Chapter 14: Interprocess

!'_ Communication

CMPS 105: Systems Programming
Prof. Scott Brandt
T Th 2-3:45
Soc Sci 2, Rm. 167

i Plans

= This week: Chapter 14

s Next week:
= Networked IPC
= Other?

s Last week
= Something
= Review

i Introduction

= Interprocess Communication (IPC) enables
processes to communicate with each other to
share information
= Pipes (half duplex)

FIFOs (named pipes)

Stream pipes (full duplex)

Named stream pipes

Message queues

Semaphores

Shared Memory

Sockets

Streams

i Pipes

= Oldest (and perhaps simplest) form of
UNIX IPC

= Half duplex
=« Data flows in only one direction

= Only usable between processes with a
common ancestor

» Usually parent-child
= Also child-child

i Pipes (cont.)

= #include <unistd.h>

= Int pipe(int fildes|2]),

= fildes[O] is open for reading and
fildes[1] is open for writing

= The output of fildes[1] Is the input for
fildes[O]

i Understanding Pipes

= Within a process
= Writes to fildes[1] can be read on fildes|O]
= Not very useful

= Between processes
= After a fork()

» Writes to fildes[1] by one process can be
read on fildes[0O] by the other

i Understanding Pipes (cont.)

= Even more useful: two pipes, fildes a
and fildes b

= After a fork()

= Writes to fildes_aJl1] by one process can
be read on fildes a|0] by the other, and

= Writes to fildes b[1] by that process
can be read on fildes b[O] by the first
process

i Using Pipes

= Usually, the unused end of the pipe is closed
by the process

= If process A is writing and process B Is reading,
then process A would close fildes[0] and process B
would close fildes[1]

= Reading from a pipe whose write end has
been closed returns 0 (end of file)

= Writing to a pipe whose read end has been
closed generates SIGPIPE

= PIPE_BUF specifies kernel pipe buffer size

i Example

iInt main(void) {
int n, fd[2];
pid_t pid;

char line[maxline];

if(pipe(fd) < 0) err_sys(“pipe error”);
If((pid = fork()) < 0) err_sys(“fork error”);
else if(pid > 0) {

close(fd
write(fd

} else {

close(fd[

0
11,

1]

D:

).

“hello\n”, 6);

n = read(fd[0], line, MAXLINE);
write(STDOUT _FILENO, line, n);

Example: Piping output to
i child process’ input

int fd[2];
pid_t pid;

pipe(fd);
pid = fork();

If(pid == 0) {
dup2(fd[0], STDIN_FILENO);
exec(<whatever>);

}

Using Pipes for synchronization
i and communication

= Once you have a pipe or pair of pipes set up,
you can use it/them to

= Signal events (one pipe)
« Wait for a message
= Synchronize (one or two pipes)

= Wait for a message or set of messages

= You send me a message when you are ready, then I'll
send you a message when | am ready

= Communicate (one or two pipes)
= Send messages back and forth

i popen()

s #include <stdio.h>

= FILE *popen(const char *cmdstring, const
char *type);

= Encapsulates a lot of system calls
= Creates a pipe
= Forks

= Sets up pipe between parent and child (fype
specifies direction)

= Closes unused ends of pipes

= Turns pipes into FILE pointers for use with STDIO
functions (fread, fwrite, printf, scanf, etc.)

= Execs shell to run cmdstring on child

i popen() and pclose()

= Popen() detalils
= Directs output/input to stdin/stdout
» ‘I -> parent reads, “w” -> parent writes

= Int pclose(FILE *fp);

= Closes the STDIO stream

= Waits for command to terminate

= Returns termination status of shell

i Assignment

= Simulated audio player with shared
memory and semaphores

= We will discuss this at the end of class
today

i FIFOS

First: Coprocesses — Not
process whose input anc

ning more than a
output are both

redirected from another
FIFOs — named pipes
With regular pipes, only

DIroCess

processes with a

common ancestor can communicate
With FIFOs, any two processes can

communicate

Creating and opening a FIFO is just like

creating and opening a f

lle

FIFO detalls

= #include <sys/types.h>
= #include <sys/stat.h>

= Int mkfifo(const char *pathname, mode_t mode);
= The mode argument is just like in open()

= Can be opened just like a file

= When opened, O NONBLOCK bit is important

= Not specified: open() for reading blocks until the FIFO is
opened by a writer (same for writing)

= Specified: open() returns immediately, but returns an error if
opened for writing and no reader exists

Example: Using FIFOs to
i Duplicate Output Streams

= Send program 1’s output to both
program?2 and program3 (p. 447)

= mkfifo fifol
= prog3 < fifol &
= progl < infile | tee fifol | prog2

Example: Client-Server
i Communication Using FIFOs

= Server contacted by multiple clients (p.448)

= Server creates a FIFO in a well-known place
= And opens it read/write

= Clients send requests on this FIFO
= Must be < PIP_BUF bytes

= Issue: How to respond to clients

= Solution: Clients send PID, server creates
per-client FIFOs for responses

i System V IPC

= |PC structures for message queues, semaphores, and
shared memory segments

= Each structure is represented by an identifier
= The identifier specifies which IPC object we are using
= The identifier is returned when the corresponding structure
Is created with msgget(), semget(), or shmget()
= Whenever an IPC structure is created, a key must be
specified
= Matching keys refer to matching objects

= This is how two processes can coordinate to use a single IPC
mechanism to communicate

Rendezvousing with IPC
i Structures

= Process 1 can specify a key of IPC_PRIVATE

= This creates a unique IPC structure
= Process 1 then stores the IPC structure
somewhere that Process 2 can read
= Process 1 and Process 2 can agree on a key
ahead of time

