in Figure 3), the information expires

with time: there is a stable decrease in time coverage after Christmas break. This decline is evident both

when a week (Figure 3a, left panel) and four weeks (right panel) are used for training, with the time

coverage dropping ∼18 percentage points between days 60 and 160. The histograms above each plot show

the distribution of time coverage in selected points in time (at 7, 80, 190 days respectively). The distribution

for day 190 reveals that the expiry of the personal database validity is driven by individuals who significantly

altered routines, with 40% of participants spending only around 10% of time in locations they have visited

in the first week. In contrast, when the inferred locations of routers are shared among people (the global

database case, represented by a blue line) the information does not expire and shows no decreasing trend

during the observation period. This implies that rather than moving to entirely new locations, people begin

to visit places that are new to them, but familiar to other participants. The histograms of time coverage

distribution in both panels of Figure 3a reveal that the individuals are heterogeneous in their mobility. The

coverage in most cases is highly affected in the non-personal case (where the person does not collect their

own location information, but data from others is used, marked using green in the figures), but 20% of

participants retain a coverage of above 80% throughout the observation period, see Figure 3a, left panel.

People living and working close to each other (like students in a dormitory) share a major part of their

mobility and thus location of the APs they encounter can be estimated using data collected by others.

The demonstrated stability of human mobility patterns over long periods has real-life privacy implications.
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Denying a mobile application access to location data, even after a short period, may not be enough to prevent

it from tracking user’s mobility, as long as its access to WiFi scans is retained.

Human mobility can be efficiently captured using infrequent location updates.

Sampling location randomly across time (Figure 3b), rather than through the initial period (Figure 3a)

provides a higher time coverage, which is retained throughout the observation. With around one sample per

day per person on average, the location can be inferred 80% of the time in case of global lookup base and

70% in personal case (see Figure 3c, at training fraction of 0.007).

The histograms in Figure 3b confirm that distribution of coverage in the non-personal case is bimodal

within our population: mobility of some individuals can effectively be modeled using data from people around

them, while patterns of others are so distinct they require using self-collected information. The single-mode

distribution of coverage in the personal case and the fact that the distribution is unchanged between day 7

and day 190 show the lack of temporal decline when sampling happens throughout the observation period.

The GPS sensor on a mobile device constitutes a major battery drain when active [21], whereas the WiFi

frequently scans for networks by default. Our results show that GPS-based location sampling rate can be

significantly reduced in order to save battery, while retaining high resolution location information through

WiFi scanning. Our analyses also point to another scenario where WiFi time series can result in leaks

of personal information. Infrequent location data can be obtained from a person’s (often public) tweets,

Facebook updates, or other social networking check-ins and then matched with their WiFi records to track

their mobility.

Overall human mobility can be effectively captured by top WiFi access points.

As previously suggested [15], people’s mobility has low entropy and thus a few most prevalent routers can

work effectively as proxies for their location. Figure 3d shows that inferring the location of just 20 top routers

per person on average (which, given the median count of 22 000 routers observed per person, corresponds

6



to 0.1% of all routers seen) translates to knowing the location of individuals 90% of the time. Since our

population consists of students, who attend classes in different lecture halls in various buildings across the

campus, we expect that the number of access points necessary to describe mobility of persons with a fixed

work location can be even lower. There are persons in our study, for whom just four access points correspond

to 90% of time coverage (see Suppelementary Figure 4 for details).

That the mobility of individuals in our sample overlaps is apparent in Figure 3d as the time coverage

of three top routers in the personal case is the same as in the global coverage using the total of 80 routers

(instead of 189 disjoint routers).

As a consequence, a third party with access to records of WiFi scans and no access to location data,

can effectively determine the location of each individual 90% of time by sending less than 20 queries to

commercial services such as Google Geolocation API or Skyhook.

Single-user analysis.

