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Abstract context dependent and we will not discuss its choice in thiep—

anyway, choosing a prime number is always a good idea.

As a running example of a datatype on which to perform hash-
consing, we choose the following typerm for A-terms with de
Bruijn indices:

Hash-consing is a technique to share values that are stallgtu
equal. Beyond the obvious advantage of saving memory blocks
hash-consing may also be used to speed up fundamentaliopsrat
and data structures by several orders of magnitude wheimghar

is maximal. This paper introduces arc®vL hash-consing library type term =

that encapsulates hash-consed terms in an abstract datétys | Var of int

safely ensuring maximal sharing. This library is also patarized | Lam of term

by an equality that allows the user to identify terms aceaydo an | App of term X term

arbitrary equivalence relation. ) ] ) ]
Instantiated on this type, theashcons function has the following
Categories and Subject Descriptors D.2.3 [Software engineer- signature:
ing]: Coding Tools and Techniques
val hashcons : term — term

General Terms Design, Performance . .
If we want to getmaximal sharing-the property that two values

Keywords Hash-consing, sharing, data structures are indeed shared as soon as they are structurally equal-este n
to systematically applitashcons each time we build a new term.
1. Introduction Therefore itis a good idea to introdusmart constructorgerform-

N . ) ing hash-consing:
Hash-consing is a technique to share purely functionalttiataare

structurally equal [8, 9]. The nanf@sh-consingomes from Lisp: let var n = hashcons (Var n)
the only allocating function i<onsand sharing is traditionally let lam u = hashcons (Lam u)
realized using a hash table [2]. One obvious use of hashifgpns let app (u,v) = hashcons (App (u,v))

is to save memory space.

Hash-consing is part of the programming folklore but, in mos
programming languages, it is more a design pattern tharraryib
The standard way of doing hash-consing is to use a global hash
table to store already allocated values and to look for astiexj
equal value in this table every time we want to create a neueval =y = z==y.
For instance, in the Objective Caml programming langlage
reduces to the following four lines of code using hash tafries
the CcAML standard library:

By applying var, 1lam and app instead ofVar, Lam and App di-
rectly, we ensure that all the values of typerm are always hash-
consed. Thus maximal sharing is achieved and physical iggual
(==) can be substituted for structural equaliy $§ince we now have

In particular, the equality used in the hash-consing itsatfnow be
improved by using physical equality on sub-terms, sincg #ne al-
ready hash-consed by assumption. To do such a bootstrappeng

let table = Hashtbl.create 251 need custom hash tables based on this new equality. Fatynat
let hashcons x = the OcAML standard library provides generic hash tables parame-
try Hashtbl.find table x terized by arbitrary equality and hash function. To getaushash
with Not_found — Hashtbl.add table x x; x tables, we simply need to define a module that packs togdtker t
TheHashtbl module uses the polymorphic structural equality and YP&term, an equality and a hash function
a generic hash function. The initial size of the hash tabtdgarly module Term = struct
type t = term
1We use the syntax of Objective Caml¢@MmL for short) [1] throughout let equal x y = match x,y with
this paper, but this could be easily translated to any ML eangntation. | Var n, Var m — n == m
| Lam u, Lam v — u == v

| App (ul,u2), App (vi1,v2) —
ul == vl && u2 == v2
Permission to make digital or hard copies of all or part of thiork for personal or | - — false
classroom use is granted without fee provided that copresar made or distributed let hash = Hashtbl.hash
for profit or commercial advantage and that copies bear titiseand the full citation end
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee. and then to apply thBashtbl.Make functor:
ML'06 September 16, 2006, Portland, Oregon, USA.
Copyright(© 2006 ACM 1-59593-483-9/06/0009. . . $5.00. module H = Hashtbl.Make (Term)



Finally, we can redefine our hash-consing function in ordesge
this improved implementation:

let table = H.create 251
let hashcons x =
try H.find table x
with Not_found — H.add table x x; x

Given a good hash function, the above implementation of-hash

consing is already quite efficient. But it still has severavdbacks:

1. There is no way to distinguish between the values thatask-h

tag :
hkey :

int;
int;
}

The fieldnode contains the value itself and the fieldg the unique
integer. Theprivate modifier prevents the user from building
values of typehash_consed manually, yet allowing field access
and pattern matching over this type. The fielky stores the hash
key of the hash-consed term; it is justified in the implemeoa
section below.

