Parallel Programming with Lisp for Performance

Pascal Costanza, Intel, Belgium
European Lisp Symposium 2014, Paris, France
The views expressed are my own, and not those of my employer.

egal Notices

- Cilk, Intel, the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. Other
names and brands may be claimed as the property of others. Results have been estimated based on
internal Intel analysis and are provided for informational purposes only. Any difference in system
hardware or software design or configuration may affect actual performance. Intel does not control or
audit the design or implementation of third party benchmark data or Web sites referenced in this
document. Intel encourages all of its customers to visit the referenced Web sites or others where
similar performance benchmark data are reported and confirm whether the referenced benchmark
data are accurate and reflect performance of systems available for purchase.

- Optimization Notice: Intel’'s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSE2, SSE3, and SSSES instructions sets and other optimizations. Intel does not guarantee
the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved
for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. (Notice revision #20110804)

- Copyright © 2014 Intel Corporation. All rights reserved.

INntroduction

- SMP has arrived in Common Lisp implementations
(ABCL, Allegro, clisp, Clozure, ECL, LispWorks, SBCL,
)

- Parallel programming means not only starting lots of
threads, but also synchronizing them.

-+ So far LispWorks seems to provide the richest library of
synchronization mechanisms. Therefore, Iin this
presentation, the focus is on Lisp\Works.

Why is parallel programming hard?

 Consider this simple program:

(defun count-3s (list)
(let ((count 0))
(dolist (number list)
(mp:process-run-function "count numbers” ‘()
(lambda () (when (= number 3) (incf count)))))
count))

Why is parallel programming hard?

 Consider this simple program:

(defun count-3s (list) execute In parallel
(let ((count 0)) »

(dolist (number list)
(mp:process-run-function "count numbers"” ()
(lambda () (when (= number 3) (incf count)))))
count))

Why is parallel programming hard?

 Consider this simple program:

(defun count-3s (list) name this thread
(let ((count 0)) N —

(dolist (number list)
(mp:process-run-function "count numbers" ()
(lambda () (when (= number 3) (incf count)))))
count))

Why is parallel programming hard?

 Consider this simple program:

—
(defun count-3s (list) give it a priority
(let ((count 0))
(dolist (hnumber list)
(mp:process-run-function "count numbers" ()
(lambda () (when (= number 3) (incf count)))))
count))

Why is parallel programming hard?

 Consider this simple program:

(defun count-3s (list)
(let ((count 0))
(dolist (hnumber list)
(prun (lambda () (when (= number 3) (incf count)))))
count))

Why is parallel programming hard??

 Consider this simple program:

(defun count-3s (list)
(let ((count 0))
(dolist (hnumber list)
(prun (lambda () (when (= number 3) (incf count)))))
count))

- Combinatorial explosion of the computational state space:
- Accesses to the count variable can occur at the same time.
- We do not know when all the different computations are done.
- In Common Lisp, iterations are also not guaranteed to use fresh bindings.

Why is parallel programming hard?

* (defun count-3s (list)
(let ((count 0)) (iteration-count 0)
(lock (mp:make-lock)))
(dolist (number list)
(let (number number))
(prun (lambda ()
(mp:with-lock (lock)
(when (= number 3) (incf count))
(incf iteration-count))))))
(loop until (= iteration-count (length list)))
count)

Why is parallel programming hard?

* (defun count-3s (list)
(let ((count 0)) (iteration-count 0) define a lock
(lock (mp:make-lock))) ~—

(dolist (number list)
(let (number number))
(prun (lambda ()
(mp:with-lock (lock)

(when (= number 3) (incf count))
(incf iteration-count))))))

(loop until (= iteration-count (length list)))

count)

Why is parallel programming hard?

