Distrib. Comput. (2008) 20:323-341
DOI 10.1007/s00446-007-0050-0

An optimistic approach to lock-free FIFO queues

Edya Ladan-Mozes - Nir Shavit

Received: 17 November 2004 / Accepted: 12 July 2007 / Published online: 30 November 2007

© Springer-Verlag 2007

Abstract First-in-first-out (FIFO) queues are among the
most fundamental and highly studied concurrent data struc-
tures. The most effective and practical dynamic-memory
concurrent queue implementation in the literature is the lock-
free FIFO queue algorithm of Michael and Scott, included
in the standard Java’™ Concurrency Package. This work
presents a new dynamic-memory concurrent lock-free FIFO
queue algorithm that in a variety of circumstances performs
better than the Michael and Scott queue. The key idea behind
our new algorithm is a novel way of replacing the singly-
linked list of Michael and Scott, whose pointers are inserted
using a costly compare-and-swap (CAS) operation, by an
“optimistic” doubly - linked list whose pointers are updated
using a simple store, yet can be “fixed” if a bad ordering of
events causes them to be inconsistent. We believe it is the
first example of such an “optimistic” approach being applied
to a real world data structure.

Keywords CAS - Compare and swap - Concurrent data
structures - FIFO queue - Lock-free - Non-blocking -
Synchronization

A preliminary version of this paper appeared in the proceedings of the
18th International Conference on Distributed Computing (DISC)
2004, pages 117-131.

E. Ladan-Mozes (<)
CSAIL-MIT, 32 Vassar st, Cambridge, MA 02139, USA
e-mail: edya@MIT.EDU

N. Shavit
School of Computer Science, Tel-Aviv University,
69978 Tel Aviv, Israel

N. Shavit
Sun Microsystems Laboratories,
Burlington MA, USA

1 Introduction

First-in-first-out (FIFO) queues are among the most fun-
damental and highly studied concurrent data structures [5,
9,10,12,18,19,23,24,26-31], and are an essential building
block of concurrent data structure libraries such as JSR-166,
the Java Concurrency Package [13]. A concurrent queue is
a linearizable structure that supports enqueue and dequeue
operations with the usual FIFO semantics. This work focuses
on queues with dynamic memory allocation.

The most effective and practical dynamic-memory concur-
rent FIFO queue implementation is the lock-free FIFO queue
algorithm of Michael and Scott [19] (henceforth the
MS-queue). On shared-memory multiprocessors, this
compare-and-swap (CAS) based algorithm is superior to all
former dynamic-memory queue implementations including
lock-based queues [19], and has been included as part of
the Java Concurrency Package [13]. Its key feature is that it
allows uninterrupted parallel access to the head and tail of
the queue.

This paper presents a new dynamic-memory lock-free
FIFO queue algorithm that in a variety of benchmarks per-
forms better than the MS-queue. It is perhaps the first prac-
tical example of the “optimistic” approach to reduction of
synchronization overhead in concurrent data structures. At
the core of this approach is the ability to use simple stores
instead of CAS operations in common executions, and fix the
data structure in the uncommon cases when bad executions
cause structural inconsistencies.

1.1 The optimistic queue algorithm

As with many finely tuned high performance algorithms (see
for example CLH [4,16] Versus MCS [17] locks), the key to

@ Springer

324

E. Ladan-Mozes, N. Shavit

head
Returned \ CAS head
K value \
‘ w value dummy‘
I - J, next |
CAS next

Fig. 1 The single CAS dequeue and costly two CAS enqueue of
the MS-Queue algorithm

CcAStail §

Released

our new algorithm’s performance is in saving a few costly
operations along the commonly used execution paths.

Figure 1 describes the MS-queue algorithm which is based
on concurrent manipulation of a singly-linked list. Its main
source of inefficiency is that while its dequeue operation
requires a single successful CAS in order to complete, the
enqgueue operation requires two such successful CASs. This
may not seem important, until one realizes that it increases
the chances of failed CAS operations, and that on modern
multiprocessors [11,33], even the successful CAS operations
take an order-of-magnitude longer to complete than a load
or a store, since they are implemented by taking exclusive
ownership of a cache line and a flushing of the processor’s
write buffer.