To illustrate the ubiquity of WiFi access points and how effectively they can be used to infer mobility

patterns, we present a small example dataset containing measured and inferred location information of one

of the authors, collected over two days. During the 48 hours of observation, the researcher’s phone was

scanning for WiFi with a median period of 44 seconds, measuring on average 19.8 unique devices per scan,

recording 3 822 unique access points. Only one scan during the 48 hours was empty, and one scan yielded

113 unique results. Figure 2a shows the corresponding GPS trace collected with a median sampling period

of 5 minutes. When dividing the 48 hours of the test period into 10 minute bins, a raw GPS trace provides

location estimation in 89% of these bins. Four stop locations are marked with blue circles and include

home, two offices, and a food market visited by the researcher. Figure 2b shows the estimation of this trace

based on the inferred locations of WiFi routers, see Supplementary Information for detailed information on

the location inference. The four stop locations are clearly visible, but the transitions have lower temporal

resolution and errors in location estimations. This method provides location information in 97% of temporal
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bins. Using WiFi increases overall coverage, but might introduce errors in location estimation of routers

which were only observed shortly, for example during transition periods. Figure 2c shows the estimation

of this trace based on the locations of top 8 (0.2%) WiFi routers. The four important locations have been

correctly identified, but information on transitions is lost. Information in 95% of temporal bins is available.

Finally, Figure 2d shows a graphical representation of how much time the researcher spends in any one

of the top eight locations during the observation time. Note that the first four locations account for an

overwhelming fraction of the 48 hours.

Knowing the physical position of the top routers and having access to WiFi information reveals the

location of the user for the majority of the timebins. The details of trajectories become lost as we decrease

the number of routers we use to estimate locations. With too few routers might not be possible to determine

which of possible routes the subject chose or how long she took to travel through each segment of the trip.

On the other hand, the high temporal resolution of the scans allows for very precise discovery of arrival and

departure times and of time spent in transit. Such information has important implications for security and

privacy, as it can be used to discover night-watch schedules, find times when the occupants are not home,

or efficiently check work time of the employees.

Discussion

Our world is becoming progressively more enclosed in infrastructures supporting communication, mobility,

payments, or advertising. Logs from mobile phone networks have originally been considered only for billing

purposes and internal network optimization; today they constitute a global database of human mobility and

communication networks [13]. Credit card records form high-resolution traces of our spending behaviors [22].

The omnipresent WiFi networks, intended primarily for communication, has now became a location tracking

infrastructure, as described here. The pattern is clear: every new cell tower, merchant with credit card

terminal, every new private or municipal WiFi network offer benefits to the connected society, but, at the

same time, create opportunities and perils of unexpected tracking. Cities entirely covered by WiFi signal
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Figure 2: 48 hours of location data of one of the authors, with the four visited locations visited marked in blue:

home, two offices, and a food market. Even though the author’s phone has sensed 3 822 unique routers in this period,

only a few are enough to describe the location more than 90% of time. a. traces recorded with GPS; b. traces reconstructed

using all available data on WiFi routers locations - the transition traces are distorted, but all stop locations are visible and the

location is known 97% of the time. c. with 8 top routers it is still possible to discover stop locations in which the author spent

95% of the time. In this scenario transitions are lost. d. timeseries showing when during 48 hours each of the top routers were

seen. It can be assumed that AP 1 is home, as it’s seen every night, while AP 2 and AP 3 are offices, as they are seen during

working hours. The last row shows the combined 95% of time coverage provided by the top 8 routers.
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provide unprecedented connectivity to citizens and visitors alike; at the same time multiple parties have

to incorporate this fact in their policies to limit privacy abuse of such infrastructure. Understanding and

quantifying the dynamics of privacy and utility of infrastructures is crucial for building connected and free

society.

Since the creation of comprehensive databases containing geolocation for APs is primarily carried out by

large companies [4], one might assume that WiFi based location tracking by ‘small players’, such as research

studies or mobile applications, is not feasible. As we have shown above, however, APs can be very efficiently

geolocated in a way that covers a large majority of individuals’ mobility patterns.