The library consists in a functatake taking a type equipped

consed and those which are not. Thus the programmer has towith equality and hashing functions as argument and reigrai
carefully use the smart constructors only and never the true data structure for hash-consing tables. The input sigaagithe

constructors directly. Of course, the typerm could be made
abstract (but then we would lose the pattern-matchingifggil
or better a private datatype (where pattern-matching dsvaid
but direct construction is not).

2. Maximal sharing allows us to use physical equality indtef
structural equality, which can yield substantial speedtiosv-
ever, we would also like to improve data structures corngini
hash-consed terms, such as sets or dictionaries implechasite

following:

module type HashedType = sig
type t
val equal: t X t — bool
val hash: t — int

end

with the implicit assumption that the hashing function issistent

ing hash tables or balanced trees for instance. We couldl thin with the equality functioni.e. hash * = hash y as soon as

of using the pointers to g€2(1) hashing or total ordering func-

tions over hash-consed terms (as done in [10]) but this is not

possible for two reasons. First, thec@vL compiler does not
give access to the pointer value. Second, tltn@L garbage
collector is likely to move allocated blocks underneathysth
changing the values of pointers.

3. Thereis no possibility for the garbage collector to riecleerms

equal (z,y) holds. Then the functor looks like:

module Make(H : HashedType) : sig
type t
val create : int — t

val hashcons :
end

t — H.t — H.t hash_consed

that are not alive anymore (from the user point of view) since The datatype for hash-consing tables is abstranteate n builds

they are referenced in the hash-consing table. If this table

a new hash-consing table with initial simeAs for traditional hash

defined at toplevel (and it usually is), the hash-consed germ tables, this size is somewnhat arbitrary (the table will bsized

will never be collected.

4. Our implementation of the hash-consing function comgpute

when necessary). Then,Jifis a hash-consing tableashcons h ¢
builds the hash-consed value for a given term
In practice, there is also a functidreer to iterate over all the

twice the hash value associated to its argument when it is Not to;ms contained in a hash-consing table and a funetiatts to

in the hash table: once to look it up and once to atidtits also

get statistics on a table (number of entries, biggest buekefth,

wasting space in the buckets of the hash table by storingtwic etc ). There is also a non-functorial version of the libragsed on

the pointer tax.

In this paper, we present anc@mL hash-consing library ad-
dressing all these issues. Section 2 introduces the desijthe
implementation of this library. Then Section 3 presentess\case
studies and reports on the time and space performancesetfect
hash-consing.

2. A hash-consing library

This section presents and@mL hash-consing library. We first
detail its design and interface, then its practical use aralli its
implementation.

2.1 Design and interface

The main idea is to tag the hash-consed values with uniqegeéns.
First, it introduces a type distinction between the valles aire
hash-consed and those that are not. Second, these tags usecbe
to build efficient data structures over hash-consed valsesh
as hash tables or balanced trees. For the purpose of tagging,
introduce the following record type:

type « hash_consed = private {
node : «;

20n top of that, @AML’s hash tables also waste time recomputing the hash

values when resizing the hash tables, contraryNtl_’s hash tables where
hash keys are stored in the buckets. We also address thésirsgite next
section.

structural equality and the genericc@vL hash function, but this
is clearly less useful (these two functions do not explatgharing
of sub-terms).