The key idea in our new algorithm is to (literally) approach
things from a different direction... by logically reversing the
direction of enqueues and dequeues to/from the list. If
enqgueues were to add elements at the beginning of the list,
they would require only a single CAS, since one could first
direct the new node’s next pointer to the node at the begin-
ning of the list using only a store operation, and then CAS
the tail pointer to the new node to complete the insertion.
However, this re-direction would leave us with a problem at
the end of the list: dequeues would not be able to traverse the
list “backwards” to perform a linked-list removal.

Our solution, depicted in Fig. 2, is to maintain a doubly lin-
ked list, but to construct the “backwards” direction, the path
of prev pointers needed by dequeues, in an optimistic
fashion using only stores (and no memory barriers). This dou-
bly linked list may seem counter-intuitive given the extensive
and complex work of maintaining the doubly linked lists of

CAS tail / CAS heag:
last
new node . node value A
——— released
value dummy| node
next next
"=~ prev prev

Single CAS Enqueue: Single CAS Dequeue:
1. Load prev, fix if needed

2. CAS head

1. Store next in new node
2. CAS tail
3. Optimistically - store prev in last node

Fig. 2 The Single CAS enqueue and dequeue of the new algorithm

@ Springer

lock-free deque algorithms using double-compare-and-swap
operations [2]. However, we are able to store and follow the
optimistic prev pointers in a highly efficient manner.

If a prev pointer is found to be inconsistent, we run a
fixList method along the chain of next pointers which
is guaranteed to be consistent. Since prev pointers become
inconsistent as a result of long delays, not as a result of
contention, the frequency of calls to fixList is low. The
result is a FIFO queue based on a doubly linked list where
pointers in both directions are set using simple stores, and
both enqueues and dequeues require only a single suc-
cessful CAS operation to complete.

1.2 Optimistic synchronization

Optimistically replacing CAS with loads/stores was first sug-
gested by Moir et al. [15] who show how one can replace the
use of CAS with simple loads in good executions, using CAS
only if a bad execution is incurred. However, while they show
a general theoretical transformation, we show a practical
example of a highly concurrent data structure whose actual
performance is enhanced by using the optimistic approach.

Our optimistic approach joins several recent algorithms
tailored to the good executions while dealing with the bad
ones in amore costly fashion. Among these is the obstruction-
freedom methodology of Herlihy et al. [8] and the lock-
elision approach by Rajwar and Goodman [25] that use
backoff and locking (respectively) to deal with bad cases
resulting from contention. Our approach is different in that
inconsistencies occur because of long delays, not as a result
of contention. We use a special mechanism to fix these incon-
sistencies, and our resulting algorithm is lock-free.

Independently of our work, Lea [14] has recently used an
optimistic approach to implement the “successor pointers”
direction of the linked list in a CLH lock [4,16]. A short
survey of related work can be found in Sect. 7.

1.3 Performance

We compared our new lock-free queue algorithm to the most
efficient lock-based and lock-free dynamic memory queue
implementations in the literature, the two-lock-queue and
lock-free MS-queue of Michael and Scott [19]. We used
Michael and Scott’s C code and compared it to our new FIFO
queue algorithm on a 16-processors shared-memory machine
using a collection of benchmarks, including the key bench-
mark used by Michael and Scott [19]. Our empirical results,
presented in Sect. 4, show that in our benchmarks the new
algorithm performs better than the MS-queue. This impro-
ved performance on our tested architecture is not surprising,
as our enqueues require fewer costly CAS operations, and
as our benchmarks show, generate significantly fewer failed
CAS operations. We also found that our algorithm performs

An optimistic approach to lock-free FIFO queues

325

better when pre-backoff and validation are performed on the
head pointer before it is CASed in the dequeue operation.

The new algorithm uses the same dynamic memory pool
structure as the MS-queue. It fits with memory recycling
methods such as ROP [7] or Hazard Pointers [20], and it
can be written in garbage-collected programming languages
without the need for a memory pool or ABA-tags (see
Sect. 3.6). We thus believe it can serve as a viable alter-
native to the MS-queue on certain architectures. We note
however that our algorithm is significantly more sensitive to
tuning parameters than the MS-queue, and is thus not the
right solution for users who are looking for an out-of-the-
box solution. Finally, we note that our benchmarking was
conducted on a specific multiprocessor architecture, and one
may well find that on other architectures such as new multi-
core machines with their reduced cost for CAS operations,
the practical value in using our new algorithm may be dimi-
nished. This question remains to be answered.

