ABOUT DISHA PUBLICATION CHAPTER One of the leading publishers in India, Disha Publication provides books and study materials for 1 schools and various competitive exams being continuously held across the country. Disha's sole purpose is to encourage a student to get the best out of preparation. Disha Publication offers an online bookstore to help students buy exam books online with ease. We, at Disha provide a wide array of Bank / Engg./ Medical & Other Competitive Exam books to help all those aspirants who wish to crack their respective different levels of Bank / Engg./ Medical & Other Competitive exams. At Disha Publication, we strive to bring out the best guidebooks that students would find to be the most useful for all kind of competitive exam. 4 TRIGONOMETRY In this chapter we intend to study an important branch of mathematics called ‘trigonometry’. It is the science of measuring angle of triangles, side of triangles. Angle : B q O A Consider a ray OA if this ray rotate about its end point O and takes the position OB then we say that the angle Ð AOB has been generated. Measure of an angle : The measure of an angle is the amount of rotation from initial side to the terminal side. Þ p 5p r1 = s and r2 = s 3 12 p 5p r1 = r2 3 12 Þ 4r1 = 5r 2 Þ r1 : r2 = 5 : 4 Þ Trigonometric ratios : The most important task of trigonometry is to find the remaining side and angle of a triangle when some of its side and angles are given. This problem is solved by using some ratio of sides of a triangle with respect to its acute angle. These ratio of acute angle are called trigonometric ratio of angle. Let us now define various trigonometric ratio. Y NOTE : P Relation between degree and radian measurement p radians = 180 degree radian measure = 180 ×radian measure π 1° = 60’ (60 minutes) 1’ = 60’’ (60 seconds) Example 1 : Find radian measure of 270°. Solution : p 3p ´ 270 = Radian meausre = 180 2 Example 2 : 5p Find degree measure of . 9 Solution : 180 5p ´ = 100° degree measure = p 9 Example 3 : If the arcs of same length in two circles subtend angles of 60° and 75° at their centres. Find the ratio of their radii. Solution : c p ö æ æpö 60° = ç 60 ´ ÷ø = çè ÷ø and è 180 3 c p ö æ æ 5p ö 75° = ç 75 ´ ÷ = çè ÷ø è 180 ø 12 \ p s s 5p = and = 3 r1 12 r2 y 17 ×degree measure 180 degree measure = c r q A M X r = x2 + y 2 We define the following six trigonometric Ratios: sin q = Perpendicular y = r Hypotenuse cos q = Base x = Hypotenuse r tan q = Perpendicular y = Base x cosec q = c c é æ sö ù êQ q = ç ÷ ú è rø ú ëê û x Consider an acute angle ÐYAX = q with initial side AX and terminal side AY. Draw PM perpendicular from P on AX to get right angle triangle AMP. In right angle triangle AMP. Base = AM = x Perpendicular = PM = y and Hypotenuse = AP = r. r2 = x2 + y2 Hypotenuse r = Perpendicular y sec q = Hypotenuse r = Base x cot q = Base x = Perpendicular y 2 Important formula:1. sin2q + cos2 q = 1 4. cosec2q – cot2 q = 1 2. sec2q + tan2 q = 1 3. q 0° 30° 45° 60° 90° 0 1 2 1 3 2 1 1 T-ratio sin q 2 cos q 1 3 2 tan q 0 1 3 cosec q Not defined sec q 1 2 3 2 2 cot q Not defined 3 1 1 2 2 1 2 1 3 0 Not defined 2 2 1 3 Not defined 0 3 5. sin (90° – q) = cos q . 