In the results, we focused on outdoor positioning with spatial resolution corresponding to WiFi AP

coverage: we assume that if at least one AP is discovered in a scan, we can assign the location of this AP

to the user. This is a deliberately simple model, described in detail in Supplementary Information, but

we consider the resulting spatial resolution sufficient for many aspects of research, such as studying human

mobility patterns. The spatial resolution of dozens of meters is higher than for example CDR data [13],

which describes the location with the accuracy of hundreds of meters to a few kilometers. Incorporating

WiFi routers as location beacons can aid research by drastically increasing temporal resolution without

additional cost in battery drain.

Students live in multiple dormitories on and outside of campus, take multiple routes commuting to the

university, frequent different places in the city, travel across the country and beyond. While the students

spend most of their time within a few dozens of kilometers from their homes, they also make international

and intercontinental trips (see Supplementary Figures 2 and 3 for details). Such long distance trips are not

normally captured in studies based on telecom operator data. Our population is densely-connected and in

this respect it is biased, in the same sense as any population of people working in the same location. We

do simulate a scenario in which the individuals do not form a connected group by analyzing the results for

personal-only database. We expect the obtained results to generalize outside of our study.

Our findings connect to an ongoing debate about the privacy of personal data [23]. Location data has
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been shown to be among the most sensitive categories of personal information [19]. Still, a record of WiFi

scans is, in most contexts, not considered a location channel. In the Android ecosystem, which constitutes

85% of global smartphone market in Q2 2014 [24], the permission for applications to passively collect the

results of WiFi scans is separate from the location permission; moreover, the Wi-Fi connection information

(ACCESS WIFI STATE) permission is not considered ‘dangerous’ in the Android framework, whereas both

high-accuracy and coarse location permissions are tagged as such [25]. While it has been pointed out that

Android WiFi permissions may allow for inference of sensitive personal information [26], the effect has not

been quantified through real-world data. Here we have shown that inferring location with high temporal

resolution can be efficiently achieved using only a small percentage of the WiFi APs seen by a device. This

makes it possible for any application to collect scanned access points, report them back, and inexpensively

convert these access points into users’ locations. The impact is amplified by the fact that apps may passively

obtain results of scans routinely performed by Android system every 15–60 seconds. Such routine scans

are even run when the user disables WiFi. See Supplementary Information for additional analysis on data

privacy in the Android ecosystem.

Developers whose applications declare both location and WiFi permissions are able to use WiFi infor-

mation to boost the temporal resolution of any collected location information. We have shown that even

if the location permission is revoked by the user, or removed by the app developers, an initial collection of

both GPS and WiFi data is sufficient to continue high-resolution tracking of the user mobility for subsequent

months. Many top applications in the Play Store request Wi-Fi connection information but not explicit

location permission. Examples from the top charts include prominent apps with more than 100 million

users each, such as Candy Crush Saga, Pandora, and Angry Birds, among others. We are not suggesting

that these or other applications collect WiFi data for location tracking. These apps, however, do have a

de facto capability to track location, effectively circumventing Android permission model and general public

understanding.

Due to uniqueness of location traces, users can be easily identified across multiple datasets [17]. Our

results indicate that any application can use WiFi permission to link users to other public and private

11



identities, using data from Twitter or Facebook (based on geo-tagged tweets and posts), CDR data, geo-

tagged payment transactions; in fact any geo-tagged data set. Such cross-linking is another argument why

WiFi scans should be considered a highly sensitive type of data.

In our dataset, 92% of WiFi scans have at least one visible AP. Even in the most challenging scenario,

when there are no globally shared locations and each individual frequents different places, top 20 WiFi access

points per person can be efficiently converted into geolocations (using Google APIs or crowd-sourced data)

and used as a stable location channel. These results should inform future thinking regarding the collection,

use, and data security of WiFi scans. We recommend that WiFi records be treated as strictly as location

data.

Methods

The dataset.

Out of the 130+ participants of the study [20], we selected 63 for which at least 50% of the expected data

points are available. The methods of collection, anonymization, and storage of data were approved by the

Danish Data Protection Agency, and complies both with local and EU regulations. Written informed consent

was obtained via electronic means, where all invited participants read and digitally signed the form with

their university credentials. The median period of WiFi scans for these users was 16 seconds, and the median

period of GPS sampling was 10 minutes. The data spans a period of 200 days from October 1st, 2012 to

April 27th, 2013.

