
Master’s thesis

Venti analysis and memventi
implementation

Designing a trace-based simulator and
implementing a venti with in-memory index

Mechiel Lukkien
mechiel@xs4all.nl

August 8, 2007

Committee:
prof. dr. Sape J. Mullender
ir. J. Scholten
ir. P.G. Jansen

Faculty of EEMCS
DIES, Distributed and Embedded Systems
University of Twente
Enschede, The Netherlands

2

Abstract

[The next page has a Dutch summary]

Venti is a write-once content-addressed archival storage system, storing its
data on magnetic disks: each data block is addressed by its 20-byte SHA-1 hash
(called score).

This project initially aimed to design and implement a trace-based simula-
tor matching Venti behaviour closely enough to be able to use it to determine
good configuration parameters (such as cache sizes), and for testing new opti-
misations. A simplistic simulator has been implemented, but it does not model
Venti behaviour accurately enough for its intended goal, nor is it polished enough
for use. Modelled behaviour is inaccurate because the advanced optimisations
of Venti have not been implemented in the simulator. However, implementation
suggestions for these optimisations are presented.

In the process of designing the simulator, the Venti source code has been
investigated, the optimisations have been documented, and disk and Venti per-
formance have been measured. This allowed for recommendations about per-
formance, even without a simulator.

Beside magnetic disks, also flash memory and the upcoming mems-based
storage devices have been investigated for use with Venti; they may be usable
in the near future, but require explicit support.

The focus of this project has shifted towards designing and implementing
memventi, an alternative implementation of the venti protocol. Memventi keeps
a small part of the scores in main memory for lookups (whereas Venti keeps them
on separate index disks). Memventi therefore does not scale to high storage
capacity, but is much easier to set up, much simpler in design, and has good
performance.

4

Abstract

[The remainder of this report is written in English.]

Venti is een programma dat blokken data opslaat op magnetische harde
schijven. Een eenmaal geschreven blok data kan nooit meer verwijderd of over-
schreven worden; het kan uitsluitend worden geadresseerd aan de hand van de
20-byte SHA-1 hash (genaamd de score) van de data.

In eerste instantie was het doel van dit project het ontwerpen en imple-
menteren van een trace-based simulator die Venti’s gedrag nauwkeurig genoeg
simuleert om gebruikt te kunnen worden voor het bepalen van configuratiepa-
rameters zoals groottes van de diverse caches, maar ook voor het testen van
nieuwe optimalisaties. De gëımplementeerde simulator is echter niet nauwkeurig
genoeg om hiervoor te kunnen worden gebruikt, en is ook niet genoeg door-
ontwikkeld voor normaal gebruik. Het gemodelleerde gedrag wijkt te veel af
voornamelijk doordat de geavanceerde optimalisaties die in Venti aanwezig zijn
niet in de simulator zijn gëımplementeerd. Wel worden ontwerpen voor, en
opmerkingen over mogelijke simulatorimplementaties van deze optimalisaties
vermeld.

Tijdens het ontwerpen van de simulator is de broncode van Venti gelezen,
zijn de aanwezige optimalisaties gedocumenteerd, en zijn benchmarks van harde
schrijven en van Venti uitgevoerd. Met het inzicht dat hiermee verkregen is, kun-
nen ook zonder simulator aanbevelingen worden gedaan over goed presenterende
Venti configuraties.

Behalve magnetische harde schijven zijn ook flash geheugen en de nog in
ontwikkeling zijnde mems-schijven onderzocht voor gebruik met Venti. Ze zullen
in de toekomst te gebruiken zijn, maar hebben dan expliciete ondersteuning
nodig in Venti.

De focus van dit project is verschoven naar het ontwerpen en implementeren
van memventi, een alternatieve implementatie van het venti protocol. Memventi
houdt van elke aanwezige score een klein deel van de 20 bytes in het geheugen,
precies genoeg om de kans op dubbelen hierin klein genoeg te houden (Venti
zelf bewaart alle scores op index schijven). Memventi gebruikt relatief weinig
geheugen, maar schaalt niet naar de hoge opslagcapaciteit waar Venti wel naar
schaalt. Memventi is echter veel eenvoudiger in ontwerp en om in gebruik te
nemen, en levert goede prestaties.

6

Preface

I would like to thank everyone who has helped me with my master’s project,
both on technical and non-technical level. This master’s thesis has taken me
longer to finish than I (and others) had hoped, but I am content with the results.
I am very thankful to Sape Mullender for supervising this project, helping with
technical issues and being patient and helpful from start to finish. The same
goes for Axel Belinfante, our regular progress talks have been very useful on the
technical level and have helped keeping this thesis on track.

I hope you enjoy reading this thesis. I am continuing development of tools
related to Venti, so please direct further questions or discussion to my e-mail
address, mechiel@xs4all.nl.

Mechiel Lukkien
Enschede, July 11th 2007

mechiel@xs4all.nl

8

Contents

1 Introduction 13
1.1 Protocol . 15
1.2 Hash trees . 15
1.3 Performance requirements . 18
1.4 Report . 20

2 Venti design 21
2.1 Index sections, Arenas . 21
2.2 Terminology . 22
2.3 Optimisations . 25

2.3.1 Disk block cache, dcache 25
2.3.2 Index entry cache, icache 26
2.3.3 Lump cache, lcache . 26
2.3.4 Bloom filter . 27
2.3.5 Queued writes . 27
2.3.6 Lump compression . 27
2.3.7 Disk block read-ahead . 28
2.3.8 Lump read-ahead . 28
2.3.9 Prefetch index entries . 28
2.3.10 Sequential writes of index entries 28
2.3.11 Sequential writes of disk blocks 28
2.3.12 Opportunistic hash collision checking 29
2.3.13 Scheduler . 29
2.3.14 Zero-copy packets . 29

3 Venti clients 31
3.1 Vac . 31
3.2 Fossil . 34
3.3 Conclusion . 35

4 Disks & performance 37
4.1 Disk internals . 37

4.1.1 Implications for Venti . 39
4.2 Operating system disk handling 40
4.3 Testing hard disks . 40
4.4 SCSI disk results . 42
4.5 IDE disk results . 44
4.6 Conclusion . 45

9

4.7 Alternatives to magnetic disks . 46
4.7.1 Compact-flash memory 46
4.7.2 MEMS-based storage . 50

5 Venti performance 53
5.1 Basic Venti performance . 53

5.1.1 Analysis . 54
5.2 SHA-1 performance . 55
5.3 Whack performance . 55

6 Venti simulator 57
6.1 Design . 58
6.2 Trace files . 60
6.3 Vsim and vtrace . 62
6.4 Future work . 63

6.4.1 Bloom filter . 63
6.4.2 Index entry prefetch from arena directory 63
6.4.3 Better disk model and multiple disks 64

6.5 Conclusions . 64

7 Memventi design & implementation 67
7.1 Storing only a part of the score 68
7.2 Implementation . 70

7.2.1 Features . 71
7.2.2 Data integrity . 73
7.2.3 Differences with design . 74
7.2.4 Performance . 75
7.2.5 Problems . 79
7.2.6 Future work . 79
7.2.7 Conclusion . 82

8 Conclusions 83

9 Future work 87

Bibliography 93

A Test setup 95

B Disk tests 97
B.1 SCSI disk . 97
B.2 IDE disk . 97

C Basic Venti tests 103
C.1 sametest . 103

D Memventi tests 105

E Compact flash tests 107
E.1 IDE to flash adaptor . 107
E.2 USB flash memory card reader 107

10

F Technical documentation 111
F.1 Pseudo code for handling venti operations 111

G Tools 115
G.1 ptio.c . 115
G.2 test-sha1.c . 120
G.3 test-whack.c . 121

11

12

Chapter 1

Introduction

Venti [1, 2, 3] is a write-once content-addressed archival block storage server. It
is a user-space daemon communicating with software clients over tcp connec-
tions. The blocks stored can be up to 56kb in size. Once stored, blocks can
never be removed. The address of the data is the 160-bits SHA-1 hash (called
a score) of that data. SHA-1 is a cryptographic secure hash, the implications
of which are explained later in this section. Data blocks are stored on magnetic
disk allowing for fast random access.

In essence, Venti provides the following two functions:

1. write(data, type) → score

2. read(score, type) → data

Venti only stores data, and retrieves it later on request. It does not interpret
the data, nor does it need to. The type parameter to the read and write functions
is part of the address, and used mostly for convenience, such as easy debugging.
It is not an essential part of Venti or Venti clients. Venti is a building block for
storage applications, and therefore it is not very useful all by itself. For example,
the default file system in Plan 9[4], Fossil [5, 6], uses Venti as a permanent
backing store. The backup utility Vac [7] uses Venti as backing store. Vacfs [8]
transparently presents the backed-up file tree as a file system. Vbackup [9]
writes a disk image to Venti, and vnfs [9] serves the files in the file system of
that disk image back using the nfsv3 protocol.

Venti only stores and retrieves blocks of data; once stored, blocks can never
be removed. The use of the score of the data as an address results in some
interesting storage properties. If the same block of data is written to Venti
multiple times, it is stored only once. Duplicate writes are easily detected: the
address has already been written to. This is called write-coalescing. When a
write-request comes in, Venti calculates the score, i.e. the ‘address’ and looks it
up in an index. If the score is already present, Venti can safely assume the data is
already present. This follows from the fact that SHA-1 is a secure cryptographic
hash: it is collision-resistant and preimage resistant. Collision-resistant means
that it is computationally infeasible to calculate differing data m1 and m2 that
have the same SHA-1 hash. Preimage resistant means that it is computationally
infeasible to either calculate data m1 to go with a given score, or to calculate
data m2 differing from given data m1 that has the same score. Finding a collision

13

(known as a birthday attack) takes 2n/2 operations, with n = 160 (the number
of bits in the hash) for SHA-1, under the assumption that it has not been
broken. A preimage attack takes 2n operations. The vast amount of cpu cycles
needed for these operations are not within reach of modern and immediately
future computers. The probability that different data stored in Venti have the
same SHA-1 hash is very low likewise. The example from the original Venti
paper[1] states that a Venti storing an exabyte of data (1018 bytes) in 8kb
blocks (1014 blocks) has a probability of less than 10−20 of a collision. A score
can therefore safely be used as a unique identifier. Thus, after the first write of
data, subsequent writes of that same data can safely be ‘ignored’ and marked
as a successful write. This can be very useful in backups, where a complete
copy of data may be written every day. Only modified data will result in new
data being stored. Thus, disk storage is used efficiently and transparently to
clients. Traditional file systems have no way to coalesce occurrences of identical
data. Fossil, and any Venti client for that matter, gets this feature for free.
Files stored multiple times in Fossil will be written to Venti multiple times, but
Venti only stores it once.

Since the address is determined by the data, one cannot request Venti to
write different data on an address of choice, or an address that already references
data. Writing something at an address already present in Venti automatically
means the data is identical to the data already present at that address. Stored
blocks cannot be removed, there is no way of telling Venti to remove a block of
data. At first, this might feel wrong with respect to security and privacy. Anyone
who can connect to a Venti server can request any block of data. However, one
can only retrieve data one has an address for. Requesting random addresses
(160 bits long), yields an extremely low probability of actually retrieving data.
Only when an address falls into the wrong hands, security or privacy may be
an issue. This policy of never removing data is not new: an earlier Plan 9 file
system, the Cached worm file system[10], already took permanent snapshots of
an active file system.

The write-once nature of Venti simplifies Venti’s design. First, once data is
written, it is sealed by Venti. This means Venti will not write into that part of
its storage ever again. This prevents software bugs to accidentally destroy data.
Second, disk storage is used append-only, meaning there is no fragmentation
as in normal file systems. This allows for efficient disk usage. The write-once,
append-only scheme also gives opportunities for compression, to use even less
disk space.

Another important consequence of content-addressing is that the integrity of
data can be checked. After having retrieved the data with a given score, a client
can calculate the score of the retrieved data. If it does not match, the data is bad
and Venti might have a bug or broken disks. If the scores do match, the client
can be sure the data retrieved is the same as the data originally stored. Note
that normal magnetic disks as used by file systems have no such feature. The
data retrieved is assumed to be the same as that stored. Such assumptions are
not without risk, as became clear during this project: one disk used for testing
would return random data for a single 512 byte sector, without reporting read
or write errors. Venti caught this.

As mentioned, access control is not an issue in Venti. An attacker can only
‘steal’ data if he has the address of it: the address is also the key to the data.
This makes Venti protection a capability-based protection mechanism as used in

14

Amoeba[11]. The address can only be calculated from the data. This scheme is
only suspect when the ‘secret’ score is stolen. Thus, users of Venti should keep
their scores as secure as they normally would their data. The only problem
Venti currently has, is that it allows anyone who can connect to write data. A
malicious user can fill up the disk storage of a Venti server by writing random
data. Of course, this is true for other data stores as well, such as magnetic disks.

The next section describes the venti protocol, which should help to form an
idea of how Venti provides its functionality.

1.1 Protocol

Venti exports it functions over tcp, using a protocol that is fully documented[2].
It is a rather trivial protocol specifying the packing and unpacking of the half
dozen remote procedure calls. Each request is packed into a single message, and
each elicits a single response, always in a single protocol message. Requests (and
thus messages) are always initiated by the client. Each message is accompanied
by a tag, a one-byte number used to match responses to requests (responses can
be sent out of order). The following request (T) and response (R) messages are
documented:

Thello, Rhello Handshake of connection. The client sends Thello along with
a version, uid, crypto strength and crypto (last two are not used). The
server responds with Rhello. This is always the first exchange of messages
on a new connection.

Tping, Rping A client may send a Tping to which the server responds with
an Rping. This message does not have parameters and is not used often.

Tread, Rread To read a given score, a Tread is sent along with the score,
type and count (maximum size). The server responds with the data or an
Rerror when the score/type-tuple is not present.

Twrite, Rwrite To store data, a Twrite is sent along with a type and the
data. The server responds with the score of the data.

Tsync, Rsync A Tsync message tells the server to flush all cached blocks to
disk. When the client receives the Rsync, all data previously written can
assumed to be flushed to disk and survive forever.

Rerror When an error occurs (e.g., a Tread of a score that is not present), the
server responds with Rerror, which contains an error string.

Tgoodbye To close the connection, the client sends a Tgoodbye and closes the
connection. The server closes the connection when it reads a Tgoodbye.

1.2 Hash trees

As mentioned before, Venti does not interpret the data it stores. The semantics
of the data is entirely determined by the programs that use Venti as a data store.
Applications using Venti do have similar methods of storing common occurrences
of data, such as files, directories and entire file hierarchies. Programs such as

15

file

B B 2 B 3 B 4

S r

S 2 3S 4S1S

pointer block

1

Figure 1.1: Hash tree, Bn represents block n, Sn represents score n belonging
to block n, Sr is the root score.

Vac and Fossil make use of hash trees to store these types of data. A simplified
view of a hash tree is given in Figure 1.1.

First, let’s consider the case when a client wants to store a large file in Venti.
Blocks can be up to 56kb in size. Therefore, the file must be split into smaller
blocks. Clients typically use 8kb blocks for this purpose (larger blocks would
decrease the likelyhood write-coalescing applies). A 10mb file will be split into
1280 blocks, all written to Venti and each resulting in a score. Each score is
160 bits large, or 20 bytes. The client then groups (concatenates) scores to
make up 8kb blocks, called pointer blocks. Such a pointer block can contain
8192/20 = 409 scores (rounded to whole scores). For a 10mb file, four such
pointer blocks are needed. Each pointer block is written to Venti, resulting
in four scores at the first level (depth) of the hash tree. The same process is
repeated for the four scores: They are concatenated in a new pointer block at
the second level, which is stored in Venti. The resulting score represents the
entire file.

Now consider the following three cases of file modification. First, data in
the middle of the file is changed (the length of the file remains the same). Each
modified block will have a new score. All pointer blocks that contained the old
scores need to be updated, resulting in the pointer blocks having new scores
as well, up to the root score. A second typical use case of files, is data being
appended to a file. This may result in a modified last data block (at the lowest
level of the hash tree), and/or new blocks in the hash tree. This is shown in
Figure 1.2. Third, consider the case where a part of the file has been shifted.
Either by inserting or removing some data. This changes the block in which the
modification occurs, but also all following blocks, making write-coalescing not
applicable.

In a similar way, top scores of files can be combined (concatenated and

16

pointer block

B B 2 B 3 B 4 5B 6B 7B

5S S 6 7S

pointer block

S a S b

S 2 3S 4S1S

S r

file

pointer block

1

Figure 1.2: Hash tree, data appended relative to Figure 1.1, an additional level
of pointer blocks is introduced.

17

stored as a hash tree) into directory blocks (including file system access control
information). This allows entire file systems to be stored.

The data blocks in the hash tree are written after zero truncating them.
This means all trailing zeros (null bytes) are removed, preventing storage of
data blocks with different amounts of trailing zeros. Since the blocks stored are
of fixed size (typically 8kb), the original block can be reconstructed easily after
having been retrieved from Venti, this is called zero extending.

Vac is a small tool that writes file trees to Venti. Vacfs is a Plan 9 file server
that serves the file trees over 9P [12]. Vac takes a path to store as argument. It
stores all directories and files depth-first. Each file is split into fixed-sized blocks
(8kb by default) and a hash tree written to Venti. The resulting scores are
each wrapped in a data structure called an entry which is then stored in Venti.
Directories are represented as data consisting of a concatenation of entries. That
data is treated identically to a normal file with data: it is stored using a hash
tree and itself wrapped in an entry data structure. File meta-data, such as file
name, ownership, access rights and modification time, are stored in a separate
file, again as a hash tree, where each meta-data structure points to an entry in
the directory file.

Fossil is a file server serving files over 9P. A disk partition is used for the ac-
tive file system and non-permanent snapshots. Snapshots are archived by flush-
ing the blocks that have changed since the previous snapshot to Venti. A Fossil
can be initialised by reading a previously written snapshot—referenced by its
score—from Venti. Snapshots are typically accessible at /n/snap/yyyy/mmdd/hhmm
at the appropriate year, month, day, hour and minute. Archived trees are acces-
sible at /n/dump/yyyy/mmdds at appropriate year, month, day and sequence.

Vbackup is a new tool written for Plan 9 from User Space. First, it can
write disk images (file systems) to Venti. Second, it can serve back these disk
images read-only from Venti over nfsv3.

1.3 Performance requirements

Since Venti is used as backing store for Fossil, a typical file system (typical in
the sense that it is used for reading/writing files as done by other file systems;
it was designed to work well with Venti’s features and its design deviates from
that of a typical file system), it needs to perform well. Or rather, as close to
more traditional file systems as possible, or faster. This would be in the range
of tens of megabytes per second of data transfer.

To explain the performance problem that using Venti as backing store in-
troduces, consider the following, simplified, description of how a traditional file
system on a magnetic disk works. A magnetic disk is divided into logical blocks,
which are addressed by number. Block 1 resides at the start of the disk, block
1000 somewhat further down the disk. A file system uses these block numbers
to get at data. In the first 10 blocks, there may be a table mapping file names
to blocks on the disk. If a file needs to be stored, the file system can reserve
series of blocks, say 15-20 and 30-40, to store the file in. The file system stores
this mapping in some file system-specific format in blocks reserved for use by
the file system. For reading the file, the file system only needs to request blocks
15-20 and 30-40 from the disk in order to handle a read request. The blocks
do not all have to be sequential. The point it that the file system can look at

18

a table that is on a few disk blocks, know which blocks it needs, and request
them from the disk. The disk will do the hard work of returning the data.

Now consider the case with Venti. Say one would want to store the same
file, consisting of 5 + 10 blocks, on a Venti-backed file system. One cannot ask
Venti to reserve 15 blocks. One can only ask it to store a certain block of data.
The ‘address’, i.e. the score, is determined inherently by the data to store. So,
when storing the equivalent 15 blocks in Venti, 15 scores are returned. A file
system would again concatenate these scores into a new single block and store
it in Venti. The file is now addressable by a single score. Later, the file has to
be read. The table block is requested using the single score. The block contains
another 15 scores which Venti retrieves from its disks. So far, it seems the
case of storing on a magnetic disk or in a Venti seems similar. The difference
however, is that each score is 20 bytes of random data, the score. To read a file,
Venti needs to look up where the data of each score resides on the disk. For
a traditional file system, this step is not necessary, the table simply states the
block numbers that can be passed to the disk. The lookup is quite expensive,
an example shows the scope of the problem.

Assume we have a 1tb Venti system. Not all that much storage capacity,
higher capacity systems are in use already. Blocks are typically 8kb in size.
This leaves us with

1 TB / 8 KB = 134, 217, 728

addressable blocks. A score is 20 bytes in size, and approximately 20 more bytes
are necessary for accounting and being able to find the block on the disk. This
sums up to

134, 217, 728 blocks ∗ 40 bytes per block = 5, 368, 709, 120 bytes ≈ 5120 MB

of memory. And that for only a moderately sized Venti server that also needs
memory for running Venti including a disk cache and running the operating
system. Putting the entire index into memory does not scale to large Venti
servers. Startup considerations are also important. Startup time of a Venti
server could easily exceed minutes when loading the entire index into main
memory at startup.

The solution the designers of Venti have chosen, is to use magnetic disks for
an index to map scores to a disk location. As per the example calculation of
an index in memory, an index could fit on a single disk, though using multiple
disks is beneficial to performance. The index they implemented is just a huge
hash-table. Each block of 8kb forms a hash bucket. The disk is divided into n
buckets of 8kb. In order to look up a score, the score is hashed and the right
bucket determined. This is done just by looking at the score, no disk access is
needed thus far. Since all buckets are 8kb, knowing the bucket means one can
calculate at which offset on the disk the bucket resides. A single disk seek to this
location, and reading of 8kb of data is enough to read the bucket. The score can
now be compared to the scores in the bucket. Either the score is not present,
or the entry in the bucket spells out where on the data disks the data can be
found. For each lookup of a score, Venti will have to turn to the index disks and
determine whether the score is present and where on the disks the data resides.
When sequentially reading a file consisting of multiple blocks (stored in a hash
tree, each block referenced by a random score) many random index disk reads

19

are necessary, followed by reads from the data disks. This turns practically all
reads (even ‘sequential’ reads) into random disk reads.

To make Venti performance acceptable, various read-ahead and caching tech-
niques are have been implemented. These are discussed in the next chapter.

1.4 Report

In this chapter an introduction to Venti has been given. Chapter 2 has a more
in-depth analysis of the implementation of Venti, including the optimisations
in place that ensure high performance. Chapter 3 discusses Fossil and Vac,
programs that use Venti for storage, and how their use of Venti influences Venti
performance. Next, in Chapter 4, magnetic disks are analysed, and future de-
velopments in storage devices are reviewed for relevance for Venti. In Chapter 5
performance measurements of Venti are presented, along with measurements of
the SHA-1 hashing and whack compression algorithms. Chapter 6 explains the
approach to designing and implementing a Venti simulator, and the results of
that effort. Memventi, an alternative implementation of Venti, is presented in
Chapter 7. The original idea and design are discussed, followed by a report about
the implementation. More details about memventi are presented: features, prob-
lems encountered during the implementation and how they were overcome, per-
formance measurements, suggestions for improvements and conclusions. Finally,
in Chapter 8 a conclusion is drawn about the simulator, memventi and Venti in
general, and the report concludes with ideas for future work (some of which are
already being developed, inspired heavily by this project) in Chapter 9. The
appendices contain elaborate results of the performance measurements.

20

Chapter 2

Venti design

This chapter describes the details of the Venti distributed with Plan 9 from User
Space.

Venti was originally designed and implemented for Plan 9 by Sean Quinlan
and Sean Dorward, at Bell Labs. The implementation was in C using the
Plan 9 C libraries. Later on, it was partly rewritten by Russ Cox with more
optimisations and fitted into Plan 9 From User Space [13] (a port of Plan 9
libraries and tools to unix). As a result, Venti now can not only be run on
Plan 9, but also on Linux, BSD’s and other unix-like operating systems. As
per typical Plan 9 program design, Venti is heavily multithreaded.

2.1 Index sections, Arenas

This section introduces the Venti implementation and basic terminology. The
next section contains a listing of definitions used by Venti or necessary for de-
scribing Venti.

The designers of Venti have chosen to use magnetic disks as storage for the
data blocks as well as for the index mapping scores to the disk locations of the
data blocks. Using magnetic disks is feasible because of ever-decreasing costs of
those disks, helped by coalescing duplicate of writes, and the disks are necessary
in order to provide decent random access performance.

A Venti configuration has at least one disk for storing data blocks. Prefer-
ably, the entire disk is reserved for this purpose for performance reasons. Venti
divides the disk into fixed-sized arenas. There is always only one active arena:
the arena where newly written data blocks are stored. Newly written blocks are
always appended to the arena and are immutable: they will never be moved,
modified or deleted. This design has been chosen to minimise complexity, and
therefore minimise the chance of introducing bugs (a sensible design-choice for
a permanent backup storage server). It also eliminates fragmentation. When
an arena is full, Venti seals it by calculating the SHA-1 score of the entire arena,
and making the next unused arena the active arena. The arena size, 500MB by
default, is chosen to make it easy to backup to other media, such as a cd-rom.
Note that it is recommended practice to use a raid configuration for the disks
on which the arenas are stored. A nice feature is that when all arenas on a disk
have filled up, additional disks can be added and new arenas created on them.

21

Index

Index section Index section Index section...

Bucket Bucket Bucket...

IEntry...IEntry IEntry

Figure 2.1: Overview of components of an index.

When reading a score from Venti, Venti has to find the right arena and right
offset in the arena. Recall that scores are random and the arenas are append-
only. This means the data belonging to any given score can be anywhere in any
arena. Obviously, it cannot read through the arenas until it finds the data. An
index residing on a magnetic disk is implemented as a big hash-table, made up
of 8kb hash-buckets. Each entry in the hash-bucket maps a score to an arena
and an offset in that arena. This allows Venti to determine in a single disk-seek
and single disk-read (i.e. seeking to and reading the bucket) whether the score
is present, and if so, where and in which arena it resides. Due to the randomness
of the scores, buckets statistically have a low probability to overflow. An index
typically consists of multiple disks. This way, lookups (bucket seeks and reads)
can be done in parallel.

Since using the index is still expensive, a bloom filter[14] is used to reduce the
number of accesses necessary. The bloom filter is read from disk at startup, and
remains entirely in memory during operation, and updated when performing
writes. Periodically and at shutdown, it is written to disk. The bloom filter is
used to determine whether a given score is definitely not present. This is most
useful for writing data: the index does not have to be consulted to find out a
score is not present in Venti. More optimisations are used to reduce the number
of disk accesses, see Section 2.3 for more information.