6. cos (90° – q) = sin q. 8. cosec (90° – q) = sec q. 9. sec (90° – q) = cosec q. tan (90° – q) = cot q Þ cot (90° – q) = tan q. 7. RELATION AMONG T-RATIONS sin q sin q cos q tan q cot q sec q cosec q cos q cot q tan q sin q 1 - cos 2 q 1 - sin 2 q sin q 2 1 - sin q 1 - sin 2 q sin q 1 2 1 - sin q 1 sin q tan q cos q 1 2 1 + cot q 1 cot q 1 + tan q cos q 2 1 - cos q 1 cos q 1 2 1 - cos q 2 1 + tan q 2 1 - cos 2 q cos q sec q 1 + cot q 1 cot q 1 tan q cot q sec 2 q - 1 sec q 1 cosec θ 1 2 tan q cosec q 1 - tan 2 q 1 + cot 2 q cot q 1 + tan 2 q tan q 1 + cot 2 q 1 sec q cosec 2 θ-1 cosec θ 1 sec 2 q - 1 cosec 2q - 1 1 sec 2 q - 1 sec q sec q sec 2 q - 1 cosec2 θ–1 cosec θ cosec 2 θ–1 cosec q 3 Example 4 : In a D ABC right angled at B if AB = 12, and BC = 5 find sin A and tan A, cos C and cot C Solution : C 13 5 B AC = 12 (AB) 2 + (BC) 2 Base 5 = Hypotenuse 13 the six trigonometric ratios of ÐC Solution : Perpendicular 3 sin A = = Hypotenuse 5 C 5 A ( Hypotenuse )2 – ( Perpendicualr )2 52 - 32 = 25 - 9 = 16 = 4 2 1 1 + =1 2 2 Þ tan 3x = 1 Þ tan 3x = tan 45° 3x = 45° x = 15° Example 9 : If q is an acute angle tan q + cot q = 2 find the value of tan 7 q + cot7 q. Solution : tan q + cos q = 2 = Base 5 = Perpendicular 12 In a right triangle ABC right angle at B if sin A = = 2 3 2 2q = 60 q = 30° Example 8 : Find the value of x. tan 3x = sin 45° cos 45° + sin 30° Solution : 1 1 1 ´ + tan 3x = 2 2 2 Example 5 : Base = AB 4 3 = , cot C = . AC 3 4 sin 2q = Perpendicular 5 = Base 12 When we consider t-ratios of ÐC, we have Base = BC = 5 Perpendicular = AB = 12 Hypotenuse = AC = 13 4 tan C = Find the value q, 2 sin 2 q = 3 Solution : tan A = B 3 AB 5 = , sec C = 5 AC 3 1 1 4 3 3 -2 -1 = = 2 ´ ´ 3 - 3´ ´ = 4 4 3 2 2 Example 7 : Perpendicular 5 sin A = = Hypotenuse 13 3 cos C = 2 = 169 = 13 When we consider t-ratios of Ð A we have Base AB = 12 Perpendicular = BC = 5 Hypotenuse = AC = 13 cot C = BC 4 5 = , cosec C = AC 5 4 æ1ö æ1ö æ 2 ö 2 ç ÷ ´ 3 - 3ç ÷ ´ ç ÷ 2 è ø è2ø è 3ø 144 + 25 cos C = sin C = Example 6 : Find the value of 2 sin2 30° tan 60° – 3cos2 60° sec2 30° Solution : A 2 2 = 12 + 5 = Now 3 find all 5 1 =2 tan q Þ tan2 q + 1 = 2 tan q Þ tan2 q – 2 tan q + 1 = 0 (tan q – 1)2 = 0 tan q = 1 q = 45° Now, tan7 q + cot7 q. = tan7 45° + cot7 45° =1+ 1=2 Example 10 : tan q + Find the value of cos37º sin53º 4 Solution : We have Solution : We have cos 37° cos(90° - 53°) sin 53° = = =1 sin 53° sin 53° sin 53° Example 11 : Find the value of Solution : We have = 2 = sin 36° sin 54° cos 54° cos 36° 2 1 - sin q 3 = 1 3 Example 13 : If tan 2q = cot (q + 6°), where 2q and q + 6° are acute angles find the value of q. Solution : We have tan 2q = cot (q + 6°) cot (90° – 2q) = cot (q + 6°) 90 – 2 q = q + 6° 3q = 84° q = 28° Example 14 : Find the value of (1 – sin 2q) sec2 q. Solution : We have, (1 – sin2 q) (sec2 q) = cos2 q sec2 