Known routers and coverage

In the article we use a simple model of locating the WiFi routers. We consider an access point as known if it

occurred in a WiFi scan within one second of a GPS location estimation. The shortcomings of this approach

and possible remedies are described in more detail in Supplementary Information.
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We define time coverage as a fraction of ten-minute bins containing WiFi data in which at least one

known router was scanned. For example, let us assume that the user has data in 100 out of 144 timebins

during a day, and in 80 of these timebins there is a known router visible. Therefore, that user’s coverage for

that day is 80%. The average time coverage for a day is the mean coverage of all users who had any WiFi

information in that day. This way our results are independent from missing data caused by imperfections in

data collection system deployed in the study.

In Figure 3 we present three different approaches to sampling, which we describe here in detail. Initial-

period sampling. As presented in Figure 3a, we learn the location of the routers sequentially. With each

GPS location estimation accompanied with a WiFi scan, we add the visible access points to the list of known

routers. The learning curve can be observed for the first seven days (Figure 3a, left panel) or the first 28

days (Figure 3a, right panel). Random subsampling. In the random subsampling scenario we select a set

fraction of available GPS location estimations, each paired with a WiFi scan. Each GPS estimation provides

information on the position of all routers seen in the paired scan. This scenario can be realized after the

data collection is finished, as the location estimations are used to locate the WiFi scans which happened

both before and after said estimations. The results are presented in Figure 3b. Top routers. We select the

top routers in a greedy fashion after the data collection is finished. We sort the routers in descending order

by the number of user timebins they occur in. We choose the top one router, and then we select the routers

which provide the biggest increase in the number of user timbebins covered. Due to high density of access

points, each semantic place is described by presence of several routers, but location of only one of them has

to be established to find the geographic position of the place. In this sampling method we do not rely on

our own GPS data — top routers are found purely based on their occurrence in the WiFi scans, regardless

of availability of GPS scans within the one second time delta. The results of such sampling are presented in

Figure 3e.
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Data collection scenarios.

Each subplot in Figure 3 contains series coming from three different simulated collection scenarios. In the

global scenario, there is a pool of WiFi routers locations estimations coming from all users, and a router is

considered known if at least one person has found its location. This scenario simulates the function of such

services as for example mobile Google Maps. In the personal scenario each user can only use their own data,

a router can be known to them only if they found its location themselves. It simulates collecting data in a

disjoint society, where each person frequents different locations. Finally, in the global with no personal

data scenario, each user can exploit estimations created by everybody else, but without contributing their

own data.
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Figure 3: The time coverage provided by the routers with known position depends on who collects the corre-

sponding location data and when it happens. In each subplot the orange line describes the scenario where each individual

collects data about themselves and does not share it with others; the blue line corresponds to a system in which the location

of routers discovered by one person is made known to other users; the green line presents a situation where each individual

can use the common pool of known routers but does not discover access points herself. a. Stability of location. Learning

the location of APs seen during the first seven (left panel) or 28 (right panel) days, leads to performance gradually decreasing

with time in the personal case (orange line). The histograms of time coverage distribution for day 190 show that this decline

is driven by a growing number of people who spend only ∼10% of time in the locations they visited in the beginning of the

observation. The global approach (blue line) does not show this tendency, which indicates that people rotate between common

locations rather than moving to entirely new places. b, c. Representativeness of randomly selected locations. Random

subsampling with an average period of 24 hours (less than 1% of all available location estimations) is sufficient to find the most

important locations in which people spend more than 80% of their time; using an average period of 4 hours (2.5% percent

of all available location data) results in ∼85% coverage. The personal database does not expire since the location is sampled

throughout the experiment, not only in the beginning. d. Limited number of important locations. Although querying

commercial services for WiFi geolocation is costly, knowing the location of only the 20 most prevalent routers per person in the

dataset results in an average coverage of ∼90%. Since people’s mobility overlaps, there is a benefit of using a global database

rather than treating all mobility disjointly.
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Supplementary Information

Inferring location of routers.