2.2 Terminology

Venti uses an interesting collection of names for the various components and
principles of the system. The following list describes the names used. Figures
2.1 and 2.2 give an overview of the terminology used for the on-disk index and
the on-disk arenas. Details such as certain headers in the structures have been
left out for clarity.

index The index is essentially a big on-disk hash table. The table is split up
in index buckets, each responsible for a range of scores. The assignment

22

Arena partition Arena partition ...

Arena Arena Arena...

Clump Clump Arena directory

DataHeader ... ClumpInfo ClumpInfo

Figure 2.2: Overview of components of the arena partitions.

of score ranges is done during initialisation, by spreading the score range
equally over the buckets. An index is made of one or more index sections,
which are usually entire disks. For improved performance, multiple index
sections on multiple disks are recommended to allow concurrent index
lookups and thus higher performance.

index section The Venti configuration file specifies on which index section the
ranges of buckets can be found. Each range resides in an index section,
which is typically a whole disk, but can also be a partition.

arena All data is stored in arenas. A Venti installation usually has many
arenas. They are all filled up one after the other, so there is always a
single arena in use for writing, the others are either filled or empty. All
arenas in a Venti installation have the same size, set during initialisation.
By default, arenas are 500mb, making them easily copyable to other media,
such as to cd-roms, for backups. The data block to store is wrapped in
a header and written right after the previously written data block. The
combination of header and data is called a clump. At the end of each
arena the arena directory is stored. It grows toward the beginning of the
arena, towards the clumps. When the clumps and directory reach each
other, the arena is full and write activity continues in the next arena. The
filled arena is sealed: a checksum is calculated over the entire arena.

arena partition An arena partition contains one or more arenas. It is usually
an entire disk, not a disk partition in the more common meaning, though
it can be. Additional arena partitions (with its arenas) can be added to a
Venti to increase its storage capacity. Clumps are addressed by a global
address that spans all arenas, even from multiple arena partitions. When
a clump is read, the arena is determined from the address and an arena
address is calculated.

arena directory Resides near the end of an arena and grows towards the start

23

of the arena. It contains a clumpinfo structure for each clump, which can
be used to rebuild the index, or to read the equivalent of all index entries
in an arena without having to read all data in the arena as well.

lump Represents a (score, type, size, data)-tuple in memory. Lumps are kept
in the lump cache to satisfy reads without having to go to disk. They also
remain in the cache until written when the queued writes optimisation is
enabled.

clump A lump on disk, in an arena. A header precedes the data. The data
may be compressed before being stored on disk, reducing disk space con-
sumption. The validity of a clump on disk is verified using a magic value
that is unique for each arena.

clumpinfo block, ciblock On-disk structure, containing part of the informa-
tion of a clump header. Contains (score, type, size, size on disk)-tuple. It
is present in each clump header, and stored in the arena directory.

index bucket, ibucket A hash bucket for the index hash table. A bucket has
a fixed size and can thus store only a fixed number of index entries. The
size of the bucket is chosen during initialisation and such that it is unlikely
to overflow, considering that scores are evenly distributed. When a bucket
does overflow, the index needs to be reconfigured and rebuild.

index entry, ientry An entry in the index table. Contains the score and index
address—specifying the location of the clump in the arenas—along with
other, non-essential information.

index address, iaddr Contains the address of a clump, uncompressed size
and data type. The address is a global address, the address space spans
all arenas.

bloom filter A bloom filter is used to test membership of a set. This bloom
filter sits in front of the index: it tests whether scores are present in the
index. Bloom filters have false positives, but do not have false negatives.
For reading and writing scores that are not yet present, the bloom filter
eliminates the need for an index access.

disk block, dblock Disk blocks are all 8kb in size by default. Practically all
reads and writes in Venti go through the disk block cache.

lump cache, lcache Caches lumps. At startup, a fixed amount of memory is
reserved. Lookups are done by score and type, the lumps are kept in a
hash table. For reclaiming blocks, a heap is used. Lumps are reused with
an lru-strategy. When the queued writes optimisation is enabled, Venti
does not immediately write lumps to disk, but puts the lump in a queue
and returns success immediately.

index entry cache, icache Caches index entries. At startup, a fixed amount
of memory is reserved for the index entries. A lookup is done by score
and type, the index entries are kept in a hash table. Index entries can
be dirty, they are flushed periodically or when a threshold is reached.
For reclaiming index entries, the first non-dirty entry in the next (since
previous reclaim) bucket is taken.

24

disk block cache, dcache Caches disk blocks. Keeps read-only as well as
writable/dirty disk blocks. A fixed amount of memory is used, specified at
startup. The blocks are kept in a heap, lookups are done by disk address.
Dirty blocks are flushed periodically in batches (grouped by which type of
data they contain to guarantee consistency) or when a threshold of dirty
blocks has been reached. The least recently used blocks are reclaimed
first.

2.3 Optimisations

This section explains the optimisations currently in use in Venti.

2.3.1 Disk block cache, dcache

When anything is read from a disk by Venti, it is done with 8kb at a time. The
8kb is actually configurable during formatting of the arenas and index sections,
but it is the default and recommended size. Arena partition writes also go
through the disk block cache. At startup of Venti, a fixed amount of memory
is allocated for the disk block cache, which remains in use as long as Venti is
running.

An 8kb data block is called a dblock. Dblocks are stored in the cache in both
a hash table and a heap. The hash table is used to locate the block based on
address in a partition (and checked whether it is on the right partition). The
heap is used to implement an lru eviction scheme. Unused blocks are kept on
a free list.

Blocks can be marked dirty; they will be flushed to disk periodically, or when
a threshold (2/3 of all blocks dirty) has been passed.

Due to locality of reference, the disk block cache can be useful. Consider
writing in the arena directory. The clumpinfo structures are only 25 bytes large.
Writes to the arena directory are always sequential (writes start at the end of the
block and grow towards start of the block). As long as the disk block remains
in memory, writing does not result in a disk access. Multiple blocks can remain
in the cache and written to disk sequentially. In the same way, writes of data
to the arena can be cached: consecutive writes may partially end up in the
same blocks. Reads with high locality may also benefit from the disk cache, but
the lump cache—which caches scores and their data, in more detail described
later on—will often nullify the use of the dcache for this purpose. For the index
sections, only reads go through the disk cache. Writes of new entries are handled
specially by doing sequential reads and writes, described later.

Dirty blocks have a tag associated with them. It indicates whether a dirty
block is an arena data block (containing clumps), an arena directory block
(containing clumpinfo blocks), or an arena meta-data block (trailer). When
dirty blocks are flushed, the blocks to flush are sorted. First by tag (arena blocks
first, arena trailer blocks last), then by partition the blocks are to be written to,
then by address. This ensures that writes occur in parallel as much as possible,
and in an order that ensures consistency when the write is interrupted, e.g. due
to a power failure.

25

2.3.2 Index entry cache, icache

The index entry cache caches index entries, which map score and type to an
arena address. These may either have been read from disk for a lookup, or may
be entries of new data that have just been written.

Entries are flushed to disk periodically (every two hours) or when the thresh-
old of half of all index entries dirty is reached.

The index entries are kept in a hash table, lookups are done by score and
type. When a new entry needs to be cached and all are in use (the free list
is empty), the next (since previous eviction) bucket is searched and the first
non-dirty element is taken.

Each index section has a write process that handles the periodical flushing
of dirty index entries to disk. When the signal to flush comes, it gathers all
dirty index entries for its index section from the cache and sorts them. Then
it reads from the index section (not going through the disk block cache), 8mb
at a time, inserts the index entries and writes back (again not going through
the disk cache). If an index section disk block happens to be in cache (it will
always be read-only), the block in the cache is updated. After having flushed
the entries to disk, the arena is marked as having the clumps up to that point
flushed to the index. This is used the next time Venti is started (e.g., after a
crash), to allow Venti to add only the clumps to Venti after that point.

An additional optimisation is executed when four consecutive index entries
have been read from disk of which the data is stored in a single arena. In this
case, the entire directory arena is read and all clumpinfo contained therein are
inserted into the cache.

2.3.3 Lump cache, lcache

A lump is a (score, type, data, meta-data)-tuple. The on-disk version of this
tuple is called a clump. The meta-data consists of an encoding (whether and
how the data is compressed), creator (the first client who wrote this data) and
the time of the first write of the data.

Lumps are used to store data that have been read from disk, or are to
be written to disk. Typically, the blocks to be written to disk are written
immediately after allocation of the lump, but when write queueing is enabled,
they are placed in a write queue which is flushed regularly. The blocks are
‘dirty’ while they have not yet been flushed, though the lumps do not know this
themselves explicitly, they are just kept referenced while in the write queue.
Writing a block means putting it in the lump cache, it is treated the same as a
read block.

The data in a lump is always kept uncompressed. Thus, for each hit, data
need not be uncompressed again. This is the same for lumps that will be written
to disk.

Lumps are kept in a hash table and are addressed by their score. Free
blocks are kept on a separate chain. The lumps are also kept in a heap to allow
reclaiming blocks using an lru eviction strategy.

At initialisation, the size of the cache is set. Lump structures are allocated
at this point, but not the memory for the data blocks (since it is unknown how
large the data blocks will be). Memory for the lumps is allocated either when
reading from disk, or when reading a write request from the network. The

26

current memory use is accounted and the cache makes sure it does not allow
more memory being used.

2.3.4 Bloom filter

Bloom filters [14] are data structures that can probabilistically determine mem-
bership of a set using little space. Venti uses an in-memory bloom filter to avoid
having to go to index section disks to determine whether a score is present. This
is most important for writing new blocks to Venti: new blocks will not be found
in the index, it would be nice not to have to read the index, which takes a full
disk seek. A bloom filter can give false positives in the membership test, but not
false negatives. Therefore, when the bloom filter determines the score is absent,
it really is absent. When the bloom filter determines the score is present, it may
be absent after all (this will be realised after having read the index).

A bloom filter is sized according to address space and number of elements in
the set. The more elements in a bloom filter, the higher the probability of false
positives will be. A balance has to be found, an explanation for doing this can
be found in [3].

2.3.5 Queued writes

Venti protocol writes are normally written to disk block cache immediately. This
may slow down burst of writes, since index lookups may have to be performed.
To remedy this, writes may be kept in a write queue temporarily.

This optimisation is implemented by having one write queue for each index
section. Each write queue has one process consuming from it. When a protocol
write comes in, the lump is wrapped in a structure called wlump and placed in
the appropriate queue. The process then picks it up. If the queue is full, the
operation blocks. When the queue is non-full again, the operation is fulfilled.

This optimisation is off by default. It is mostly effective when handling
duplicate writes. The bloom filter allows to quickly determine that a block
should be written. If so, the new blocks will end up in the disk block cache.
Buffering by queued writes helps only very little in this case. When a score is
already present, it has to be verified, perhaps by reading from the index disk. In
this case, queued writes ensure that both duplicate and pristine writes (possibly
mixed) both quickly return success. Only when many duplicate writes come in,
the writing is actually slowed down due to slow lookup to the index sections.
This also explains why each index section has its own write queue and process:
The processes perform lookups concurrently and so fully use the disks random
read bandwidth.

2.3.6 Lump compression

To save disk space, lumps on disk (clumps) can have their data payload com-
pressed using a compression algorithm called whack. For a more information
about whack and its performance, see Section 5.3. This only optimizes for re-
duced disk space, not for fast servicing: compression may even be a bottleneck
in performance.

27

2.3.7 Disk block read-ahead

At the moment, the code path to disk block read-ahead is never taken so this
feature is essentially disabled. It is described here for completeness.

Disk blocks can be read before being requested. When a disk block is re-
quested by some subsystem of Venti, the call indicates whether disk blocks
should be read-ahead. Read-ahead is only for reads (writes may also need a
read from disk, e.g. when only half a block is being written). It is implemented
by keeping a read-ahead buffer, currently hard-coded to 128 disk blocks. Every
time a request for a disk read is done (that is not in the cache), the read-ahead
buffer is checked to see if it can fulfil the request. If so, no disk access is needed.
Otherwise, enough of the disk is read (starting at the requested offset) to fill
the read-ahead buffer.

2.3.8 Lump read-ahead

Lumps may be put in the lump cache before being requested. Venti does this by
looking at the use of index entries. When an index entry is inserted in the cache
(to satisfy a network read of a score not present in the icache), the subsequent
20 (hard-coded) lumps are read-ahead, their index entries inserted in the cache
without doing more read-ahead for those lumps.

2.3.9 Prefetch index entries

When Venti looks up a score from the index sections, it keeps a short history of
the arenas in which the scores are stored. The history is currently hard-coded
to the last four scores. If all last four scores are from the same arena, the arena
directory of that arena is read and all entries inserted in the index entry cache
(unless this arena directory was the one previously inserted into the cache). This
is useful for both reading and writing existing data sequentially: The lookups
do not need expensive index disk seeks, but are all satisfied by a quick bulk read
from the arena section.

2.3.10 Sequential writes of index entries

Writes of index entries are handled specially. Since the scores to store are
random, random buckets (thus random disk blocks) need to be read, modified
and written. However, over time, many dirty index entries can be in the index
cache. Therefore, when writing the index entries, Venti sorts them and reads
index sections in bulk (8mb chunks at the moment), modifies the necessary
buckets in a chunk, and writes them all back. This is efficient when many
buckets within an 8mb chunk need to be modified.

2.3.11 Sequential writes of disk blocks

Disk blocks that are modified are marked as dirty. When disk blocks are flushed,
they are first sorted by partition and offset on that partition. Since blocks are
always written sequentially, this ensures that blocks are written in a single pass
over the disk.

28

2.3.12 Opportunistic hash collision checking

SHA-1 is a secure hash—for now. As computers get more powerful, and crypt-
analysis makes more progress, it is possible SHA-1 may become too weak to be
used in an application such as Venti. There are already attacks[15] on SHA-1
that have weakened it somewhat. However, Venti does not normally check for
hash collisions. If it did, it would slow down performance considerably: for
every write of already existing data, not only the (relatively fast) index section
has to be consulted, but also the slower arena. Instead, Venti only checks for
hash collisions when the data happens to be present in the lump cache.

2.3.13 Scheduler

Venti does some simple scheduling to avoid using disks and cpu for non-urgent
tasks while urgent tasks are being executed as well. When the disk block cache
accesses the disks, this last access is noted in the scheduler, index cache flushes
are logged in the same way. When an index flush is in progress, possible arena
checksums are put on hold, this is a non-urgent but disk and cpu intensive
task. Also, when the disk block cache is active, either due to reading or writing
blocks, flushing index cache entries may be put on hold (when there is no urgent
need to flush) or slowed down a bit to make it just fast enough to keep up with
the expected number of scores that will be written.

2.3.14 Zero-copy packets

Venti reduces buffer copying by placing data in structs called packets. Packets
consist of one or more buffers called fragments, which contain a piece of memory
(multiple fragments may reference the same memory, i.e. when a packet has been
duplicated). The library interface is documented[16]. Data buffers are still being
copied though. The most important buffer copies are the large copies, i.e. for
write requests and read responses.

A read response is handled as follows. First, the data must be retrieved.
The data may be in the lump cache (stored as a packet). If so, the packet is
duplicated (no memory copies), the next step is creating the protocol message.
Otherwise, the lump has to be read from disk. If the block is not in the cache, it
has to be read into it. Once in the cache, the necessary block(s) will be copied
into a buffer from which the lump data structure is unpacked. Since data may be
compressed, it has to be decompressed in another buffer. The same destination
buffer is used when no decompression is necessary. Finally, a packet is allocated
and the content of buffer is copied into it. Next, the venti protocol message
is created. The packet containing the protocol data and the data packet are
concatenated, not using any data copies. Finally, all fragments are written on
the file descriptor.

The write request is read from the network, directly into a packet. The
packet starts with the protocol header, followed by the data to be stored. The
message needs to be unpacked. This is done by consuming the protocol header
and making a new packet with data, no copies are performed. The data is now
isolated in a packet and can be written. The score is calculated from the packet.
If the score is in the lump cache the data is compared. If it is different, there
may be a hash collision. If the score is not present, the packet is copied into

29

a buffer. Compression is attempted, the compressed data is written to a new
buffer. If the compressed data is not smaller than the decompressed version, the
uncompressed data is copied into the new buffer (which also contains space for
the on-disk clump header). Finally, disk blocks are retrieved, the packet data
copied into them and the disk blocks are dirtied, to be written soon.

The packet library prevents copying when reading the venti protocol mes-
sages; but inside Venti more buffer copies occur than strictly necessary.

30

Chapter 3

Venti clients

Venti is used as a data store by various programs. Fossil, the Plan 9 file sys-
tem, is the most popular. Another program, Vac, can be used for backups.
These programs use Venti in a similar but distinctive way. This results in Venti
exhibiting different performance characteristics. To properly optimise Venti, a
more detailed view of how the clients interact with Venti is needed. More clients,
such as vbackup, are available. The next sections describe Vac and Fossil, and
how they make use of Venti. Vbackup is not analysed in detail, but a short
description of what it does is appropriate: Vbackup writes an entire partition
(e.g. fat32, ffs, ext2) to Venti. It treats the partition as a single file. Zero trun-
cation/extending reduces storage consumption, since unused blocks will contain
all zeros. The accompanying programs help read back the data written in the
disk. Vcat simply writes the partition to standard out (which can be redirected
to a disk partition). Vftp is a client program that provides an ftp-like interactive
interface, mostly for debugging. More interesting are vnfs, which exports the
partition over nfs, and vmount, which mounts the file system exported by vnfs.
Note that the file systems served by vnfs are read-only.

3.1 Vac

Vac writes a file tree to Venti. It starts at the top of the tree (the root) and adds
all files and directories, depth first. It has to do it this way, since the score of the
‘deepest’ file has to propagate all the way up to the score of the entire archive.
The data of a regular file is written as a hash tree described in Section 1.2, with
8kb blocks. The resulting score is wrapped in a 40-byte structure containing
the score, size, data type, etc., called an entry. Thus, an entry is always the
starting point of a hash tree. This chapter will refer to the data blocks, pointer
blocks and the entry representing the hash tree, as a vac file from now on. A
directory is also stored as a vac file; the data in this case is a concatenation of
entry structures, each representing a file. Note that the meta-data (file name,
permissions) are not present in the entry. Instead, the meta-data of files in a
directory (both regular files and directories) are stored in a separate vac file
containing structures with file name, permissions, etc. as content. The layout
of the structures used by vac are described in the Fossil article[5], from which
Figure 3.1 (which represents a file tree stored with vac) has been borrowed.

31

Figure 3.1: Vac hierarchy, image from [5].

For optimisation purposes, the order in which the various types of blocks are
written, and how they are referenced, may be relevant. Code inspection reveals
that vac writes data to Venti as soon as it is ready. When writing a regular
data file, data blocks are written to Venti as soon as the block to write has been
read from the source file. As soon as a first-level pointer block of the hash tree
is filled up, it is flushed to Venti. When a second-level pointer block is filled, it
is written to Venti, etc. After the file has been written, the entry structure is
made and added to a vac directory. In short, the pointer blocks are not kept
in memory by vac until the entire file has been written, but always flushed as
soon as possible. Directories are handled in the same way: as soon as a block
with entries or meta-data has been filled, it is written to Venti. Note that this
implies that vac writes file trees depth first.

Consider a directory with only regular files, no directories. After each file
(its data and hash tree) has been written, its entry structure is added to the vac
file containing the file entries; its meta-data is added to the vac file containing
the meta-data for the directory. When a block of file entries is filled, it is flushed
to Venti. The vac file containing the meta-data is treated identically: flushed
to Venti as soon as a block of meta-data has been filled. This means that the
blocks making up a vac directory are not always stored close to each other in
Venti. The same happens with the meta-data. All source file data and hash tree
blocks are written before writing the next vac directory and vac meta-directory
blocks. Next consider a directory that contains other directories as well as
regular files. Due to vac’s depth-first writing, directory and meta entry blocks
can be even further apart in Venti. And now even data and hash tree blocks of
files in a directory can be stored far apart as well, i.e. when interleaved with a
subdirectory that has a wide hash tree (wide in the sense that requires many
Venti blocks to be stored). The result is that listing the contents of a directory,
or reading many files in a directory does not necessary result in only sequential
or nearby reads in the Venti arenas.

On the other hand, reading a file sequentially does result in a lot of sequen-
tial accesses (not taking the effects of duplicate writes into account). First, the

32

T

Data block Pointer or special block

D D ... D D D ... D ...P
1A

P
1B

... P
1N

P
2A

P
1Z

P
2B

P
3A

P
1O

... ...D D ... D R

Figure 3.2: Order of blocks in Venti that are written by Vac.

top pointer block is read, which has been stored right after the last data block
in Venti. Then, additional lower-level pointer blocks may be read, each written
to Venti before its parent pointer block. This leads to the first data block. So
far no sequential (but still often nearby) accesses have been made. However,
all data blocks referenced in the most recently read pointer block can be read
‘sequentially’ from disk, because they have been written sequentially. The sec-
ond lowest-level pointer block to be read again resides in the arena after the
data referenced in that block. When it has been read, the data blocks in them
can then read consecutively. The blocks and the order they have been written
in is represented in Figure 3.2. Data blocks are represented by a D, the first
and thus lowest-level pointer block written is P1A, followed by data blocks and
pointer blocks at the same level (P1B , P1C , etc.). After the first block of scores
has been filled, the first second-level pointer block is written: P2A. Lastly, the
top-level pointer block is written, P3A followed by a root block, R. When read-
ing sequentially, the pointer or special blocks (grey in the image) are always
read in the opposite direction of how they were written, the data blocks in the
same direction. This allows for optimisations such as read-ahead to be effective.

Vacfs works on a similar basis as Vac. Blocks are only requested when
needed. Pointer blocks for a file are not read-ahead, neither are file entries.
Blocks are cached however, currently 1000 blocks by default.

Examining protocol transcripts of a Venti session on which Vac had been
writing data and Vacfs had been reading data have helped to verify that Vac
and Vacfs indeed function as explained.

This investigation leads to the conclusion that Venti typically benefits most
– if not only – from read-ahead in Venti arena’s for data blocks; pointer blocks
and meta-data blocks related to a file are often not close to each other. If
pointer blocks were to be stored separately from the data blocks, read-ahead of
the data blocks would perform slightly better. For the pointer and meta-blocks
a ‘reverse read-ahead’ could be beneficial to performance. Vac and Vacfs do
not try to read-ahead data by themselves. They always wait for a request to
Venti to finish before posting another read or write. Data blocks to write can
easily be queued, and even writes of pointer blocks do not have to finish in
order to continue writing. For reading, pointer blocks could be read-ahead and
cached, the same for data blocks, but only for sequentially read or often-read
files. Finally, it should be noted that caching of blocks inside Venti is made less
effective because caching takes place in Vacfs.

33

3.2 Fossil

Fossil is a file system that can use Venti as a backing store for (permanent)
archival snapshots. Fossil can function without Venti, but would only have non-
permanent snapshots to distinguish itself from other file systems. Fossil keeps
its active file system on a disk, which is split into blocks. These blocks are used
for storing data, meta-data and pointer blocks; any block can store any data
type. When a snapshot is made, these blocks are implicitly marked copy-on-
write, making a snapshot a very fast operation. Only when modifying a block,
there is a cost for having a snapshot. A snapshot can be — but does not have
to be — archived to Venti, after which the blocks are marked as being in Venti.
Blocks on disk are addressed by 4 bytes, and archived blocks by 20 bytes (their
score). Internally, Fossil uses 20 bytes for all block addresses, even those of 4
bytes wide. The first 16 bytes are set to zero to denote it is a local block, not a
Venti block.

For Venti it is important how Fossil writes blocks to Venti and how it reads
them. The Fossil code and the article explaining how it functions have been
studied and an analysis made. Fossils use of Venti resembles that of Vac in
details, and even shares some code with Vac. The code uses at least partially
the same data structures.

First a discussion of Fossil writes. As just mentioned, Fossil makes snapshots
by marking blocks in the active file system copy-on-write. When a file system
block is modified, e.g. written to, a copy of the block is made. For a Fossil file
or directory, the pointer blocks and meta-data blocks can be copied as well. Not
all snapshots are written to Venti, but the ones that are, consist of two types
of blocks: blocks that have already been stored in Venti (this implies they have
not been modified since the previous archival snapshot was taken), and blocks
that are not yet stored in Venti (these are blocks for new or modified files or
directories). Fossil concisely accounts which blocks have been changed, and it is
thus able to write only the minimum amount of blocks for an archive. The only
duplicate blocks written (blocks with scores that are already present in Venti),
are blocks that have been ‘modified’ but with identical data, or the blocks of the
incidental duplicate file on the file system. Thus, Fossil is sparing with block
writes.

Then, the order in which blocks are written is important. This is exactly
the same as with Vac. The file hierarchy is written in exactly the same format
as Vac, and the directory, file and hash trees are traversed in the same manner.
Thus, Figure 3.2 and the explanation from the previous section applies to Fossil
as well. There is one awkward aspect of how Fossil writes data to Venti: after
each write, a sync-request is sent. This is done to ensure Venti will not lose the
data in case of unforeseen problems such as power outages. Loosing data could
make the Fossil file system become inconsistent.

Fossil performs reads in the same way Vac does. Blocks are requested from
Venti only when it directly needs it to fulfil a file system operation. Blocks are
never read-ahead. There are some differences between Vac and Fossil however.
First, Fossil stores blocks on disk. Blocks that have been flushed to Venti can
still be part of the active file system and thus remain on disk. So, only data that
is not in the active file system is read from Venti. This may include unmodified
blocks from a partially modified file. Second, Fossil has an in-memory cache of
blocks. When a block has been read from Venti, it remains in Fossils memory

34

until the memory it occupies is needed for another block. The cache uses an
lru eviction policy. A block is only read from Venti again after many other
blocks have been read. This has implications for the caches in Venti.

3.3 Conclusion

To conclude, Vac and Fossil use Venti in a very similar way. The cache in
Fossil reduces the usefulness of the lump cache in Venti. Only few duplicate
writes will reach Venti. Blocks are written in the most memory efficient way
to write a hash tree: flush as soon as a block is filled. Fossil always waits
for an operation to finish before starting another one. Queueing writes on the
Fossil side would better utilize Venti and could thus improve Fossil performance,
especially when latency to Venti is noticeable. This would complicate the design
a bit, mostly with repsect to guaranteeing file system integrity, but the first
chunk of performance gain is relatively easy to achieve. It could be implemented
as a separate program sitting between Fossil and Venti, but with a few caveats
with respect to Venti protocol semantics. Integrating it into Fossil is also an
option.

Fossil also does not currently do any form of read-ahead. Performance gains
of such a scheme would be uncertain, but could be implemented as a layer be-
tween Fossil and Venti as well. More about these ideas can be read in Chapter 9.