2 The Algorithm in Detail

The efficiency of our new algorithm rests on implementing
a queue using a doubly - linked list, which, as we show,
allows enqueue and dequeue operations to be performed
using a single CAS per operation. Our algorithm guarantees
that this list is always connected and ordered by the order
of enqueue operations in one direction. The other direc-
tion is optimistic and may be inaccurate at various points of
the execution, but can be returned to an accurate state when
needed.

In our algorithm we employ CAS synchronization ope-
rations in addition to normal load and store operations. The
CAS operation, CAS (a, p,n), atomically compares the
value at memory location a to p and if they are the same it
writes n to a and returns true, otherwise it returns false.
Since our algorithm uses CAS for synchronization, ABA
issues arise [19,29]. In Sect. 2.2, we describe the enqueue
and dequeue operations ignoring ABA issues. The tag-
ging mechanism we added to overcome the ABA problem
is similar to the one used in [19] and is explained in more
detail in Sect. 3. The code in this section includes this tagging
mechanism.

2.1 The optimistic queue data structure

Our shared queue data structure (see Fig. 3) consists of a
headpointer, a tail pointer, and nodes. Each node contains
avalue, anext pointer and a prev pointer. When a new
node is created, its next and prev pointers are initialized
to a null value. When the queue is first initialized, a dummy
node, a node whose value is not counted as a value in the
queue, is created and both head and tail are set to point

struct pointer_t {
<ptr, tag>: <node_t *, unsigned integer>
5
struct queue_t {

pointer_t tail;
pointer_t head;

struct node_t {
data_type value;
pointer_t next;
pointer_t prev;

H

void init_queue(queue_t* q)
I01: node_t* nd = new_node()
102: nd->next = <null, 0>
I03: g->tail = <nd, 0>;

I04: g—>head = <nd, 0>;

Allocate a new node

next points to null with tag O
tail points to nd with tag O

head points to nd with tag O

Fig. 3 Types, structures and initialization

void enqueue(queue_t* g, data_type val)
EO1: pointer_t tail

E02: node_t* nd = new_node()

E03: nd->value = val

E04: while(TRUE){ # Do till success
EO05: tail = g->tail # Read the tail

E06: nd->next = <tail.ptr, tail.tag+l> # Set node’s next ptr
EO7: if CAS(&(q->tail), tail, <nd, tail.tag+1>){ # Try to CAS the tail

Allocate a new node
Set enqueued value

E08: (tail.ptr)->prev = <nd, tail.tag> # Success, write prev
E09: break # Enqueue done!

E10: }

Ei1: }

Fig. 4 The enqueue operation

toit. During the execution, the tai 1 always points to the last
(youngest) node inserted to the queue and the head always
points to a dummy node. The node that contains the first
(oldest) value in the queue is the node whose next pointer
points to that dummy node. When the queue becomes empty,
both head and tail point to the same node now considered
to be a dummy.

2.2 The optimistic queue operations

A FIFO queue supports two operations (which we will alter-
nately call methods, especially when discussing their imple-
mentation code): enqueue and dequeue. The enqueue
method inserts a value to the queue and the dequeue method
deletes the oldest value from the queue.

The code of the enqueue method appears in Fig. 4,
and the code of the dequeue method appears in Fig. 5.
To insert a value, the enqueue method creates a new node
that contains the value (E02—-E03), and then tries to insert this
node into the queue. The enqueue reads the current tail
of the queue (E05), and sets the new node’s next pointer
to point to that same node (E06). Then it tries to atomically
modify the tail to point to this new node using a CAS
operation (E07). If the CAS succeeded, the new node was
inserted into the queue, and the enqueue process updates
the prev pointer of the node pointed-to by the tail read
in EOS, and exits (E08—E09). Otherwise the enqueue retries.

To delete a node, a dequeue method reads the current
head and tail of the queue (D04-DO05), and the prev
pointer of the node pointed-to by the head (D06). To verify
that these head and tail existed together in some state of

@ Springer

326

E. Ladan-Mozes, N. Shavit

data_type dequeue(queue_t* q)

DO1: pointer_t tail, head, firstNodePrev
D02: data_type val

D03: while(TRUE){

DO4: head = gq->head

DO5: tail = g->tail

DO6: firstNodePrev = (head.ptr)->prev
DO7: if (head == g->head){

Try till success or empty
Read the head
Read the tail
Read first node prev
Check consistency

DO8: if (tail !'= head){ # Queue not empty?