q = cos2 q × 1 cos 2 q 1 - sin q 1 + sin q 1 1 find its value + 1 + sin q 1 - sin q (1 - sin q)2 = = 1 - sin 2 q 1 - sin q 1 sin q = = sec q – tan q. cos q cos q cos q Example 17 : Find the value of [(1 + cot q) – cosec q] [1 + tan q + sec q] Solution : (1 + cot q – cosec q) (1 + tan q + sec q) 1 öæ sin q 1 ö æ cos q + = ç1 + ÷ç1 + ÷ è sin q sin q øè cos q cos q ø æ sin q + cos q - 1 öæ cos q + sin q + 1 ö =ç ÷ç ÷ sin q cos q è øè ø = = ( sin q + cos q)2 - 1 sin q cos q sin 2 q + cos 2 q + 2sin q cos q - 1 sin q cos q 1 + 2sin q cos q - 1 2 sin q cos q =2 = sin q cos q sin q cos q Example 18 : = If sin q = 3 , find the value of sin q cos q. 5 Solution : sin q = 3 5 cos q = 1 - sin 2 q =1 Example 15 : cos q = 2sec 2 q. (1 - sin q)(1 - sin q) (1 + sin q) (1 - sin q) 1 - sin q = 1 + sin q cos 54° cos 36° cos 54° cos 36° =1–1=0 1 2 Solution : = Example 12 : Evaluate the cot 12° cot 38° cot 52° cot 60° cot 78° Solution : We have cot 12° cot 38° cot 52° cot 60° cot 78° = (cot 12° cot 78°) (cot 38° cot 52°) cot 60° = [cot12° cot (90° – 12°)] [cot 38° cot (90° – 38°)] cot 60° = [cot 12° tan 12°] [cot 38° tan 38°] cot 60° 2 Example 16 : sin(90° - 54°) sin(90° - 36°) = cos 54° cos 36° = 1´1´ = Find the value of sin 36° sin 54° cos 54° cos 36° 1 - sin q + 1 + sin q (1 + sin q ) (1 - sin q ) 1 1 + = 1 + sin q 1 - sin q 2 = 4 æ3ö 1- ç ÷ = 5 è5ø sin q × cos q = 3 4 12 ´ = 5 5 25 Example 19 : 2 sec q 1 . , find the value if 2 1 + tan 2 q If cos q = Solution : 1 2 sec q = 2 cos q = 2sec q = 2 1 + tan q 2sec q 2 sec q 5 them easily, we can determine these by using trigonometric ratios. Line of Sight The line of sight or the line of vision is a straight line from our eye to the object we are viewing. If the object is above the horizontal from the eye, we have to lift up our head to view the object. In this process, our eye move through an angle. This angle is called the angle of elevation of the object. 2 2 = =1 sec q 2 = Example 20 : If tan q = 1 + sin q 12 , find the value of 1 - sin q 5 Solution : q tan q = 12 5 Eye sec q = 1 + tan 2 q = cos q = æ 12 ö 1+ ç ÷ è5ø 2 = Angle of elevation If the object is below the horizontal from the eye, then we have to turn our head downwards to view the object. In this process, our eye move through an angle. This angle is called the angle of depression of the object. 13 5 5 13 Angle of depression q Eye 12 sin q = 1 - cos q = 13 2 Li 12 25 1 + sin q 13 = 13 = 25 = thus 12 1 1 - sin q 113 13 Example 21 : a 0 < q < 90° find the value of If sin q = a2 + b2 tan q. Solution : 1+ sin q = a 2 a + b2 cos q = 1 - sin 2 q cos q = 1 - a2 = 2 2 sin q = cos q 2 a +b b2 2 a +b 2 = ne of sig ht Ball Example 22 : A person observed the angle of elevation of the top of a tower is 30°. He walked 40 m towards the foot of the tower along level ground and found the angle of elevation of the top of the tower as 60° Find the height of tower. Solution : Let height of tower AB = x m and BC = y m, DC = 40 m. In DABC, b A 2 a + b2 a tan q = x a + b2 = a b b 30° a 2 + b2 HEIGHT AND DISTANCE Sometimes, we have to find the height of a tower, building, tree, distance of a ship, width of a river, etc. Though we cannot measure D 40m 60° C y B 6 x x AB = tan 60° Þ = 3 Þ y = y BC 3 Now In rt D ABD, Þ ....