35

36

Chapter 4

Disks & performance

The service Venti delivers is similar to that of a hard drive: storing and re-
trieving data. The differences are in addressing and the fact that Venti cannot
overwrite data. Similarities are in usage patterns: sequential reads, sequential
writes, random reads. Random writes are different: the idea does not exist in
Venti. More sophisticated usage patterns such as bursts of reads and writes,
sustained writing and nearby-reads can be similar as well. Performance of a
normal disk can be compared to performance of a Venti installation for these
similar operations.

In this chapter, disk properties and disk performance are analysed. This
information is relevant for determining whether optimisation ideas might be
viable. It is also useful to get an indication of the overhead Venti incurs.

This chapter continues with an overview of current disk technology, followed
by a specification of the disks used in the experiments, the methodology and
the results of the performance measurements of the disks. Properties and per-
formance measurements of alternative storage devices (flash memory) are pre-
sented. The chapter concludes with an analsis of mems-based storage devices
and their applicability to Venti.

4.1 Disk internals

First, a brief introduction to disk internals [17, 18, 19]. A magnetic hard disk
consists of one or more rotating platters. Each platter has two magnetic surfaces
on which data is stored. The surface is divided into rings, called tracks. A
track is divided into sectors, typically 512 bytes. Tracks that lie above each
other on the surfaces are called a cylinder. The platters rotate with a fixed
speed. Typical consumer-grade ide and sata drives rotate at 7,200 rotations
per minute, or rpm, higher-end scsi drives at 10,000 rpm and up to 15,000
rpm. Data is read off and written to the platters by the heads (one per surface)
which can be moved to the desired cylinder (but all heads are moved at the
same time). The heads remains at a fixed position above the track, the rotation
of the platter causes the right sector to move under the head. These concepts
are depicted in Figure 4.1.

Cylinders are grouped into zones. Different zones have different bit densities:
Zones located at the outer side of a platter have higher bit densities than zones

37

Figure 4.1: Disk model, from [17].

on the inner side. More surface moves under the heads at the outer zones than
at the inner zones, thus data transfer is higher at the outside than at the inside.

Switching to the next track requires movement of the heads which takes a
little time. Because the platters keep moving, the first sector on that next track
is not next to the first sector of the current track. It is located there where the
head can be settled again after the switch. This positioning of tracks is called
track skewing, it ensures high sustained data transfers.

Since sectors can become damaged after usage, or during the manufactur-
ing process, the drive (tracks) include spare sectors. Damaged sectors can be
remapped to these spare sectors. This occurs transparently to the user of the
disk. In theory, disk models might be inaccurate due to this mechanism.

Each disk has a seek time property: the time it takes for the head to move
to another cylinder. This is an important performance property of the disk.
The seek time is usually specified by a minimum, maximum and average, e.g.
minimum 4 ms, maximum 10 ms and average 8 ms. Unfortunately, seek times
are hard to determine in practice. Seeking to a nearby cylinder costs far less
than seeking to the other end of the platter. Also, seeks are more than just arm
movements. There is a head acceleration phase, a fixed velocity phase for long
seeks, a slowdown of the head and a settle of the heads. Very short seeks have
almost no movement of the head, just a settle. All these factors make disks hard
to model in detail, only few hard drives have been modelled [20]. Software has
been developed to simulate a hard drive and related system components such
as buses and adaptors, e.g. disksim [19].

The second important factor of disk performance is rotation speed. Say a
head has moved to the right track. It has to wait for the right sector to move
underneath the heads. In the worst case, the drive has to make nearly an entire
rotation before this occurs. One rotation takes 8.3 ms for a 7,200 rpm drive, or
6 ms for a 10,000 rpm drive. Assuming there is no relation between requests
and current rotational location, an average operation takes half the value on
average, i.e. 4.2 ms and 3 ms respectively. Since rotation speed is not exactly
fixed, rotational location cannot be used for optimisations outside the disk, e.g.
in an operating system scheduler. A disks access time is the time it takes to
read data from disk. It depends not only on the seek time (move the head to
the right cylinder), but also on the rotation speed.

38

Some disks, mostly scsi disks and newer sata disks accept more than one
command at a time[21]. The commands are queued in a command queue and
the disk firmware may reorder these commands. It may take advantage of cur-
rent rotational location or head location to schedule ‘nearby’ operations first.
For scsi, this is called tagged command queueing, for sata this has been dubbed
native command queuing (typically 32 commands can be queued). Disk schedul-
ing has been an area of extensive research for decades[22, 23]. Many scheduling
algorithms have been developed with different properties of average i/o latency,
maximum latency, starvation and details needed about the disk to schedule op-
erations. Common algorithms are scan and look that move from one end
of the disk to the other, and back, servicing requests on their way. c-scan
and c-look only move in one direction, when at the far end of the disk, they
‘skip back’ to the start of the disk, lowering maximum service time. fcfs (first
come first serve) is the simplest algorithm, but has suboptimal performance.
sstf (shortest seek time first) fulfils the request that has smallest seek distance
based on current rotational and head location. Several improvements to this
have been made to prevent starvation, either by grouping operations and al-
ways finishing a group before starting on another, or by taking operation age
into account while scheduling. A slight improvement over sstf is sptf (shortest
positioning time first) and an aged variant, they need more information about
the disk which is only available in disk firmware. Fine-grained scheduling in
general is left to the disk firmware, since the operating system driving the disk
does not know details of the disk such as current rotational location or even
current head location: the disk controller does not provide that information to
the operating system.

A disk has a cache in volatile memory. New scsi or sata disks have 8mb or
16mb of cache. This cache functions as a buffer, to match the bus transfer rate to
the disk transfer rate. It also caches data of previous reads and writes, which can
useful when the same data is requested from the disk. However, in practice, the
operating system disk block cache will usually receive the cache hits. The cache
is also useful to store read-ahead data. When a block is requested (typically
a few kilobytes at a time by the operating system), the firmware reads more
data from disk into its cache to be able to quickly fulfil subsequent requests
for the ‘next data’. This greatly helps sequential reads. Normally, the cache
is in write-through mode, writing data to disk immediately. However, it may
be configured as write-back, letting the disk decide when it writes data to disk.
This may cause data-loss on power failures, and is therefore not a default on
disks, nor is it recommended.

4.1.1 Implications for Venti

Note that for Venti index sections, the on-disk caches are useless for recurring
reads since reads are entirely random: cache hit rates will be very low. A
write-through cache is equally unhelpful: blocks just written are no more likely
to be read soon than any other block. Sequential writes, when flushing the
index sections, may benefit from a write-back cache: integrity is not ultimately
necessary (the index can be rebuilt) and writes are batched in quantities that
fit in the cache (thus the disk will quickly return success for the data and allow
more data to be flushed). Large read-ahead is not useful during index lookups,
reads are small and random. It is useful when flushing index entries to disk:

39

many blocks are read sequentially.
Then for the arena partitions. Writes are mostly sequential, except for the

arena trailers (which reside at a fixed location) and the arena directory (written
sequential, but in reverse direction). Reads can be random in principle, but
many reads are assumed to have a high locality of reference, just like with
normal hard disk usage patterns. Write-coalescing makes this less true. Disk
read-ahead may be useful to quickly fulfil the read-ahead requests from Venti.
The on-disk read cache is not useful: Venti itself has a much larger disk block
cache. A write-through cache is not useful for the same reasons. A write-back
cache is very dangerous since it may cause the arena trailer or arena directory
to become out of sync with the data and is therefore not recommended.

Another optimisation that has been used to improve response time[24] is
making sure the head is in a location that has average low latency to a random
location. For example, placing the head in the centre of the disk. For our use,
this is not a useful optimisation since we are not really interested in individual
response times, but in continuous sustained random accesses.

4.2 Operating system disk handling

Operating systems using a disk usually have some optimisations related to disks
that should be taken into account when analysing these disks. For example, the
Linux kernel (version 2.6.8) has a disk block cache which can use all unused
memory and thus can be quite large. This disk block cache is many times larger
than the disks cache, thus typically reducing the use of the on-disk read cache.
But note that Venti and the test program used circumvents the kernel’s disk
block cache by opening the disk file with flag o direct. The Linux kernel
can also do read-ahead when it thinks it is useful, it can do this with much
larger buffers than the on-disk cache. Not surprisingly, the kernel also has a
disk command queue, also larger than the on-disk command queue. However,
an on-disk command queue may deliver better performance because it is closer
to hardware and has more information available to schedule operations (such as
rotational location and head position).

4.3 Testing hard disks

To test the performance of disks, a small utility has been written, called ptio,
available in Appendix G.1. It reads a list of byte offsets to operate at from a file
(generated by either randoffsets or seqoffsets) and is started with parameters
that indicate whether it should read or write, etc. Many test runs have been
conducted, each with different values for the system-wide configuration param-
eters, such as the kernel disk command queue. The parameters and possible
values are listed in Table 4.1. In principle, it should be interesting to see the
impact of device command queueing, however, initial tests with the scsi drive
showed that turning it on or off did not influence performance, perhaps the
tested disk did not support queueing correctly, or did never really disable it.
The results are presented and discussed in the next sections.

Ptio is a pthreads program running on Linux. It starts one or more threads

40

Name Values
Bus ide, scsi
Write cache on, off
Number of processes 1, 4, 32
Device read-ahead on, off
Kernel command queue depth 0, 16, 128
Kernel read-ahead 0, 128
Blocksize 1kb, 8kb, 128kb
Type of offsets random, sequential
Operation read, write

Table 4.1: Parameters of disk performance tests.

that each read one offset at a time from the offsets list that has been read
from a file. Once the offset is retrieved, the operation is executed by a call to
pread or pwrite. The file to operate on (which should be the entire disk, e.g.
/dev/hda on Linux), is opened for reading and writing and with the o direct
option, bypassing the kernel disk block cache and transferring the data from
disk directly to the user space buffer, just like Venti does.

First some more information about the measured properties and expected
results. Throughput will be quite low for random access (both in read and
write), much lower than for sequential access. Each operation takes an access
time. Assuming the access time is 6ms, only 166 operations per second can
be fulfilled, resulting in a throughput of 1.33 mb/s when using 8kb blocks.
The average access time is determined by dividing the duration of the test
by the number of operations. For random access, this value approximates the
random disk access time. For sequential access, this value will be much lower
but does not say much about access time. The mean waiting time is the time
it takes for the operating system to return success on the read or write system
call. When using many processes in ptio and thus many concurrent operations,
each thread has to wait for its turn and thus mean waiting time will be higher
with more processes. When the kernel is allowed to queue (and reorder) disk
operations, completion of the operation will take longer than a disk access. The
standard deviation of the mean waiting time indicates how variable the wait
time is, e.g. due to reordering: some operations may be handled promptly,
others delayed. This measures properties of the disk firmware and operating
system disk scheduler.

For the random operations, 5120 operations (offsets to operate at) were
generated using randoffsets, independent of the blocksize. For sequential op-
erations, as many offsets were generated using seqoffsets to read or write 1gb
of data, dependent on the block size. Only the parameters that might give
useful information have been varied. For example, the read tests have only be
performed with the write cache off. The write operations have only been per-
formed with device and kernel read-ahead off. These settings have no effect on
the performance for these operations.

The following sections contain an analysis of the results. The raw results
can be found in Appendix B.

41

Model Compaq BD009222BB
Interface scsi U2W, 80 mb/sec
Cache size Unknown
Rpm 10,000
Disk size 9,100 mb
Cache Write-through
Other Tagged command queuing, depth 16

Table 4.2: Disk properties, scsi Compaq BD009222BB

4.4 SCSI disk results

The scsi disk that has been tested is a Compaq U2W of 9100mb, rotating with
10,000 rpm. All known details are in Table 4.2. Unfortunately, specifications
for the disk were unfindable, so the cache size remains unknown.

The characteristics are split first and foremost by type of operation: random
or sequential. A shortened version of the results are given in Table 4.3 and
Table 4.4. The command queue depth is not shown in this shortened version
because the full results show that having a large kernel command queue is
always beneficial. It is also 128 (the largest value tested) by default, and thus
the results for a smaller command queue are not interesting and have either been
discarded (when they did have an impact, i.e. with more processes than kernel
command queue slots) or used for averages. Also, the results showed that the
device command queue, device read-ahead, write cache and kernel read-ahead
did not influence performance. Therefore, the results presented are the averages
of the runs when disregarding these settings.

A typical use case for random operations is a single process continuously
reading from random disk locations. The results show that for reading, the
average operation time is 7.80 ms, 8.14 ms and 13.51 ms for blocks of 1kb, 8kb
and 128kb respectively. The 7.80 ms is almost the lower bound of the access
time since the minimum addressable unit on a disk is 512 bytes. These results
show that each operation takes around 7.75ms and almost 0.05 ms per kb (this
value approximates the sequential read speed).

The number of processes used is also very important. With 32 processes,
the throughput is much higher, e.g. for 8kb blocks, 1.575 mb/s versus 0.960
mb/s. This is because the kernel and disk firmware performs scheduling on the
blocks. Thus, nearby blocks are handled first, the blocks further away later.
When many offsets to operate at are posted to the system, it has more blocks
to choose from and can therefore schedule more efficiently. In practice however,
it may be quite rare to need 32 operations to be executed concurrently. There
is also the problem with response time, as can be seen in the full results with
standard deviation of mean wait times. They go up considerably with many
processes, just as the mean time itself. However, the high standard deviation
is particularly worrisome: some operations are completed only after a very long
waiting time.

Random write performance (as well as sequential) is somewhat slower than
read performance. However, the same trends can be seen with respect to be-
haviour with varying block sizes and processes. It shows that the 8kb block size
used by Venti for random access is quite sensible: only little extra time above

42

Read Write
Blocksize Procs Throughput Average Throughput Average

1kb 1 0.125 7.80 0.118 8.29
1kb 32 0.179 5.87 0.189 5.17
8kb 1 0.960 8.14 0.901 8.68
8kb 32 1.575 4.96 1.409 5.55

128kb 1 9.250 13.51 8.423 14.84
128kb 32 12.423 10.06 10.693 11.69

Table 4.3: scsi disk, random operations. Throughput in mb/s, average in ms.

Read Write
Blocksize Procs Throughput Average Throughput Average

1kb 1 8.931 0.11 0.162 6.03
1kb 4 0.597 1.64 0.943 1.04
1kb 32 3.690 0.27 3.729 0.26
8kb 1 26.101 0.30 1.235 6.33
8kb 4 4.596 1.70 4.491 1.74
8kb 32 21.801 0.36 19.400 0.40

128kb 1 26.184 4.77 10.901 11.47
128kb 4 21.869 5.72 22.631 5.52
128kb 32 21.707 5.76 22.607 5.53

Table 4.4: scsi disk, sequential operations. Throughput in mb/s, average in ms.

the minimum access time is spent on the actual reading and writing.
The results for sequential operations from Table 4.3 are surprising. The

behaviour for reads and writes are very different. So, first the reads.
Reading is fastest with a single process. The maximum read throughput of

26.1 mb/s is reached already with 8kb blocks, apparently the operating system
and disk cache are able to schedule these efficiently. This is definitely not the
case for 1kb blocks. Also, using many processes is detrimental to performance:
a fifth of throughput is lost at 8kb blocks. A symptom that remains unexplained
is the extreme drop in throughput when using four processes; perhaps the reads
are not performed sequentially anymore as an artifact of the scheduler. These
results show that a single process should to the reading in case of sequential
operations.

For writes, the more processes writing, the better. This is especially im-
portant for the 8kb blocks: four processes manage 4.49 mb/s throughput while
32 processes reach 19.4 mb/s, approaching maximum throughput. The low
throughputs for a single process are peculiar. Maximum throughput is reached
with 128kb blocks, even with four processes, at 22.6 mb/s. This may be a
scheduler artifact as well, or due to operating with o direct and combined
with timing problems.

To conclude, maximum sequential read throughput is around 26.1 mb/s,
write throughput is around 22.6 mb/s. Random read throughput for a single
process and 8kb blocks is 0.96 mb/s, for 8kb blocks and 32 processes 1.58 mb/s,
over 50% more. For random writes, the throughputs are 0.90 mb/s and 1.41
mb/s.

43

Model Western Digital WDC WD800JB
Interface udma, 100 mb/second
Cache size 8192 kb
Rpm 7,200
Disk size 80,026 mb
Average Latency 4.20 ms (nominal)
Read Seek Time 8.9 ms
Write Seek Time 10.9 ms (average)
Track-To-Track Seek Time 2.0 ms (average)
Full Stroke Seek 21.0 ms (average)
Cache Write-through

Table 4.5: Disk properties, ide Western Digital, from [25].

4.5 IDE disk results

The ide disk tested is a Western Digital WDC WD800JB, a 80gb disk. Table 4.5
lists all known disk properties. The same tests have been conducted as with the
scsi disk.

A shortened version of the full results can be found in Appendix B.2. The
most important and interesting properties have been summarised in Tables 4.6
and 4.7. As with the scsi results, the kernel command queue value is not dis-
played in the tables. The default queue depth of 128 gives the best results
although only marginally (except when using 32 processes where it is signifi-
cant). The same goes for the devices write cache: it had no influence on the
performance and thus has been left out. The values shown in the tables are
averages that include results for both the write cache on and off. Similarly, the
kernel read-ahead also had no influence, probably due to use of o direct for
opening the device, and has been left out of the results.

The device read-ahead did have a clear influence on performance. It has
only been enabled for reading. Random reads slow down because of device
read-ahead. This is because the disk keeps reading but the data read beyond
8kb is never requested. Skipping to another operation when it comes in is
apparently a bit more time consuming than being idle when the request comes
in. The performance degradation ranges from 8% to 12%. Device read-ahead is
crucial for sequential reading. 8kb blocks can be read with over 38 mb/s with
read-ahead, and only with 0.922 mb/s without (when using a single process
for reading). With 128kb blocks 49.0 mb/s is reached, but only with device
read-ahead.

The results show that using more processors does not improve random
throughput, both read and write. It actually degrades performance. This is
somewhat surprising, apparently the kernel does not efficiently schedule oper-
ations when they come in concurrently. An 8kb block can be read in 8.56ms
when a single process is used. A 1kb blocks is read in 8.42ms and thus almost
the lower bound of random disk reads with 512 bytes as smallest addressable
block. Random writes are slightly slower than random reads, as expected.

A bigger difference is seen with sequential write throughput, which does not
exceed 21.4 mb/s and that only with 128kb blocks. This does not show up in the
table because it is only seen with a kernel command queue depth of 16. This

44

Random Sequential
Blocksize Procs dra Throughput Average Throughput

1kb 1 off 0.116 8.42 0.117
1kb 1 on 0.104 9.36 7.926
1kb 32 off 0.107 9.16 1.500
1kb 32 on 0.094 10.43 3.683
8kb 1 off 0.913 8.56 0.922
8kb 1 on 0.821 9.52 38.168
8kb 32 off 0.852 9.18 6.843
8kb 32 on 0.744 10.50 10.480

128kb 1 off 11.297 11.07 11.503
128kb 1 on 10.476 11.93 48.999
128kb 32 off 10.584 11.81 11.967
128kb 32 on 9.575 13.06 43.859

Table 4.6: ide disk, read operations. Throughput in mb/s, average in ms.

Random Sequential
Blocksize Procs Throughput Average Throughput

1kb 1 0.103 9.45 0.117
1kb 32 0.104 9.36 1.809
8kb 1 0.817 9.57 0.921
8kb 32 0.823 9.50 10.303

128kb 1 9.223 13.55 11.488
128kb 32 9.227 13.55 11.490

Table 4.7: ide disk, write operations. Throughput in mb/s, average in ms.

is certainly unexpected and suboptimal behaviour. Write throughput should
reach far higher values, closer to the maximum read throughput. This is worth
investigating further.

The raw data also shows some instable behaviour when reading or writing
8kb blocks with 32 processes. The throughput reaches about 10 mb/s, but
individual runs have values deviating by a whole mb/s. I have of no satisfactory
explanation for this. It may be an artifact of how ptio interacts with the kernel.

To conclude, these tests show a random throughput at 8kb of about 0.91
mb/s for reading and 0.82 mb/s for writing. Sequential reads reach 38.2 mb/s
but writes are stuck at 10.3 mb/s (or 21.4 mb/s with 128kb blocks, but that is
still slow). Interesting is that issuing many random operations concurrently is
not beneficial. This behaviour is very different from that of the scsi disk, which
behaves more as expected.

4.6 Conclusion

The throughputs measured for these disks indicate the upper bound of perfor-
mance attainable by Venti. For writing, any data written to Venti has to be
stored on the disk so Venti is limited by the disks performance. For reading, the
same applies. Considering random accesses, any optimisation technique used
in Venti could be used on top of a raw disk as well for fair comparison. When

45

using multiple disks, the performance is limited by the combined performance
of the disks.

A few conclusions can be drawn from the tests. For random accesses, it helps
to post many operations (reads are of most interest for Venti) concurrently: the
operating system scheduler or disk firmware will efficiently schedule the writes
and substantially improve throughput. A thing to look out for is that the on-
disk scheduler may interfere with the operating system scheduler. Or more
likely, the other way around. For sequential accesses, 128kb blocks are ideal,
which is expected since it involves fewer seeks than smaller blocks. However,
the 8kb blocks used by Venti often result in very decent performance as well.
How Venti uses the hard disk on Linux, opening the disk with the o direct
flag, could have bad consequences. It could be the cause of the unexplained
anomalies—such as the seemingly bad performance of the ide disk—and should
be investigated further. Also, looking at more control over the scheduler could
help Venti. At least the Linux disk scheduler can be fine tuned.

The basic measured properties of the disks can be found in Table A.3 in
Appendix A.

4.7 Alternatives to magnetic disks

Venti currently stores its index section on magnetic disks. Since the initial design
of Venti, alternative non-volatile storage systems have become available. These
may be used for the index instead of magnetic disks. The following sections
explore compact-flash memory and (the not yet available) mems-based storage.

4.7.1 Compact-flash memory

At the moment of writing, 16gb compact flash modules are commonly available.
Compact flash should allow for fast random access and the newer models also
have fast sequential throughput. Could they be used for the index in place of
magnetic disks? Given the recommended size of the index disk of 5% of the
arena disks, a 4tb installation would need just over 200gb of index disks. At
the moment, that is much more expensive than the equivalent in magnetic disks.
The index section layout now in use was not optimised for small size however.
If it would—together with tighter bounds with respect to bucket fullness—the
size can probably be reduced by a factor of 2 to 4. This could be just enough
to make using compact flash memory for the index sections viable. Also, large
solid state disks are becoming more and more common: they could also benefit
from a more storage-efficient index section layout.

The compact flash tests were performed on a 1gb compact flash card, a San-
Disk Extreme III 1.0gb. The only performance characteristic documented is a
maximum sequential read/write speed of 20 mb/s. Random access performance
is not mentioned in the specifications. The compact flash card has been tested
using a no-name compact flash to ide converter that is able to hold two com-
pact flash cards. Unfortunately, the adaptor does not support dma, only the
ide pio modes and thus will not have a high (sequential) throughput. There-
fore, it has only been used to test random accesses. A usb 2.0 compact flash
reader, a SanDisk ImageMate, has been used to perform additional tests, both
random and sequential access. The tests are mostly the same as the tests on

46

Op Blocksize Procs kcq Throughput Per op Mean Stddev
read 512 1 1,16,64 1.171 0.417 0.416 0.047
read 512 32 64 1.159 0.421 13.472 199.511
read 8192 1 1,16,64 2.665 2.932 2.930 0.063
read 8192 32 64 2.662 2.935 93.874 500.859
write 512 1 1,16,64 0.019 25.513 25.512 3.8197
write 512 32 64 0.020 24.419 781.171 429.440
write 8192 1 1,16,64 0.311 25.131 25.130 5.334
write 8192 32 64 0.321 24.318 777.470 428.912

Table 4.8: Shortened results of the compact flash card tests with ide adaptor;
throughput in mb/s, latency in ms.

the magnetic disks: many runs of ptio were conducted and the results analysed.
The parameters were the operation (read or write), blocksize (512 or 8K bytes),
number of processes (1, 4, 32), kernel command queue length (1, 16, 64), type of
i/o (random, sequential) and kernel queue read-ahead (0kb or 128kb). For the
random access tests, the kernel queue read-ahead was set to 0kb. The kernel
i/o scheduler was the default cfq, complete fair queueing, which supposedly
guarantees that all processes receive a fair share of i/o operations. The test
machine is described in detail in Appendix A. The following sections present
the results of the tests followed by an explanation and possible implications for
Venti usage. Appendix E has more detailed results of the tests.

Compact flash to IDE adaptor

Shortened results from the test with the no-name ide adapter can be found in
Table 4.8, the full results can be found in Table E.1 in Appendix E. The most
important observation to be made is that read latency is very low: a 512 byte
block can be read in 0.42 ms. A 8kb block — 16 times larger — takes 2.93 ms
(7 times slower than for a 512 byte blocks). This last number is only mildly
impressing when comparing to high rpm scsi disks. The write latency however
is very high: around 25 ms for both 512 byte and 8kb blocks. Thus, writing the
large blocks takes as much overhead or waiting as writing small blocks.

These latency translate into a read throughput for 512 byte blocks of 1.2
mb/s and 2.7 mb/s for 8kb blocks; for writing they result in 0.020 mb/s and
0.321 mb/s respectively. Writes are slow and render using this adaptor and
compact flash card unusable for Venti index disks.

The other factors — number of processes and kernel command queue length
— have no surprising consequences for performance. More processes or longer
kernel command queues do not improve performance. This was to be expected:
flash memory does not benefit from scheduling of its accessing, or at least not
in the same way as magnetic hard drives, for which the kernel drivers were
written. The results do show that it is detrimental to performance to have more
processes than slots in the kernel command queue. It is not clear why this is
the case, perhaps due to queue data structure overhead or process scheduling.
However, the default kernel command queue length is 128, so this will not pose
a problem in any default configuration.

Mean waiting time increases linearly with the number of processes. This was

47

expected, again, because queueing and scheduling of operations do not improve
performance for flash memory. Thus, when four processes continuously issue a
read concurrently, on average each of them will have to wait for four operations
to finish to have their read fulfilled. Interesting to see, the standard deviation
increases a lot with multiple processes. This is likely due to the kernel scheduling
operations for fast access as it would for magnetic disks. For flash memory, this
scheduling should be disabled entirely.

In short: write performance makes this adaptor unusable for random writes,
but the low read latency is very attractive, but mostly for the really small blocks.