D09: if (firstNodePrev.tag != head.tag){ # Tags not equal?

D10: fixList(q, tail, head) # Call fixList

Di1: continue # Re-iterate (D04)

D12:

D13: val = (firstNodePrev.ptr)->value # Read the value to return
D14: if CAS(&(q->head), head, <firstNodePrev.ptr,head.tag+1>){# CAS
D15: free (head.ptr) # Free the node at head
D16: return val # Dequeue done!

D17:

D18: }

D19: else{ # Only one node

D20: return NULL # Empty queue, done!

D21: }

D22:

D23: }

Fig. 5 The dequeue operation

the queue, the dequeue method checks that the head was
not changed since it was last read in D05 (D07).

In Lines D09-D11 the dequeue method verifies that
the prev pointer is correctly set, as will be explained in
Sects. 2.3 and 3. If this condition is satisfied, then the
dequeue method reads the value stored in the node pointed-
to by the prev pointer (D13) and then tries to CAS the head
to point to that same node (D14). If it succeeded, then the
node previously pointed by the head is freed (D15) and the
value read in Line D13 is returned (D16). If it failed, it repeats
the above steps.

When the queue is empty both head and tail point the
same node. In this case the condition in Line D08 fails and a
null is returned (D20).

As can now be seen from the code, the enqueue opera-
tion requires only one CAS to insert a node to the queue, a
win over the MS-queue.

2.3 Updating the prev pointer

We now explain how we update the prev pointers of the
nodes in a consistent and lock-free manner using only simple
store operations. In this section we ignore ABA problems
and memory integrity issues. These issues are discussed in
Sect. 3.

The prev pointer of a node is optimistically stored imme-
diately after the successful insertion of a new node (EOS8). In
Line EO8, an enqueue method updates the prev pointer of
the node previously pointed by the tail to point to the new
node it inserted in Line EQ7. Once this write is completed,
the prev pointer points to its preceding node in the list.

Unfortunately, the storing of the prev pointer by an inser-
ting process might be delayed for various reasons. Thus a
dequeuing method that tries to remove a node from the queue
might see a null value in the prev pointer instead of a correct
value.

@ Springer

FOl:void fixList(queue_t* q, pointer_t tail, pointer_t head)

F02: pointer_t curNode , curNodeNext

F03: curNode = tail # Set curNode to tail
FO4: while((head == g->head) && (curNode != head)){ # While not at head
FO5: curNodeNext = (curNode.ptr)->next # Read curNode next
F06: (curNodeNext.ptr)->prev = <curNode.ptr, curNode.tag-1>; # Fix

FO7: curNode = <curNodeNext.ptr, curNode.tag-1> # Advance curNode
F08: }

Fig. 6 The fixList procedure

To fix the prev pointer and to enable the dequeue
method to proceed, the dequeuing process invokes the
fixList procedure in Line D10. In the £ixTList proce-
dure we use the fact that the next pointer of each node is set
only by the method that inserted that node, and never changes
until the node is dequeued. Thus it is possible to reconstruct
the necessary prev pointer from the sequence of the next
pointers. Figure 6 provides the code of the fixList pro-
cedure. The fixing mechanism walks through the entire list
from the tail to the head along the chain of next poin-
ters (FO4-F05, FO7), and corrects the prev pointers accor-
dingly (F06). As can be seen, the fixing mechanism requires
only simple load and store operations. Though the fixing
mechanism traverses the whole list, our experiments show
that this linear complexity is mitigated by the fact that it is
rarely called and is inexpensive in its per node overhead. For
efficiency, the £ixList procedure stops if the head was
changed (F04), which means that another process already
completed the £ixList procedure.

3 The ABA problem and memory integrity

An ABA situation [19,29] can occur when a process read
some part of the shared memory in a given state and then
was suspended for a while. When it wakes up, the location
it read could be in an identical state, though many insertions
and deletions could have changed the state of the queue in
the interim period. The process may then incorrectly succeed
in performing a CAS operation, bringing the data structure
to an inconsistent state. In our algorithm, another type of an
ABA problem can occur due to long delays: a slow process
can write incorrect information to the prev pointer of a
node that was already deleted from the queue, or one that
was inserted again. To identify such situations and eliminate
ABA, we use a standard tagging-mechanism approach [19,
21] and extend its use as explained in Sects. 3.1, 3.2 and 3.3.
In Sects. 3.4 and 3.5 we discuss the roll-over problem and
memory integrity issues that arise from the need to handle
tags and ABA situations.