In the article we use a deliberately simplistic model of locating the WiFi routers. We assume that if we find a

WiFi scan and a GPS location estimation which happened within a one second time difference we can assume

that all routers visible in the scan are at the geographical location indicated by the GPS reading. Due to

effective outdoor range of WiFi routers of approximately 100 meters, this assumption introduces an obvious

limitation of accuracy of location inference. Moreover, there are a number of mobile access points such

as routers installed in public transportation or smartphones with hotspot capabilities. Such devices cannot

effectively be used as location beacons and will introduce noise into location estimations unless identified and

discarded. We propose and test the following method. For each GPS location estimation with timestamp

tGPS we find WiFi scans performed by the same device at tWiFi so that tGPS − 1s ≤ tWiFi ≤ tGPS + 1s

and select the one, for which |tGPS − tWiFi| is the smallest. We then add the location estimation and its

timestamp to the list of locations where each of the available WiFi access points was seen. For each device,

we fit a density-based spatial clustering of applications with noise (DBSCAN) model [27] specifying 100

meters as the maximum distance parameter ε. If there are no clusters found, or the found clusters contain

less than 95% of all locations associated with the said router we assume the router is mobile and to be

discarded from further analysis. If only one cluster is detected and it contains at least 95% of all points,

we assume the geometric median of these points is the physical location of the router. If there are more

clusters found and they contain at least 95% of all points, we verify if these clusters are disjoint in time: if

the timestamps of sightings do not overlap between those clusters, we assume the device is a static access

point which has been moved to a different place during the experiment. Otherwise, we classify the access

point as a mobile device and do not use it as a location proxy.

In the proposed method we assume accuracy of tens of meters is satisfactory, and hence do not find

a need to exploit the received signal strength information [28]. Arguably, with the sparse data that we
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operate on, employing received signal strength could lead to more confusion, as it can vary greatly for one

location, depending on the position of the measuring smartphone, and presence of humans and other objects

obstructing the signal. Supplementary Figure 1 shows timeseries of signal strengths received by a non-moving

smartphone, which vary as much as 10 dB, which corresponds to drastic differences in estimated distance

to the source, as in free-space propagation model extending the distance
√

10 ≈ 3.16 times corresponds to

10 dB loss in received signal strength.

In the 200 days of observations, the participants have scanned 487 216 unique routers, out of which 64 983

were scanned within a second of a GPS estimation. As many as 57 912 were only seen less than five times

which we assumed to be the minimum number of sightings to be considered a cluster, which left only 7 071

routers for further investigation. In 1 760 cases there were no clusters found, or there was more than 5%

noise. In 5 267 cases there was only one cluster and less than 5% of noise. Out of 21 cases there were

multiple clusters and less than 5% of noise, 9 revealed no time overlap between clusters. We verified our

heuristic of determining which routers are mobile by classifying routers which are very likely mobile, as their

networks are called AndroidAP (default SSID for a hotspot on Android smarphones), iPhone (default SSID

for iPhones), Bedrebustur or Commutenet (names of networks on buses and trains in Copenhagen). Out of

340 such devices 323, or 95%, were identified as mobile, and 17 as fixed-location devices.

All in all, out of 487 216 unique APs we believe we managed to estimate the location of 5 276, we identified

1 771 as mobile, and did not have enough data to investigate 480 169. Even though we only know the location

of approximately 1% of all sensed routers, this knowledge is enough to estimate the location of users in 87%

ten-minute timebins in the dataset.

Long term stability and low entropy of human mobility.

Long-term stability in the context of human mobility means that individuals keep returning to the same

locations over long time periods. Arguably, most people do not often move, change the work place, or find
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an entirely new set friends to visit. We use entropy in Shanon’s definition, as presented in equation (1)

H(X) = −
∑
i

P (xi) logP (xi), (1)

where X is the set of all possible locations, and P (xi) is the probability of a person being at location i.

Therefore, the bigger the fraction of time a person spends in their top few places, the lower the entropy

value of that person’s mobility. In this sense, long-term stability is necessary for the low entropy, and both

contribute to the predictability of human mobility.

Supplementary Figure 1: Received signal strength can vary greatly even if the smartphone and the access points do not move.