Compact flash USB 2.0 adaptor

The results of the SanDisk ImageMate adaptor, given in Table 4.9 or the full
results in Table E.2, are similar to those of the ide adaptor for random writes:
512 byte blocks reach a throughput of 0.021 mb/s and 8kb blocks 0.330 mb/s,
only slightly higher than the ide adaptor. Again, but a bit more noticeable,
the more processes and the longer the kernel command queue, the higher the
performance, but only very marginally: it is only noticeable for 8kb blocks:
0.325 mb/s versus 0.330 mb/s. For random reads, the 512 byte blocks are
slower: 0.63 ms latency with 0.78 mb/s throughput. This is probably due to
usb overhead and perhaps a slower adaptor. The random reads of 8kb blocks
are much faster than for the ide adaptor: 1.31 ms latency resulting in 5.99
mb/s throughput. This is quite an improvement over random 8kb block access
on magnetic disks. For reads, a single process and long kernel command queue
are best, but only slightly. As with the ide-adaptor, it seems crucial that the
kernel command queue has more slots than processes.

Random writes are still slow: latency ranges from 23.1 and 23.6 ms for 512
byte blocks and from 23.7 ms to 24.1 ms for 8kb blocks. The same recommenda-
tions for processes and kernel command queue apply. Also, the same standard
deviation behaviour is observer: the more processes, the higher the standard
deviation.

Sequential operations are faster than random operations. For 512 byte
blocks, throughput ranges from 0.27 mb/s to 1.78 mb/s: the highest throughput
is achieved with 32 processes, then a single process, and the lowest with four
processes. This is curious, perhaps the high throughput is achieved due to a
form of read coalescing, where multiple small reads are transformed into a single
larger read. Or perhaps the kernel has a small cache and a minimum block size
that is larger than 512 bytes. The results for 8kb blocks ranges from 3.19 mb/s
(for four processes) to 7.77 mb/s (for 32 processes).

Behaviour of sequential writes is much more interesting. For 512 byte blocks,
a maximum throughput of 5.84 mb/s can be reached (with 32 processes), but
only 0.94 mb/s with a single process, and 1.23 mb/s for four processes. The
difference is enormous, it may be due to a form of write coalescing in the ker-
nel, usb adaptor or memory card and is worth investigating further. The same
occurs with 8kb blocks, albeit less dramatically: throughput ranges from 6.67
mb/s to 11.11 mb/s. The more processes, the better, and a longer kernel com-
mand queue helps only a little bit. Also, for all sequential access, more processes
than kernel command queue slots are not bad (in contrast with random access).

The results show that kernel read-ahead has no influence, this seems peculiar
and an explanation has not been found. The kernel command queue length has

48

Type Op Blocksize Procs KRA kcq Throughput Per op Mean Stddev
rand read 512 1 0 1,16,64 0.777 0.629 0.627 0.043
rand read 512 32 0 64 0.771 0.634 20.256 248.895
rand read 8k 1 0 1,16,64 5.987 1.305 1.303 0.067
rand read 8k 32 0 64 5.978 1.307 41.789 354.345
rand write 512 1 0 1,16,64 0.021 23.580 23.580 3.566
rand write 512 32 0 64 0.021 23.140 740.031 394.015
rand write 8k 1 0 1,16,64 0.325 24.053 24.051 5.206
rand write 8k 32 0 64 0.330 23.700 757.940 402.586
seq read 512 1 0 1,16,64 0.977 0.500 0.498 0.004
seq read 512 1 128 1,16,64 0.977 0.500 0.498 0.004
seq read 512 32 128 64 1.780 0.280 8.933 1.982
seq read 8k 1 128 1,16,64 6.257 1.249 1.247 0.016
seq read 8k 32 0 1 7.744 1.009 32.272 11.885
seq read 8k 32 128 64 7.758 1.007 32.217 11.641
seq write 512 1 128 1,16,64 0.935 0.522 0.520 0.265
seq write 512 32 128 1,16,64 5.842 0.084 2.662 0.429
seq write 8k 1 128 1,16,64 6.669 1.171 1.170 0.397
seq write 8k 32 0 1 10.932 0.715 22.814 5.244
seq write 8k 32 128 64 11.108 0.703 22.461 0.869

Table 4.9: Shortened results of the compact flash card tests with usb card
reader; throughput in mb/s, latency in ms.

very little influence. A long queue is ideal (especially for random access), has
no negative consequences and is the default (probably for those reasons). Lots
of processes for random access shows that the kernel reorders requests: a high
standard deviation is observed. The fact that lots of processes are needed to
write 512 byte blocks sequentially at high throughput makes makes it unlikely it
will be implemented. Fortunately for Venti, there seems little need to write 512
byte block sequentially. Finally, a quick and informal test showed that larger
blocksizes (16kb and 32kb) did not improve sequential write throughput.

Conclusions

The latency of random access on the ide adaptor indicate that reads can be
served in under a millisecond. Larger blocks read with higher latency on that
adaptor possibly due to missing dma support. The usb adaptor probably suf-
fered from usb and adaptor overhead. With a better adaptor, 8kb blocks could
probably be served in under a millisecond and with a high throughput. This
would make them very usable for score lookups, i.e. when used as index sec-
tions. Unfortunately, random writes are extremely slow, a considerable obstacle.
However, because of the small individual capacity of the flash chips, multiple
memory card may be combined and written to concurrently. When using five
times more compact flash chips than magnetic drives, performance will be simi-
lar in this regard. On the other hand, sequential performance is quite high on an
individual memory card, therefore the current Venti optimisation of reading and
writing 8mb of buckets of index section would already make a single memory
card usable as index section. In any case, low capacity implies many memory

49

cards are needed anyway.
For all methods of using flash memory as index sections, the kernel should

be made aware that operation scheduling is not beneficial. Or at least not in
the same way as for magnetic drives. A quick and informal test showed that the
standard deviation can be reduced enormously by using the no-op i/o scheduler.

Flash nand memory can be used in a far more efficient way than over ide or
usb. When used directly on a system bus, it offers far better performance. Data
sheets from Intel[26] and Micron[27], large nand flash memory suppliers, claim
a memory module can fulfil a random page read request—pages are typically
around 2kb or 4kb—in 25 microseconds, and sequential page reads in 25 or
30 nanoseconds. A page can be written in 250 microseconds. However, a page
write can only change bits from 1 to 0. Changing bits from 0 to 1 must be
done a block at a time. Blocks are typically around 128kb. Erasing a block
can be in 1.5 or 2.0 milliseconds, relatively slow compared to other operations.
The bandwidth the memory can sustain will further depend on the system bus.
If flash memory can be added to a fast system bus in amounts large enough
to use them for score index, it can provide very good performance. The slow
block erases can probably be avoided altogether: entry structures consisting of
all ones can be taken to be invalid and thus unused. Since scores are never
removed from index buckets (and do not necessarily have to be sorted), using
only fast page writes will suffice.

At the moment of writing, solid state drives based on nand flash memory
with 128gb capacity are being released. A device just released by Mtron [28] has
a sata interface, claims 0.1 ms read random access and 80 mb/s and 100 mb/s
sequential read and write throughput respectively, probably to be taken with a
little grain of salt. The random write performance seems relatively low, with
only 119 operations per second, i.e. comparable to a normal drive. According
to their own measurements with 8kb blocks, sequential read throughput reaches
40.3 mb/s, sequential write 52.7 mb/s, random read throughput 47.1 mb/s and
random write 0.92 mb/s. The write throughput is relatively slow, but still
comparable to that of magnetic disk drives. Also, this may be because the
device design has not matured, other or newer devices may have much higher
random write throughput. The ‘disk’ contains many separate flash chips that
are mapped to allow these fast accesses. The chips can be remapped to prevent
them from being worn down by many local writes. Such a device would instantly
provide a major performance boost for even the larger Venti configurations.

To conclude, standard compact flash cards combined with a high-quality
adaptor are a candidate for use as Venti index sections, to increase Venti per-
formance. However, for large installations, with large index sections, too many
large and thus expensive memory cards are needed.

4.7.2 MEMS-based storage

Much research is being done in the area of mems-based storage. These are
devices with many read/write tips (comparable to the heads of magnetic disks)
arranged in a square, with a (magnetic or other) media sled to read from or
write to, also arranged in a square. Figure 4.2 depicts a mems storage device.
Currently, no such storage devices are available, but prototypes have been build.
In the mean time lots of research has been done in how to use these new devices
to make faster disks. A nice introduction to mems-based devices is given in [29].

50

Figure 4.2: Representation of mems-storage device, from [30].

This paper is from 2000, in an early stage of development of these devices. Lots
of predictions are done and probable characteristics of mems-storage devices
are presented. The first generation of devices are expected to have a seek time
under 1 ms, a sequential throughput of 25.6 mb/s and a capacity of a single
media sled of 2.5gb. In second generation devices seek times would be halved
(to 0.5 ms), throughput more than tripled and capacity upgraded to 4gb per
media sled. They even predict third generation device properties. In short,
these devices look quite similar to disk drives, but have much lower seek times
and due to the many heads potentially higher throughput in the future.

The main point of interest is, of course, the fast random access to blocks.
If the devices are really capable of that, it would allow for a very fast Venti
index stored on non-volatile memory. When these devices become available, it
is likely that they can be used as drop-in replacement for traditional magnetic
disk drives. The principles of tracks, cylinders and sectors of disks do not differ
substantially from the principles of mems disks, and as such current disk proto-
cols such as over scsi can still be used [31]. However, given the many read/write
tips, higher parallelism can be achieved in theory. For example, certain ranges
of blocks can be accessed simultaneously. This can be used to read an entire
drive ‘in the background’, i.e. piggybacking on foreground operations[32]. For
Venti, it could be used to flush parts of the index concurrently. This would
need explicit support however. Also, scheduling algorithms have been designed
specifically for mems-based storage devices[33], exploiting their physical prop-
erties.

51

Given the relatively small size of a single mems-storage media sled, other
uses than magnetic disk replacement have been investigated. Typically, mems-
storage devices are used as a cache sitting right in front of the magnetic disk[30,
34]. Due to relatively small work set size, many operations are handled quickly,
resulting in low average response time. For index sections for Venti, this scheme
would not provide any benefit since the accesses are entirely random and the
cache hit ratio would be low.

To conclude, mems-based storage devices look promising: they have very low
access time, and high potential for parallelism and throughput. Unfortunately,
they are not available on the market yet. When they do become available, their
actual properties (parallelism, access time patterns, scheduling algorithms) will
have to be analysed and probably specific support in Venti is needed to get
decent performance with them. It is questionable whether the first incarnations
of the devices will have enough storage capacity to serve as index sections.

52

Chapter 5

Venti performance

This chapter investigates basic Venti performance. It starts with an analysis
of simplistic Venti usage: sequential and random reading, writing, and random
reading (there is no such thing as random writing in Venti). The chapter ends
with performance tests of SHA-1 calculation and whack compression.

5.1 Basic Venti performance

The tests were conducted using the machine specified in Appendix A. The entire
9.1gb scsi drive was configured as index disk. The entire 80gb ide drive as
an arena partition, filled with arenas. A bloom filter of 64mb was chosen by
fmtbloom. Of the 512mb of main memory, 256mb was given to the index cache,
32mb to the disk block cache and 16mb to the lump cache. The tests have
been performed using randtest, distributed with Venti. Venti protocol overhead
has been tested by running sametest, a tool described in Appendix C.1. More
details about the tests and results can be found in Appendix C. The results
are listed in Table 5.1. For the tests, 2gb of data has been read and written,
multiple times. Pristine writes are the writes of new data, i.e. data not yet
present in Venti. Duplicate write performance has been tested as well. Duplicate
sequential writes are duplicate writes written in the same order as the original.
Duplicate permuted writes are writes written in permuted order relative to the
first write of the data. Sequential and permuted reads are reads posted in the
same or permuted order as the writes of that data. Sametest should measure
only the overhead of memory lookups and buffer manipulation. The 68gb write
test was done with 128mb of disk block cache, as was the 28gb read test. The
28gb read test was intended to read 68gb but stopped prematurely due to a
read error. Further testing revealed the disk had a bad sector, but would not
indicate this in a write to or read from the disk. Without Venti, a disk error of
this kind, and the resulting data corruption might never have been discovered.
Luckily, the disk was still in warranty.

Before an analysis of these results, a few caveats about these tests must be
explained. First, not all advanced features have been enabled for this test. The
bloom filter has been enabled, but queued writes have not. This follows the
idea of using mostly defaults: bloom filters are encouraged by default, while
queued writes are not on by default. Second, performance on larger systems

53

Type of test Average throughput
randtest write pristine 2g 6.50 mb/s
randtest write duplicate sequential 2g 18.68 mb/s
randtest write duplicate permuted 2g 18.04 mb/s
randtest read sequential 2g 8.60 mb/s
randtest read permuted 2g 0.88 mb/s
sametest write 2g 18.93 mb/s
sametest read 2g 20.67 mb/s
randtest write sequential 68g 2.99 mb/s
randtest read sequential 28g 8.40 mb/s

Table 5.1: Basic performance results for Venti, in mb/s.

with multiple disks for the index sections and arenas is likely to be higher.
Also, the test were conducted with only a single concurrent operation, multiple
operations are likely to increase performance.

The throughput for sametest shows that there is quite some overhead in
Venti. The program reads or writes the same block over and over. This means
that for writes, the block very quickly is detected as being already present,
with only in-memory lookups. For reads, the data is retrieved from the lump
cache, also requiring only few memory accesses. Probably throughput could be
increased by using more processes in the test program, more than with the other
tests at least. The performance for duplicate writes is very close that of writes
using sametest. This is not surprising since all index entries for the 2gb of data
fit in main memory. Thus, checking whether blocks are already present needs
only memory accesses. However, most current Venti clients do not send new
requests before the previous finishes, so the chosen behavior best resembles real
behavior.

5.1.1 Analysis

Permuted reads are obviously limited by random accesses of disks and show
performance close to the maximum random access throughput of disks when
posting one operation at a time. Using multiple disks for the arenas will in-
crease performance only when requests are issued concurrently and the data is
spread over the disks. Sequential reads have stable performance: reading 2gb
or reading 28gb results in similar throughput. Though not close to sequential
read performance of the underlying disk, see Table 4.6. This leaves room for
improvement. The reason the 28gb reads with this throughput, is that index
entries for arenas currently read a lot (as is the case with sequential access) are
loaded into the index cache. This happens once for every arena, which is 500mb
large. This optimisation is described in section 2.3.9.

The write throughput in the 68gb write test is disappointing. Pristine writes
of 68gb are limited by writes to the index sections: writes in chunks of 8mb.
Given the little amount of memory for the index entries, relatively few entries
are written in each chunk, and therefore the dirty percentage of the index cache
does not drop fast enough to sustain high throughputs. For the 2gb pristine
writes, the index cache did not need flushing at all since the maximum percent-
age of dirty index entries was not reached. Thus, the 6.50 mb/s is sequential

54

write throughput without having to take index writes into account. Beside se-
quentially writing the data to the arenas, the arena meta directory must also
be written, reducing write performance. But even with this in mind, write
throughput is substantially lower than what the underlying disk is capable of.
Queued writes are likely to increase performance.

The most important conclusion to be drawn from these results is that se-
quential reads and writes are slow compared to the throughput the underlying
disks can achieve. A detailed trace of Venti’s disk operations might give in-
sight to where improvements can be made, especially when combined with the
results of the previous chapter. For writes, queued writes probably would im-
prove throughput; for reads, clients should issue multiple requests to improve
throughput. Also, it seems that writing the index entries in 8mb chunks does
not necessarily improved performance.

5.2 SHA-1 performance

SHA-1 performance has been tested with a simple tool called test-sha1, which
can be found in Appendix G.2. It repeatedly performs SHA-1 on 8kb random
data many times, 10,000 by default. Memory alignment can be specified, up to
32 bytes.

Results (each run done 5 times) show that 4-byte aligned SHA-1 is only
slightly faster, not worth optimising for. On my 2.4 GHz Celeron processor,
throughput is approximately 1500 mb/s for 4-byte aligned data, 52 microsec-
onds per operation. For 2-byte or 1-byte aligned data, the throughput is ap-
proximately 1340 mb/s, 58 microseconds per operation.

Clearly, SHA-1 is not a bottleneck in Venti performance.

5.3 Whack performance

Whack is the compression algorithm used by Venti to store blocks in the arenas.
It is an LZ77-like algorithm, meaning repeated data in a stream is replaced by
a reference to the original occurrence. It does not need an explicit dictionary,
so there is no fixed size-overhead. Highly random data will not find repeating
patterns large enough to replace it with a reference, thereby achieving no com-
pression. If there is no progress during compression, the operation is aborted.
In this case Venti simply stores the data uncompressed.

For whack, the compression algorithm, a similar throughput test has been
devised as for SHA-1. The program, test-whack can be found in Appendix G.3.
It whacks blocks of 8kb in size, by default 10,000 times for each invocation. The
data is either random (generated using prng() from the Plan 9 C library), from
a binary (/usr/bin/gs-gpl, the largest binary in /usr/bin on my Linux system,
over 2mb), or from a text file (/usr/share/perl/5.8.4/unicore/UnicodeData.txt).
Only whacked blocked are unwhacked as well. Again, the Celeron 2.4 GHz has
been used for the tests and resulted in the averages over five runs, shown in
Table 5.2.

This shows that write throughput can be quite low for some types of data.
It may even become a bottleneck when writing sequentially at full disk speed.
It may seem surprising that compressing random data is fast, but it is not:

55

Type of data Whack Unwhack Compressed size
Random 25.6 mb/s - 100.0%
Executable 14.0 mb/s 69.8 mb/s 45.8%
Text 17.0 mb/s 112.9 mb/s 20.2%

Table 5.2: Whack performance.

the algorithm detects early on that compression is not useful, and aborts, not
wasting any more cpu cycles. This also explains why no random data has been
unwhacked. Unwhacking is never a bottleneck, this is typical for compression
algorithms.

56

Chapter 6

Venti simulator

This chapter describes the results of designing and implementing a simulator
for Venti.

Initially, the main goal of this master’s project was to make a simulator.
Mostly to be able to play around with the various Venti configuration param-
eters. For example the index, lump and the disk block cache sizes. But also
optimisations such as queued writes, the bloom filter and its size, and prefetch
heuristics. And of course, to measure the effects of new optimisations. All this
could, of course, be tested using a real Venti, but that would take too much
time. A test of an acceptable scale involves reading tens or hundreds gigabytes
of data into Venti, and even with todays fast disks this simply takes too long. A
simulator would allow much faster analysis of how Venti would handle a given
workload.

In order for the simulator to be representive of actual behaviour, and to
allow simulation of new algorithms easily, the simulator has been designed to be
integrated into the Venti source code. This avoids having to write algorithms
both for Venti and for the simulator, and ensures the simulator has comparable
overheads for the optimisations. Basically, all—or at least most—disk accesses
have to be avoided, thus simulated since that is where Venti spends the bulk
of its running time. The idea of using traces of Venti operations (with enough
information in them for Venti to walk through the logic paths, for example for
determining which caches to read from, or simulate disk accesses) survived from
almost the start of the project, and indeed seems to be the most straightforward
way to test real loads, and in a reproducible way. Thus the initial goal: making
such a simulator. The design for the simulator was determined through discus-
sion with Russ Cox, who also (re)wrote the Venti implementation the simulator
should simulate.

The next sections describe the evolution of the trace generator venti-trace
and simulator venti-sim: the design and how another Venti simulator released
during the project influenced it, the trace file format and how to make trace
files, suggestions for making a full featured simulator in the future and finally
conclusions about the simulator effort.

57

6.1 Design

The simulator was to read a trace file, and either execute or simulate actions
on the caches, disks, process communications, etc. to handle a Venti operation.
Section F.1 gives a pseudo-code overview (mixed with natural language) of how
read and write requests are handled in the Venti code, which functions are called
and which branching decisions are made. This results in the following actions
for four combinations of read/write, score present/absent.

read, score not present

1. Lookup in lump cache, returns negative.
2. Lookup in index cache, returns negative (Venti does not cache nega-

tive results).
3. Lookup in bloom filter. If absent, done: no disk activity at all.
4. Read bucket from index, proves score to be absent.

read, score present

1. Lump cache may contain data. If so, done: no disk activity at all.
2. Look in index cache, may contain index entry. If so, no disk activity

on index disks. Otherwises, read bucket from index section.
3. Read data from arena.

write, score not present

1. Lookup in lump cache, returns negative.
2. Lookup in index cache, returns negative.
3. Lookup in bloom filter. If absent, no disk activity on index disks.

Otherwise, read bucket from index section, proves score to be absent.
4. Write data to arena.
5. Write clumpinfo to arena directory.
6. Write bucket to index disk.

write, score present

1. Lump cache may contain data. If so, done: no disk activity at all.
2. Look in index cache, may contain index entry. If so, done: no disk

activity at all.
3. Read bucket from index section, proves score to be present.

Note that the arena directory is only used for writing not yet present blocks,
it is never read in direct response to a Venti read or write operation. The bloom
filter resides in memory, thus accessing it never results in disk activity. Only the
periodical writing of the bloom data results in activity, but this can be neglected
for a first version of the simulator. Besides, the first version of the simulator
does not simulate the bloom filter at all.

The format of the trace file decided upon is described in the next section,
the code for reading the trace file is not interesting and therefore not discussed
further.

58

The approach for the simulator was to modify the logic in the Venti code,
such as the if-else branches. For example, index lookups are not actually per-
formed: where the Venti code would perform an index disk read to determine
the arena disk location of a block, the simulator would only count the disk ac-
cess, skipping the actual read from the index disk, and take the disk location
from the trace file, continuing the program flow as normal. This was quite easy
to implement.

However, after having integrated this into the Venti code, a few important
problems had to be solved. First, how would one simulate disk behaviour? A
disk model seemed necessary to determine whether a read was sequential or
random: very important for determining how much time it would take on a real
disk. At that time not all disk properties were understood, which is one of the
reasons for analysing disks, the results of which are described in Chapter 4. A
detailed model of a disk was deemed necessary, mostly to keep track of head
and rotational position, so disk operations were intercepted at a level (read and
write system calls on the disks) that allowed for that. In hindsight, has was too
fine-grained for an initial version of the simulator.

Another problem was how to schedule processes. Venti consists of many
processes communicating with each other. Especially operations that take long
to finish, such as disk accesses, are often sent to dedicated processes. These pro-
cesses then return the result when they are finished. This seemed to complicate
time-keeping a lot. It would have been nice to be able to simply add some mil-
liseconds to a global clock for each disk access. But with multiple readers from
multiple disks, this would not be possible. A solution to this problem came from
Russ Cox and Shaun Foley, in the form of their Venti trace generator and simu-
lator vtrace and vsim. The same solution has been used in venti-sim from then
on as well. The details of their solutions, and more about their simulator, are
described in Section 6.3. Summarised, it amounts to changing all processes to
cooperative threads running inside a single process, each reporting the amount
of time their current operation will take them to finish to the scheduler. The
scheduler keeps track of all finishing times, waking up each process in the order
of being unblocked after their time-consuming operation, and keeps a simulated
clock. Before this method, venti-sim was still designed to start all processes and
have them communicate with each other. But that would make some Venti fea-
tures hard to implement, such as queued writes: how should accounting be done
for postponed disk accesses? It must be noted that the simulated clock using
cooperative threads is a nice and simple approach, but may be too simplistic
when using multiple disks. Section 4.4 showed that random multiple operations
posted concurrently can quite dramatically increase throughput. However, this
model makes it hard to model concurrent disk operations: the threads have
to decide up front how long their disk operation will take, which is influenced
by operations posted after that decision in reality. Also, multiple cooperative
threads may use the same disk and erroneously assume they are the only users
of the disk, causing wrong finishing times for the operations to be calcuated.

While modifying the Venti code, lots of error handling code paths were
encountered. Some were for assertions and thus left mostly intact. Others,
handling more serious errors, are assumed to never happen, to keep the simulator
from growing too complex. All reads and writes to disk will succeed, and no
error conditions are assumed to occur at all. Note that some error conditions
really can occur in a Venti installation, such as filled buckets in the index hash

59

table. But they should be rare, require a restart of Venti and generally indicates
a misconfiguration, so are assumed to be irrelevant.

Next is the question of what output should be emitted by the simulator.
Of course, the more statistics the better, and Venti already generates a lot of
statistics while running. These include disk reads and writes to each type of
disk, cache hits/misses, bloom filter fullness, venti protocol messages by type,
etc. Actually more statistics than useful for the purpose of the simulator. The
most important statistic is the total running time of the simulated clock, the
time it took to execute all trace operations. But also, mostly for sanity checking:
the time spent accessing disks, the number of disk (index and arena disks split)
accesses, and the number of cache operations (inserts, hits, misses). The running
time is the most obvious statistic of how Venti performs, however it has the
downside that using the total running time does not reflect ‘local’ performance
during a trace. To clarify, consider a trace consisting partially of random reads
and partially of sequential reads. The total running time does not give any
indication whatsoever about how well each of the types of operation performs.
This is not easily solved, the best way to avoid it is to simulate random reads
and sequential reads (or other statistic-blending operations) separately. The
downside of which in its turn is that that probably is not a real workload, but
rather an artificial, synthetic one, and thus might not be realistic.

The code for venti-trace and venti-sim can be found at

http://www.xs4all.nl/∼mechiel/files/venti-simulator.tgz

Note however, that it comes without instructions on how to use venti-sim
and will need changes before it can do simulation runs. Trying vtrace and vsim
(described in Section 6.3) first is recommended.

6.2 Trace files

One of the first tasks for the simulator was generating trace files. Without
trace files, there is no good way of simulating traces. Implementing this proved
again to be relatively easy: the Venti source code was modified, print statements
inserted at the right locations in the Venti code for each read/write/sync oper-
ation, all to collect enough information to mimic the operation in the simulator
without needing to go to disk. The trace file was designed to be human-readable
for easy handling (composing, editing, interpreting), and contained information
such as score, block type, operation type (read, write, sync), whether the score
was present in Venti, the disk location (index bucket) of the index entry on the
index disks, the location in the arena, etc.. This is an outline of such a line of
the trace file:

read/write present score type size csize arenapart
arenapartaddr arenasectorssize arenablockssize
ciaddr ciblockssize isectpart isectaddr isectblockssize

The fields needed in the trace file where determined by interpreting the
pseudo-code for handling the read/write requests (see Appendix F.1), and the
derived overview from the previous section.