(i) Þ y + x = 100 3 Þ y = 100 3 - x AB = tan 30° BD Þ y = 100 3 - 100 [using (i)] x 1 = 40 + y 3 Þ y = 100( 3 - 1) Þ y = 100(1.732 - 1) = 100 ´ 0.732 = 73.20 m. x Þ 3x = 40 + y Þ 3x = 40 + [using (i)] 3 Þ 3x = 40 3 + x Þ 3x - x = 40 3 Þ 2x = 40 3 x = 20 3m Example 23 : As observed from top of a light house 100 m. high above sea level, the angle of depression of a ship sailing directly toward it changes from 30° to 45°. The distance travelled by the ship during the period of observation is Solution : Let ‘y’ be the required distance between two positions O and C of the ship In rt. DABC, 30° 45° A Top Light house 100 m 30° O y+x = cot 30° 100 In D AOB, y x P 4 25 h Q R 7 Now, h = 252 – 72 = 576 = 24m QS = 625 – 400 45° C Example 24 : A 25 m long ladder is placed against a vertical wall of a building. The foot of the ladder is 7 m from the base of the building. If the top of the ladder slips 4 m, then the foot of the ladder will slide by how much distance. Solution : Let the height of the wall be h. B = 225 = 15m Required distance, x = (15 – 7) = 8 m cot 45° = x Þ x = 100 100 …(i) x S 7 1. If tan q = 1, then find the value of 8sin q + 5sin q 3 10. If tan q = 3 sin q - 2 cos q + 7 cos q 2. 3. 1 (a) 2 (b) 2 2 4 (c) 3 (d) 5 If q be a positive acute angle satisfying cos2 q + cos4 q = 1, then the value of tan2 q + tan4 q is 3 (a) (b) 1 2 1 (c) (d) 0 2 The value of tan4°. tan43°. tan47°. tan86° is (a) 0 (b) 1 (c) 4. 5. (c) 21 22 (b) 22 1 2 (d) + cos q is. (a) 17 13 23 1 2 13. 8. If 5 tan q – 4 = 0, then the value of (a) 5 3 14. (d) (b) 3 7 (c) 1 12 (d) 3 4 2sin a then 1 - cos a + sin a is equal to 1 + cos a + sin a 1 + sin a (a) 1/y (b) y (c) 1 – y (d) 1 + y A person, standing on the bank of a river, observes that the angle subtended by a tree on the opposite bank is 60°; when he retreates 20m from the bank, he finds the angle to be 30°. The height of the tree and the breadth of the river are – If y = (b) 10 ; 10 3 m (d) None of these If q is an acute angle such that tan 2 q = 8 , then the value of 7 is 7 8 (b) 8 7 64 7 (d) 49 4 If 3 cos q = 5 sin q, then the value of 5sin q - 2 sec3 q + 2 cos q 5sin q + 2sec3 q - 2 cos q is equal to (a) 271 979 (b) 376 2937 (c) 542 2937 (d) None of these 15. If x sin 3 q + y cos 3 q = sin q cos q an d x sin q = y cos q , 16. then x 2 + y 2 = (a) 1 (b) 2 (c) 0 (d) None If 1 + sin2 A = 3 sin A cos A, then what are the possible values of tan A? (a) 1/4, 2 (b) 1/6, 3 (c) 1/2, 1 (d) 1/8, 4 17. The value of 5 6 1 6 The value of tan 6 20° – 33 tan4 20° + 27 tan 2 20° is : (a) 2 (b) 3 (c) 4 (d) 5 (c) 0 9. (b) 5sin q - 4 cos q =? 5sin q + 4 cos q 5 7 (c) (c) 7. =? (a) (a) 13 17 1 1 (d) 13 17 The minimum value of cos 2q + cos q for real values of q is– (a) – 9/8 (b) 0 (c) –2 (d) None of these cosec2 q + sec2 q (1 + sin q )(1 - sin q ) (1 + cos q )(1 - cos q) 7 and 0 < q < 90°, then the value of sin q 13 (b) 7 cosec 2 q - sec 2 q , then (a) 10 3 m, 10 m (c) 20 m, 30 m 3 1 2 If sin q – cos q = 12. 