Due to the private typaash_consed, maximal sharing is now
easily enforced by type checking (as long as we use a single ha
consing table, of course). As a consequence, the followahdsh

r=y < x==y <= x.tag=y.tag 1)

2.2 Usage

Before entering the implementation details of the hashsicanli-
brary, let us demonstrate its use on our running examplat,Fir
we need to adapt our datatype forterms to interleave the
hash_consed nodes with our original definition:

type term = term_node hash_consed
and term_node =

| Var of int

| Lam of term

| App of term X term

It is important to notice that this modification is not intieesat all
(from the syntactic point of view) and applies to mutuallguesive
types as well. Indeed, the definition of a set of types such as

type t1 = (definition; )

and t, — (definition,)



simply needs to be turned into The moduleset andMap have fairly good performances. But since
elements are actually (tagged with) integers, we can buiéh e
more efficient data structures such as Patricia trees [1#]lirary

type t1 = ti1-node hash_consed and ¢;_node = (definition; )
: comes with Patricia trees-based sets and dictionariesadiped for

and t, = tn-node hash_consed and t, node = (definition,) haSh_'CQnsed values. ) o )
) o o Similarly, we could build efficient hash tables indexed hyrts,
aﬂd WedHOUCG that the type definitiorfdefinition;) are left un- using the fielchkey (or even the tag) as an immediate hash value.
changed.

Then we can equip the typeerm node with suitable equality 2.3 Implementation
and hashing function in order to apply the hash-consingtfunAs
we did in Section 1, equality may safely use physical equalit
sub-terms and thus runs (1). The hashing function can also be
improved to run in constant time by making use of the hash keys
for the sub-terms (thikey field) or equivalently their tags (theag
field). Altogether, we get the following module definition

Up to now, we have solved issues 1 and 2 that were listed $ettio
(a distinct type for hash-consed values and efficient datatsires
based on physical equality). We now address issues 3 and 4.
Regarding time and space inefficiency related to the usesbf ha
tables from @AML's standard library, the first improvement is to
build a custom hash table where buckets are sirtiply of values,

module Term_node = struct and not mapping of values to themselves, saving one poiater f
type t = term_node each value. Then the next improvement is to write a singleupe
let equal t1 t2 = match t1, t2 with or-insert function that computes the hash key only oncealfjirthe

| Var i, Var j — i == j last improvement is to record the hash key (in the fisddy which
| Lam u, Lam v — u == v is exposed to the user) to avoid recomputing it when resittieg
| App (ui,v1), App (u2,v2) — table (if required).
ul == u2 && vl == v2 Regarding the ability for the garbage collector to reclaima t
| - — false hash-consed values that are not referenced anymore (frgm an
let hash = function where else than the hash-consing table), the solution isdweak
| Var i — i pointers A weak pointer is precisely a reference that does not pre-
| Lam t — abs (19 X t.hkey + 1) vent the garbage collector from erasing the value it poimtSaid
| App (u,v) — otherwise, a memory cell may be collected as soon as it is-refe
abs (19 x (19 X u.hkey + v.hkey) + 2) enced only by weak pointers. Thec@wuL standard library pro-
end vides arrays of weak pointers [1] where the access operaimn

return eitherSome = when there is some available elemenand
None otherwise (which means that the element has been reclaimed
by the GC at some point in the past).

We get an implementation of hash-consing tables for thie tyip
a simple functor application:

module Hterm = Hashcons.Make(Term_node) Combining the ideas of a custom hash table and the use of weak
i ) pointers, we get aeak hash tablé, that is a hash table where the

Then we can define a global hash-consing tablesanit construc- — pckets are arrays of weak pointers. The beginning of oun-has
torsfor Var, Lam andApp performing hash-consing, as follows: consing functor is thus as follows:

let ht = Hterm.create 251 module Make(H : HashedType) = struct

let var n = Hterm.hashcons ht (Var n)

let lam u = Hterm.hashcons ht (Lam u) type t = {

let app (u,v) = Hterm.hashcons ht (App (u,v)) table : H.t hash_consed Weak.t array;
These “constructors” have the expected types, namely ! s

val var : int — term ) ) o

val lam : term — term We omit the other fields that contain irrelevant data relatethe

val app : term X term — term resizing heuristics. The insertion and resizing code isdsted and