• Score

60

http://www.xs4all.nl/~mechiel/files/venti-simulator.tgz

• Operation (read or write)
• Type of the data
• Whether the block is present on disk
• Size of the data
• Compressed size as stored on disk (in bytes, without header)
• Arena partition the data must be read from or written to
• Arena partition offset to read or write at
• Number of on-disk bytes for data + header, rounded up to disk sectors

(512 bytes)
• Number of bytes to read or write for data after rounding disk cache block
• Clumpinfo block address (on same arena partition as data)
• Clumpinfo block data size to write
• Index section partition
• Bucket offset on index partition
• Bucket size
• Venti global address, used for debugging

More information than strictly necessary is included, at least for a first ver-
sion of the trace file. For example, both the (uncompressed) size of the data,
and the compressed size are available. This allows for accounting compression
time in the future as well. This should probably have been of later concern. The
arenasectorssize and arenablockssize, or ciblockssize and isectblockssize are un-
necessary as well. They should have been global—or per trace file—parameters.

At first, the need for a ‘pause’ message had been envisioned, representing
idle time. In this time, caches could age (entries get stale) and buffers could get
flushed to disk. This has been scrapped at an early stage: the sync message is
called by any sane client of Venti (flushing the disk buffers), and ageing caches
did not seem to change Venti behaviour a lot—if at all—in cache behaviour.

The procedure for creating a trace file is as follows. Start venti-trace just
like a normal Venti is started. It will automatically write a half-finished trace
file to the file semitrace.txt during operation. Now use any Venti client to
read/write/sync to the Venti. For example, use randtest to write data and
later read it back (though note that this is not really representative of normal
client behaviour). When finished, the semi trace file will contain the operations
that have been executed by the Venti. The program tracemake will read the
venti.conf the Venti was started with, and the semitrace.txt, producing a new
file trace.txt in the trace file format of the example above.

This has serious drawbacks: the disk was read/written during the normal
Venti operations, but had to be consulted in tracemake again to get to the
disk locations used for the score. Vtrace has a better approach: it records the
disk i/o’s while they are happening. Venti-trace did not use this approach at
first mostly because Venti’s design was not yet understood well enough. The
concern was whether (concurrent) disk operations could be mapped to a single
Venti operation. Vtrace solved this problem by using a sequence number passed
up to the functions that printed a part of the trace message. The lines of the
traces file were later reassembled by matching sequence numbers. The vtrace
format contains roughly the same information, but of course the syntax was
different.

61

By this time synthetic trace files had been considered. For workloads of
multiple terabytes, generating even a trace file takes a lot of time. So, being
able to make up a trace file would be a big plus. Tools for generating trace files
have not been implemented, but with some knowledge about Venti’s internal
structures, mostly arenas and index sections, it is not very hard to generate
synthetic traces.

6.3 Vsim and vtrace

Vsim and vtrace are a Venti simulator and Venti trace generator written by
Shaun Foley and Russ Cox. It is described in an (unpublished) article[35] which
also includes measurements of the accuracy of the simulator. It is interesting to
see the vtrace and vsim approach is very similar to that of venti-trace and venti-
sim. The similarities are in how the Venti code has been modified, which logic
paths were modified and how. As mentioned in Section 6.1, the vsim method
of keeping time was quite elegant. From their article

Vsim replaces disk operations with calls to alarms that block until
some specified time. If Venti used only one disk, these alarm calls
could immediately increment the virtual time and return. How-
ever, because Venti uses a separate thread for each disks, computing
elapsed real time is more complicated. When a disk read or write
would have occured, the thread calls a delay function for the esti-
mated time based on the disk model. This sets an alarm causing the
thread to be woken up after the desired delay.

Alarms are coordinated via a clock thread that waits until all other
threads are blocked. We removed or replaced all blocking system
calls, ensuring that each thread only sleeps by setting an alarm or
waiting on a lock. At this point, the clock finds which alarm will be
the next to fire, skips the virtual time ahead to that time, and wakes
up the corresponding thread. The alarms let the simulator run at
cpu speed rather than disk speed, while introducing the virtual clock
lets the simulator skip past inactive time.

They note that vsim does not implement all optimisations (including the
important ones that have a big effect on performance): index entry prefetching,
an advanced disk model, lump read-aheads and compression. With this simple
model they conducted simulation runs, to verify that simulated behaviour is
close to the behaviour of Venti. Of course, to this effect they disabled the
advanced features from the reference Venti and ran tests using randtest and
varying workloads (random/sequential, varying cache size). Some artifacts due
to the size of the cache were present in the results (as expected): up to a certain
amount of reading and writing the operations could no longer be fulfilled from
the cache (because it could hold no more entries) and slow down. The main
conclusion of their article is that the simulated time is within 1.41 of a real time,
and 1.21 for tests involving more than 64mb of data.

A few sidenotes should be placed. First, they used a single disk that hosted
both the index section and the arenas. This is not what a typical Venti in-
stallation looks like (it has separate index and arena disks), and may have an

62

influence on the performance of Venti. A typical disk usage pattern is a seek
on the index partition (disk), followed by a seek on the arena partition (disk).
Using the same disk for these partition sabotages locality of reference of the disk
heads. Second, vsim has an accuracy of being within 1.21 of actual performance.
New optimisation strategies are not likely to cause such huge performance gains,
meaning it will be very hard to use the simulator to show that a different config-
uration or new algorithm will improve performance. And third, as their future
work section mentions, vsim does not simulate enough of Venti to match a real
Venti close enough. The same problem the unfinished simulator of this chapter
has.

6.4 Future work

The currently available simulators are not accurate or complete enough for per-
formance measurements. They do not simulate all behaviour of the system,
but of course, that is what a simulator is about: leaving out some parts and
replacing them by a simple surrogate. Still, some mechanisms or optimisations
depend on others, the behaviour of one can radically change the behaviour of
the other, e.g. filling a cache by reading-ahead could either trash a cache result-
ing in lots of cache misses, or could make the cache effective resulting in many
cache hits. With lots of cache misses, other optimisations can kick in further
altering behaviour of the system. For example, Venti has a scheduler that can
postpone an i/o intensive background operation when there is a certain i/o
load. This is a result of some of the optimisations being based on heuristics.
But besides that, even a single optimisation can result in a big performance
gain. Therefore, some optimisations that have not been simulated should have
been for representative results: the bloom filter, index entry prefetching from
the arena, and a better disk model and a disk scheduler understanding multiple
disks.

Implementing these optimisations have been looked at, and ideas to that
effect are described in the next sections.

6.4.1 Bloom filter

The bloom filter prevents lots of index accesses when writing pristine blocks.
So it is needed for that reason. Whether the bloom filter returns ‘hit’ or ‘miss’
depends on the size of the bloom filter, and how filled it is. There is a relatively
easy way to simulate the bloom filter: While making traces, the probability of a
hit or miss could be recorded, or the current filledness (the size would be a per
trace file global parameter). During simulation, this information (along with
a random function) would be used to determine whether a hit or miss should
occur for a particular operation. Relatively minor extensions to the trace file
format, trace generator and Venti simulator would implement this.

6.4.2 Index entry prefetch from arena directory

This problem is harder to solve. Venti has heuristics to determine if an arena
is currently being read from heavily, and if so, reads all index entries from its

63

arena directory into the index cache. Leaving this out has big consequences for
sequential reads, keeping it in can have consequences for random reads.

There is a problem with simulating this: when the simulator would want
to load index entries into the cache, which entries would that be? The entries
(scores) cannot be included in the trace, because with terabytes of data, that
would not scale: it would have to contain gigabytes of scores. Russ Cox proposed
a solution, namely to pretend a range of arena addresses were loaded in the
cache. On a subsequent cache request, the range(s) of addresses could be used
to determine if the index entry is supposed to be in the cache. However, this
would make the simulator complex. How many scores are present in the range?
But more important are the caches lru-eviction decisions. Which of the ‘vitual’
entries from a range will be evicted? How are hits from a partially evicted range
determined? It can be done, but it is easy to inadvertedly change the semantics
of the operation to have a negative effect on simulator accuracy. Also, the index
cache code would have to be modified, making it diverge from the Venti code.

6.4.3 Better disk model and multiple disks

The approach to disk simulation in venti-sim and vsim is to assume a fixed
access time and a variable (based on content length) read/write time. The
simulation time for a disk operation is the sum of the two. This is a simplistic
model, the access time could be made dependant on whether it is a read or
write (writes are slower). But a more advanced solution could include disksim,
a disk simulator. A problem with doing that is that is does not seem to play
very nice with the virtual clock approach: you cannot post an operation to it
and get the finishing time returned. This is because multiple operations can
be posted, influence each other and finish out of order. Also, disksim seems to
want control over a global clock. Nevertheless, the disk models it has should be
very accurate, and the difficulties explained can probably be overcome.

6.5 Conclusions

A simulator suitable for the purpose envisioned has not been finished. Some
basic simulations have been run, but the results were not representative for
a real Venti. One of the mistakes was to assume a disk model that was too
fine-grained: the disk model available was neither fine-grained nor precise.

Many of the important optimisations have not been implemented. Imple-
menting them seems possible (as described in the previous section), but could
become complex and will be hard to get right. They are necessary for sim-
ulations that come close enough to the real Venti. However, it is not clear
that it will come close enough to actual Venti performance to allow testing and
verification of the remaining not-so-low-hanging optimisation fruits. Also, the
behaviour Venti exhibits has an impact on the behaviour of the client, making
it again harder for a simulator to simulate real workloads.

Some of the original assumptions appear to not always hold true. For exam-
ple, the idea was that algorithms would only have to be implemented once (in
Venti), and would run in the simulator as well. It turns out that this does not
always work, e.g. for index entry prefetch (as discussed in the previous section).
Another assumption, that it would be easy to keep the simulator integrated with

64

the Venti code does not appear to hold true either. Keeping the two versions in
sync is hard and will make the code a lot less clean and readable.

Finally, of course, the appearance of the idea underlying memventi (described
in the next chapter) shifted the focus of this project, but the difficulties just
explained helped as well.

So how can one currently determine whether a Venti configuration parameter
or new algorithm will improve performance? First, an analysis of all existing
optimisations in place helps, considering their implications for the intended
workload. The workload is very important for performance, random reads are
very different from sequential reads, so are very small and very large reads or
writes. Also, a small scale test with a real Venti can be conducted, the results
can be interpolated to a larger Venti when being careful. Parameters such as
cache sizes may have to be scaled down to keep the test representative in that
case.

65

66

Chapter 7

Memventi design &
implementation

A large Venti configuration needs quite a few disks in the index section to deliver
adequate performance. An early installation from 2000 at Bell Labs [36] used
eight 10,000 rpm 9gb scsi disks just for the index. The index is the most
obvious candidate for optimisation. Its high on-disk lookup time is expensive.
It would be nice to be able to place the index in main memory. This would
be much faster and eliminate the need for lots of other optimisation strategies,
allowing for a simpler design.

The size of the index is linearly related to the number of blocks it is able
to store. The maximum number of blocks stored depends on the size of the
arenas and the average block size. Data is chopped up into 8kb chunks by most
applications, thus these occur frequently. Smaller sized blocks are typically
ends of files, pointer blocks and meta-data blocks. Lets assume that the average
compressed block size is 4kb. The question now remains: How many blocks of
4kb can be stored in how much main memory for an in-memory index?

Let’s assume we want to store 2tb of data, in 4kb blocks. The total number
of blocks would then be 512m blocks. These have 512m different scores of 20
bytes each. The data is addressed by a 8 byte arena address. The block size
is stored in 2 bytes, the type takes 1 byte and then there are 4 bytes for data-
keeping. This adds up to 35 bytes per index entry. For 512m entries, we would
need 18gb of memory just to store the entries. Only using many separate
systems loaded with memory could this scheme work in practice.

To make an index-in-memory scheme feasible, the size of the index entries
must be reduced. There are a few ways to do this. Lets consider the data fields
in the index entry:

Type The type is part of the address, just as the score. It should be noted
that not all 8 bits are used, only 5 bits are currently used by Venti clients,
though the protocol does allow using all 8 bits. Other information could
be piggybacked.

Size The size is not really necessary for a lookup, but is nice to have around
when reading the data from disk. Most blocks will be exactly 8kb, oth-
erwise they are likely to be smaller. Since read-ahead is performed on

67

the arenas for fast sequential transfers reading less than 8kb is not very
useful. It would be nice to know when the data is larger (up to 56kb).
This information could perhaps be piggybacked in the type field, using
a bit that specifies the block is larger. If so, 56kb can be read and the
actual size discovered from the on-disk header. But really, the size field
can be removed from the index.

Address The address is 64 bits, this allows us to address vastly more data
blocks than may ever fit in memory. Thus, reducing the addressable data
space does not change the maximum size a venti with in-memory index
can be. With 48 bits (6 bytes), 256tb can be addressed.

Data-keeping Index entries in the current Venti are implemented as a linked
list. This eases adding of entries to the hash table. Memory consumption
for this can be reduced by allocating multiple index entries at once and
only linking these groups in a linked list. When grouping 16 entries, 1
byte is necessary for accounting how many entries are in use and 4 bytes
are necessary to link to the next group. This takes 5 bytes per 16 entries,
totalling to 0.32 byte per entry. Of course, allocating elements before they
are used will waste some memory, so care must be taken. The group size
can always be reduced to limit memory wasting: grouping only two entries
already reduces memory consumption. A combination of different group
sizes can be used (e.g. at startup, read the entries into 32-entry groups,
use 4-entry groups for the last entries and for new entries). This way
already stored scores take little memory and new scores do not take too
much memory. Note that the number of entries that fit in the group has
to be stored somehow.

Score The score is 20 bytes. This is most of the memory of the index entry.
Without reducing its size, the index will never fit in memory. However,
it is possible to reduce the number of bytes stored. Remember that the
scores are distributed randomly and that hash collisions are infeasible to
find. The current Venti index entries map the full 160-bit score to a disk
location. When a venti read requests comes in, the 160 bits have to match
before the data is retrieved from the data section. However, the index
entry could also contain fewer than 160 bits and thus compare fewer than
160 bits, say 80 bits. Then in some (still very rare) cases, more than one
of these half-scores may match a requested score. The disk locations for
these matches have to be read until a full match is found. The data header
in the arena will have the full score and the right data can be returned (if
any). The following section further investigates this idea.

7.1 Storing only a part of the score

The index entries can be kept in a linked list of which the heads are pointed to
from an array. This array could be 224 elements large, each pointer of 4 byte
in size, taking 64mb of memory. The index serves as part of the score: e.g., at
index i, the scores are stored that start with the three-byte value representing i.
The remaining part of the address can be stored in the entries. First, consider
using 40 bits of the 160-bits score in the index entries. Of these, 24 bits are

68

encoded in the lookup table, and only 16 bits are stored in each index entry.
With a 6 byte address, a 1 byte type, and 0.3 byte overhead, this leads to 9.3
byte per entry. For a machine with 2gb of memory, 1500mb may be used for the
index. With 9.3 byte per entry, 1500mb (with 64mb taken for the lookup table),
this results in around 154m entries. With blocks that need 4kb on disk, this
would take 616gb of disk space to store the data. For larger venti installations
multiple such machines may be used and load-balanced together.

As mentioned before, it can occur (and is quite likely to occur at some point)
that scores are stored with the same 40 bit score prefix. This means two identical
entries will be stored in the index. Later, when a venti read request comes in,
both index entries will be found, and both may have to be read from disk. If
this happens too often, it could be a considerable performance penalty. The
commonly known birthday paradox dictates this will happen sooner or later
for these address ranges, but how often? We start with a single (half-)score in
the 154m (less than n = 228) scores (entries). What is the probability a second
(half-)score is the same as the first? The second (half-)score, just as the first, has
to be one of the d = 240 possibly scores, and each is equally likely. All choices
are independent from each other and the probability that a single second score
is the same as the first is 2−40. When taking n + 1 scores, the probability that
the first score is duplicated is:

pdup = q(n, d) = 1−
(

d− 1
d

)
≈ 2−12 (7.1)

Low enough it seems. However, any pair of scores should be considered.
For each kth chosen score the probability of a duplicate needs to be taken into
account, leading to the total number of duplicates:

n∑
k=1

q(k − 1, d) = n− d + d

(
d− 1

d

)n

(7.2)

For n = 228 and d = 240, this results in 32K duplicate entries. So, 215/228 =
2−13 of a filled venti will be duplicates. The data blocks will be in random
locations in the arenas, so each needs a random disk access to be found. When
a single random disk access takes 10 ms, the average random venti block access
would take around 10.001 ms: only in one in every 213 blocks needs an additional
disk access. This is for reading only. Writing is potentially more expensive:
the same amount of collisions can occur as with reading, however, blocks that
are already present (a common scenario) need an additional disk access (but
if the full score is found, the block does not have to be stored). Note that
the probability that a particular score is already in the index is based only on
address space (240) and fullness: a huge address space or empty venti will have
very few collisions. The 10.001ms average block access only occurs when the
venti is (almost) full. It should be said that second-order collisions can and will
occur in practice as well. These are score-prefixes that occur three times in the
index (they can be generalised to n-order collisions). However, these occur even
less frequently, having a negligible impact on average block access time.

An optimisation for writing could be to not immediately verify the data is
already on disk which needs disk accesses, but to temporarily store the data
on a separate disk and wait until the venti is idle before verifying and possibly

69

storing the data. This would make writing duplicate data very fast but also
introduce significant accounting overhead and complexity.

Using the bloom filter the determination whether a block should be written
can be made quickly, without going to the on-disk index. This new scheme does
not benefit from a bloom filter: if the block is not already present, the index
will indicate this (except for once every 2−13 scores); if the block is present, we
have to read from disk to verify anyway.

Some disk space has to be reserved for the index entries, when flushed. The
on-disk size will be at least 1500mb, and at most a few hundred mb more. When
only flushing when shutting down, a 2gb portion of the arena disks can be used.

Another problem with this scheme may lie in the fact that malicious users
are able to insert non-randomly chosen scores and induce lots of duplicates.
The current Venti suffers from this same problem with its on-disk index entry
buckets.

Another catch might lie in how to flush the index to disk. 1500mb would be
too much to flush to disk when a system is being shutdown. A battery-backed
machine can probably be in time on power failures though. Keeping track of
which index entries are new might also work, but incurs some memory overhead.
When flushing the entire index to disk the on-disk index is sorted, which helps
implement the scheme mentioned earlier about allocating groups of entries for
entries read at startup.

Venti startup time will be slow since 2gb of data might have to be read at
most. Current hard drives can easily read at 50 mb/s sequentially, needing just
over a minute to start.

As for cost, a 660gb venti would need a minimum of 33gb of index disks.
Two 36gb scsi disks (smaller disks are not available anymore) could do the job,
allowing for limited concurrent lookups. These would cost about the same as
1.5gb of main memory.

Some of these ideas may also be usable in the current Venti system. For
example, the current index on disk can be kept, but not the entire score has to
be kept in memory.

7.2 Implementation

In order to verify the feasibility of this scheme, I implemented the idea of storing
only part of the score in main memory for lookups. In general, the design as
outlined in the previous section proved to be usable. On minor points, the
strategy had to be adapted or has been improved.

The resulting program, called memventi, is written in unix C and uses the
pthread library. It runs as a daemon. To give an idea how it works, this is a
possible invocation:

memventi 14 19 35

The numbers have the following meaning. First is the ‘width’ (number of
bits) used for the heads, 14 bits thus 214 heads in this case. Then for the score-
part in each entry, 19 bits. The address is 35 bits long, thus memventi is able to
address 235 bytes in the data file, approximately 32gb (in which the data block

70

headers are also included). The original design assumed the widths were byte-
sized, however, there is no reason to demand this, so it has been generalised to
bits.

7.2.1 Features

Memventi behaves like a typical daemon: by default it forks into the back-
ground, logs errors to syslog, has options to influence verbosity and debug
printing and to run it in the foreground.

In most respects it is very simple and does only the minimum a venti server
has to do. For example, it does not store or verify in any way the user name
the Venti client sent at connection startup. Similarly, there is no way to au-
thenticate a connection. The only method implemented to prevent abuse of a
publicly accessible memventi is that connections can be made read-only. At
startup, additional host names and port numbers to listen on can be specified
as arguments to the -r and -w options, specifying that connections to the host
are read-only or read/write. When nothing is specified, -w localhost!17034 is
implied.

The implementation is reasonably small, around 2000 lines of code. This
includes lots of error handling and logging to ensure problems can be fixed when
they occur. For example, when a block has been read from file and the score
in the header does not match the data, the offset and mismatching scores are
logged. Or when the data file address space has been exhausted this is logged.
When an error occurs, memventi puts itself in degraded mode, not writing any
new blocks and only servicing read requests. This ensures the data file is not
made inconsistent any more that it might already be. To get into normal mode
again, memventi has to be shut down, the problem fixed manually and restarted
again. Also, at startup, the number of bytes read and corrected is logged, along
with the startup time.

In the example memventi call above, no disks to store data on have been
specified. This is because it is not necessary: by default, files named data and
index are used to store the data blocks and the index entries respectively. The
next sections explains the format of these files and why they are reliable to use.
The file names can be overridden using the -d and -i options.

On reception of the signals usr1 or usr2, statistics are printed. For usr1,
the statistics are the histogram of the number of entries in each head, but only
for the lengths that occur at least once. For usr2, the histogram for the number
of matching scores in the index for all read and write requests since startup is
printed, but only where the value is greater than zero. Thus, for a freshly
started memventi without data, usr1 and usr2 will not print any entries yet.
After the first few operations, the matching scores histogram list all operations
as requiring at least one disk access, unless duplicate blocks are already written.

The memory layout has changed slightly from the design described earlier.
The heads table does not contain pointers to structures containing data. That
level of indirection has been removed. The heads table is an array of Chain’s,
a head is a linked list of chains. Each chain contains a pointer to a data buffer
(in which the score prefix, types and addresses are stored), a 1-byte count with
the number of entries the data buffer has memory for and a pointer to the next
chain-element. The pointer to data is necessary because the data can be of
variable length, thus cannot be part of the struct itself. At startup, all chains

71

are initialised with a count of zero elements, no data is allocated. Only when
the first entry is added, memory for at least the minimum number of elements is
allocated. At startup, the total number of elements in the index file is calculated
and considered evenly spread among all heads. Now, newly allocated buffers are
made larger than the default (8 at the moment, up to 255 elements since the
count is a single byte), when the head does not yet contain the average number
of elements per head. The data buffer is laid out as follows: The first count
(number of entries) bytes are the types, these take one byte per entry. The
subsequent bytes are bit-addressed: an entry has entryscorewidth bits for the
score followed by addrwidth for the address; entries follow each other, without
padding. Unused entries have their address bits set to all ones, this is used to
determine what the last valid entry is. When the data buffer is full, a new chain
is allocated and the next field of the current one made to point to it.

Since each connection has its own process, the data structures have to be
protected against concurrent access. For this purpose, a lock for writing to
the data file is used to ensure new blocks are added one-by-one. For the heads
table, 256 read/write locks are used, each controlling an equal part of the heads.
Threads for handling venti read requests can always access heads concurrently,
but venti write requests need exclusive access for allocating and updating the
data buffer. With 256 locks, it is unlikely connections have to wait for each
other often.

There is one more important thing to discuss: how does one determine rea-
sonable values for the headscorewidth, entryscorewidth and addrwidth? A pro-
gram called calc.py is supplied for this purpose. It prints the best configurations
for the parameters supplied on the command line, which are the following:

maxdatafile type: power-2 range
Maximum data file size, e.g. 32g-128g.

blocksize type: power-2 range
Average blocksize, e.g. 4k.

collisioninterval power-10 range
Collision interval, e.g. 1000 means one in 1000 scores have a duplicate in
the index.

maxinitmem type: single value
Maximum memory used for an empty memventi.

maxtotalmem type: single value
Maximum total memory used when filled, e.g. 350m for a dedicated sys-
tem with 512m total main memory.

minchainentries type: power-2 range
Number of entries in a single chain struct. This is set at compile time, so
not a run time option.

minmaxblocksperhead type: interval
Minimum and maximum blocks per head when filled, e.g. -3000 (meaning
0 to 3000).

All values can be specified with a suffix specifying kilobytes, megabytes, and
so forth, i.e. 4k means 4096 and 32g means 34,359,738,368. Ranges can be

72

specified by start-end, e.g. 32g-64g or 10-1000. A power-2 range of 32g-64g
generates the values 32g and 64g ; the power-10 range of 10-1000 generates
10, 100 and 1000. Multiple ranges can be specified, each comma-separated. An
interval is similar to a range, except that only a single range is allowed, comma’s
are not; also, start may be omitted implying a 0, e.g. -4k, is equivalent to 0-4k.

For each combination of parameters, a configuration is calculated and sorted:
least maximum memory usage first. To illustrate, an example invocation (many
configurations are produced, only the first is reproduced here):

$./calc.py maxdatafile 32g blocksize 4k collisioninterval 1000
{’addrwidth’: 35,
’blocksperhead’: ’513’,
’chaindatasize’: ’62’,
’collisions’: 4095,
’config’: {’blocksize’: 4096,

’collisioninterval’: 1000,
’maxdatafile’: 34359738368,
’maxinitmem’: None,
’maxtotalmem’: None,
’minchainentries’: 8,
’minmaxblocksperhead’: None},

’entryscorewidth’: 19,
’entrywidth’: 62,
’headcount’: ’16k’,
’headscorewidth’: 14,
’maxmemused’: ’72m’,
’memperblock’: 9.1005859375,
’minmemused’: ’144k’,
’sort’: 76341248,
’totalblocks’: ’8192k’,
’totalscorewidth’: 33,
’unusedmem’: ’576k’},

The output is a bit unpolished, but all possibly relevant information is
present. The headscorewidth is 14 bits, resulting in a headcount of 16k en-
tries. The entryscorewidth is 19. The addrwidth is 35 bits, the total number
of collisions is 4095. The minimum memory used is 144k, the average unused-
memory (spent in partially-used data buffers) is 576k. When filled, the index
uses 72m of internal memory.

Note that the configuration can be changed by shutting down the memventi
and starting it with different parameters. The memory-efficient layout is only
used in memory, the index file contains values wide enough for all hypothetical
configurations.

7.2.2 Data integrity

As Venti does, memventi also considers data integrity to be very important.
Therefore, it uses a very simple file layout for both the index file and the data
file. The files are opened append-only: previously written data can never be
altered by memventi, the operating system protects against overwriting. Files

73

are not split up in arenas as they are in Venti: when backing up a filled up
part of the data file, simply read that part of the data file, e.g. by using the
unix-tool dd.

Blocks are written immediately to the file when processing the venti write
request. First the header is written, followed immediately by the data itself.
The header contains a block marker (a ‘magic’ value), the full score, the type
and the size (and length) of the data. The data is not sync-ed immediately,
that happens only periodically, once every 10 seconds, after an explicit venti
sync request and after closing down a connection. The index file is synced after
the data file.

After the data has been written to the data file, the index header is appended
to the index file. The index header contains the first 8 bytes of the score followed
by the one-byte type, followed by the 6 byte address.