1 If tan 15° = 2 - 3 , the value of tan 15°. cot 75° + tan 75° . cot 15° is. (a) 14 (b) 12 (c) 10 (d) 8 The value of (sin 2 1° + sin 2 3° + sin 2 5° + .......+ sin 2 85° + sin 2 87° + sin 2 89°) (a) 6. (d) 3 11. 1 (a) 1 2 cos3 20° - cos3 70º sin 3 70° - sin 3 20° (b) 1 2 is (c) 1 (d) 2 8 18. 19. 20. If x cosec2 30°. sec2 45° 8 cos 2 45° . sin 2 60° (a) 1 (c) 2 = tan2 60° – tan2 30º, then x = ? (b) – 1 (d) 0 p , what is the value of ( 3 + tan q) If q + f = 6 ( 3 + tan f) ? (a) 1 (b) – 1 (c) 4 (d) – 4 If q is an acute angle such that sec2 q = 3, then 2 tan 2 q + cosec 2 q 30. is 4 3 2 1 (b) (c) (d) 7 7 7 7 21. What should be the height of a flag where a 20 feet long ladder reaches 20 feet below the flag (The angle of elevation of the top of the flag at the foot of the ladder is 60°)? (a) 20 feet (b) 30 feet (a) (c) 40 feet (d) 20 2 feet 22. If q & 2q – 45° are acute angles such that sin q = cos (2q – 45°) then tan q is equal to (a) 1 (b) – 1 23. 29. sin 3q – (a) 1 32. (b) 0 (d) 1 upper part subtends an angle whose tangent is 1 . What is 2 the height of the pole ? (a) 110 m (b) 200 m (c) 120 m (d) 150 m 25. If sec q + tan q = x, then sec q = ? x2 + 1 x (b) (c) 3 3 km 2 (d) 3 6 km 4 ± a 2 + b2 + c 2 2 2 ± c - a -b 2 (b) æ 2a + b ö If sin a + cos b = 2 (0°< b < a < 90°), then sin çè ÷= 3 ø sin a 2 (b) cos a 3 (c) sin a 3 (d) cos 2a 3 If cos4 q – sin4 q = ± a 2 + b 2 - c2 (d) None of these 2 , then the value of 2 cos2q – 1 is 3 (b) 1 2 3 (d) 3 2 If sin a sec (30° + a) = 1 (0 < a < 60°), then the value of sin a + cos 2a is (b) 2+ 3 2 3 34. (c) 0 (d) 2 The minimum value of 2 sin 2 q + 3 cos2 q is (a) 0 (b) 3 (c) 2 (d) 1 35. If cosec 39° = x, the value of - x2 + 1 2x x2 - 1 x2 - 1 (d) 2x x The correct value of the parameter ‘t’ of the identity 2( sin6x + cos6x) + t (sin4x + cos4x) = –1 is: (a) 0 (b) –1 (c) –2 (d) –3 If a cos q – b sin q = c, then a cos q + b sin q = ? (c) 3 6 km (a) 1 36. (c) (a) (b) (c) 33. 3 24. A vertical pole with height more than 100 m consists of two parts, the lower being one-third of the whole. At a point on a horizontal plane through the foot and 40 m from it, the 27. 2 3 km (a) 0 3 tan 3q = ? (c) – 1 26. (a) (a) 1 (d) 3 31. 3 If 5q & 4q are acute angles satisfying sin 5q = cos 4q then 2 (a) tan q tan q + is equal to sec q - 1 sec q + 1 (a) 2 tan q (b) 2 sec q (c) 2 cosec q (d) 2 tan q . sec q. If a cos q + b sin q = m and a sin q – b cos q = n, then a2 + b2 = (a) m2 – n2 (b) m2 n2 2 2 (c) n – m (d) m2 + n2 The angular elevation of a tower CD at a place A due south of it is 60° ; and at a place B due west of A, the elevation is 30°. If AB = 3 km, the height of the tower is 2 tan q - cosec q (c) 28. 1 2 sin 51° sec 2 39° 1 cosec 2 51° is (b) (a) x2 - 1 1 - x2 2 (c) x – 1 (d) 1 – x2 2 4 If A = sin q + cos q, for any value of q, then the value of A is (a) 1 < A < 2 (b) 3 100 is given] (b) Given, sec q + tan q = x .....