) . ) . we give the main ideas only. The sole difference with respect
and thus, from this point, the user can simply ignore the hash ocamL weak hash tables is that we do no need to (re)compute the
consing mechanics that is performed underneath when bgildi  hash key when inserting or resizing since it is containetiéndata

terms. _ _ ) o itself.
We can now exploit the unique tags to build efficient datacstru )
tures over terms. For instance, these tags define a totalimgde let rec resize t= ) )
over terms and we can use it to build balanced binary tredsicen --. increase the size of the main array
ing terms. Using functors from €ML’s standard library, we get and redistribute the elements in the
implementations of sets of terms and dictionaries indexeims new buckets
as follows:
and add t d =
module OrderedTerm = struct let index =
type t = term d.hkey mod (Array.length t.table)
let compare x y = in
Pervasives.compare x.tag y.tag ... lookup for an empty slot in the
end bucket t.data.(index)
module TermSet = Set.Make(OrderedTerm) ... if found then insert d
module TermMap = Map.Make(OrderedTerm) else increase the bucket and insert d

Spervasives.compare is to be preferred to a subtraction due to possible 4The OcaMmL standard library also provides weak hash tables and we
integer overflows. borrowed most code from this implementation.



. if the limit is reached then resize t

Then the mairmashcons operation consists in a single lookup-or-
insert function. The pseudo-code is as follows:

let hashcons t d =
let hkey = H.hash d in
let index
hkey mod (Array.length t.table)
in
. lookup in the bucket t.data.(index)
for a value v such that H.equal v.node d
. if found then return v else

. let n = { hkey = hkey; tag = newtag ();
node = d } in
add t n;
n

wherenewtag is a function returning distinct integers. It may seem
rather inefficient to first scan the bucket for an equal valueaay
hash-consed and then, in case of a failure, to scan it agaianfo
empty slot to insert it. We could indeed remember any empaty sl
encountered while scanning for an equal value and then dese it
insertion, if any. But in practice this is not worth maintaig this
information. Indeed, the buckets are quite small (we stdttt &
elements buckets and add only 3 new slots each time we imcreas
them).

3. Case Studies

This section demonstrates the benefits of hash-consingvenase
case studies.

3.1 Reducing\-terms

This first case study uses our running example to perform-a lit
tle benchmark that is representative of massive symbotfitpea-
tions, as arising for instance in proof assistants. The lr@ack is
inspired by Huet's<Constructive Computation Theof¥1]. It con-
sists in running a purg-calculus version of the quicksort algorithm
on a)-term encoding a list of integers, themselves represerged u
ing Church’s numerals encoding (see [11], Section 2.2 dep26—
28). The datatype fok-terms is the one we have already used as
our running example. Only a very small code excerpt from [11]
is needed to perform the computation, namely the four fonsti
1ift (lifting), subst (substitution),hnf (head normal form) and
nf (normal form), all of them totalizing 31 lines of code. Thstli
that is sorted is the 6 element li0;3;5;2;4;1]. It may seem
rather small but it already involves 1.6 million elementampstitu-
tions (due to an exponential complexity).

The code was compiled with thed@mL native-code compiler
(ocamlopt) on a Pentium 4 processor running under Linux. The

timings are given in seconds and correspond to CPU time. The
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Figure 1. Abstract version of DPLL

time and space. Though it may seem disappointing, the bést is
come.

Then we addmemoization(also know asdynamic program-
ming): each of the four functionsift, subst, hnf andnf records
its results in a hash table to avoid performing the same ctatipn
twice. For the code without hash-consing, we use traditibaah
tables based on structural equality and a structural hasttiéun.
But for the code where terms are hash-consed we use hash table
indexed by the integers tags. The results are the following:

without hash-consing with hash-consing
54s 5.06 s

95,300 kb 720 kb

Now the version with hash-consing is much faster than itaitau
part (more than 10 times faster) but it is also using muchriess-

ory. When compared to the original version without hashsaum
nor memoization, the final code with both features enabled pe
forms much better regarding tinaand space. This example is typ-
ical of the use of hash-consing to improve not only the memory
use but, above all, the efficiency of data structures inmgj\iash-
consed terms.

time
memory use

3.2 Boolean Satisfiability Checking

We show in this section how the hash-consing library preskso
far can be used to write an efficient SAT-solver.