There are several scenarios in which writing data may go wrong. For exam-
ple, after writing the data header, the disk may be full. Such conditions are
logged to syslog.

At startup, memventi checks the last block in the index file. It reads the
corresponding block from the data file and checks whether the (partial) scores
are consistent. If the data block just read is not last block in the data file some
index entries are obviously missing. The data file is therefore read to the end,
blocks are verified while being read and added to the index file. When this is
done, the index file is complete and consistent again and normal loading of the
index file into memory commences. Loading the index file is done by reading it
sequentially and adding each entry to memory (possibly allocating new chains)
on the way.

Finally, for every block read from disk to satisfy a read request, the score in
the header is checked against the actual score of the data freshly read.

7.2.3 Differences with design

Memventi differs at a few points from the design described earlier. Some have
been described already, such as the different memory layout (which has been
specified completely). At first, the index was supposed to take 224 entries as
minimum memory for any decently large memventi. This has been reduced a
lot. The design talked about arenas, implying a similar on-disk structure would
be used. This was deemed unnecessary however, and normal flat files on a file
system are used, simplifying the design considerably (e.g. raw disk blocks have
to be written in 512-byte-sized blocks).

Some ideas have not been implemented. Most notably the idea to speed-
up writes: ‘do not check whether the blocks are already present when the venti
write request comes in, just write it immediately to another disk (or file)’. It
may still be a worthwhile optimisation, however a few caveats should be taken
notice of. First, the design will be a lot more complex. What if this ‘temporary’
storage file fills up? It would need immediate flushing. This can happen if a
lot of data is written consecutively. How should a read request be handled?
First, the block is looked up in the index, that would indicate a match to one or
more permanent and temporary storage files. What if the index entry has to be
removed? How does one determine whether a venti is ‘idle enough’ for handling
a batch of writes? How to handle crashes and how to recover at startup? Does

74

the temporary storage also need an index? The complexity of the design will
increase substantially with this feature.

The foreseen problem of having to write a 1500mb index file at shutdown
turned out to be no problem at all. Initially, there was the idea to write the
index sorted, so when loading them at the next start up memory allocation
into the heads could be done efficiently without having any gaps. The current
approach is to consider the scores to be spread over the heads evenly and just
read them in the order they were written. The only remaining issue is the slow
startup time, since the entire index has to be read into main memory before it
can handle read or write requests.

7.2.4 Performance

Memventi has not been analysed exhaustively for performance. A few simple
tests have been performed and the numbers can be found below. The most im-
portant performance characteristics are: reading data that is present (randomly
and sequentially), writing data that is already present and writing data that is
not yet present. Memventi does not cache any data file blocks, neither for read-
ing nor writing. The operating system probably does have a disk block cache, a
potentially large one for reading and probably a smaller one for writing (writes
have to be flushed soon to guarantee they are permanently stored). Also, the
operating system probably employs some type of read-ahead. Thus, reading
sequentially should perform reasonable. Reading randomly probably performs
less. Writing small amounts of blocks that are not yet present should be fast:
no data has to be read from disk, and the writes are buffered in the write cache
without having to wait for them to be on disk. Larger amounts of writes have to
go to disk almost immediately and will be slower. Writing blocks sequentially
that are already present (and were written sequentially before) should be about
as fast as reading those blocks sequentially. The same disk reads are necessary.
It is nice that the operating system delivers the disk optimisation for free.

The performance is not great in part because for each connection only a
single operation is handled at a time. Normally, a venti client can send out up
to 256 operations before needing a response. The venti server could in principle
handle them at the same time. Currently, handling messages is done serially:
a protocol message is read, then parsed, then processed (creating a response
message), than unparsed and finally the response is written after which this
cycle starts again. Having multiple disk operations pending allows the kernel
to schedule the operations for optimal throughput. Perhaps a hand-crafted
read-ahead would be of help as well.

When a venti is filled, it may have 3000 entries in a single head. For each
lookup, these have to be read. The current code walks through them sequen-
tially. The entries are not sorted, so a binary search is not possible. The amount
of memory to search through is relatively small however, especially when com-
pared to a disk access. Lots of bit operations are needed for reading the data
buffer, it seems they do cost considerable amounts of cpu time.

Startup will always be slow, since the entire index has to be read. Unfor-
tunately, it is slower than necessary. Reading an entry and parsing its content
are done in lockstep. Read-ahead by the operating system may help here, but
it seems to be insufficient. This results in a lot of waiting for incoming data.
In theory, index reading should be possible at near-maximum sequential read

75

Type of test Average throughput
randtest write pristine 2g 11.30 mb/s
randtest write duplicate sequential 2g 8.08 mb/s
randtest write duplicate permuted 2g 0.90 mb/s
randtest read sequential 2g 11.06 mb/s
randtest read permuted 2g 0.88 mb/s
sametest write 2g 17.98 mb/s
sametest read 2g 17.41 mb/s

Table 7.1: Performance results for memventi, in mb/s.

throughput of the disk. However, a simple test shows that reading an index of
3.75mb (for a 2gb data file) took almost 1.5 seconds.

Now for the tests. The index and data file each resided on a separate dedi-
cated disk with an otherwise empty ext2 file system, the index was on the 9gb
scsi drive, the data file on the 80gb ide drive. The machine, disks and configu-
ration are described in more detail in Appendix A. Randtest from Venti is used
to write and read data. A slightly modified version called sametest writes and
reads the same data block over and over. This shows the maximal throughput
when the data is fully cached (after the first access the block remains in the op-
erating systems disk block buffer cache) and is thus an indication of memventi
protocol handling overhead. During the sametest runs, cpu usage was 100%
indicating that the throughput may be higher on faster system. This is some-
thing worth investigating. For randtest, the amount of data written has been
set to at least four times the size of available main memory, in order to eliminate
influence by the buffer cache when reading data. For sequential access sweeps,
this makes sure the buffer cache has overwritten previous sequential accesses.
All tests have been executed three times, Table 7.1 presents the averages. Per-
formance already is quite good compared to Venti. The commands that have
been run and the results for all tests are given in Appendix D.

These results should be read along with these question and observations:

• Why is writing duplicate blocks slower than reading blocks? The only
difference is that memventi reads a big protocol message and writes a small
one in the case of duplicate writes, and reads a small protocol message
and writes a big one in the case of reading.

• The performance for permuted blocks may seem bad, however it simply
reflects disk performance for random accesses. Multiple disks used in
parallel would improve performance (when using multiple processes). See
Appendix A for the basic disk properties.

• Sequential memventi access is not close enough to sequential raw disk
access, it should be possible to get much closer.

• The sametest tests were limited by cpu time available. Also, sametest used
a considerable amount of cpu time as well. Ideally, these tests should be
done on a multiprocessor machine. I did quickly run a test on a newer,
dual core machine, it got to 40 mb/s throughput. The causes may be
sought in bit manipulation, buffer copies or score calculating.

76

0

5

10

15

440 460 480 500 520 540 560 580 600

Number
of

heads

Number of scores in head

Figure 7.1: Head length histogram for a 2g memventi

• The values say nothing about the separate performance of the index and
data disks and how they influence overall performance.

The following is printed by a memventi after having received a signal usr2.
The memventi had been started freshly, had 2gb of random blocks in its data
file and just served all those blocks for reading once. It shows by far most reads
required one disk access, and only a few perhaps an additional one.

count frequency:
1 262028
2 116

total memory lookups: 262144

The head length histogram has been plotted in Figure 7.1. There are not
enough values to positively identify a normal distribution, however the his-
togram for 68g of 2k blocks does clearly show a normal distribution. It started
with a single occurrence of a head with 440 entries and ended with a single
occurrence with a head with 582 entries. The mean and median frequencies are
both at the heads with 512 entries. These values closely match the behaviour
predicted by calc.py which calculates an average of 513 blocks per head for a
2gb memventi. The write and read throughputs were 11.39 mb/s and 11.03
mb/s respectively.

A test with a larger memventi has also been done to stress test high main
memory usage. 68gb of random blocks of 2k (a small block size to fill main
memory) were written and read again. calc.py predicted a maximum memory
usage of 317mb. The memory usage observed in top after writing and reading
the 68gb was 313mb of resident memory. The read/write throughputs were
4.32 mb/s and 3.21 mb/s respectively, significantly lower than for the 2gb tests.

77

0
200
400
600
800

1000
1200

450 500 550 600

Number
of

heads

Number of scores in head

Figure 7.2: Head length histogram for a 68g memventi

This may have to do with the cpu usage of memventi when reading the 68gb
of data: it was around 70%, while randtest took around 20% and no idle time
left. This is worth investigating further.

The head length histogram can be seen in Figure 7.2, it has the expected
normal distribution. The mean and median are both at 544 entries, shown in
the figure as a line. The matching scores histogram after writing 68gb:

count frequency:
1 18093
2 5

total memory lookups: 35651584

These values have the following meaning: 5 is the number of blocks that,
when written, already had two matching score prefixes in the index. After
adding, this means there are 5 unique score-prefixes that are shared by three
scores each. 18093 is the number of blocks that, when written, already had a
single matching score prefix in the index. This does not mean there are now
18093 duplicate score prefixes, the 5 triplet score-prefixes are also counted as
single duplicate once. Thus, 18088 score-prefixes have two matches.

After having written the 68gb, the same data was read (without restarting
memventi). When reading was done, another matching scores histogram was
printed, see below. As can be seen, 15 scores had three hits in the index (5
prefixes are unique). The amount of scores with two hits for their score-prefixes
are 2 ∗ 18088 = 36176 (the +5 comes from the histogram for writing, the values
were not reset). The only curious thing is the total amount of memory lookups:
it is larger than twice the number of blocks. Somehow 465 additional blocks
have been looked up (and would have needed a single disk access), I do not
know how this happened.

78

count frequency:
1 35633951
2 36181
3 15

total memory lookups: 71303633

These results show memventi is definitely able to store large amounts of
data blocks and the current bottlenecks are sequential reads and probably cpu
usage, likely due to reading non byte-aligned data containing score-parts and
addresses.

7.2.5 Problems

Aside from the changes to the design already mention, a few other problems,
some interesting, have been encountered while implementing memventi. For ex-
ample, at first, the memory allocated for the index was not mlock -ed. Thus, it
could easily be swapped out by the kernel it was running under. This could de-
stroy performance. Thus, the memory was to be locked into physical pages
from then on. Unfortunately, after refusing to startup, it turned out that
OpenBSD/i386 (e.g. OpenBSD/amd64 does not suffer this deficiency) does
not allow non-root users to lock memory, despite rlimit settings. Of course,
memventi should be run as a low-privileged user for security reasons.

Besides needing an additional pointer in the chain structs, the pointers are
not 4 bytes but 8 bytes on amd64 systems. This increases the per-block memory
overhead on those systems, but allows more memory than 4gb to be addressed.
It might be possible to run memventi in 32-bits compatibility mode, but I did
not succeed because the Linux distribution I used (Debian Etch) did not have
a 32-bits pthread library. Note that even with 32-bit systems the full systems
memory, larger than 2gb, may be used by running multiple memventi’s with a
load-balancer in front (redirecting based on a few bits of the score).

The next problem was solved quickly. At some early stage, memventi used
more memory than it should based on the memory usage calculations. It turned
out the chain struct was not ‘packed’. The elements were not single-byte aligned,
but eight-byte aligned on AMD64, turning the lean 17 byte struct into a 24 byte
monster. Adding an inelegant but convenient attribute ((packed))
solved the problem.

Lastly, a typical case thread stack overflow was encountered. Incoming data
(up to 56kb) was stored on the stack. Often, two of these would be allocated
on the stack at once, overflowing the stack. The data has been moved to preal-
located buffers.

7.2.6 Future work

Most aspects of memventi have been presented. A few ideas for improvement
have been suggested, other ideas may not be worthwhile to pursue. Next is a
short overview the options:

Startup time, the need to read entire index It would be nice to be able
to resolve read/write requests without having the index in main memory.
It does not have to be as fast as when the index is in memory. I do

79

not know of a scheme that would allow this other than keeping a sorted
(possibly with gaps) index file as well. This would complicate the program
considerably.

Binary search in chains For each lookup, all memory in a head is read (and
bit-unpacked) sequentially up to the end. If the entries were sorted, a
binary search wold help. Entries can be sorted within a chain or within
the entire head. Sorting just chains is much easier to implement, but does
not reduce cpu time as much.

More threads per connection Using more threads per connection, to handle
multiple protocol messages at concurrently, would speed up memventi a
lot. In this case, disk accesses are requested from the kernel concurrently
and allows it to schedule them effectively. Together with read-ahead of
data, these are the most promising optimisations.

Caching of data This is likely to be ineffective or even counter-productive.
The kernel will probably do disk block caching at a more system-wide
level, thus working better with other programs on the system, replacement
strategies are likely to be highly optimised and would be hard to match.

Read-ahead of data In case the operating system does not adequately do
read-ahead, this may improve performance slightly. The biggest perfor-
mance gain can probably be gotten by introducing multiple threads (pro-
cesses) per connection. A quick test has verified that speed can be im-
proved noticeably, but the scheme used in that case would break badly
when doing non-sequential access or multiple clients concurrently.

Verify more data on startup At the moment, only the block last referenced
in the index file is checked against the data file. More blocks should be
checked.

Tools for checking data and index file There are currently no tools to check
the data file for consistency. E.g., verifying the score in the header with
the score of the data. The index is not that important, it will be regener-
ated at startup (slowly though, could be done faster as well, perhaps by
a separate program) when removed. For now, the only inconsistency that
is assumed to occur is trailing blocks that are invalid, these have to be
truncated manually.

Read index file faster By reading large chunks of the index file before they
would be requested when reading entries one-by-one, reading of the index
can probably approximate raw sequential disk (file system) read through-
put. The current performance should be determined more thoroughly first
though.

Lower memory usage A better scheme to reduce memory usage may be found.
The type of a score is currently 8 bits. The current Venti clients, such as
Vac and Fossil, do not use all bits, it seems 6 bits may be enough. Note
that due to the way memventi allocates memory at startup, stopping and
start memventi after it has written lots of data may lower memory con-
sumption because fewer chains are used to store the entries. Memory can

80

also be spared by removing the data pointer in the chain struct and inlin-
ing the data buffer. Multiple chain structs with varying capacities allow
almost equal memory savings as the current variable length buffers in the
chains. The type of chain has to be represented in the structures somehow.

Compression of blocks Memventi does not compress blocks, it would not be
hard to add. The average block size will be smaller when compressing
data and more main memory will be needed to fill the same amount of
disk space.

Store colliding scores entirely in memory The few scores that cause the
collisions could be kept in memory entirely. Only a relatively small amount
of scores would have to be kept in memory to prevent needing more than
a single disk access. When writing a new score that causes a collision, the
colliding score already present has to be read from disk and stored in a
separate table in main memory. Thus, writing of a collision is not made
any faster (writing of the third colliding is faster though, because their
full scores are already in main memory). If this were to be implemented,
an additional file would be needed to store this state between a shutdown
and restart, causing additional complexity.

Heuristics for trying multiple hits When multiple index entries match a
score, they all have to be read from disk in the worse case. In the optimal
case, the first score read from disk is the one needed. There might be
a good heuristic for reducing the average number of lookups required.
Trying the data addresses in random order would give decent average
performance. Other possible heuristics could be to try the data address
closest the few address last read. Or to try the ‘highest’ (last written)
address first. For now, they are read in the order returned by the lookup
routine, which returns them in the order they were written, e.g. the block
first written to the data file is checked first.

Raw disks Memventi stores its data and index file on normal disk partitions.
This induces a bit of overhead and might destroy the assumption that se-
quentially written data is stored sequentially on disk and thus fast to read
sequentially as well. Also, dependence on a file system disables memventi
to be used as part of a root file system. The disadvantage of using raw
disk partitions is that data has to be written in 512-byte-sized chunks
(for current hardware) but the data is not 512-byte aligned. Also, meta-
information such as file size has to be stored somehow. Last but not least,
the operating systems buffer cache may be circumvented by this, destroy-
ing the high speed of short write bursts and repeated reading of the same
data.

When taking these performance numbers and proven memory consump-
tion into account, it seems it should be possible to run a 1tb memventi if
it would have block compression. According to calc.py, this would need just
under 2500mb of main memory.

The latest version of memventi, version 2 at the moment of writing, can be
found at http://www.xs4all.nl/∼mechiel/projects/memventi/.

81

http://www.xs4all.nl/~mechiel/projects/memventi/

7.2.7 Conclusion

Memventi has quite decent performance, is easy to deploy, simple in design
and can therefore store data safely. There are some rough edges, such as slow
startup time and relatively high cpu usage, these can be improved upon. The
fact that it needs a file system for storing data means it is harder to use as a
building block for a root file system than Venti. The other main difference with
Venti is that it needs lots of main memory (but very little index disk space) and
does not scale to the many terabytes of data storage Venti can handle.

For many current Venti installations, a memventi is an alternative worth
considering.

Some of the ideas used in memventi are applicable to Venti. Index entries
can be made much smaller, meaning many more index entries can be kept in
main memory. It may be possible, though not easy, to replace Venti’s main
memory index cache by the scheme used by memventi. The caveat is that it
would need a mechanism to replace entries in the index, requiring additional
(memory-consuming) accounting. It would make Venti a bit more complex
though, but on the other hand, some of the current optimisation schemes could
be made superfluous.

82

Chapter 8

Conclusions

An introduction to Venti has been given: the venti protocol, how hash trees
are used to store data in Venti, and basic Venti performance properties. The
design of Venti has been analysed and Venti terminology explained, including
the meaning of scores, the SHA-1 hash of data stored in Venti; lump, a data
block and associated meta-data, such as type, score, and size; arenas, the on-
disk data structure in which lumps are stored; index, the on-disk hash table
used to look up the arena address of a score.

The description of optimisations present in Venti has resulted in better un-
derstanding of Venti and its behaviour on the various workloads: A large index
cache is important to reduce the amount of random index disk accesses neces-
sary. A disk block cache is important for holding dirty (unwritten) blocks and
for often-accessed parts of the disk. The lump cache, keeping parsed lumps from
disk in memory, is useful mostly in combination with lump read-ahead which
prevents many expensive index lookups. It is not very useful for as a normal
cache block. The disk block cache, and caches on the client side can do a far
better job. The bloom filter is very effective in avoiding index lookups for non-
duplicate lump writes, but at a relatively high memory cost. Reading the index
entries from the arena directory of a often-accessed arena into the index cache is
very effective for reducing index lookups for sequential reads, or reads with high
locality, but may trash the index cache under bad (and luckily rare) conditions.
Keeping dirty disk blocks in the cache and sorting them before writing a batch
of them is helpful for increasing write throughput. Flushing index entries in
buckets of 8mb may be a good idea for large index entry caches, but writing
individual 8kb buckets is a better choice when only few dirty index entries can
be stored in each 8mb quantum. This shows again that the various optimisation
strategies are entangled and often cannot do without each other.

The analysis of Vac, Vacfs and Fossil, popular Venti clients, have resulted
in insight in how Venti is used, and in which order the blocks (both data and
pointer) of a hash tree are written to Venti, and stored on disk. This insight
could be used in providing better throughput: handling different types of blocks
differently, e.g. storing them in different locations and performing different read-
ahead or caching strategies on them. But since the types do not have semantics
known to Venti, using this information for optimisations is tricky and may be
counter-productive when the assumed semantics are violated. It is therefore not
recommended to continue in this direction. Another useful result of investigating

83

Vac and Fossil is that they make no attempt to read-ahead data or post multiple
requests to Venti concurrently.

Magnetic disks are used as a building block for Venti. Venti depends on them
for delivering performance. Measuring them has resulted in an upper bound of
performance Venti can deliver and there is still room for improvement. Fur-
thermore, some interesting disk or operating system scheduler traits have been
uncovered: High sequential throughput can easily be achieved by using 128kb
blocks, but 8kb blocks can as well but are better for random accesses; posting
many random reads concurrently greatly increases throughput. Unfortunately,
also some unexplained behaviour has been encountered: low write throughput
for the tested ide disk; very different behaviour of scsi or ide disks. The un-
explained behaviour might very well be an artifact of the Linux disk scheduler
or how it is used by the test program and Venti. The tests also show that it
can be beneficial to have multiple processes operating concurrently on a disk.
Taking a closer look into the effects of operating system disk handling will likely
be worthwhile.

The original goal of the project, building a simulator to be able to test the
performance of new optimisations strategies and to test various cache size pari-
tionings, has not been fully achieved. Only a simplistics simulator has been
implemented, one that is not accurte enough for testing Venti behavior as in-
tended. There are several reasons for this, discussed below. The simulator build
is able to generate trace files. Generating a trace file is done by starting a modi-
fied Venti which operates as normal but also writes all Venti operations and the
resulting disk operations to the trace file. Thus, these trace files resemble real
workloads. The simulator reads a trace files and returns the running time and
other statistics as result. The running time is the most important performance
characteristic. However, not enough of the Venti optimisations have been im-
plemented to make the simulator accurate. For example, the bloom filter is not
simulated, neither is index entry prefetching. Both are required for accurate
simulations. Also, the disk model used is not accurate enough. More complica-
tions in implementing a Venti simulator have been encountered. The idea was
that the code for the simulator could be integrated in the normal Venti code.
This is possible—it has been done—but not in a clean enough way to have the
two coexist without problems. Thus, the simulator will likely have to be main-
tained separately, making it harder to keep the two synchronised. Another key
idea was that the Venti code could be used for the simulator as well. This is the
case for some of them, but not for all, such as the bloom filter and index entry
prefetching. Especially for the latter, simulating would involve quite some code
that is unrelated to the implementation in Venti. This introduces complexity
and further drives the code bases of Venti and the simulator apart. Having to
implement optimisations specifically for the simulator also means the simulator
has to be verified to be accurate after such a new feature: it may have bugs in its
implementation, or it may simply not be an accurate approximation. Finally, a
problem fundamental to a Venti simulator is that the behaviour of Venti clients,
such as latencies between subsequent requests, have impact on Venti perfor-
mance. And Venti behaviour has effect on the client behaviour. This could in
theory reduce the accuracy of the simulator.

As there is no simulator, how can one determine the performance of new
optimisations, or the optimal partitioning of memory for the caches? First, an
analysis of the optimisations is important, which has been done for this report.

84

Second, a characterisation of the workload provides further insight in how Venti
will behave. This expected behaviour can then be verified by running small scale
tests. Cache partitioning remains hard and involves educated guessing. It is also
very dependant on the workload and as such a single optimal partitioning does
not exist. In general, based on an analysis of the optimisations and common
workloads, it seems best to ensure the index cache is as big as possible. The
lump cache should be small, just big enough to prevent lump read-ahead from
trashing the cache. The disk block cache should be big enough to hold enough
dirty, unflushed blocks for high write throughput. Caching of data in the disk
block and lump caches to fulfil recurring reads is not useful and much better
done in the client, which knows much more about usage patterns.

In the process of understanding Venti, its design considerations and imple-
mentation, the idea underlying memventi formed. It was not planned to be
part of the project, but it has nonetheless. Memventi stores the (score, type,
disk address)-tuple in main memory in a memory-efficient way. It stores only a
small part of the score, only as many as needed to prevent too many collisions
of the partial scores to occur, a probability of a collision of 0.001 or lower on a
filled memventi seems acceptable. The parameters, the number of bits to use for
addressing the data file and number of bits for the score, can be calculated using
a separate program. The collisions occur more when the memventi data file is
filled more, thus memventi performance degrades gracefully (but still good and
according to design) when becoming filled. A 1tb memventi can be created us-
ing 2500mb of main memory, which is still a much higher storage capacity than
most people need. Some workloads on memventi perform different on memventi
than on the normal Venti. Pristine (non-duplicate) writes are about as fast on
memventi and Venti, but for memventi this does not come at the cost of main
memory for a bloom filter. Sequential duplicate writes are fast on Venti, need-
ing only few disk accesses; random writes are slow for both programs. Random
reads are fast on memventi, since are no index disks to consult. Sequential reads
are fast on both systems, although memventi achieves this with substanstially
fewer optimisations and thus less complexity. One of the obvious other differ-
ences regarding complexity is that memventi stores data blocks in a file on a
normal file system. This allows memventi to make use of the file system (kernel)
disk block cache without any cost, it eases administration (backup of the data
file), and making the data file append-only protects against data corruption,
again provided by the operating system for free. Of course, memventi is also
reliable in that it always checks the score of the data read from disk, detect-
ing disk failures. Overal, memventi performs well when compared to Venti and
there is still room for improvement. Memventi also has a few drawbacks: it does
not scale to high capacity (many terabytes); reading the index file into main
memory at startup is slow for large installations; determining parameters with
a separate programs could use some improvement; finally, many more minor
improvements are waiting to be implemented, such as a binary search on entries
in memory, instead of the current linear search.

Finally, enough work is waiting to be done. This master’s project has
spawned new ideas related to Venti, some already existed in the original Venti
paper. For another, some of these ideas have already been implemented, are
in progress of being implemented, or planned to be. The next chapter will
elaborate on them.

85

86

Chapter 9

Future work

Venti, memventi or the venti clients have not been perfected, all of them can be
improved upon. This chapter explains ideas for future work in four directions:
improving memventi, finishing the Venti simulator, optimising existing Venti
clients such as Fossil, and creating new Venti clients and tools.

Before continuing, a sidenote about continued work needs to be placed. Dur-
ing this project I have become very familiar with the venti protocol and imple-
mentation, as well as with the Venti clients and how they store data in Venti.
This allowed me to spawn quite a few general ideas and specific designs for
continued work. This is part of the reason why I took on the Google Summer
of Code (gsoc) project to implement a memventi and vac-tools for Inferno [37]
(an operating system that is a close relative to Plan 9 and can run both on bare
hardware and as a user-space application on most common operating systems),
in the programming language Limbo [38, 39] (a comfortable high-level program-
ming language). All ideas I intend to implement for the gsoc project, or have
already implemented, where thought up while working on this project. This is
obvious for ventisrv, the Limbo version of memventi. But also holds for vcache,
a venti cache and proxy, and for the Limbo version of Vac that splits blocks on
content boundaries using rabin fingerprinting.

First, improving memventi, or its successor: ventisrv. Section 7.2.6 has
a detailed list of improvements for memventi. Many of these suggestions have
already been implemented in ventisrv. Only the features that seemed worthwhile
have been implemented:

• Binary search in the chains, it seems to reduce cpu usage and improve
throughput.

• Multiple threads per connection: ventisrv spawns up to 32 processes to do
data lookups, these processes are used both for reading and for writing.