(i) sec2 q – tan2 q = 1 Þ (sec q – tan q) (sec q + tan q) = 1 1 1 = .....(ii) or sec q – tan q = sec q + tan q x Adding (i) & (ii), we get 29. tan 2 q = 2 sec q 2 = tan q cos q ´ sin q cos q 2 = 2 cosec q. sin q (d) (a cos q + b sin q)2 + (a sin q – b cos q)2 = m2 + n2. a2 cos2 q + b2 sin 2 q + 2ab cos q. sin q + a2 sin 2 q + b2 cos2 q + 2 ab sin q. cos q = m2 + n2. 2 2 or a (cos q + sin 2 q) + b 2 (sin 2 q + cos 2 q) = m2 + n2. or 30. (d) a2 + b 2 = m2 + n2 ( ) In D ACD, we get AC = h cot 60° = h. 1 / 3 , In DBCD, D BC = h cot 30° = h 3 . Therefore, from rightangled triangle BAC, we have BC2 = AB2 + AC2 ( ) Þ h 3 2 æ h ö = (3) 2 + ç ÷ è 3ø Þ 3h 2 = 9 + 1 x2 + 1 = x x Þ h2 = 2 x +1 2x (d) Given identity 2(sin6x + cos6x) + t (sin4x + cos4x ) = – 1 Þ 2[(sin2x + cos2x)3 – 3 sin2x cos2x (sin2x + cos2x) + t[(sin2x + cos2x)2 – 2sin 2x cos2x] = – 1 [Q (a + b)3 = a3 + b3 + 3ab (a + b) and (a + b)2 = a2 + b2 + 2ab where a = sin 2x, b = cos2x] 2x cos2x] + t[1 – 2 sin 2x cos2x] = – 1 2[1– 3sin Þ sec q = 2sec q = 1 h + 2 120 = h h 40 1240 2 sec q = x + 26. = tan q´ BD AB tan q + tan f h Þ = 1 - tan q tan f 40 1 ù é 1 + tan q ê ú ë sec q - 1 sec q + 1û é sec q + 1 + sec q - 1 ù tan q é 2 sec q ù = tan q ê ê 2 ú ú = ë sec q - 1 û ë (sec q - 1)(sec q + 1) û BC h /3 h tan f = = = AB 40 120 In D ABD, tan(q + f) = a 2 + b2 - c 2 Þh= 31. h C 2 30° B 8 2 h2 Þ h =9 3 3 27 8 3 3 km = 2 2 (b) sina + cosb = 2 sina < 1 : cosb < 2 Þ a = 90° ; b = 0° 3 6 km 4 æ 2a + b ö æ 180° ö \ sin çè ÷ = sin çè ÷ 3 ø 3 ø 3 km 60° A 15 = sin 60° = 3 2 sin2q +cos4q = When q = 30° a 3 cos = cos 30° = 3 2 32. (c) cos4q – sin4q = sin2 + cos4 q = 2 3 Þ (cos2q + sin 4q ) (cos2q–sin2q) = Þ cos2q – sin2q = Þ 2cos2q – 1 = 33. (a) 1 = cot 4q tan 4q Þ tan 2q = tan (90° – 4q) Þ 2 q = 90° – 4 q Þ 6q = 90° Þ q = 15° \ tan 3q = tan 45° = 1 (c) tan 20 = 38. (d) tan (q1 + q2) = 3 = tan 60° Þ q1 + q2 = 60° and sec (q1 – q2) 2 3 2 3 2 3 = sin a =1 cos ( 30° + a ) sin a Þ sin 60° – a = 1 ( ) Þ sin a = sin (60° – a) Þ a = 60° – a Þ 2a = 60° Þ a = 30° \ sin a + cos 2a = sin 30° + cos 60° 39. 35. tan q = sec 2 q - 1 2 æ 4 x 2 + 1ö = ç ÷ -1 è 4x ø 1 1 + =1 2 2 (b) 2 sin2q + 3cos2q = 2 sin2q + 2cos2q + cos2q = 2 (sin2q + cos2q) + cos2q = 2 + cos2q \ Minimum value of cosq = – 1 \ Required minimum value = 2 + 1 = 3 (c) cosec 2 51° = –1 = = = 2 sin 51°.sec 39° = sin 2 51° + sin2 39° + tan2(90° – 39°) 1 36. 1 2 - ( 4 x) 2 ( 4 x)2 ( 2 x + 1)( 2 x - 1) = 4 x 2 - 1 4x 4x 4x2 + 1 4x2 - 1 + 4x 4x 4 x2 + 1 + 4 x 2 - 1 4x 8 x2 = 2x 4x (a) x = a sec q. cos f; y = b secq. sin f; z = c tan q = sin 2 (90° – 39°).sec 2 39° = cos2 39° + sin 2 39° + cot2 39° - 2 \ sec q + tan q = + sin 2 39° + tan 2 51° - ( 4x + 1) 2 1 2 4 x2 + 1 4x (b) sec q = = 1 2 = sec 30° 3 Þ q1 – q2 = 30° \ q1 = 45° and q2 = 15° \ sin 2q1 + tan 3q2 = sin 90° + tan 45° =1+1=2 sin a Þ sin 90° – 30 - a = 1 ( ) 34. 1 9 13 + = 4 16 16 37. 