3.2.1 SAT-solvers

SAT-solvers decide the satisfiability of propositionalfedas. Tra-
ditionally, they are based on the DPLL procedure [7, 6] foichih
we give an abstract version Figure 1. The state of the proeddu
represented by a sequdnt- A wherel is a set of literals (propo-
sitional variables or their negations) aidis a set of clauses (dis-
junctions of literals).

A propositional formulaF' is satisfiable if and only if a sequent

memory use corresponds to the maximum size reached by the ma{" - () can be derived from the initial sequeht- A whereA is the

jor heap, in kilobytes, as reported by the. stat library function.
Each program is run five times in a row and the median of the last
three runs is reported.

We first run the computation with and without hash-consing.
The results are the following:

without hash-consing
915s
1,680 kb

As expected, the use of hash-consing greatly reduces thardamo

with hash-consing
195s
480 kb

time
memory use

conjunctive normal form (CNF) of".

Putting a propositional formula in CNF may cause an exponen-
tial blow-up in size. We show in the next section how the use of
our hash-consing library allows us to solve elegantly thé-Chin-
version problem. Then Section 3.2.3 shows the implememtatf
a SAT-solver on top of this CNF conversion.

3.2.2 Equisatisfiable CNF

A well-known solution to the CNF blow-up consists in intraihg
proxy-variablegproxies for short) for all subformulas of the input

of memory used (more than 3 times less) and this has a cost (theformula ' and to initialize the solver with all the clauses defining

program is more than 2 times slower). Indeed, much time iatspe
in lookups while terms are created. It is a usual tradeofivben

these proxies plus the proxy variable f6r The set of clauses thus
obtained issquisatisfiableo the original formula.



For instance, introducing a prox¥ for a sub-formulaP A @
(whereP and(@ are propositional variables) amounts to introduc-

ing the three followingproxy-clausegpclauses for short)

-XVP
-XvVQ
XVPVQ

whose conjuction is equivalent t§ < (P A Q). Now, in order

to restrict further the number of clauses manipulated bystheer,
these pclauses can be incrementally introduced in the xioofe
the solver at the moment where the praXyor its negation—X

are asserted. In that case, it is obvious that only the cl&use

Q has to be introduced whenX is assumed and only’ and

Q when X is asserted. The following table shows the pclauses
introduced by the solver when it asserts a prokyor its negation)
representing formulas made with standard boolean cowvescf?

is a propositional variableX, Y andZ are proxies).

Proxy X asserted| —X asserted
X<P {P} {P}
X—YNANZ {Y} {Z} {-Y Vv -Z}
X—YVZ {YvZz} {-Y}{-Z}
XY -2)|{-YVvZz} | {Y}{-Z}

We notice that a pclause is either a disjunction of two praxie
a set of two unit clauses (each of them containing a proxyga or
single unit clause (with a propositional variable). Fromttlemark,
we follow the same steps as in Section 2.2 to define the fafigwi

types for representing equisatisfiable CNF formulas.

type pclause =

C of txt | U of txt | L of stringXxbool
and view = { pos : pclause; neg : pclause}
and t = view Hashcons.hash_consed

Hash-consed values of type represent proxies. The type
pclause is the type of pclauses. Its constructorstands for
pclauses made of two proxidsrepresents the conjunction of two
unit clauses containing proxies afdis used for building unit
clauses containing literals. Record values of typew contain the
pclauses that should be added when asserting (positivelgga-

tively) a proxy.