3.1 The tagging mechanism

In our tagging-mechanism, each pointer (tail, head,
next, and prev) is added a tag field, a part of the address

An optimistic approach to lock-free FIFO queues

327

that is used to timestamp the reference stored in the variable.
The size of this tag, as we discuss shortly, is architecture
dependent. When the queue is initialized, the tags of the
tail and head pointers are initialized to zero. The tag
of the next pointer of the dummy node that the tail and
head are initially set to point to is also initialized to zero.
When a new node is created, the next and prev tags are
initialized to a predefined null value.

As can be seen from the code, the tag of each pointer
is atomically read and/or modified by any operation (load,
store, or CAS) on a reference pointer.

We apply the following tag manipulation rules:

e When the tail or head is CASed, its tag is incre-
mented by 1.

e Whenanew node is inserted into the queue, the tag of its
next pointer is set by the enqueueing process to be one
greater than the current tag of the tail. Thus, once this
process successfully CAS the tail, these tags will be
equal.

e When the prev is stored by an enqueueing process, its
tag is set to equal the tag of the next pointer in the
same node.

These modifications of the tags prevent a situation in which
a CAS on the tail or head succeeds incorrectly. We now
explain how this is achived.

3.2 Preventing the ABA problem in the tail and head
pointers

Consider a situation in which an enqueue method executed
by a process P read that the tail points to node A and then
was suspended. By the time it woke up, A was deleted, B
was inserted and A was inserted again. Without the tagging
mechanism, process P would have incorrectly succeeded in
performing the CAS, since it had no way to distinguish the
two states of the data structure from one another. The tagging
mechanism, however, will cause the tag of the tail poin-
ting to A to differ (because it was incremented twice) from
the tag originally read by P. Hence, P’s incorrect enqueue
will fail when attempting to CAS the tail.

3.3 Detecting and fixing the ABA problem in the prev
pointer

Adding a tag to the tail and head pointers and incremen-
ting it each time these pointers are CASed, readily prevents
ABA situations resulting from incorrect successful CAS ope-
rations. This is not the case in ABA situations that result from
out-of-date stores to prev pointers. Since the prev poin-
ters and their tags are only stored, and can be stored by any
process (for example, a process that executes the fixList

method), the ABA problem can also occur while modifying
the prev pointers. Recall that according to our tagging rules
stated above the tags of the next pointer and the prev
pointer in the same node are set to be equal. Thus, if there
is a situation in which they are not equal, then this is an
inconsistency.

The following example illustrates this type of ABA situa-
tion concerning the prev pointer. Assume that an enqueue
method executed by process P inserted a node into the queue,
and stopped before it modified the prev pointer of the suc-
cessor node A (see Sect. 2.2). Then node A was deleted and
inserted again. When P wakes up, it writes the pointer and
the tag to the prev pointer of A. The tag value exposes this
inconsistency since it is smaller than the one expected.

The detection and fixing of an incorrect prev pointer is
based of the following properties that are maintained by the
tagging mechanism:

Propoerty I The tag of the next pointer should be equal
to the tag of the prev pointer in the same node.

Propoerty 2 The tag of the head pointer equals the tag
of the next pointer of the node it points to.

If these properties are maintained, it follows that in a cor-
rect state, the tag of the head should equal the tag of
the prev pointer of the node the head pointed-to. If these
tags are different, we can conclude that an ABA problem
occurred, and call the £ixList method to fix the prev
pointer.

These properties follow from the use of the tagging mecha-
nism given a proper initialization of the queue as described
in Sect. 3.1, together with the fact that the next pointer of a
node, including its tag, is never changed during the execu-
tion until this node is deleted. Note that for the same reasons,
Property 2 applies also to the tail pointer and the node it
points to, and that if the head and tail point to the same
node, their tags are equal (Lemma 13).

Property 1 will be proved in Sect. 5 by Lemma 11 and
Property 2 will be proved in Lemma 12.