* (defun count-3s (list)
(let ((count 0)) (iteration-count 0)
(lock (mp:make-lock)))

(dolist (number list)
(let (number number)) take the |OD
(prun (lambda ()
(mp:with-lock (lock)

(when (= number 3) (incf count))
(incf iteration-count))))))
(loop until (= iteration-count (length list)))
count)

Why is parallel programming hard?

* (defun count-3s (list)
(let ((count 0)) (iteration-count 0)
(lock (mp:make-lock)))

(dolist (number list)
wait ntl core)

(mp:with-lock (lock)
(when (= number 3) (incf count))
(incf iteration-count))))))
(loop until (= iteration-count (length list)))
count)

Why is parallel programming hard??

* (defun count-3s (list)
(let ((count 0)) (iteration-count 0)
(lock (mp:make-lock)))
(dolist (number list)
(let (number number))
(prun (lambda ()
(mp:with-lock (lock)
(when (= number 3) (incf count))
(incf iteration-count))))))
(loop until (= iteration-count (length list)))
count)

« Result is now correct, but this is horribly inefficient code.

« Particularly, there is no parallelism here.

What does that mean??

- Sequential programs are much easier to understand.

* Primary goal of parallel programming: efficiency!!!

- If you don’t need efficiency, don’t go parallel.

Concurrency

ONOHNONORON®,

o 00 @

* Important abstractions:
Actor model, event loops, threads, locks, transactions, ...

Concurrency

ONOHNONORON®,

o 00 @

- Concurrent applications solves problems that are inherent in their domain.
This is independent from the availability of parallel hardware!
Single-core processors would have to solve these issues as well!

Parallelism

O0O0O0
O00O0
O0O0O0

* Important abstractions:
Parallel loops, data parallelism, fork/join, mapreduce, ...

O0O0O0

Parallelism

O0O0O0
O00O0
O0O0O0
O0O0O0

» Parallel programming helps improving performance.
This is independent from the presence of concurrency in the applications!
Single-core processors would just execute a sequential program!

Concurrency vs. parallelism

Solutions that are good for concurrent problems may be
detrimental for parallelism and vice versa.

process 1

2roblems with locking...

(

|

take lock A

take lock B

\

J

process 2

e

_

~

take lock B

take lock A

J

potential

 This cannot happen with STM! deadlock

2roblems with locking...

process 1 process 2
4) 4)
take lock A take lock A
take lock B take lock B
_ J _ J

- Solution: Take all locks always in the same order.
(May be incorrect depending on problem domain,
but is usually correct when only performance matters.)

process 1

4)
roll back
process 1

Problems with STM...

 This cannot happen with locks!

process 2

_

roll back
process 2

J

potential
ivelock

Problems with STM...

process 1 process 2
4) 4)
roll back
process 1
roll back
process 2
_) . J

- Solution: Add heuristics and back-off strategies.
(This hurts performance even more,
so may not be acceptable if you use parallelism for performance!)

—xample: Task parallelism

* (defun count-3s (vector)
(labels ((recur (start end)
(let ((length (- end start)))
(case length
00
(1 (if (= (svref vector start) 3) 1 0))
(t (let” ((half (ash length -1))
(middle (+ start half))))
(let (left right)
(spawn (left) (recur start middle))
(setq right (recur middle end))
(sync)
(+ left right)))))))
(recur O (length vector))))

Parallelism for performance: Amdahl’'s Law

* N: number of threads
P: parallel fraction of the algorithm
(T n): time the algorithm takes on n threads
(S n): speedup on n threads

(T'n) = (let ((seqT (" (T 1) (- 1 P))
(ParT (* (T 1) P)))
(+ seqT (/ parT n)))

Sn=¢1H 1P (¢Pn)
(Se)=(1(1P)

- Examples: P = 90% => maximum speedup = 10
P =80% => maximum speedup = 5

Parallelism for performance: Gustafson’s Law

+ - a: sequential time
o: parallel time
P: number of processors

TP)=(+a(*PDb)
SIP)=((+a(*PDb)(+ab))

- a=(/a(+ab)
SP)=H+a(*P (-
= (-P(af(

U

A
~——
~——
~——

Parallelism for performance

+ Sequential performance is important!
The better the sequential section performs,
the better the gains from parallelization!

