PURELY FUNCTIONAL PACKAGE MANAGEMENT WITH NIX

Eric Rasmussen / @theerasmas
January 19,2015



WHO AM |

OSS contributor
haskell/python/javascript developer
works on a hybrid dev/ops team

prior LUGOD speaker (not about Linux)



PACKAGING: THE GOOD PARTS

e installs in one click/command
e automatic dependency resolution




there's just one problem



GOOD NEWS EVERYONE

$

p




PACKAGING: THE BAD PARTS

e dependency hell
e obscureerrors
e high maintenance costs



TL;DR PACKAGING IS HARD

-
E




PACKAGE MANAGERS



CHOICES (0S)

dpkg/apt
rpm/yum

pacman
homebrew

mac ports

various app stores



CHOICES (PL)

easy_install
pip

go get
maven
npm
rubygems
sbt

cabal
package.el
cpan

pear

pecl



DO WE REALLY NEED ANOTHER?

HOW STANDARDS PROUFERATE:
(62> AC CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

47! RDICULOLS!

WE NEED To DEVELOP
SITUATION: || SEUIVERAL SRR || GiTUATION:
THERE ARE USE CSES. e THERE ARE

|4 COMPETING |5 COMPETING

STANDPRDS. “)A\ %J STANDERDS

(via http://xkcd.com/927/)



INTRODUCING NIX

e new model for package management
e introduced in Eelco Dolstra's PhD Thesis (2006)
e based on functional programming principles



WHAT NIX OFFERS

minimal and portable
declarative
reproducible builds
deterministic



FUNCTIONAL PURITY

e Function takes inputs and produces output

e Ex: Addition takes two numbers and makes a new one
e 40+2=42



FUNCTIONAL PURITY

e Most programming languages don't enforce this!

40 + 2 =
= new log file with debug output
= database calls
= HTTP service calls...
= 42, maybe?



NIX PACKAGES ARE PURE

e |nput: other packages, configuration options
e Qutput: a package



EXAMPLE: GCC

/nix/store/r8vvqg9kqgl8pz08v249h8my6r9vs7s0n3-gcc-4.

* inside the prefix: bin, lib, share, ... directories
e r8vvq2kg18pz08v249h8myér9vs/7sOn3is a hash of function
inputs



PURITY IN NIX

e no global install directories (/usr, /bin)
e /nix/store isimmutable (mounted read-only)
® nix expressions cannot write to files



IMPURITY IN NIX

e packages can make network calls (curl/git clone/etc)
e race conditions in parallel builds
e stdenvon OS X depends on globals



EXAMPLE: NGINX

{ stdenv, fetchurl, fetchgit, openssl, zlib, pcre, libxml2, libxslt, expat }:

stdenv.mkDerivation rec {
name = "nginx-${version}";
version = "1.4.4";

src = fetchurl {
url = "http://nginx.org/download/nginx-${version}.tar.gz";
sha256 = "1£82845mpgmhvml51fhn2cngjggw9w7cvsgbvadrb320wmcImé3w” ;
}i
buildInputs = [ openssl zlib pcre libxml2 libxslt ];
configureFlags = [ "--with-http spdy module" ];
postInstall = "mv Sout/sbin S$Sout/bin";

meta = with stdenv.lib; {
description = "A reverse proxy and lightweight webserver";

maintainers = [ maintainers.iElectric ];
platforms = platforms.all;
license = licenses.bsd2;

}i



BINARY PACKAGES

e binary packages are built in hydra build farms
e purity lets us substitute pre-built packages based on the hash
e major speedups when installing on common platforms



ADD NIX TO YOUR WORKFLOW IN 2 DAYS

e Day 1:install a package
e Day2: myEnvFun



DAY 1: INSTALLATION

$ curl -L http://git.io/nix-install.sh | bash
$ source ~/.nix-profile/etc/profile.d/nix.sh
$ nix-env -i nginx



DAY 2: CONFIG.NIX / MYENVFUN

e Note: funis for "functional" (having fun is optional)

# ~/.nixpkgs/config.nix
{
packageOverrides = pkgs : with pkgs; {
pyred2 = pkgs.myEnvFun {

name = "pyred2";

buildInputs = [ python27Full redis ];
}i
pyred3 = pkgs.myEnvFun {

name = "pyred3";

buildInputs = [ python3 redis ];

}:
}i



Using myEnvFun

$ nix-env -i env-pyred2
$ load-env-pyred2
env-pyred2 loaded

pyred2:[eric@nixos:~]$ python
python python2.7 python2-config
python?2 python2.7-config python-config



EASY TO UNINSTALL IF NEEDED



INTERMISSION



NIX0S

Declarative config at the system level
Nix as package manager
Nix expressions to configure the OS




NIX0S

e stateless config management
e NixOS modules for services



CONFIGURATION.NIX

{ config, pkgs, ... }: with pkgs;

{
networking.firewall.allowedTCPPorts = [ 8000 ];

services.postgresql = {
enable = true;
package = pkgs.postgresql93;
authentication = pkgs.lib.mkOverride 10 "'
local postgres root ident
host myuser myuser 127.0.0.1/32 password
local all all ident

14

initialScript = "bootstrap or something.sql";

}i

environment.systemPackages = [ emacs24-nox git tmux ghc.ghc783 ];



ENFORCING GOOD HABITS

e Harder to make one-off hacks
e Configand build changes must be codified
e Example: add hosts to /etc/hosts

# configuration.nix
# will extend /etc/hosts
networking.extraHosts = "'
some ip some host
some ip2 some host2



IS NIXOS FOR ME?

e maybe!
e requires learning nix/writing packages
e great IRC support but few docs/tutorials



IS NIX FOR ME?

e tryitout!
e won'tinterfere with existing packages



REFERENCES

NixOS.org

Nix Package Manager Manual
NixOS Manual

Domen Kozar's 2014 Fosdem talk