2 3 Þ cos2q – (1– cos2q) = 1 1 3 + = 2 4 4 2 cos 39°.sec 39° [\ sin (90° – q) = cos q, tan (90° – q) = cot q] = 1 + cot2 39° – 1 = cosec2 39° – 1 = x2 – 1 (b) When q = 0° sin2q + cos4q = 1 When q = 45°, 40. \ = x2 a2 + y2 b2 - z2 c2 a 2 sec2 q cos 2 f + b 2 sec 2 q sin 2 f – c 2 tan 2 q a2 b2 = sec2 q. cos2 f + sec2 q. sin2 f – tan2 q = sec2 q (cos2 f + sin2 f) – tan2 q = sec2 q – tan2 q = 1 c2 16 41. 42. (a) sec q + tan q 5 = sec q - tan q 3 Þ 5 sec q – 5 tan q = 3 sec q + 3 tan q Þ 2 sec q = 8 tan q Þ tan q 2 1 = = sec q 8 4 Þ sin q 1 ´ cos q = cos q 4 Þ 2 x sec q - Þ 3 x x Þ cos q = 2 2 Now sin2 q + cos2 q = 1 Þ y2 + 48. 6 =3 2 3(sec q - tan q) = 1 Þ sec q - tan q = \ (c) p 3 sin 2x + 2 tan2 q – 2sec2x + cos2x sin2x + cos2 x – 2 (sec2 x – tan2 x) 1 – 2 (1) = –1 3 \ cos q = Þ 1- 49. 50m (a) q 50m 1 = 100m 2 47. (a) tan 30° = a2 x2 – [1 minute = 60 seconds] ° 20m 20 x b2 y2 = 30° x a2 - b2 a 2 sin 2 q b2 tan 2 q Þ cosec2q – cot2q = 1 (b) 2y cos q = x sin q 2y cos q x And 2x sec q – y cosec q = 3 Þ sin q = ' 75897 p æ 2811 ö æ 75897 ö Þç Þ ´ radian Þ ç p÷ ÷ 1200 180 è 1200 ø è 8000 ø 30° 20 x x = 20 3m 46. æ 51 ö 63° 14' ç ÷ è 60 ø 17 ù 297 é é 297 ù Þ 63° ê14 + ú Þ 63° ê ú Þ 63º + 20 ´ 60 20 20 ë û ë û [1 degree = 60 minutes] q = 30° 3 3 1 = 4 2 ' sinq = = 1 ù é êëQ sec q = cos q úû 3 2 ' 100m 1 ...(2) Therefore, sin q = 1 - cos 2 q (d) (b) ...(1) 1 4 2 Þ 2sec q = Þ sec q = 3 3 3 2sec q = 3 + q = tan–1 q= 45. 1 3 sec q + tan q = 3 (Given) Adding eqns. (1) and (2) tan q = 3 or tan q = – 3 As 0 < q < p/2 44. x2 =1 4 Þ 4 y 2 + x2 = 4 (b) sec2 q – tan2 q = 1 (sec q + tan q) (sec q – tan q) = 1 tan q = ± 3 43. yx 2x =3 cos q 2 y cos q Þ 3cos q = 1 Þ sin q = 4 (b) sec2q + tan2q = 7 1 + tan2 + tan2q = 7 (Q 1 + tan2q = sec2q) tan2 q = y =3 sin q 50. (d) cos 4 a cos 2 b + sin 4 a sin 2 b c =1 Þ cos4 a sin2 b + sin4 a cos2 b = cos2 b sin2 b Þ cos4 a (1 – cos2 b) + cos2 b (1 – cos2 a)2 = cos2 b (1 – cos2 b) Þ cos4 a – cos4 a cos2 b + cos2 b – 2 cos2 a cos2 b + cos4 a cos2 b = cos2 b – cos4 b 4 Þ cos a – 2 cos2 a cos2 b + cos4 b = 0 Þ (cos2 a – cos2 b)2 = 0 Þ cos2 a = cos2 b Þ sin2 a = sin2 b Then, cos 4 b cos 2 a + sin 4 b sin 2 a 17 Þ cos2 b cos 2 a + sin 2 b sin 2 a cos 2 a sin 2 a 2 + sin b = 1 Þ cos2 b 51. (a) sin q - cos q + 1 sin q + cos q - 1 Dividing Numerator and Denominator by cos q 55. (b) sin q cos q 1 + cos q cos q cos q Þ tan q - 1 + sec q Þ sin q cos q 1 tan q + 1 - sec q + cos q cos q cos q 2 Þ 2 Þ (tan q + sec q) – (sec q - tan q) tan q - sec q + 1 Þ (tan q + sec q)[1 - sec q + tan q] Þ tan q + sec q tan q - sec q + 1 56. (c) sin q 1 1 + sin q + Þ cos q cos q cos q (b) In DABC A h tan a = 9 In DABD since tan b = h 9 a b 57. (d) C 16 h 16 h h 16 Þ cot a = or tan a = 16 16 h From eqn. (1) and (2) Þ tan 2 a = cos a Now consider, cot6 a – cot2 a 58. (d) ...(1) 1 = Since cot a = tan a tan 6 a tan 2 a Substituting for tan 2 a with cos a from (1) above equation will be 54. 