General performance considerations in Lisp

- Avoid consing / memory management
=> dynamic extent / stack allocation
=> poxed vs. unboxed types
=> 04bit vs. 32bit Lisp implementations
=> control the garbage collector

- |dentify and optimize fast paths

» Inline declarations

- Optimization & type declarations

- typed aref, Int32 operations (Lisp\Works-specific)

Recipe for parallelization

- |dentity the parallelism
- |dentify the dependencies

dentifying parallelism is relatively easy.

dentifying dependencies is harder.

Handling dependencies efficiently Is even harder.
=> Know your toolbox!

Synchronization toollbox in LispWorks

Mailboxes
Locks, Incl. shared locks
Hash tables, vectors with fill pointers

Barriers, semaphores, condition variables,
atomic operations, memory order synchronization

- Thread-local memory allocation

- Garbage collector freezes all processes

—xample: fluidanimate

- One of the benchmarks
iN the PARSEC benchmark suite

- Implementation of the
Smoothed-particle Hydrodynamics method

—xample: fluidanimate

—xample: fluidanimate

—xample: fluidanimate

—xample: fluidanimate

coliesl

.....%\.:;.ﬂ

ol7e AN

QC.%

Yoo

Example: fluidanimate

—xample: fluidanimate

Fluidanimate: data structures

(defstruct
(x 0.0
(y 0.0
(z 0.0
(defstruct
(p
Chv
(v
(a

(density (make-array 16 :initial-element 0.

(vec3 (:constructor make-vec3 (x y
(:constructor make-zero-vec3

:type float-type)
:type float-type)
:type float-type))

(cell (:constructor make-cell ())
(create-array 16 ‘make-zero-vec3

:type (array vec3 (16))))
(create-array 16 ‘make-zero-vec3

:type (array vec3 (16))))
(create-array 16 ‘make-zero-vec3

:type (array vec3 (16))))
(create-array 16 ‘make-zero-vec3)

:type simple-vector))

:type simple-vector))

Z))
@),

:element-type ‘vec3)
:element-type ‘vec3)

:element-type ‘vec3)

Q)

Fluidanimate: main loop

(defun advance-frame ()
(declare #.*optimization¥*)
(let ((num-grids (num-grids)))

(fixnum num-grids))

(declare
(paralle
(paralle
(paralle
(paralle
(paralle
(paralle
(paralle
(paralle

1L-for
1-for

1-for

1-for
1-for
1-for
1-for

1-for

num-gric
num-gric

num-gric

s ‘clear-particles-mt)
s ‘rebuild-grid-mt)
S

‘1init-densities-and-forces-mt)

num-gric
num-gric
num-gric
num-gric

num-gric

¢

compute-densities-mt)
compute-densities-Z2-mt)
compute-forces-mt)
‘process-collisions-mt)
‘advance-particles-mt)))

S

¢

¢

n n " 0

Fluidanimate: example step

- (defun compute-forces-mt (1)
(declare #.*optimization*)
(loop over each cell in (aref grids 1) do
(loop over each p in cell do
(loop over each neighbor of cell do
(loop over each np in neighbor do
(when (< (index np) (index p))
(let (Cacc (compute-acc p np)))
(1f (borderp cell)
(loop
for old = (svref (cell-a cell) p)
for new = (vec3+ old acc)
until (compare-and-swap (svref (cell-a cell) p) old new))
(vec3+= (svref (cell-a cell) p) acc))
(1f (borderp neighbor)
(loop
for old = (svref (cell-a neighbor) np)
for new = (vec3- old acc)
until (compare-and-swap (svref (cell-a cell) np) old new))
(vec3-= (svref (cell-a cell) np) acc)))))))))

Fluidanimate: main challenges

- When translating from C++ to Lisp,
we encountered the following performance challenges:

-+ Too much consing.
- Controlling the garbage collector.
- Getting synchronization right.