• Writes are queued in a queue for up to 32 entries.
• Compression of blocks. Unlike Venti, ventisrv uses the deflate compression

algorithm (also used by gzip, it is the only algorithm available in Inferno).
Compression throughput seems lower than whack, but no thorough com-
parison between deflate and whack has been made. However, there is a
difference in implementation: Venti compresses a single block and stores
it. Ventisrv takes multiple blocks and compresses it into one payload, a

87

special header specifying all scores is prepended. The compression ratio is
significantly higher when compressing multiple blocks compared to com-
pressing a single block at a time, this was as expected and is due to deflate
having a large history buffer (16kb by default).

• Read index file faster. Big chunks are read and queued for a process that
unpacks the entries and inserts them into the main memory index.

• More blocks of the index file and data file are verified at startup.

Some ideas have not yet, but probably will be implemented. Some of these
were implemented in memventi, but not in a very clean way.

• Loading the index file into memory can still be improved. Ventisrv reads
the index file efficiently, but inserting into memory is slow: all entries are
inserted sorted, for which lots of reading and copying of memory occurs.
It would be better to insert non-sorted, and sort once when some amount
of data has been filled.

• Ventisrv has a slightly changed file format, mostly for the data file. First,
the compressed blocks are in a new header. Second, the header has been
extended with a connection time, recording the starting time of a connec-
tion, useful for removing all blocks written by a bad connection.

• Statistics about memory usage, hash table usage, collisions, etc. are not
available in ventisrv. Exporting a simple file that returns human-readable
and machine-parseable statistics may be useful.

Other features have not been implemented and probably never will, such as
caching and read-ahead from the data file. It is better to let operating system
do this: it also has more memory available to do so and adapts better to high
loads. Next, raw disks will probably not be used to store data blocks on. It
would require code for caching disk blocks and read-ahead. If a ventisrv really
needs to be used as root file system, its data and index files can be served from
a simple file system.

Second, finishing the Venti simulator. It may be worth considering a simu-
lator implementation that is not embedded in the normal Venti code. This is
a trade-off between having similar real Venti and simulated behaviour and the
ease of writing the simulator. When implementing a full simulator, at least the
following the following components should be simulated for realistic results:

• Multiple disks with concurrent accesses
• Queueing of writes
• Bloom filter
• Index entry prefetching

Possible designs for these components have been presented in Section 6.4.

Third, optimising existing Venti clients, such as Fossil and Vac. The ideas
from this come from the analysis of Fossil and Vac described in Sections 3.2
and 3.1. Fossil never queues writes and always sends a sync-request after each
write. This is not efficient, and for example interacts badly with compression in
ventisrv. For better performance, Fossil should queue multiple write requests.
But care must be taken to keep Fossils file system consistent. If a venti write

88

or sync fails, the data should still be present. A related idea is that Vacfs could
queue reads to reduce latency. There is not much to queue except when multiple
processes read from the vac file system concurrently, or when performing read-
ahead. Read-ahead is useful only on higher-latency connections with reasonable
bandwidth (e.g., an adsl line). Read-ahead can be performed on the following
type of blocks:

• The next (or next two or n) pointer block in the hash tree (at the deepest
level), or the next pointer block at each depth.

• The next (or multiple) data blocks.
• The next vac directory (containing the 40-byte entries).
• The next vac directory meta information (containing direntries).

These same kinds of read-ahead might be useful for Vac when it writes only
the changes relative to a previous archive. In this case, it reads a venti archive
while writing a new one. The files to write to the new archive are usually on the
local file system and thus fast to access. Using read-ahead can ensure reading
the venti archive does not slow down writing the new archive. Reading-ahead
can be implemented as a venti proxy. This proxy would speed up multiple read-
ers in Vacfs as well because each read can be satisfied from the data in the
read-ahead cache.

Fourth and last, new Venti-related tools or features can be implemented.
Three were posted in the original Venti paper. First, a load-balancing proxy
could be useful to stretch the storage capacity of memventi and ventisrv. Venti
itself scales reasonably well to practically unlimited size, but memventi does
not. However, one can simply switch to Venti when outgrowing memventi. The
second suggestion was about security; a score acts as a capability, thus knowing a
score implies knowing the data, and the other way around. There is currently no
way to authenticate connections, and no encryption on them. Secured networks,
authenticated and encrypted, can alleviate most of the need for authentication
mechanisms. Third is splitting the blocks on content boundaries using rabin
fingerprinting instead of at fixed file offsets. This reduces the number of unique
blocks to store in Venti when a file is changed other then appending. An initial
version of this has been implemented as part of the aforementioned gsoc project,
and indeed increases block reuse.

As for the second item, memventi and ventisrv have a simple solution to
part of the authentication problem. They can listen on multiple tcp ports, and
handle them as either read-only or read/write. The first type disallows all writes
and syncs. This solves the problem that without authentication, just anyone
who can read from a Venti can also write to it, and fill it up.

For the gsoc project, a venti proxy server called vcache has been imple-
mented that acts as a block cache. Vcache fulfils reads, writes and syncs by
forwarding them to a remote (authoritative) server. Responses to reads are
cached and kept in memory to quickly respond to future requests for that same
block. A look-aside venti server can also be specified: vcache will write the data
from read responses from the remote server to the look-aside venti for future
lookups. Read requests coming in at the proxy are first forwarded to the look-
aside venti server, and if it does not have the data, forwarded to the remote
server. Writes and syncs always go to the remote server, but may optionally be

89

sent to the look-aside venti as well.
Other venti proxies can be devised as well. For example, a memventi or

ventisrv can be used for the look-aside server in vcache. However, it will never
remove data; the only way to clear up the storage used by the look-aside server
is currently to start it anew with cleared state. A better way would be to use a
server that reclaims storage for unpopular blocks. Or perhaps just round-robin-
writes blocks, assuming blocks written long ago are likely to be unpopular now,
and can simply be retrieved at little cost if they are still popular.

Another idea is a proxy that acts as a write buffer, buffering data on disk.
This would allow programs like Fossil and Vac to continue with a next write
quickly, even when the authoritative venti server is on the other side of a slow
link. The write buffer proxy would let the blocks trickle to the remote server
in the background. If the proxy would have problems writing the blocks (e.g.
due to a system crash), the data is still stored on disk and can be flushed later
on. A sync could represent a request to flush the write buffer to the proxies
local storage, or to the remote server. The first is probably better, syncing to
remote potentially takes a very long time. Note that such a proxy does have
implications: if a client writes and syncs through a proxy, another program that
does not go through the proxy but directly to the authoritative server would
be told the data is not present. In short, as long as the write buffer proxy has
not flushed the data to the authoritative venti server, all reads of the data must
go through the proxy. A write buffer could also be placed in front of a venti
server. The venti server behind the write buffer could do compression (which
is relatively slow): the write buffer would buffer fast write bursts and flush the
blocks to venti in idle time.

More special-purpose proxy servers can be devised.

90

Bibliography

[1] S. Quinlan and S. Dorward. Venti: a new approach to archival storage. In
First USENIX conference on File and Storage Technologies, Monterey,CA,
2002.

[2] Plan 9 from User Space. Venti Overview Manual Page. Venti(7).

[3] Plan 9 from User Space. Venti Administration Manual Page. Venti(8).

[4] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson,
Howard Trickey, and Phil Winterbottom. Plan 9 from Bell Labs. Computing
Systems, 8(3):221–254, Summer 1995.

[5] Jim McKie Sean Quinlan and Russ Cox. Fossil, an Archival File Server.

[6] Plan 9 from Bell Labs. Fossil manual page. Fossil(4).

[7] Plan 9 from Bell Labs. Vac manual page. Vac(1).

[8] Plan 9 from Bell Labs. Vacfs manual page. Vacfs(4).

[9] Plan 9 from User Space. Vbackup Administration Manual Page.
Vbackup(8).

[10] Sean Quinlan. A Cached WORM File System. Software — Practice and
Experience, 21(12):1289–1299, 1991.

[11] S. J. Mullender and A. S. Tanenbaum. Protection and resource control in
distributed operating systems. Computer Networks, 8(5):421–432, October
1984.

[12] Plan 9 from Bell Labs. Plan 9 File Protocol manual page. Intro0(5).

[13] Russ Cox. Plan 9 from user space. http://swtch.com/plan9port/.

[14] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, 1970.

[15] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the
Full SHA-1. In CRYPTO, pages 17–36, 2005.

[16] Plan 9 from User Space. Venti Zero-Copy Packet Library Manual Page.
Venti-packet(3).

[17] Chris Ruemmler and John Wilkes. An Introduction to Disk Drive Modeling.
IEEE Computer, 27(3):17–28, 1994.

91

http://plan9.bell-labs.com/sys/doc/venti/venti.pdf
http://swtch.com/plan9port/man/man7/venti.html
http://swtch.com/plan9port/man/man8/venti.html
http://plan9.bell-labs.com/sys/doc/9.pdf
http://plan9.bell-labs.com/sys/doc/fossil.pdf
http://plan9.bell-labs.com/magic/man2html/4/fossil
http://plan9.bell-labs.com/magic/man2html/1/vac
http://plan9.bell-labs.com/magic/man2html/4/vacfs
http://swtch.com/plan9port/man/man8/vbackup.html
http://plan9.bell-labs.com/who/seanq/cw.pdf
http://plan9.bell-labs.com/magic/man2html/5/intro0
http://swtch.com/plan9port/
http://www.infosec.sdu.edu.cn/paper/sha1-crypto-auth-new-2-yao.pdf
http://www.infosec.sdu.edu.cn/paper/sha1-crypto-auth-new-2-yao.pdf
http://swtch.com/plan9port/man/man3/venti-packet.html
http://citeseer.ist.psu.edu/ruemmler94introduction.html

[18] Elizabeth A. M. Shriver, Arif Merchant, and John Wilkes. An Analytic Be-
havior Model for Disk Drives with Readahead Caches and Request Reorder-
ing. In Measurement and Modeling of Computer Systems, pages 182–191,
1998.

[19] John S. Bucy, Gregory R. Ganger, and et al. The DiskSim Simulation
Environment Version 3.0 Reference Manual.

[20] J. Schindler and G. Ganger. Automated disk drive characterization, 1999.

[21] Intel and Seagate. Serial Ata Native Command Queuing, 2003.

[22] B. L. Worthington, G. R. Ganger, and Y. N. Patt. Scheduling Algorithms
for Modern Disk Drives. In Proceedings of the 1994 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, pages
241–251, Nashville, TN, USA, 16–20 1994.

[23] M. Seltzer, P. Chen, and J. Ousterhout. Disk Scheduling Revisited. In
Proceedings of the USENIX Winter 1990 Technical Conference, pages 313–
324, Berkeley, CA, 1990. USENIX Association.

[24] Richard P. King. Disk arm movement in anticipation of future requests.
ACM Trans. Comput. Syst., 8(3):214–229, 1990.

[25] WD Caviar SE 80 EIDE Hard Drives (WD800JB) - Specifications.

[26] Intel. http://www.intel.com/design/flash/nand/datashts/311998.htm,
js29f02g08aanb3, js29f04g08banb3, js29f08g08fanb3, 2006.

[27] Micron. NAND Flash Memory, mt29f4g08aaa, mt29f8g08baa,
mt29f8g08daa, mt29f16g08faa, 2005.

[28] Mtron. MSD-S Series Product Specification.

[29] Steven W. Schlosser, John Linwood Griffin, David Nagle, and Gregory R.
Ganger. Designing computer systems with MEMS-based storage. In Archi-
tectural Support for Programming Languages and Operating Systems, pages
1–12, 2000.

[30] Feng Wang, Bo Hong, Scott A. Brandt, and Darrell D. E. Long. Using
MEMS-Based Storage to Boost Disk Performance. In MSST ’05: Proceed-
ings of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage
Systems and Technologies (MSST’05), pages 202–209, Washington, DC,
USA, 2005. IEEE Computer Society.

[31] S. Schlosser and G. Ganger. MEMS-based storage devices and standard
disk interfaces: A square peg in a round hole, 2004.

[32] S. Schlosser, J. Schindler, A. Ailamaki, and G. Ganger. Exposing and
exploiting internal parallelism in MEMS-based storage, 2003.

[33] B. Hong, S. Brandt, D. Long, E. Miller, K. Glocer, and Z. Peterson. Zone-
based shortest positioning time first scheduling for MEMS-based storage
devices, 2003.

92

http://citeseer.ist.psu.edu/shriver98analytic.html
http://citeseer.ist.psu.edu/shriver98analytic.html
http://citeseer.ist.psu.edu/shriver98analytic.html
http://citeseer.csail.mit.edu/bucy03disksim.html
http://citeseer.csail.mit.edu/bucy03disksim.html
http://citeseer.ist.psu.edu/schindler99automated.html
http://www.seagate.com/content/pdf/whitepaper/D2c_tech_paper_intc-stx_sata_ncq.pdf
http://citeseer.ist.psu.edu/worthington94scheduling.html
http://citeseer.ist.psu.edu/worthington94scheduling.html
http://citeseer.ist.psu.edu/seltzer90disk.html
http://doi.acm.org/10.1145/99926.99930
http://www.wdc.com/en/products/Products.asp?DriveID=32
http://download.micron.com/pdf/datasheets/flash/nand/4gb_nand_m40a.pdf
http://mtron.net/files/MSD_S_spec.pdf
http://citeseer.ist.psu.edu/schlosser00designing.html
http://dx.doi.org/10.1109/MSST.2005.40
http://dx.doi.org/10.1109/MSST.2005.40
http://citeseer.ist.psu.edu/schlosser03memsbased.html
http://citeseer.ist.psu.edu/schlosser03memsbased.html
http://citeseer.ist.psu.edu/schlosser03exposing.html
http://citeseer.ist.psu.edu/schlosser03exposing.html
http://citeseer.ist.psu.edu/hong03zonebased.html
http://citeseer.ist.psu.edu/hong03zonebased.html
http://citeseer.ist.psu.edu/hong03zonebased.html

[34] M. Uysal, A. Merchant, and G. Alvarez. Using MEMS-based storage in
disk arrays, 2003.

[35] Shaun Foley. Venti simulator. 2006.

[36] Sean Quinlan and Sean Dorward. Venti: a new approach to archival data
storage, 2002.

[37] et. al. SM Dorward. The Inferno Operating System. Bell Labs Technical
Journal, 2(1):5–18, Winter 1997.

[38] Dennis M. Ritchie. The Limbo Programming Language, 1995.

[39] Brian W. Kernighan. A Descent into Limbo, 2000.

93

http://citeseer.ist.psu.edu/uysal03using.html
http://citeseer.ist.psu.edu/uysal03using.html
http://www.vitanuova.com/inferno/papers/bltj.html
http://www.vitanuova.com/inferno/papers/limbo.html
http://www.vitanuova.com/inferno/papers/descent.html

94

Appendix A

Test setup

This chapter gives an overview of the machine that was used in the tests per-
formed during this project, along with a few basic performance properties.

All tests have been performed on a single machine. It had 512mb of ddr
memory, a 2.4 GHz Intel Celeron processor on an Intel D845GVSR motherboard
and ran the Linux distribution Debian Etch (stable). All unneeded background
processes and daemons were disabled for the tests. A Tekram DC-390U2W
scsi controller was present in the system. For testing a Compaq u2w 9100mb,
10,000 rpm scsi hard disk was used (Table A.1), as well as a Western Digital
udma 80026mb, 7,200 rpm ide hard disk (Table A.2).

Table A.3 presents a few basic performance statistics of the disks. These can
be used to value Venti performance. The raw performance results come from
the tests described in Appendix B.

The file system tests have been done informally. They disks were partitioned
with a single ext3 file system partition on the whole disk. Ptio was used, reading
from a single file in the root of the partition. The only modification made to
ptio for this test was that the file was not opened with o direct, thus not
bypassing the disk block cache. Sequential operation on the file system is very
fast. Random reads are slightly slower on the file system, opening the file with
o direct increased performance to close to raw performance. Perhaps the
kernels disk block cache is the bottleneck. Writes are slowed down even more,
this too is alleviated by using o direct. Tests using 128kb blocks showed that
especially sequential write performance can go up significantly, for the ide file
system to 45.0 mb/s. For Venti, the sequential operations and random reads are
most important. There appear to be no discrepancies in performance between

Model Compaq BD009222BB
Interface scsi u2w, 80 mb/sec
Cache size Unknown
Rpm 10,000
Disk size 9,100 mb
Cache Write-through
Other Tagged command queuing, depth 16

Table A.1: Disk properties, Compaq BD009222BB.

95

Model Western Digital WDC WD800JB
Interface udma, 100 mb/second
Cache size 8192 kb
Rpm 7,200
Disk size 80,026 mb
Average Latency 4.20 ms (nominal)
Read Seek Time 8.9 ms
Write Seek Time 10.9 ms (average)
Track-To-Track Seek Time 2.0 ms (average)
Full Stroke Seek 21.0 ms (average)
Cache Write-through

Table A.2: Disk properties, Western Digital, from [25].

9,1gb scsi 80gb ide
Raw sequential read 26.1 mb/s 38.2 mb/s
Raw sequential write 22.6 mb/s 10.3 mb/s
Raw random read 0.96 mb/s 0.91 mb/s
Raw random write 0.90 mb/s 0.82 mb/s
File system sequential read 26.3 mb/s 52.9 mb/s
File system sequential write 19.1 mb/s 31.5 mb/s
File system random read 0.70 mb/s 0.78 mb/s
File system random write 0.67 mb/s 0.49 mb/s

Table A.3: Basic performance statistics in mb/s, measured using ptio, with 8kb
blocks and a single process.

using a raw disk or the file system.

96

Appendix B

Disk tests

The tests that were conducted are described and the results explained in Sec-
tion 4.3. The results are presented split by drive, one series of tables for the
scsi disk, and another for the ide disk.

B.1 SCSI disk

The scsi disk that has been tested is described in more detail in Appendix A.
The Tables B.1, B.2, B.3 and B.4 present the results, split up by read/write and
random/sequential.

B.2 IDE disk

The ide disk that has been tested is described in more detail in Appendix A.
The Tables B.5, B.6, B.7 and B.8 present the results, split up by read/write and
random/sequential.

97

Type Op Blocksize Procs kcq Throughput Per op Mean Stddev
rand read 1,024 1 1,16,128 0.125 7.799 7.798 2.648
rand read 1,024 4 1,16,128 0.122 7.976 31.890 84.353
rand read 1,024 32 1,16,128 0.179 5.872 187.242 176.731
rand read 8,192 1 1,16,128 0.960 8.139 8.138 2.636
rand read 8,192 4 1,16,128 1.098 7.114 28.442 19.099
rand read 8,192 32 0 1.101 7.099 226.404 203.803
rand read 8,192 32 16 1.551 5.039 160.646 112.472
rand read 8,192 32 128 1.575 4.962 158.175 83.459
rand read 131,072 1 1,16,128 9.250 13.514 13.513 2.607
rand read 131,072 4 1,16,128 10.175 12.285 49.123 33.910
rand read 131,072 32 0 10.203 12.251 390.783 337.343
rand read 131,072 32 16 12.346 10.125 322.892 220.014
rand read 131,072 32 128 12.423 10.062 320.906 163.663

Table B.1: Results of tests on scsi drive, random reads.

Type Op Blocksize Procs kcq Throughput Per op Mean Stddev
rand write 1,024 1 1,16,128 0.118 8.286 8.285 2.629
rand write 1,024 4 1,16,128 0.132 7.398 29.581 20.855
rand write 1,024 32 0 0.132 7.393 235.797 209.600
rand write 1,024 32 16 0.182 5.365 171.080 119.944
rand write 1,024 32 128 0.189 5.171 164.833 92.247
rand write 8,192 1 1,16,128 0.901 8.675 8.674 2.680
rand write 8,192 4 1,16,128 1.012 7.720 30.867 21.164
rand write 8,192 32 0 1.015 7.696 245.407 215.416
rand write 8,192 32 16 1.368 5.714 182.186 126.511
rand write 8,192 32 128 1.409 5.545 176.783 98.755
rand write 131,072 1 1,16,128 8.423 14.841 14.840 3.509
rand write 131,072 4 1,16,128 9.031 13.841 55.349 37.337
rand write 131,072 32 0 9.010 13.875 442.609 382.072
rand write 131,072 32 16 10.499 11.906 379.739 258.930
rand write 131,072 32 128 10.693 11.690 372.862 208.438

Table B.2: Results of tests on scsi drive, random writes.

98

Type Op Blocksize Procs kcq Throughput Per op Mean Stddev
seq read 1,024 1 1,16,128 8.931 0.109 0.108 0.010
seq read 1,024 4 1,16,128 0.597 1.637 6.545 3.302
seq read 1,024 32 1,16,128 3.690 0.273 8.715 5.874
seq read 8,192 1 1,16,128 26.101 0.299 0.298 0.180
seq read 8,192 4 1,16,128 4.596 1.701 6.801 3.503
seq read 8,192 32 0 21.384 0.365 11.689 2.255
seq read 8,192 32 16 21.445 0.364 11.658 2.339
seq read 8,192 32 128 21.801 0.359 11.480 2.805
seq read 131,072 1 1,16,128 26.184 4.774 4.772 0.460
seq read 131,072 4 1,16,128 21.869 5.717 22.861 36.173
seq read 131,072 32 0 16.266 7.688 245.314 469.188
seq read 131,072 32 16 18.370 6.855 218.796 223.405
seq read 131,072 32 128 21.707 5.759 183.942 74.799

Table B.3: Results of tests on scsi drive, sequential reads.

Type Op Blocksize Procs kcq Throughput Per op Mean Stddev
seq write 1,024 1 1,16,128 0.162 6.030 6.028 0.165
seq write 1,024 4 1,16,128 0.943 1.036 4.141 1.706
seq write 1,024 32 0 0.410 2.383 76.245 86.518
seq write 1,024 32 16 0.382 2.558 81.849 51.759
seq write 1,024 32 128 3.729 0.262 8.379 1.648
seq write 8,192 1 1,16,128 1.235 6.328 6.327 0.564
seq write 8,192 4 1,16,128 4.491 1.740 6.956 1.505
seq write 8,192 32 0 2.634 2.966 94.911 108.463
seq write 8,192 32 16 3.709 2.107 67.398 52.188
seq write 8,192 32 128 19.400 0.403 12.886 3.534
seq write 131,072 1 1,16,128 10.901 11.467 11.466 2.016
seq write 131,072 4 1,16,128 22.631 5.523 22.090 3.286
seq write 131,072 32 0 15.857 7.883 251.783 220.593
seq write 131,072 32 16 16.446 7.601 242.778 173.348
seq write 131,072 32 128 22.607 5.529 176.868 37.822

Table B.4: Results of tests on scsi drive, sequential writes.

99

Type Op Blocksize Procs kcq dra Throughput Per op Mean Stddev
rand read 1,024 1 128 off 0.116 8.42 8.42 2.95
rand read 1,024 1 128 on 0.104 9.36 9.35 3.48
rand read 1,024 4 128 off 0.101 9.68 38.70 93.78
rand read 1,024 4 128 on 0.093 10.54 42.16 97.42
rand read 1,024 32 128 off 0.107 9.16 291.69 913.96
rand read 1,024 32 128 on 0.094 10.43 332.45 973.08
rand read 8,192 1 128 off 0.913 8.56 8.56 2.99
rand read 8,192 1 128 on 0.821 9.52 9.52 3.55
rand read 8,192 4 128 off 0.797 9.80 39.19 94.37
rand read 8,192 4 128 on 0.736 10.63 42.49 97.78
rand read 8,192 32 128 off 0.852 9.18 292.35 914.67
rand read 8,192 32 128 on 0.744 10.50 334.86 976.23
rand read 131,072 1 128 off 11.297 11.07 11.06 3.11
rand read 131,072 1 128 on 10.476 11.93 11.93 3.66
rand read 131,072 4 128 off 9.943 12.57 50.26 105.70
rand read 131,072 4 128 on 9.392 13.31 53.22 108.47
rand read 131,072 32 128 off 10.584 11.81 376.45 1,032.55
rand read 131,072 32 128 on 9.575 13.06 416.27 1,082.32

Table B.5: Results of tests on ide drive, random reads.

Type Op Blocksize Procs kcq dra Throughput Per op Mean Stddev
rand write 1,024 1 1,16,128 off 0.103 9.45 9.45 2.95
rand write 1,024 4 1,16,128 off 0.104 9.42 37.67 6.33
rand write 1,024 32 0 off 0.084 11.65 371.74 320.47
rand write 1,024 32 16 off 0.090 10.83 345.69 182.91
rand write 1,024 32 128 off 0.104 9.36 298.54 23.43
rand write 8,192 1 1,16,128 off 0.817 9.57 9.57 2.98
rand write 8,192 4 1,16,128 off 0.822 9.50 38.00 6.36
rand write 8,192 32 0 off 0.662 11.80 376.59 324.72
rand write 8,192 32 16 off 0.708 11.03 352.06 185.50
rand write 8,192 32 128 off 0.823 9.50 302.89 23.33
rand write 131,072 1 1,16,128 off 9.223 13.55 13.55 3.06
rand write 131,072 4 1,16,128 off 9.226 13.55 54.17 6.91
rand write 131,072 32 0 off 7.904 15.81 504.52 434.48
rand write 131,072 32 16 off 7.699 16.24 517.91 274.08
rand write 131,072 32 128 off 9.227 13.55 432.01 29.27

Table B.6: Results of tests on ide drive, random writes.

100

Type Op Blocksize Procs kcq dra Throughput Per op Mean Stddev
seq read 1,024 1 128 off 0.117 8.33 8.32 0.27
seq read 1,024 1 128 on 7.926 0.12 0.12 0.10
seq read 1,024 4 128 off 0.235 4.16 16.63 6.43
seq read 1,024 4 128 on 0.595 1.64 6.57 3.32
seq read 1,024 32 128 off 1.500 0.65 20.83 4.89
seq read 1,024 32 128 on 3.683 0.27 8.49 2.29
seq read 8,192 1 128 off 0.922 8.48 8.48 0.19
seq read 8,192 1 128 on 38.168 0.21 0.20 0.08
seq read 8,192 4 128 off 1.830 4.27 17.08 6.55
seq read 8,192 4 128 on 4.463 1.75 7.00 3.73
seq read 8,192 32 128 off 6.843 1.14 36.53 13.24
seq read 8,192 32 128 on 10.48 0.75 23.92 8.83
seq read 131,072 1 128 off 11.503 10.87 10.87 0.56
seq read 131,072 1 128 on 48.999 2.55 2.55 0.56
seq read 131,072 4 128 off 12.169 10.27 41.08 94.54
seq read 131,072 4 128 on 44.921 2.78 11.12 50.86
seq read 131,072 32 128 off 11.967 10.45 333.65 986.96
seq read 131,072 32 128 on 43.859 2.85 90.68 512.60

Table B.7: Results of tests on ide drive, sequential reads.