As can be seen from the code, the fixing of a prev pointer
after it was corrupted is performed in the £ixList proce-
dure (Fig. 6). The fixing mechanism walks through the entire
list from the tail to the head along the next pointers of
the nodes, correcting prev pointers if their tags are not
consistent. This fixing mechanism further extends the use of
the tagging mechanism, making use of the fact that (1) the
next pointers are set locally by the enqueue method, (2)
they never change until the node is deleted from the queue,
and (3) that consecutive nodes must have consecutive tags
for the next and prev pointers.

@ Springer

328

E. Ladan-Mozes, N. Shavit

3.4 The rolling-over of tags

Most of the current computer architectures support atomic
operations such as CAS only on a single computer word. To
allow the pointer and its tag to be modified atomically they
must reside in the same word. Thus, in our implementation
as well as in [19], the computer’s words in which the tail,
head, next, and prev pointers are stored are logically
divided into two equal parts. The first part is used to store a
pointer, and the second is used to store the tag.

Since the pointer occupies only half of the computer word,
it cannot store a real memory location. Rather, (as in [19]),
our implementation uses a pre-allocated pool of nodes. The
first part of each pointer points to a node in this pool. The
pool forms a closed system of nodes which, as we will prove,
allows us to maintain memory integrity.

Inconsistencies can result from tags “wrapping around.”
First, if by the time a slow process wrote to a prev pointer
the tags rolled-over in such a way that the tag of the prev
pointer it wrote equals the tag of the next pointer in the
same node (as in a correct setting), then the tag is correct
but the pointer points incorrectly, and we cannot detect that.
Secondly, it is possible that a slow process reads a pointer
and its tag before being suspended. By the time it wakes up,
the tags have rolled-over so that the same pointer and the
same tag it read are encountered again, then the queue data
structure becomes inconsistent.

In practice, on today’s 64-bits architectures, there are
2321 numbers that can be used for tag values, and assu-
ming one of the operations is performed each microsecond,
a thread must be delayed for more than an hour in order for
the tags to roll-over. We can have the operating system abort
such unreasonably delayed threads after an appropriate time
limit. This will prevent any process from seeing the same
value twice due to tags roll-over.

3.5 Preserving memory integrity

Memory integrity issues arise in our algorithm since any pro-
cess can write to the prev pointer of any node it encountered
during its execution using a simple store operation, even if at
the actual writing time this node is no longer in the queue.
The external pool in which nodes are pre-allocated, as
described in Sect. 3.4, is a standard approach to preserving
memory integrity. The queue and external pool form a closed
system in which non-interference is kept. That is, when a
delayed process writes to a prev pointer of some node, it
might corrupt this prev pointer (and in Sect. 3.3 we explained
how the algorithm overcomes such corruption). However, as
we show, at that point the node containing this pointer will
be either in the queue, or in the pool and out of use, and
overwriting it will not break the memory integrity.

@ Springer

Note that since a pre-allocated pool of nodes is used, the
size of the value field stored in each node is fixed. In our
implementation, as in [19], the value field is limited to the
size of a word. In order to use the queue for other (even
different) data types, the value field can store a pointer to the
memory location of that data.

3.6 Garbage collected languages — a simple solution

In garbage-collected languages such as the Java program-
ming language, the ABA problem does not occur and memory
integrity is preserved, altogether eliminating the need to use
tags.

In garbage-collected languages a node will not be collec-
ted as long as some process has a pointer to itimplying that the
same memory space cannot be simultaneously re-allocated
to both the queue or to some other application. That means
that if any process has a pointer to a node, this node will not
be re-inserted to the queue or used by any other application
until the last process releases the pointer to that node. Thus,
garbage collection actually provides us the property of non-
interference and eliminates the memory integrity problem as
described in Sect. 3.5

Let us examine the ABA problem that occurred in the
head and tail pointer in non-garbage collected languages
as explained in Sect. 3.2. In that case, a process read some
location in the shared memory in a given state and then was
suspended for a while. When it woke up, the location it read
was in an identical state, however many insertions and dele-
tions already happened in the interim. In garbage-collected
languages such situation cannot occur. Until the process that
was suspended releases the pointer to the node, the memory
space of this node cannot be re-used, and therefore, an iden-
tical state of the data structure cannot occur.