- Abstracting away the parallelization.

Fluidanimate: Too much consing.

- At the heart of the algorithm,
lots of uses of vec3 operations:

- (defun vec3+ (v1 v2)
(make-vec3 (+ (vec3-x v1) (vec3-x v2))
(+ (vec3-y v1) (vec3-y v2))
(+ (vec3-z v1) (vec3-z v2))))

- Same for subtraction, negation, multiplication, division.

- No matter the type and optimization declarations,
there are just far too many intermediate results on the heap.

Fluidanimate: Too much consing - solution.

- (defstruct (vec
(:constructor make-vec3 (x y z))
(:constructor make-zero-vec3 ()
(:constructor vec3+ (vl vZ &aux

(x (+ (vec3-x v1) (vec3-x v2)))

(y (+ (Qvec3-y v1) (vec3-y v2))

(z (+ (vec3-z v1) (vec3-z v2)))))
(:constructor vec3* (vl s &aux
CoL)

Coe L)

(x 0.0 :type float-type)
(y 0.0 :type float-type)
(z 0.0 :type float-type))

Fluidanimate: Too much consing - solution.

Now the return values can be declared
with dynamic-extent at the receiving side,
and will therefore be allocated on the stack,
not on the heap.

However, intermediate results must all be named.

Inline functions with calls to such constructors may also
work with dynamic-extent declarations and result stack
allocation.

Fluidanimate:
Stack allocation for intermediate results would be nice.

(vec3*= acc pressure-coeff)
(vec3*= acc (/' (* hmr hmr) dist))
(vec3*= acc (- (+ (svref cell-density cell) 7j))
(svref cell-density neigh) 1)))
double-rest-density))
(let* ((cell-v (aref (cell-v cell) 3))
(neigh-v (aref (cell-v neigh) 1))
(ddd (vec3- neigh-v cell-v)))
(declare (vec3 cell-v neigh-v ddd)
(dynamic-extent ddd))
(vec3*= ddd viscosity-coeff)
(vec3*= ddd hmr)
(vec3+= acc ddd)
(vec3/= acc (* (svref (cell-density cell) j)
(svref (cell-density neigh) 1)))

return-with-dynamic-extent

- My wish:

- (defun vec3+ (vl v2)
(return-with-dynamic-extent
(make-vec3 (+ (vec3-x vl) (vec3-x v2))
(+ (vec3-y vl1l) (vec3-y v2))
(+ (vec3-z v1) (vec3-z v2)))))

- [Also: dynamic extent for typed aref vectors!]

Fluidanimate: Abstracting away parallelization.

- (defun parallel-for (hnumgrids function)
(loop for | below numgrids
collect (mp:process-run-function
(string function) ‘() function i)
iINnto processes finally
(Mapc ‘Mp:process-join Processes)))

- OK when numgrids = available processors.

- Otherwise distribute grids evenly
over available processor. (Easy.)

- However, what if there is load imbalance?
=> Employ work stealing!

What is work stealing”

O] |0
O] |0

OO0
OO

o O

- Each thread has a deque, pushes and pops work on one end,;
steals work from other queues on other ends;

stealing occurs only when own deque is empty
=> stealing is a rare event, work is mostly done on |local data.

Work stealing with fork/join computations.
(Inspired by Cilk, here with claws.)