Type Op Blocksize Procs kcq dra Throughput Per op Mean Stddev
seq write 1,024 1 1,16,128 off 0.117 8.33 8.33 0.26
seq write 1,024 4 1,16,128 off 0.234 4.18 16.70 0.38
seq write 1,024 32 1,16,128 off 1.809 0.54 17.28 0.39
seq write 8,192 1 1,16,128 off 0.921 8.48 8.48 0.25
seq write 8,192 4 1,16,128 off 1.809 4.32 17.28 0.59
seq write 8,192 32 128 off 10.303 0.76 24.36 3.74
seq write 131,072 1 1,16,128 off 11.488 10.88 10.88 0.66
seq write 131,072 4 1,16,128 off 11.485 10.88 43.53 0.92
seq write 131,072 32 0 off 17.753 7.04 224.96 210.69
seq write 131,072 32 16 off 21.422 5.84 186.33 126.03
seq write 131,072 32 128 off 11.490 10.88 347.47 12.13

Table B.8: Results of tests on ide drive, sequential writes.

101

102

Appendix C

Basic Venti tests

For measuring Venti performance, the following commands have been executed,
each three times:

• Writing sequentially, on an empty Venti:
./o.randtest -h localhost -b 8k -n 2g -w

• Reading sequentially:
./o.randtest -h localhost -b 8k -n 2g -r

• Reading randomly:
./o.randtest -h localhost -b 8k -n 2g -r -P

• Writing sequentially, already present, on a Venti filled by the same com-
mand:
./o.randtest -h localhost -b 8k -n 2g -w

• Writing randomly, already present, on a filled Venti:
./o.randtest -h localhost -b 8k -n 2g -w -P

• Writing same block over and over, on an empty Venti:
./o.sametest -h localhost -b 8k -n 2g -w

• Reading same block over and over, on an otherwise empty Venti:
./o.sametest -h localhost -b 8k -n 2g -r

Both the test programs and Venti were running on the same machine. The
tests were conducted using the machine specified in Appendix A. The entire
9.1gb scsi drive was used as index disk. The entire 80gb ide drive was used as
arena disk. A bloom filter of 64mb was chosen by fmtbloom. Of the 512mb of
main memory, 256mb was given to the index cache, 32mb to the disk block cache
and 16mb to the lump cache. All runs of the results are shown in Table C.1.
The sequential write of 68gb was only done once since it took a lot of time.
Sequential read was stopped at 28gb because of a Venti read error.

C.1 sametest

Sametest is a copy of randtest that comes with Venti, with a minor modification.
Instead of writing blocks with random contents, it writes the same block over
and over. The following diff creates sametest from randtest:

--- randtest.c 2005-07-12 17:23:35.000000000 +0200

103

Type of test Run 1 Run 2 Run 3 Average
randtest write pristine 2g 6.00 6.28 7.22 6.50
randtest write duplicate sequential 2g 18.56 19.10 18.39 18.68
randtest write duplicate permuted 2g 17.83 18.15 18.14 18.04
randtest read sequential 2g 8.60 8.61 8.60 8.60
randtest read permuted 2g 0.88 0.88 0.88 0.88
sametest write 2g 18.99 18.90 18.90 18.93
sametest read 2g 21.13 20.40 20.47 20.67
randtest write sequential 68g 2.99 2.99
randtest read sequential 28g 8.38 8.42 8.40

Table C.1: Results of basic Venti performance tests, in mb/s.

+++ sametest.c 2007-02-13 19:58:09.000000000 +0100
@@ -97,6 +97,18 @@

packets = totalbytes/blocksize;
if(maxpackets == 0)

maxpackets = packets;
+
+ memmove(buf, template, blocksize);
+ for(i=0; i<packets && i<maxpackets; i++){
+ if(c){
+ sendp(c, buf);
+ buf = vtmalloc(blocksize);
+ }else
+ (*fn)(buf, buf2);
+ cur += blocksize;
+ }
+ return;
+

order = vtmalloc(packets*sizeof order[0]);
for(i=0; i<packets; i++)

order[i] = i;

104

Appendix D

Memventi tests

The memventi test is the same as the basic Venti test from the previous chapter:
the commands ran for the tests are identical. The tests resulted in the runs and
averages in Table D.1, the values are throughput in mb/s as returned by randtest
and sametest.

During the test of writing already present block sequentially, memventi took
around 55% cpu time, randtest used about 20%. While reading the blocks
permuted, cpu usage was around 6% and 3% respectively, indicating high cpu
overhead due to lookups since in the latter lots of time is spent waiting for data
to come in. These numbers were determined by watching top and should be
taken with a grain of salt.

Test Run 1 Run 2 Run 3 Average
randtest write pristine 2g 11.34 11.29 11.29 11.30
randtest write duplicate sequential 2g 8.07 8.08 8.08 8.08
randtest write duplicate permuted 2g 0.91 0.91 0.89 0.90
randtest read sequential 2g 11.09 11.08 11.02 11.06
randtest read permuted 2g 0.89 0.88 0.87 0.88
sametest write 2g 18.37 18.01 17.58 17.98
sametest read 2g 17.51 17.56 17.18 17.41

Table D.1: Results of memventi performance tests, in mb/s.

105

106

Appendix E

Compact flash tests

Compact flash memory performance has been measurement. The tests were per-
formed on a 1gb compact flash card, a SanDisk Extreme III 1.0gb. The only
performance characteristic documented is a maximum sequential read/write
speed of 20 mb/s. Random access performance is not mentioned in the specifi-
cations. The following two sections present the results of tests in different flash
memory adaptors.

E.1 IDE to flash adaptor

The compact flash card was tested using a no-name compact flash to ide con-
verter that is able to hold two compact flash cards. Unfortunately, the adaptor
does not support dma, only the ide pio modes and thus will not have a high (se-
quential) throughput. Therefore, it has only been used to test random accesses,
the results of which can be found in Tabe E.1.

E.2 USB flash memory card reader

A usb 2.0 compact flash reader, a SanDisk ImageMate, was used to test both
random and sequential access. The tests are mostly the same as the tests on the
magnetic disks: Many runs of the ptio were conducted and the results analysed.
The parameters were the operation (read or write), blocksize (512 or 8K bytes),
number of processes (1, 4, 32), kernel command queue length (1, 16, 64), type of
i/o (random, sequential) and kernel queue read-ahead (0kb or 128kb). For the
random access tests, the kernel queue read-ahead was set to 0kb. The kernel
i/o scheduler was the default cfq, complete fair queueing, which supposedly
guarantees that all processes receive a fair share of i/o operations. The results
can be found in Table E.2.

107

Op Blocksize Procs kcq Throughput Per op Mean Stddev
read 512 1 1,16,64 1.171 0.417 0.416 0.047
read 512 4 1,16,64 1.170 0.417 1.669 18.772
read 512 32 1 0.844 0.580 18.547 101.882
read 512 32 16 0.994 0.491 15.711 84.466
read 512 32 64 1.159 0.421 13.472 199.511
read 8192 1 1,16,64 2.665 2.932 2.930 0.063
read 8192 4 1,16,64 2.665 2.932 11.726 49.574
read 8192 32 1 2.223 3.514 112.402 279.999
read 8192 32 16 2.224 3.513 112.368 277.553
read 8192 32 64 2.662 2.935 93.874 500.859
write 512 1 1,16,64 0.019 25.513 25.512 3.8197
write 512 4 1,16,64 0.019 25.253 101.009 29.601
write 512 32 1 0.020 24.968 798.717 687.721
write 512 32 16 0.020 24.738 791.379 438.425
write 512 32 64 0.020 24.419 781.171 429.440
write 8192 1 1,16,64 0.311 25.131 25.130 5.334
write 8192 4 1,16,64 0.314 24.854 98.955 30.247
write 8192 32 1 0.316 24.738 790.887 656.446
write 8192 32 16 0.318 24.602 786.552 425.414
write 8192 32 64 0.321 24.318 777.470 428.912

Table E.1: Results of the compact flash card tests with ide adaptor; throughput
in mb/s, latency in ms.

108

Type Op Blocksize Procs KRA kcq Throughput Per op Mean Stddev
rand read 512 1 0 1,16,64 0.777 0.629 0.627 0.043
rand read 512 4 0 1,16,64 0.774 0.631 2.523 24.410
rand read 512 32 0 1 0.594 0.824 24.734 131.442
rand read 512 32 0 16 0.596 0.821 26.019 134.849
rand read 512 32 0 64 0.771 0.634 20.256 248.895
rand read 8k 1 0 1,16,64 5.987 1.305 1.303 0.067
rand read 8k 4 0 1,16,64 5.985 1.305 5.219 34.828
rand read 8k 32 0 1 4.750 1.645 51.103 189.100
rand read 8k 32 0 16 4.715 1.657 52.719 193.416
rand read 8k 32 0 64 5.978 1.307 41.789 354.345
rand write 512 1 0 1,16,64 0.021 23.580 23.580 3.566
rand write 512 4 0 1,16,64 0.021 23.471 93.880 17.711
rand write 512 32 0 1 0.021 23.445 749.793 644.731
rand write 512 32 0 16 0.021 23.317 745.710 408.746
rand write 512 32 0 64 0.021 23.140 740.031 394.015
rand write 8k 1 0 1,16,64 0.325 24.053 24.051 5.206
rand write 8k 4 0 1,16,64 0.325 24.017 96.062 19.563
rand write 8k 32 0 1 0.326 24.006 767.708 660.488
rand write 8k 32 0 16 0.327 23.910 764.665 417.661
rand write 8k 32 0 64 0.330 23.700 757.940 402.586
seq read 512 1 0 1,16,64 0.977 0.500 0.498 0.004
seq read 512 1 128 1,16,64 0.977 0.500 0.498 0.004
seq read 512 4 0 1,16,64 0.274 1.783 7.131 3.640
seq read 512 4 128 1,16,64 0.275 1.778 7.110 3.620
seq read 512 32 0 1 1.545 0.321 10.272 2.293
seq read 512 32 0 16 1.758 0.284 9.084 1.983
seq read 512 32 0 64 1.526 0.324 10.368 2.316
seq read 512 32 128 1 1.770 0.282 9.004 1.989
seq read 512 32 128 16 1.512 0.327 10.450 2.334
seq read 512 32 128 64 1.780 0.280 8.933 1.982
seq read 8k 1 128 1,16,64 6.257 1.249 1.247 0.016
seq read 8k 4 128 1,16,64 3.186 2.453 9.809 4.397
seq read 8k 32 0 1 7.744 1.009 32.272 11.885
seq read 8k 32 0 16 7.616 1.026 32.818 12.050
seq read 8k 32 0 64 7.765 1.006 32.185 11.909
seq read 8k 32 128 1 7.739 1.010 32.297 11.784
seq read 8k 32 128 16 7.600 1.028 32.886 12.112
seq read 8k 32 128 64 7.758 1.007 32.217 11.641
seq write 512 1 128 1,16,64 0.935 0.522 0.520 0.265
seq write 512 4 128 1,16,64 1.231 0.398 1.590 0.452
seq write 512 32 128 1,16,64 5.842 0.084 2.662 0.429
seq write 8k 1 128 1,16,64 6.669 1.171 1.170 0.397
seq write 8k 4 128 1,16,64 7.527 1.038 4.150 0.652
seq write 8k 32 0 1 10.932 0.715 22.814 5.244
seq write 8k 32 0 16 11.092 0.705 22.485 0.931
seq write 8k 32 0 64 11.095 0.704 22.489 0.955
seq write 8k 32 128 1 10.653 0.734 23.417 8.176
seq write 8k 32 128 16 11.104 0.704 22.459 0.859
seq write 8k 32 128 64 11.108 0.703 22.461 0.869

Table E.2: Results of the compact flash card tests with usb card reader; through-
put in mb/s, latency in ms. 109

110

Appendix F

Technical documentation

This chapter provides some insight into the inner workings of Venti. This is
done by giving an overview of the processes that a Venti instance consists of,
along with a description of how they interact. A description of the types used
in the code and a description of the files that the Venti server consists of.

F.1 Pseudo code for handling venti operations

Since the heart of Venti is handling read and write requests, a pseudo code/natural
language description-hybrid for handling them as used by Venti is given below.

111

Pseudo code for handling a write request:

threadmain() calls ventiserver() calls writelump() which does:

lookuplump() to fetch the data from cache (see the pseudo-code for read

on lookuplump() works).

if data happened to be in cache (thus score is already present):

if data read is equal to data to be written:

return success

else (data differs):

a hash collision has been found!

return error

else (data was not in cache):

if queuewrite is set:

queuewrite():

put block in queue (wait on condition ”queue is full”

when queue is full)

wake up thread waiting on condition ”queue is empty”

return success (block will be written by queueproc

using writeqlump())

else (queuewrite not set, write immediately):

writeqlump():

lookupscore() to determine if score is present in venti.

if score is present:

assume it’s the same (no hash collision check)

return success

else (score is not present, we need to write the data):

storeclump(), writeiclump(), writeaclump():

getdblock()

putdblock()

writeclumpinfo()

insertscore() (insert score into cache and possibly

flush when too many entries dirty)

insertlump() (insert lump into cache)

return success

112

Pseudo code for handling a read request:

threadmain() calls ventiserver() calls readlump() which does:

lookuplump() to fetch the data from lump cache:

if score in lump cache:

return data

else (score not in lump cache):

lookupscore():

look for score in index cache

if score not in icache:

loadientry() to read ientry from disk:

if score not in inbloomfilter():

return failure, no such score in venti

loadibucket(), okibucket(), bucklook()

possibly loadarenaclumps() to read adjacent scores

we now have the ientry and thus the address

readilump() to lookup arena and get lump:

loadclump() read clump from arena and parse it:

readarena() to read all clump blocks from arena:

getdblock(), getdblock():

if not in cache:

rareadpart(), readpart()

return data

113

114

Appendix G

Tools

G.1 ptio.c

#define BSD SOURCE
#define XOPEN SOURCE 500

/* glibc has 32 bit offset by default */
#define FILE OFFSET BITS 64

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h> 10

#include <ctype.h>
#include <err.h>
#include <fcntl.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <time.h> 20

#include <unistd.h>

#include <pthread.h>

typedef long long vlong;
typedef unsigned long long uvlong;
typedef unsigned char uchar;
typedef ulong uintptr;

#define nil NULL 30

#define O DIRECT 040000 /* glibc doesn’t want to give us this define. . . */

pthread mutex t offlock;
vlong *offsets;
int noffsets;
int ioffset;
int *times;
int ntimes;

40

115

int isread;
char *file;
int blocksize;
int nproc;

void *
roundup(void *p, ulong n)
{

return (void*)(((uintptr)p+n−1) & ˜(uintptr)(n−1)); 50

}

void *
emallocround(ulong n)
{

void *p;
p = malloc(2*n);
if(p == nil)

err(1, "emallocround");
p = roundup(p, n); 60

return p;
}

char *
deconv(uvlong v, char *s)
{

char *suffix[] = {"", "k", "m", "g", "t"};
int i;

70

i = 0;
while(v > 1024 && (v & (1024−1)) == 0) {

v /= 1024;
i++;

}
sprintf(s, "%llu%s", v, suffix[i]);
return s;

}

80

uvlong
conv(char *s)
{

uvlong r;

r = strtoull(s, &s, 10);
switch(tolower(*s)){
case ’t’:

r *= 1024;
case ’g’: 90

r *= 1024;
case ’m’:

r *= 1024;
case ’k’:

r *= 1024;
s++;
break;

case ’\0’:
break;

default: 100

return ˜0ULL;
}

116

if(*s != 0)
return ˜0ULL;

return r;
}

vlong 110

microsec(void)
{

struct timeval tv;

gettimeofday(&tv, nil);
return (vlong)tv.tv sec*1000000 + (vlong)tv.tv usec;

}

void 120

readoffsets(void)
{

FILE *f;
char line[1024];
char *l;
vlong *p;
int n;
uvlong v;
int len;

130

f = fdopen(0, "r");
if(f == nil)

err(1, "fdopen");

n = 0;
p = nil;
while((l = fgets(line, sizeof line, f))) {

p = realloc(p, sizeof p[0] * (n+1));
len = strlen(l);
if(l[len−1] == ’\n’) 140

l[−−len] = ’\0’;
v = conv(l);
if(v == ˜0ULL)

errx(1, "reading %dth offset", n);
p[n++] = blocksize * ((vlong)v/blocksize);

}
//fclose(f);

offsets = p;
noffsets = n; 150

ioffset = 0;
if(noffsets < 2)

errx(1, "refusing to read fewer than two blocks");
}

int
diffcmp(const void *p1, const void *p2)
{

vlong v1, v2; 160

v1 = *(vlong *)p1;
v2 = *(vlong *)p2;
if(v1 == v2)

117

return 0;
if(v1 < v2)

return −1;
return 1;

}
170

void
usage(void)
{

fprintf(stderr, "usage: ptio [read | write] file blocksize nproc\n");
exit(1);

}

void * 180

reader(void *p)
{

vlong off;
uchar *mem;
int n;
int ioff;
int fd;
vlong start, stop;

mem = emallocround(blocksize); 190

fd = open(file, O RDWR|O DIRECT);
if(fd < 0)

err(1, "open %s", file);

start = stop = −1;
for(;;) {

off = −1;

pthread mutex lock(&offlock); 200

ioff = ioffset;
if(ioffset < noffsets)

off = offsets[ioffset++];
if(start != −1)

times[ntimes++] = stop−start;
pthread mutex unlock(&offlock);

if(off == −1)
pthread exit(nil);

210

start = microsec();
if(isread)

n = pread(fd, mem, blocksize, (off t)off);
else

n = pwrite(fd, mem, blocksize, (off t)off);
stop = microsec();
if(n != blocksize)

err(1, "did not read enough data (n=%d)", n);
}

} 220

int
main(int argc, char *argv[])
{

char tmp1[64];

118

int i;
vlong total;
pthread t *threads;
vlong start, stop; 230

char *op;
double mean, stddev;

if(argc != 5)
usage();

op = argv[1];
if(strcmp(op, "read") == 0)

isread = 1;
else if (strcmp(op, "write") == 0) 240

isread = 0;
else

usage();
file = argv[2];
blocksize = conv(argv[3]);
nproc = atoi(argv[4]);

readoffsets();

printf("op: %s\n", isread ? "read" : "write"); 250

printf("blocks: %d\n", noffsets);
printf("blocksize: %s bytes\n", deconv(blocksize, tmp1));
printf("nprocs: %d processes/threads\n", nproc);

threads = malloc(sizeof threads[0] * nproc);
if(threads == nil)

err(1, "malloc");

times = malloc(sizeof times[0] * noffsets);
if(times == nil) 260

err(1, "malloc");
ntimes = 0;

pthread mutex init(&offlock, nil);

start = microsec();
for(i = 0; i < nproc; i++) {

pthread create(&threads[i], nil, reader, nil);
}

270

for(i = 0; i < nproc; i++) {
pthread join(threads[i], nil);

}
stop = microsec();

total = stop − start;
printf("total time: %llu ms\n", total/1000);
printf("throughput: %.3f MB/sec\n", ((double)noffsets*blocksize*1000000.0/total)/(1024*1024));
printf("average disk seek time: %.3f ms\n", (double)total/1000.0/noffsets);

280

total = 0;
for(i = 0; i < ntimes; i++)

total += times[i];
mean = (double)total / ntimes;
printf("mean wait time per i/o: %.3f ms\n", mean/1000.0);

total = 0;
for(i = 0; i < ntimes; i++)

119

total += pow(((double)times[i] − mean), 2.0);
stddev = sqrt((double)total/ntimes); 290

printf("standard deviation wait time: %.3f ms\n", stddev/1000.0);

exit(0);
}

G.2 test-sha1.c

#include <u.h>
#include <libc.h>
#include <mp.h>
#include <libsec.h>

static int blocksize = 8*1024;
static int n = 10000;
static int align = 32;

10

void *
emallocroundalign(int len, int a, void **pp)
{

void *p;
p = malloc(len+2*32);
if(p == nil)

sysfatal("malloc");
*pp = p;
p = (void*)(((uintptr)p+32)&˜32); 20

return p+a;
}

static void
usage(void)
{

fprint(2, "usage: test-sha1 [-b blocksize] [-n count] [-a align]\n");
exits("usage");

} 30

void
main(int argc, char *argv[])
{

vlong start, stop;
uchar *datap[1024];
uchar *data;
uchar score[20];
int i; 40

vlong total;
void *p;

ARGBEGIN {
case ’b’:

blocksize = atoi(EARGF(usage()));
break;

case ’n’:
n = atoi(EARGF(usage()));
break; 50

120

case ’a’:
align = atoi(EARGF(usage()));
break;

default:
usage();

}ARGEND

if(argc != 0)
usage();

60

for(i = 0; i < 1024; i++)
datap[i] = emallocroundalign(blocksize, align, &p);

total = 0;
srand(time(nil));
for(i = 0; i < n; i++) {

data = datap[i % 1024];
prng(data, blocksize);
start = nsec();
sha1(data, blocksize, score, nil); 70

stop = nsec();
fprint(2, "%llud\n", (stop−start));
total += stop−start;

}
print("total: %llud ms\n", total/1000000ULL);
print("throughput: %.3f MB/sec\n", (double)n*blocksize*10000000000.0/(total*1024*1024));
print("per operation: %llud nsec, %llud microsec\n", total/n, (total/n)/1000ULL);
exits(nil);

}

G.3 test-whack.c

#include <u.h>
#include <libc.h>
#include <mp.h>
#include <libsec.h>

#include "whack.h"

static int count = 10000;
static int blocksize = 8*1024; 10

static int datatype = 0;

void
getdata(uchar *buf, int len)
{

static int fd = −1;
static int filesize = −1;
static int offset = −1;
Dir *d; 20

static int i = 0;
char *filename;

switch(datatype) {
case 0:

prng(buf, len);
break;

121

case 1:
case 2:

if(fd == −1) { 30

if(datatype == 1)
filename = "/usr/bin/gs-gpl";

else
filename = "/usr/share/perl/5.8.4/unicore/UnicodeData.txt";

fd = open(filename, O RDONLY);
d = dirfstat(fd);
filesize = d−>length;
offset = i;

}
if(offset+len >= filesize) 40

offset = i++;
if(pread(fd, buf, len, offset) != len)

sysfatal("read did not suffice");
offset += len;
break;

default:
sysfatal("invalid option");

}
}

50

static void
usage(void)
{

fprint(2, "usage: test-whack [-b blocksize] [-n count] [-t num]\n");
exits("usage");

}

void 60

main(int argc, char *argv[])
{

uchar *plain, *whacked;
int psize, wsize;
int i, uwcount, smaller, nsmaller;
vlong start, stop;
vlong wtotal, uwtotal;
vlong bytes;
Unwhack uw;

70

ARGBEGIN{
case ’b’:

blocksize = atoi(EARGF(usage()));
break;

case ’n’:
count = atoi(EARGF(usage()));
break;

case ’t’:
datatype = atoi(EARGF(usage()));
if(datatype < 0 | | datatype > 2) 80

usage();
break;

default:
usage();

}ARGEND

if(argc != 0)
usage();

122

psize = blocksize; 90

plain = malloc(psize);
whacked = malloc(blocksize);
if(plain == nil | | whacked == nil)

sysfatal("malloc");

srand(time(0));
wtotal = 0;
uwtotal = 0;
uwcount = 0;
nsmaller = 0; 100

bytes = 0;
for(i = 0; i < count; i++) {

getdata(plain, psize);

start = nsec();
wsize = whackblock(whacked, plain, psize);
stop = nsec();
smaller = (wsize < 0 | | wsize >= psize) ? 0 : 1;
if(smaller)

nsmaller++; 110

fprint(2, "whack %d %llud\n", smaller, stop−start);
wtotal += stop−start;

if(wsize <= 0) {
bytes += psize;
continue;

}
bytes += wsize;

start = nsec(); 120

unwhackinit(&uw);
unwhack(&uw, plain, psize, whacked, wsize);
stop = nsec();
fprint(2, "unwhack %llud\n", stop−start);
uwtotal += stop−start;
uwcount++;

}
print("whack total: %llud ms\n", wtotal/1000000ULL);
print("whack compressed percentage of blocks: %.02f%%\n", (double)nsmaller*100.0/count);
print("whack throughput: %.03f MB/sec\n", (double)blocksize*count*1000000000.0/(1024.0*1024*wtotal)); 130

print("whack per operation: %llud nsec, %llud microsec\n", wtotal/count, wtotal/(count*1000));
print("whack compressed size: %.02f%%\n", 100.0*bytes/(count*psize));

if(uwcount > 0) {
print("unwhack total: %llud ms\n", uwtotal/1000000ULL);
print("unwhack throughput: %.03f MB/sec\n", (double)blocksize*uwcount*1000000000.0/(1024.0*1024*uwtotal));
print("unwhack per operation: %llud nsec, %llud microsec\n", uwtotal/uwcount, uwtotal/(uwcount*1000));

} else {
print("no blocks unwhacked, no statistics\n");

} 140

exits(nil);
}

123

	Title page
	Abstract
	Samenvatting
	Preface
	Table of contents
	Introduction
	Protocol
	Hash trees
	Performance requirements
	Report

	Venti design
	Index sections, Arenas
	Terminology
	Optimisations
	Disk block cache, dcache
	Index entry cache, icache
	Lump cache, lcache
	Bloom filter
	Queued writes
	Lump compression
	Disk block read-ahead
	Lump read-ahead
	Prefetch index entries
	Sequential writes of index entries
	Sequential writes of disk blocks
	Opportunistic hash collision checking
	Scheduler
	Zero-copy packets

	Venti clients
	Vac
	Fossil
	Conclusion

	Disks & performance
	Disk internals
	Implications for Venti

	Operating system disk handling
	Testing hard disks
	SCSI disk results
	IDE disk results
	Conclusion
	Alternatives to magnetic disks
	Compact-flash memory
	MEMS-based storage

	Venti performance
	Basic Venti performance
	Analysis

	SHA-1 performance
	Whack performance

	Venti simulator
	Design
	Trace files
	Vsim and vtrace
	Future work
	Bloom filter
	Index entry prefetch from arena directory
	Better disk model and multiple disks

	Conclusions

	Memventi design & implementation
	Storing only a part of the score
	Implementation
	Features
	Data integrity
	Differences with design
	Performance
	Problems
	Future work
	Conclusion

	Conclusions
	Future work
	Bibliography
	Test setup
	Disk tests
	SCSI disk
	IDE disk

	Basic Venti tests
	sametest

	Memventi tests
	Compact flash tests
	IDE to flash adaptor
	USB flash memory card reader

	Technical documentation
	Pseudo code for handling venti operations

	Tools
	ptio.c
	test-sha1.c
	test-whack.c