= Process 1 and Process 2 can agree on a
pathname and project ID ahead of time and
use ftok to generate a unigue key

i IPC Permissions

= System V associates an ipc_perm structure with each
IPC structure:

struct ipc_perm {
uid_t uid; // owner’s eff. user ID
gid_t gid; // owner’s eff. group ID
uid_t cuid; // creator’s eff. user ID
gid_t cqid; // creator’s eff. group ID
mode _t mode; // access modes
ulong seq; // slot usage sequence nbr
key t key; // key

i Issues w/System V IPC

= They are equivalent to global variables

= They live beyond the processes that create
them

= They don’t use file descriptors
= Can’t be named In the file system
= Can’t use select() and poll()

i Message Queues

= Linked list of messages stored in the kernel
= ldentifier by a message queue identifier
= Created or opened with msgget()

= Messages are added to the queue with
msgsnd()
= Specifies type, length, and data of msg

= Messages are read with msgrcv()
= Can be fetched based on type

msqid_ds

Each message queue has a msqid_ds data structure
struct msqid_ds {

struct ipc_perm msg_perm;
struct msg *msg_first;
struct msg *msg_last;
ulong msg_chytes;
ulong msg_gnum
ulong msg_gbytes
pid_t msg_lIspid,;

pid_t msg_|Irpid;
time_t msg_srtime;
time_t msg_rtime;
time_t msg_ctime;

//

// ptr to first msg on queue
// ptr to last msg on queue
// current # bytes on queue
/] # msgs on queue

// max # bytes on queue
// pid of last msgsnd()

/1 pid of last msgrcv()

// last msgsnd() time

// last msgrecv() time

// last change time

i Limits

= MSGMAX - size of largest message
= Usually 2048

= MSGMNB — Max size in bytes of queue
= Usually 4096

= MSGMNI — Max # of msg queues
= Usually 50

= MSGTQL — Max # of messages, systemwide
= Usually 40

i msgget()

= #include <sys/types.h>
= #include <sys/ipc.h>
= #include <sys/msg.h>

= Int msgget(key t key, Int flag);
» flag specifies mode bits
= returns msg queue ID

i msgctl()

= INnt msgctl(int msquid, int cmda, struct
msdqid_ds *buh;
= Depends on cmd
= IPC_STAT - fills buf with msqid_ds
= IPC_SET - sets various fields of msqgid_ds

= IPC_RMID — removes message gueue from
system

i msgsnd()

= Int msgsnd(int /msq/d, const void * ptr,
size t nbytes, Int flag);

= ptr points to the data of the message,
with type:

= Struct mymesg {
= long mtype;
= char mtext[512];

=}

i msgrcv()

= Int msgrcv(int msqgid, void *ptr, size t
nbytes, long type, Int flag);

= type == 0O: return the first message

= type > 0O: return first message with
specified type

= type < O: return first message whose
type Is lowest with value <= specified
type

i Semaphores

= Create semaphore: semget()

= Test value: semop()
= If > 0, decrement and continue
n If <0, sleeptill >0

= Increment value: semop()

semid ds

struct semid_ds {
struct ipc_perm,;

/!

struct sem *sem_base;// ptr to 1st sem in set

ushort sem_nsems;
time_t sem_otime;
time_t sem_ctime,;

b

struct sem {
ushort semval;
pid_t sempid;
ushort semncnt;
ushort semzcnt;

/1 # of sems in set
// last-semop() time
// last-change time

// semphore value

// pid for last operation

/1 # of procs awaiting semval > curval
/1 # of procs awaiting semval =0

i semget()

= #include <sys/types.h>
= #include <sys/ipc.h>
= #include <sys/sem.h>

= Int semget(key _t key, int nsems, int
flag);

= nsems is the number of semaphores in the
set

semctl()

= int semctl(int semid, int semnum, int cmd, union semun arg);

= union semun {
= intval; // for setval
= struct semid_ds *buf; // for IPC_STAT and IPC_SET
= ushort *array; // for GETALL and SETALL

}

IPC_STAT: get the semid_ds

IPC_SET: set semid_ds fields

IPC_RMID: remove semaphore

GETVAL: return the value of semval for semnum
SETVAL: set the value of semval for semnum
GETPID: return the value of sempid for semnum
GETNCNT: return the value of semcnt for semnum
GETZCNT: return the value of semzcnt for semnum
GETALL: fetch all semaphores values in the set
SETALL: set all semaphore values in the set

semop()

= Int semop(int semid, struct sembuf semoparrayf],
size_t nops);
= struct sembuf {
= ushort sem_num;// member #

= short sem_op; // operation
= short sem flg; // IPC_NOWAIT, SEM_UNDO

] },
= sem_op > 0: sem_op Is added to sems value

= sem_op < 0: reduce sem by sem_op (if possible),
otherwise block depending upon IPC_NOWAIT value

= sem_op == 0: wait until value becomes 0
= Semop Is atomic

‘L Shared Memory

= See p. 464

	Chapter 14: Interprocess Communication
	Plans
	Introduction
	Pipes
	Pipes (cont.)
	Understanding Pipes
	Understanding Pipes (cont.)
	Using Pipes
	Example
	Example: Piping output to child process’ input
	Using Pipes for synchronization and communication
	popen()
	popen() and pclose()
	Assignment
	FIFOs
	FIFO details
	Example: Using FIFOs to Duplicate Output Streams
	Example: Client-Server Communication Using FIFOs
	System V IPC
	Rendezvousing with IPC Structures
	IPC Permissions
	Issues w/System V IPC
	Message Queues
	msqid_ds
	Limits
	msgget()
	msgctl()
	msgsnd()
	msgrcv()
	Semaphores
	semid_ds
	semget()
	semctl()
	semop()
	Shared Memory