+ Primitives:
- spawn = add work to local deque
-sync = ensure all previously local work is done
- reset-workers = create n worker threads
- all stealing happens in the background

parallel-for with fork/join

-+ (defun parallel-for (n function)
(labels ((recur (k start end)
(let ((diff (- end start)))
(case diff
),
(1 (funcall function start))
(t (let* (Chalf (ash diff -1))
(middle (+ start half)))
(spawn () (recur middle end))
(recur start middle)

(sync)))))
(recur 0 n))

- aka divide and conquer

—Xample: sequencing pipelines

- DNA sequencing = string pattern matching
+ Seqguencing pipelines:
1. Match reads against a reference

2. Analyse matched reads

DNA = Code

- DNA: AGGCTACTTAAAT... => genome
transcription

- RNA: GUGCAUUGAGUA... => transcriptome
translation

- Proteint VHLTPEEEK...

DNA Seguencing = Pattern matching

z AGGCTACTTAAAT..

= AGGC
CTA

< AGCCTA

Alignment =
Where do the reads
match in the reference?

SAM/BAM Files

- { QNAME: “ERR091575.2”,

-LAG: 16,

RNAME: “chr137,

P0OS: 100163268

MAPQ: 37,

CIGAR: 100M,

RNEXT: “*”,

PNEXT: O,

TLEN: O,

SEQ: “GCTTCTCCTGAGATCATCG...”,
QUAL: “DDDDDDDDDDEDEDDDDD...”,
XT: “U”, NM: 3, XO: 1, X1: 0, XM: 3, XO: 0, XG:0,
MD: “25C17A55T0”, RG: “group1” }

CIGAR Strings

Op BAM Description

0 alignment match (can be a sequence match or mismatch)
insertion to the reference

deletion from the reference

skipped region from the reference

soft clipping (clipped sequences present in SEQ)

hard clipping (clipped sequences NOT present in SEQ)
padding (silent deletion from padded reference)

sequence match

sequence mismatch

< Il 'O @& nn =2 0O H =
0 ~J O Ot i Wi+

+ 10R30M15I132M8H

Typical computation on CIGAR Strings

+ (defun sum-referenced (cigar)
(loop for (key . val) in cigar
if (member key ‘(:M :D :N := :X))
sum val fixnum))

Better version

- (define-symbol-macro cigar-ops “MIDNSHPX=")
(defconstant +min-cigar-op+
(reduce ‘min cigar-ops :key ‘char-code))
(defconstant +max-cigar-op+
(reduce ‘max cigar-ops :key ‘char-code))

+ (declaim (inline cigar-index))

(defun cigar-index (char)
(declare (base-char char)
(optimize (speed 3) (space 0) (debug 0) (safety 0)
(compilation-speed 0) (fixnum-safety 0)))
(- (char-code char) +min-cigar-op+))

Better version

- (defun make-reference-table ()
(let ((table (make-array (1+ (- +max-cigar-op+
+Mmin-cigar-op+))
initial-element #.(code-char O)
.element-type ‘base-char
:allocation :long-lived
:single-thread t)))
(flet ((set-reference (char)
(setf (sbchar table (cigar-index char)) #.(code-char 1))))
-reference #\M)
-reference #\D)

.
t-reference #\N)

S

op)
D@ O© D

-reference #\=)
-reference #\X))))

)
@

(
(
(
(
(

S

Q)

Better version

+ (declaim (notinline sum-referenced))

(defun sum-referenced (cigar)
(declare (list cigar)
(optimize (speed 3) (space 0) (debug 0) (safety 0)
(compilation-speed 0) (fixnum-safety 0)))
(let ((table (load-time-value (make-reference-table) t)))
(loop for (key . value) in cigar
for keychar = (sbchar (symbol-name key) 0)
for factor = (char-code (sbchar table keychar))
sum (* factor value) fixnum)))

Summary

Distinguish concurrency vs. parallelism

If you want parallelism for performance,
you need to care about sequential performance as well.

- There is no single parallel programming paradigm
that fits all problems.

Parallel Lisps should provide building blocks
for domain-specific parallel constructs
(or just constructs suited for different domains).

What next?