In order to improve sharing, we define an equality relation
(and a suitable hashing function) that attempts to idergdyne
subformulas that are logically equivalent. For instanaexies
for X — Y and-X V Y would refer to the same variable.
We get an implementation of hash-consing tables by appltirg

Hashcons.Make functor to the following module:

module View = struct
open Hashcons
type t = view
let eqc cl c2 = match cl1,c2 with
U(£1,£2) , U(gl,g2)
| C(f1,£2) , C(gl,g2) —
fl==gl && f2==g2 || fl==g2 && f2==gl
| L(x1,b1) , L(x2,b2) — x1=x2 && bl=b2
| - — false
let equal f1 £f2 =
eqc fl.pos f2.pos && eqc fl.neg f2.neg
let hashc acc = function
U(f1,f2) | C(f1,f2) —
let min = min fl.tag f2.tag in
let max = max fl.tag f2.tag in
(accx19 + min) X19 + max
| L _ as z — Hashtbl.hash z

let hash f = abs (hashc (hashc 1 f.pos) f.neg)
end
module H = Hashcons.Make (View)

Then, we introduce a global table to store the equisatigfiabl
CNF and the corresponding smart constructors.

open Hashcons

let tbl = H.create 251

let view t = t.node

let compare f1 f2 = compare fl.tag f2.tag
let equal f1 f2 = f1.tag == f2.tag

let mk_atom a =

H.hashcons tbl ({pos=L(a,true);neg=L(a,false)})
let mk_not f = let f = view f in

H.hashcons tbl ({pos=f.neg;neg=f.pos})

let mk_and f1 f2 = if equal f1 f2 then f1 else

H.hashcons tbl

{pos=U(£1,£2); neg=C(mk_not f1,mk_not £2)}

let mk_or f1 f2 = ...
let mk_imp f1 f2 = ...

A slight improvement is made here so that the proxies retufoe
X A X andX VvV X are bothX.

It is then easy to define a functiamf : formula — t that
computes the CNF conversion of a propositional formula loyre
sively applying the smart constructaf®_and, mk_imp, ...

3.2.3 Implementation

We now assume that the code presented in the previous séction
in a moduleCnf. The state of our SAT solver is represented by the
set of proxies that have been assumed and a list of pair ofgeox

module S = Set.Make(Cnf)
type t = { gamma : S.t ;
delta : (Cnf.tXxCnf.t) list}

The core of the solver is a pair of two mutually recursive fiorts
assume andbcp. The former assumes a proxy and thus adds the
corresponding pclauses to the context. The latter perfboniean
constraint propagation.

exception Sat
exception Unsat

let rec assume env f =
if S.mem (Cnf.mk_not f) env.gamma then
raise Unsat;
if S.mem f env.gamma then env
else
let env =
{ env with gamma = S.add f env.gamma }
in
match Cnf.view f with
Cnf.Proxy {Cnf.pos=Cnf.U(f1,f2)} —
assume (assume env f1) £2
| Cnf.Proxy {Cnf.pos=Cnf.C(f1,f2)} —
bep { env with
delta=(f1,£2)::env.delta }
| - — bcp env

and bcp env =
let cl , u =
List.fold_left
(fun (cl,u) (f1,f2) —
if S.mem f1 env.gamma



|l S.mem f2 env.gamma
then (cl,u)
else if S.mem (Cnf.mk_not f1) env.gamma
then (cl,f2::u)
else if S.mem (Cnf.mk_not f2) env.gamma
then (cl,fl::u)
else (f1,f2)::cl , u
) ([1,[]1) env.delta
in
List.fold_left assume {env with delta=cl} u
We note that all operations dhare efficient thanks to hash-consing
since the comparison of two proxies is a constant time ojperat
The main function of the solver performs the case splitting:

let rec unsat f env =
try
let env = assume env f in
match env.clauses with
[1] — raise Sat
| (a,b)::1 —
unsat a {env with delta=1};
unsat (Cnf.mk_not a)
(assume {env with delta=1} b)
with Unsat — ()