Mobility of the studied population.

This article focuses on a population of students at a university. To show that their mobility is not constrained

to the campus only, we present summary statistics about their mobility. Displacements in our dataset can be

as big as 10 000 km. Given such extreme statistics, the radius of gyration, while commonly used in literature

to describe mobility on smaller scales [13], is not a suitable measure here. Instead, in Supplementary Figure 2

we show a qualitative overview in form of a heatmap of observed locations, as well as a distribution of time

spent as a function of distance from home. For simplicity, we define the home location for each student as

the location of the most prevalent access point in their data. We then calculate the median distance from

home for each hour of the observation using their location data. For a more detailed view, we present the

distribution for 48 randomly chosen students in Supplementary Figure 3.
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Time coverage of top routers.

In this section we present a more detailed view on time coverage of top routers selected separately for each

person. Supplementary Figure 4A shows the fraction of time which participants spent near to one of their

top 20 routers. It is worth noting, that while home location is immediately apparent, there seems to be

no definite ”work” location in our population. This can be attributed to the fact that the participants of

the observation are students who attend classes in different buildings and lecture halls and do not have an

equivalent of an office. Supplementary Figure 4B is an enriched version of Figure 2d from the main text of

the article. It shows that even though 20 routers are needed on average to capture 90% of mobility, there

are participants for whom just four routers suffice.

Android Permissions.

The scope of Android permission ACCESS WIFI STATE is described in the developer documentation as

“allows applications to access information about Wi-Fi networks” [29]. This permission provides the request-

ing application with a list of all visible access points along with their MAC identifiers after each scan ordered

by any application on the phone (via broadcast mechanism). Moreover, with this permission the applica-

tions can start in the background when the first WiFi scan results appear after the phone boots: the app’s

BroadcastReceiver is called and the data can be collected without explicit RECEIVE BOOT COMPLETED

permission. Requesting a WiFi scan requires the CHANGE WIFI STATE permission, marked as dangerous,

but in most cases it is not necessary to request it: the Android OS by default performs WiFi scans in the

intervals of tens of seconds, even when the WiFi is turned off; the setting to disable background scanning

when WiFi is off is buried in the advanced settings.

Application developers often use ACCESS WIFI STATE to obtain information whether the device is

connected to the Internet via mobile or WiFi network. This information is useful, for example, to perform

larger downloads only when the user in connected to a WiFi network and thus avoid using mobile data.

This is an unnecessarily broad permission to use for this purpose, as the same information can be obtained
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with ACCESS NETWORK STATE, which provides all the necessary information without giving access to

personal data of WiFi scans:

ConnectivityManager cManager =

( ConnectivityManager ) getSystemServ ice ( Context .CONNECTIVITY SERVICE) ;

NetworkInfo mWifi = cManager . getNetworkInfo ( ConnectivityManager . TYPE WIFI ) ;

i f ( mWifi . i sConnected ( ) ) { } // w i f i i s connected

Since the ACCESS WIFI STATE together with INTERNET permission (for uploading the results) are

effectively sufficient for high-resolution location tracking, we suggest the developers transition to using the

correct permissions and APIs for determining connectivity and that accessing the result of WiFi scan requires

at least the ACCESS COARSE LOCATION permission.
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Supplementary Figure 2: The article focuses on a population of students at a single university, but they are not constrained to

the campus only. Our data captures human mobility at different scales: the participants spend most of their time at home (1),

but they travel around the neighborhood (2), the city (3), to different cities in Denmark (4), different cities in Europe (5), and

finally, other continents (6).
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Supplementary Figure 3: Distribution of time spent at different distances from the inferred home location, presented for

randomly selected 48 participants. In most cases, we see the home location as the most prevalent, and probably a ”work”

location as the next peak in the distribution.
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Supplementary Figure 4: A more detailed view of time coverage provided by top routers found through the greedy algorithm.

A: there is a clear main location for a majority of participants, we therefore assume this to be the home location. B: even

though 20 routers are needed on average to capture 90% of mobility, there are participants for whom just four routers suffice.
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