3 1 + cos 60º + sin 60º 2 = cos 60º – sin 60º 1 – 2 59. (d) - 1 öæ cos q 1 ö æ sin q Þ ç1 + + 1+ ÷ç ÷ è cos q cos q øè sin q sin q ø æ sin q + cos q + 1 öæ sin q + cos q - 1 ö Þç ÷ç ÷ cos q sin q è øè ø (1 + 3)2 2 1 – ( 3) 2 = 3 2 = 1+ 3 ´ 1+ 3 3 1– 3 1+ 3 2 1+ 3 + 2 3 4 + 2 3 = 1– 3 –2 –2(2 + 3) = -(2 + 3) 2 cot 5º.cot10º.cot15º.cot 60º.cot 75º.cot 80º .cot 85º (cos2 20 + cos2 70º ) + 2 (cos 2 (90º –70º ) + cos 2 70º ) + 2 1 cot 60º 1 3 3 = 3 = ´ = (1 + 2) 3 9 3 3 3 Let angles are 2x, 5x and 3x. 2x + 5x + 3x = 180º (sum of interior angle of triangles is 180º) 10x =18º x = 18º \ Least angle in degree = 2x = 2 × 18 = 36º p p ´ 36º = 180º 5 x = a cos q – b sin q y = b cos q + a sin q x 2 + y2 = (a cos q – b sin q)2 + (b cos q + a sin q)2 Þ a2 cos2 q + b2 sin2 q – 2 ab cos q sin q + b2 cos2 q + a2 sin2 q + 2ab cos q sin q Þ (a2 + b2) cos2 q + (a2 + b2) sin2 q Þ a2 + b2 (cos2 q + sin2q) Þ a2 + b2. (1) Þ a2 + b2 tan a + cot a = 2 In radian = 1 1 1 - cos 2 a sin 2 a tan 2 a = = = =1 cos a cos a cos3 a cos3 a cos a (b) (1 + tan q + sec q) (1 + cot q – cosec q) 1 sin 53º tan 25º ´ =1 sin 53º tan 25º [Q cos (90º – q) = sin q and cot (90º – q) = tan q] Þ (a) If sin 2 a = cos3 a = sin 53º cot 65º ¸ cos 37º tan 25º cot(90º –85º ).cot(90º –80º ).cot(90º –75º ).cot 60º.cot 75º.cot 80º cot 85º ...(2) h 16 = Þ h2 = 16 ´ 9 Þ h = 12 feet. 9 h 1 2sin q cos q =2 sin q cos q Þ tan(90 - a) = 53. = Þ ...(1) h tan b = 16 a + b = 90° (given) B b = 90 – a (sin q + cos q)2 -1 sin 2 q + cos2 q + 2sin q cos q -1 = sin q cos q sin q cos q sin 53º tan 25º sin 53º tan 25º ´ Þ ´ cos 37º cot 65º cos(90º –53º ) cot(90º –25º ) Þ 52. = 60. (a) 1 = 2 Þ tan2 a + 1 = 2 tan a tan a tan2 a – 2 tan a + 1 = 0 tan2 a – tan a – tan a + 1 = 0 tan a (tan a – 1) – 1 (tan a – 1) = 0 (tan a – 1) (tan a – 1) = 0 tan a + Þ Þ Þ 18 \ tan a = 1 Now, tan7 a + cot7 a Þ (tan a)7 + 61. (a) Tower 1 (tan a) 7 sec 17° – sin 73° = sec 17° – cos 17° = 1+ 1 = 2 = A 125 m 65. (c) y2 - x 2 y - y2 - y2 + x 2 y y2 - x 2 cosecq + cotq = 1 cos q + = sin q sin q q = 45º C Car B In DABC 1 + cos q = sin q AB 125 125 Þ tan 45º = Þ1 = BC BC BC BC = 125 m Hence, car is 125 m from the tower. tan q = (c) y2 - x 2 q = 45º = 62. y 2 cos2 (cos q - sin q)(cos 2 q + sin 2 q + sin q cos q) + (cos q - sin q) 2 2 = 2 cos q + 2sin q – sin q cos q + sinq cosq =2 A = y y2 - x 2 3 3 3 q 2 q q = 2sin cos 2 2 (cos q + sin q)(cos 2 q + sin 2 q - sin q cos q) (cos q + sin q) x2 3 cot q = 2 tan 1 q q = ; = 30°; q = 60° 3 2 2 3 cosec q = cosec 60° = 63. h (a) 45° 30 m C D In DABC, tan60° = x= 60° x 66. (c) B cosa + sec a = 3 taking cube both sides cos3a + sec3 a + 3 3 = 3 3 cos3a + sec3 a = 0 h ...(1) 3 67. (a) sinq + cos q = cotq = h or h = 30 + x 30 + x Putting value of x from (1) or h 64. (d) ( 3 - 1) sin17° = cotq = h 68. 3 3 = 30 Þ h = 15 (3 + 3) m x y x2 1 cos 17° = = y2 2 cos q sinq = ( 2 - 1) cos q h 30 + x 1= h = 30 + 3 cos3a + sec3 a + 3 cosa seca (cosa + seca) = 3 3 h x In D ABD, tan 45° = 2 (d) 1 2 -1 1 2 -1 ´ 2 +1 2 +1 = 2 +1 (sin2 1° + sin2 89°) + (sin2 2° + sin 2 88°) + ... + (sin 2 44° + sin 2 48°) + sin 2 45° 2 2 = (sin 1° + cos 1°) + (sin 2 2° + cos2 2°) + ... + (sin2 44° + cos2 44°) + sin 2 45° = 1 + 1 + .... + 1 (44 times) + y2 - x 2 y = 44 1 2 1 2