Finally, the functionis_sat : formula — bool checks the sat-

isfiability of a formula:

let is_sat f =
try
unsat (cnf f) {gamma=S.empty;delta=[]}; false
with Sat — true

3.2.4 Benchmarks

We perform some quick benchmarks of this SAT solver on two
different kinds of valid formulas whose sizes are paransef€he
first one is due to de Bruijn and claims that, given an odd nurabe
boolean variables on a circular list, there are at least tiyacant
variables with the same value:

2n
deb(n) = (/\(pi “— Ditlmod2n) — C> —c
1=0
The second one is the famous pigeon-hole principle sayiig th
if n+ 1 pigeons occupy: holes then at least one hole contains two
pigeons:

h n+ln+1

=V V Vepnne

h=1p=1 g=1

n+l n
o) = (A Vo)
p=1 h=1
Figures 2 and 3 show the timings for two versions of the SAT
solver, one with hash-consing as presented in the previemioas
and one with disabled hash-consing. As we can see, turnisig- ha
consing on is always a winning strategy. On the first exanpée,
even observe a different asymptotic behavior.

3.3 Binary Decision Diagrams

In this section, we show how to use our hash-consing library
to quickly implement a Binary Decision Diagrams (BDD) pack-
age [5]. The purpose is not to build a competitive BDD library
but to show how two main features of BDDs, namely sharing of
equal trees and dynamic programming, are provided for fyemib
library. A BDD is a dag representing a boolean formula. ltiker

® Zero, representindalse
¢ One, representingrue, or

10000 | | | | : ]
I with hash-consing—— 1
1000 & without hash-consing - - - - ]
100 F .
10 — _
0.1 — _
001l — 1 - ! | | L
2 4 6 8 10 12 14 16
Figure 2. Benchmarkingleb(n) formulas
16 — | — |
with hash-consing—— _
14 - without hash-consing - - - - - n
12 - A
10 - R
8 i
6 —
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2 —
0 ! L 1 |
0 5 100 15 20 25 30 35

Figure 3. Benchmarkingoh(n) formulas

e Node(v, 1, h), representing the formula Al) vV (—vAh), where
v is a variable and andh two BDDs.

A BDD is said to bereducedandordered(with respect to a given
order over variables) whenever the following propertiesho

e on any path from the root to a leaf, the variables respect the
given order;

* no two distinct nodes are structurally equal (maximal stegri
¢ no nodeNode(v, [, h) is such thal = h.

One fundamental property of (reduced ordered) BDDs is theth e
propositional formula has a unique representation. As a&e&on
qguence, a formula represented as a BDD is valid if and only if i
is reduced t@ne and is satisfiable if and only if it is not reduced
to Zero. Said otherwise, all the computation is concentrated in the
BDD building.

In the following, we show how our hash-consing library re-
moves most of the implementation difficulty in the design eira-
ple BDD library (see for instance Andersen’s lecture no8ddr
an introduction to BDD algorithms). To build a datatype otha
consed values, we follow the same steps as in Section 2.2r8Ve fi
define the @AmML type for BDDs:

type variable = int
type bdd =

node hash_consed
and node =

| Zero | One



apply op b1 b2 =
if b1 andbz are 0 or 1 then returop b; b2
if var b1 = var by then
mk (var b1) (apply op (low b1) (low b2))
(apply op (high b1) (high b2))
else ifvar by < var bs then
mk (var b1) (apply op (low b1) b2)
(apply op (high bi) b2)

else
mk (var b2) (apply op b1 (low b2)
(apply op b1 (high b))

Figure 4. Applying a boolean operation to two BDDs

| Node of variable X bdd X bdd

Then we apply thHashcons . Make functor to suitable equality and
hashing functions to get an implementation of hash-consiblgs:

module Node struct
type t = node
let equal x y = ...
let hash x

end

module HC = Hashcons.Make (Node)

Then we introduce a global table to store the BDD nodes and the
corresponding hash-consing function:

let table = HC.create 251
let hashcons = HC.hashcons table

Finally we define the smart constructors for BDDs:

let zero = hashcons htable Zero
let one = hashcons htable One
let mk v low high =
if low high then low
else hashcons htable (Node (v, low, high))

This last constructor takes care of building reduced BDDd an
maximal sharing is ensured by the hash-consing function.