- Work stealing (Intel Cilk Plus, TBB)

- Intel Cilk Plus: CEAN (Paralation Lisp, APL)
- Intel CnC (incl. distributed processing)

- MPI

- PGAS: Chapel, Fortress, X10

Thank You

Why are Lisp programs hard to parallelize”?

* (defun count-3s (list)
(if (null list)
0
(+ (if (= (car list) 3) 1 0)
(count-3s (cdr list)))))

Why are Lisp programs hard to parallelize”?

* (defun count-3s (list)

(if (null list)
0

(+ (if (= (car list) 3) 1 0)
(count-3s (cdr list)))))

- Lists from cons cells are an inherently sequential data structure.

=R

=R

=R

=R

=R

Mailboxes out of condition variables

« (defstruct mailbox
(cond (mp:make-condition-variable))
(lock (mp:make-lock))

(list ()

(defun mailbox-read (mailbox)
(mp:with-lock ((mailbox-lock mailbox))
(loop until (mailbox-list mailbox) do
(mp:condition-variable-wait
(mailbox-cond mailbox) (mailbox-lock mailbox)))
(pop (mailbox-list mailbox))))

(defun mailbox-send (mailbox object)
(mp:with-lock ((mailbox-lock mailbox))
(push object (mailbox-list mailbox))
(mp:condition-variable-signal (mailbox-cond mailbox))))

Ssarriers

» (defun count-3s (vec &aux (length (length vec)))
(loop with block-size = (ceiling length *threads®)
with mailbox = (mp:make-mailbox)
with barrier = (mp:make-barrier *threads®)

for start below length by block-size
for end = (min (+ start block-size) length) do

(prun (lambda (start end)
(loop for i from start below end do
(setf (svref vec i) (if (= (svref vec i) 3) 1 0)))
(mp:barrier-wait barrier)
(mp:mailbox-send mailbox
(loop for i from start below end sum (svref vec i)))))

finally (return (loop repeat *threads™ sum (mp:mailbox-read mailbox)))))

Fork/join + work stealing

 Fork/join and work stealing are independent of each other.
(For example, work stealing schedulers also useful for futures, actors, ...)

- Literature shows optimal theoretical performance and space bounds
when fork/join and work stealing are combined.
(Blumofe, Leiserson,Scheduling Multithreaded Computations by Work
Stealing, FOCS’94 & J. ACM’99)

- Confirmed by practical experience (Cilk, TBB, Java fork/join, ...)
(Frigo, Leiserson, Randall, The Implementation of the Cilk-5 Multithreaded
Language, PLDI’98)

- Work stealing works well until a certain number of processor cores.
(Dinan et al., Scalable Work Stealing, SC’09)

68

Library-style work stealing
(TBB, Java fork/join, ...)

* int fib (int n) {
int f1 = fork(fib(n-1));

}anféf oln-2); oush child to local

return f ; deque & continue

pop or steal work and
execute
until all forked children are done

Cilk-style work stealing

* int fib (int n) {
int f1 = fork(fib(n-1));
int f2 = fib(n-2)
join();
return

}

push continuation to local deque;
fork-count++, execute child, fork-count--;
if child finishes a join, execute its continuation

if all children done, just continue;
otherwise forget about the join,
iInstead steal and execute work.

70

The continuation of a fork...

* int fib (int n) {
int f1 = fork(fib(n-1));
int 2 = fib(n-2);
join();
return f1+2;

}

71

...and the continuation of a join.

* int fib (int n) {
int f1 = fork(fib(n-1));
int f2 = fib(n-2);
join();

| return f1+2;
}

72

Cilk-style vs. library-style work stealing

- Cilk-style guarantees optimal performance and optimal space bounds

. ...requires efficient representation of continuations & compiler support

- Library-style guarantees only optimal performance, no space bounds

- ...requires trickery in join step to support better space bounds (TBB)

e (Guo, Barik, Raman, Sarkar, Work-first and help-first scheduling policies for
async-finish task parallelism, IPDPS’09)

73

