
Chapter 14: Interprocess
Communication

CMPS 105: Systems Programming
Prof. Scott Brandt

T Th 2-3:45
Soc Sci 2, Rm. 167

Plans

This week: Chapter 14
Next week:

Networked IPC
Other?

Last week
Something
Review

Introduction
Interprocess Communication (IPC) enables
processes to communicate with each other to
share information

Pipes (half duplex)
FIFOs (named pipes)
Stream pipes (full duplex)
Named stream pipes
Message queues
Semaphores
Shared Memory
Sockets
Streams

Pipes

Oldest (and perhaps simplest) form of
UNIX IPC
Half duplex

Data flows in only one direction
Only usable between processes with a
common ancestor

Usually parent-child
Also child-child

Pipes (cont.)

#include <unistd.h>
int pipe(int fildes[2]);
fildes[0] is open for reading and
fildes[1] is open for writing
The output of fildes[1] is the input for
fildes[0]

Understanding Pipes

Within a process
Writes to fildes[1] can be read on fildes[0]
Not very useful

Between processes
After a fork()
Writes to fildes[1] by one process can be
read on fildes[0] by the other

Understanding Pipes (cont.)

Even more useful: two pipes, fildes_a
and fildes_b
After a fork()
Writes to fildes_a[1] by one process can
be read on fildes_a[0] by the other, and
Writes to fildes_b[1] by that process
can be read on fildes_b[0] by the first
process

Using Pipes

Usually, the unused end of the pipe is closed
by the process

If process A is writing and process B is reading,
then process A would close fildes[0] and process B
would close fildes[1]

Reading from a pipe whose write end has
been closed returns 0 (end of file)
Writing to a pipe whose read end has been
closed generates SIGPIPE
PIPE_BUF specifies kernel pipe buffer size

Example
int main(void) {

int n, fd[2];
pid_t pid;
char line[maxline];

if(pipe(fd) < 0) err_sys(“pipe error”);
if((pid = fork()) < 0) err_sys(“fork error”);
else if(pid > 0) {

close(fd[0]);
write(fd[1], “hello\n”, 6);

} else {
close(fd[1]);
n = read(fd[0], line, MAXLINE);
write(STDOUT_FILENO, line, n);

}

Example: Piping output to
child process’ input

int fd[2];
pid_t pid;

pipe(fd);
pid = fork();

if(pid == 0) {
dup2(fd[0], STDIN_FILENO);
exec(<whatever>);

}

Using Pipes for synchronization
and communication

Once you have a pipe or pair of pipes set up,
you can use it/them to

Signal events (one pipe)
Wait for a message

Synchronize (one or two pipes)
Wait for a message or set of messages
You send me a message when you are ready, then I’ll
send you a message when I am ready

Communicate (one or two pipes)
Send messages back and forth

popen()
#include <stdio.h>
FILE *popen(const char *cmdstring, const
char *type);
Encapsulates a lot of system calls

Creates a pipe
Forks
Sets up pipe between parent and child (type
specifies direction)
Closes unused ends of pipes
Turns pipes into FILE pointers for use with STDIO
functions (fread, fwrite, printf, scanf, etc.)
Execs shell to run cmdstring on child

popen() and pclose()

Popen() details
Directs output/input to stdin/stdout
“r” -> parent reads, “w” -> parent writes

int pclose(FILE *fp);
Closes the STDIO stream
Waits for command to terminate
Returns termination status of shell

Assignment

Simulated audio player with shared
memory and semaphores
We will discuss this at the end of class
today

FIFOs
First: Coprocesses – Nothing more than a
process whose input and output are both
redirected from another process
FIFOs – named pipes
With regular pipes, only processes with a
common ancestor can communicate
With FIFOs, any two processes can
communicate
Creating and opening a FIFO is just like
creating and opening a file

FIFO details
#include <sys/types.h>
#include <sys/stat.h>
int mkfifo(const char *pathname, mode_t mode);

The mode argument is just like in open()
Can be opened just like a file
When opened, O_NONBLOCK bit is important

Not specified: open() for reading blocks until the FIFO is
opened by a writer (same for writing)
Specified: open() returns immediately, but returns an error if
opened for writing and no reader exists

Example: Using FIFOs to
Duplicate Output Streams

Send program 1’s output to both
program2 and program3 (p. 447)
mkfifo fifo1
prog3 < fifo1 &
prog1 < infile | tee fifo1 | prog2

Example: Client-Server
Communication Using FIFOs

Server contacted by multiple clients (p.448)
Server creates a FIFO in a well-known place

And opens it read/write

Clients send requests on this FIFO
Must be < PIP_BUF bytes

Issue: How to respond to clients
Solution: Clients send PID, server creates
per-client FIFOs for responses

System V IPC
IPC structures for message queues, semaphores, and
shared memory segments
Each structure is represented by an identifier

The identifier specifies which IPC object we are using
The identifier is returned when the corresponding structure
is created with msgget(), semget(), or shmget()

Whenever an IPC structure is created, a key must be
specified

Matching keys refer to matching objects
This is how two processes can coordinate to use a single IPC
mechanism to communicate

Rendezvousing with IPC
Structures

Process 1 can specify a key of IPC_PRIVATE
This creates a unique IPC structure
Process 1 then stores the IPC structure
somewhere that Process 2 can read