To turn a propositional formula into a BDD, it is useful toyel
on the following generic operation

val apply :
(bool — bool — bool) — bdd — bdd — bdd

which applies an arbitrary binary boolean operator to twaDBD
while maintaining the variables ordering invariant. Thee will
have the usual connectives vV and— as particular instantiations.
The algorithm forapply is quite simple and is given Figure 4,
wherewvar, low and high are the accessors for the three fields
of Node. To get an efficient implementation of this algorithm, one
has to add dynamic programming i.e. to remember the restilts o
previous calls, as we did Section 3.1. With BDDs as hashembns
terms, it is immediate to build a hash table indexed by a pair o
BDDs (using physical equality and@(1) hash function based on
tags):

module H2 = Hashtbl.Make(
struct
type t = bdd X bdd
let equal (ui,vl) (u2,v2) = ...
let hash (u,v) = ...
end)

and to use it to implement dynamic programmingpply:

let apply op bl b2 =
let cache = H2.create 251 in

let rec apply ul u2 =
try
H2.find cache (ul,u2)
with Not_found —
let res . in
H2.add cache (ul,u2) res; res

in
apply bl b2

Putting all together, we get a minimal BDD library fitting iedls
than 80 lines of @AML code. If it cannot be compared with a state-
of-the-art BDD library, its performances are not so bad, e
on the de Bruijn deb(n)) benchmark:

n | 100 200 | 300 | 400 | 500
timein seconds| 0.19 | 2.25| 7.99 | 185 | 30.4
and on the pigeonholef(n)) benchmark:
n 10 11 12 13| 14
timein seconds| 2.28 | 7.45| 22.1 | 52.0 | 150

4, Conclusion

We have presented and@ML implementation of a type-safe mod-
ular hash-consing library. Our approach has many pradbeaé-
fits with respect to an ad hoc implementation. First, it idtroes
a type distinction between hash-consed values and norrhads/a
that statically ensures maximal sharing. Then, this lipimparam-
eterized by a user equality that allows to identify termsoading
to an arbitrary equivalence relation. Finally, the libréags hash-
consed values with unique integers that can be used to iraplata
structures such as hash tables, sets and dictionaries.

Hash-consing is also used in slightly different contexishsas
ML runtimes where it is performed in a systematic way by the
garbage collector [4, 10]. Our approach is less intrusive e
programmer is free to use hash-consing at relevant plachgsin
code.

Our library is a free software available Bttp://www.1ri.
fr/~filliatr/software.en.html, together with implementa-
tions of sets and dictionaries using Patricia trees folhgwil2]. It
is already used in severald@mML applications (regular expression
library, rewriting toolbox, first-order decision procedrlt would
be interesting to see its effect on other existingAML applications
such as th€oq proof assistant.

Our library should be easily translated to any other ML dialle
Indeed,x == y can be replaced by.tag = y.tag, with only a
small efficiency loss, when pointer equality is not avagatfur-
thermore, when weak pointers are not available, traditibaah-
tables can be substituted to weak hash-tables, at the eodtat
possible memory leaks.

There are still open issues. First, values always have tobe c
structed before being searched for in the hash-consing,tatbén
when they happen to be already allocated. Thus the garb#ige-co
tor still has to reclaim values that were unnecessarilycatied. To
avoid this pitfall, we could have one hash-consing functareach
constructor but such a library would require meta-programym

Serialization is another issue. Indeed, the uniquenesags t
cannot be preserved when hash-consed values are writtdego fi
and reloaded afterwards. The user must implement his own in-
put/output functions to rehash all serialized values égilly saving
untagged values or by ignoring tags at loading time).

Last, the pattern-matching over hash-consed values istess
venient, especially for deep patterns. It could be easilyesbwith
a native support for views [13] in €AML.
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