Process 1 and Process 2 can agree on a key
ahead of time
Process 1 and Process 2 can agree on a
pathname and project ID ahead of time and
use ftok to generate a unique key

IPC Permissions
System V associates an ipc_perm structure with each
IPC structure:

struct ipc_perm {
uid_t uid; // owner’s eff. user ID
gid_t gid; // owner’s eff. group ID
uid_t cuid; // creator’s eff. user ID
gid_t cgid; // creator’s eff. group ID
mode_t mode; // access modes
ulong seq; // slot usage sequence nbr
key_t key; // key

}

Issues w/System V IPC

They are equivalent to global variables
They live beyond the processes that create
them

They don’t use file descriptors
Can’t be named in the file system
Can’t use select() and poll()

Message Queues

Linked list of messages stored in the kernel
Identifier by a message queue identifier
Created or opened with msgget()
Messages are added to the queue with
msgsnd()

Specifies type, length, and data of msg

Messages are read with msgrcv()
Can be fetched based on type

msqid_ds
Each message queue has a msqid_ds data structure

struct msqid_ds {
struct ipc_perm msg_perm; //
struct msg *msg_first; // ptr to first msg on queue
struct msg *msg_last; // ptr to last msg on queue
ulong msg_cbytes; // current # bytes on queue
ulong msg_qnum // # msgs on queue
ulong msg_qbytes // max # bytes on queue
pid_t msg_lspid; // pid of last msgsnd()
pid_t msg_lrpid; // pid of last msgrcv()
time_t msg_srtime; // last msgsnd() time
time_t msg_rtime; // last msgrcv() time
time_t msg_ctime; // last change time

};

Limits

MSGMAX – size of largest message
Usually 2048

MSGMNB – Max size in bytes of queue
Usually 4096

MSGMNI – Max # of msg queues
Usually 50

MSGTQL – Max # of messages, systemwide
Usually 40

msgget()

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
int msgget(key_t key, int flag);

flag specifies mode bits
returns msg queue ID

msgctl()

int msgctl(int msquid, int cmd, struct
msqid_ds *buf);

Depends on cmd
IPC_STAT – fills buf with msqid_ds
IPC_SET – sets various fields of msqid_ds
IPC_RMID – removes message queue from
system

msgsnd()

int msgsnd(int msqid, const void *ptr,
size_t nbytes, int flag);
ptr points to the data of the message,
with type:

struct mymesg {
long mtype;
char mtext[512];

}

msgrcv()

int msgrcv(int msqid, void *ptr, size_t
nbytes, long type, int flag);
type == 0: return the first message
type > 0: return first message with
specified type
type < 0: return first message whose
type is lowest with value <= specified
type

Semaphores

Create semaphore: semget()
Test value: semop()

If > 0, decrement and continue
if < 0, sleep till > 0

Increment value: semop()

semid_ds
struct semid_ds {

struct ipc_perm; //
struct sem *sem_base;// ptr to 1st sem in set
ushort sem_nsems; // # of sems in set
time_t sem_otime; // last-semop() time
time_t sem_ctime; // last-change time

};
struct sem {

ushort semval; // semphore value
pid_t sempid; // pid for last operation
ushort semncnt; // # of procs awaiting semval > curval
ushort semzcnt; // # of procs awaiting semval = 0

}

semget()

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semget(key_t key, int nsems, int
flag);

nsems is the number of semaphores in the
set

semctl()
int semctl(int semid, int semnum, int cmd, union semun arg);
union semun {

int val; // for setval
struct semid_ds *buf; // for IPC_STAT and IPC_SET
ushort *array; // for GETALL and SETALL

}
IPC_STAT: get the semid_ds
IPC_SET: set semid_ds fields
IPC_RMID: remove semaphore
GETVAL: return the value of semval for semnum
SETVAL: set the value of semval for semnum
GETPID: return the value of sempid for semnum
GETNCNT: return the value of semcnt for semnum
GETZCNT: return the value of semzcnt for semnum
GETALL: fetch all semaphores values in the set
SETALL: set all semaphore values in the set

semop()
int semop(int semid, struct sembuf semoparray[],
size_t nops);
struct sembuf {

ushort sem_num;// member #
short sem_op; // operation
short sem_flg; // IPC_NOWAIT, SEM_UNDO
};

sem_op > 0: sem_op is added to sems value
sem_op < 0: reduce sem by sem_op (if possible),
otherwise block depending upon IPC_NOWAIT value
sem_op == 0: wait until value becomes 0
semop is atomic

Shared Memory

See p. 464

	Chapter 14: Interprocess Communication
	Plans
	Introduction
	Pipes
	Pipes (cont.)
	Understanding Pipes
	Understanding Pipes (cont.)
	Using Pipes
	Example
	Example: Piping output to child process’ input
	Using Pipes for synchronization and communication
	popen()
	popen() and pclose()
	Assignment
	FIFOs
	FIFO details
	Example: Using FIFOs to Duplicate Output Streams
	Example: Client-Server Communication Using FIFOs
	System V IPC
	Rendezvousing with IPC Structures
	IPC Permissions
	Issues w/System V IPC
	Message Queues
	msqid_ds
	Limits
	msgget()
	msgctl()
	msgsnd()
	msgrcv()
	Semaphores
	semid_ds
	semget()
	semctl()
	semop()
	Shared Memory