The same "solution" applies to the ABA problem in the
prev pointer as explained in Sect. 3.3. If an enqueue pro-
cess did not update the prev pointer of the node pointed by
the new node it just inserted to the queue, then this prev
pointer is null. When a dequeue process encounters this
null value (instead of checking tags for equality in Line D10),
itcalls the £ ixLi st method. Since this node was not re-used
before all processes released their pointer to it in the previous
use of this memory location, the processes that currently can
have a pointer to it are:

The engueue process that inserted that node.

The enqueue process that inserted the successive node.
All dequeuing processes that started to run the
fixList method after this node was inserted to the
queue.

Note that the process that inserted this node does not try
to update its prev pointer. The process that inserted the

An optimistic approach to lock-free FIFO queues

329

successive node tries to store a reference to the node it just
inserted in this prev pointer. The £ixList method, as
before, traverses the chain of next pointers, which cannot
be changed after anode was inserted to the queue, and updates
the prev pointers accordingly. Therefore all these processes
attempt to write the exact same value to this pointer, and this
value points to the node inserted after it, as required. Even
after the node is deleted from the queue, its memory is not
re-used as long as any of the above processes did not release
a pointer to it.

It follows that garbage collection eliminates the need for
the tagging mechanism and for the external pool of pre-
allocated nodes, allowing us to use a full word to store a poin-
ter to a node. We note that using memory recycling methods
such as [7,20] in languages that are not garbage-collected
will also eliminate the memory integrity problem and thus
the need for ABA tags.

A concise version of Java code for the queue data struc-
ture and the enqueue and dequeue methods appears in
Sect. 6. Our Java based version of the algorithm follows
that of the ConcurrentLinkedQueue class in the Java
concurrency package, which implements the MS-queue
algorithm. Following the notation used in
ConcurrentLinkedQueue, the enqueue operation is
called of fer and the dequeue operation is called pol1l.

4 Performance

We evaluated the performance of our FIFO queue algorithm
relative to other known methods by running a collection of
synthetic benchmarks on a 16 processor Sun Enterprize™
6500, an SMP machine formed from 8 boards of two 400MHz
UltraSparc® processors, connected by a crossbar UPA
switch, and running a Solaris™ 9 operating system. Our C
code was compiled by a Sun cc compiler 5.3, with flags
-x05-xarch=v8plusa.

4.1 The benchmarks

We compared our algorithm to the two-lock queue and to
MS-queue of Michael and Scott [19]. We believe these algo-
rithms to be the most efficient known lock-based and lock-
free dynamic-memory queue algorithms in the literature. In
our benchmarks we used Michael and Scott’s code (referen-
cedin [19]).

The original paper of Michael and Scott [19] evaluated the
lock-based and lock-free FIFO queue only on the enqueue-
dequeue pairs benchmark, in which a process repeatedly
alternated between enqueuing and dequeuing. This tests a
rather limited type of behavior. In order to simulate additional
patterns, we extended the memory management mechanism,
implemented as an external pool of nodes. As in Michael and

Scott’s benchmark, we use an array of nodes that are allocated
in advance. Each process has its own pool with an equal share
of these nodes. An enqueue operation takes a node from the
process’s pool and inserts it to the queue. The dequeue ope-
ration places the dequeued node in the dequeuing process’s
pool. If there are no nodes left in its local pool, a process must
first dequeue at least one node, and then it can continue to
enqgueue. Similarly, a process cannot dequeue nodes if
its pool is full. To guarantee fairness, we used this extended
memory management mechanism for all the algorithms we
tested. We ran several benchmarks:

e enqueue—dequeue pairs: each process alternately perfor-
med enqueue or dequeue operation.

e 50% enqueues: each process chooses uniformly at ran-
dom whether to perform an enqueue or a dequeue, crea-
ting a random pattern of 50% enqueue and 50%
dequeue operations.

e grouped operations: each process picks arandom number
between 1 and 20, and performs this number of enqueues
or dequeues. The process decides to perform enqueues or
dequeues either uniformly as in the 50% benchmark or
alternately as in the enqueue—dequeue pairs benchmark.
Note that the total number of enqueue and dequeue opera-
tions is not changed, they are only distributed differently
along the execution.

4.2 The experiments

We repeated the above benchmarks with and without “work”
delays between operations. When delays are introduced, each
process is delayed a random amount of time between ope-
rations to mimic local work usually performed by processes
(quantified by the variable work)

We measured latency (in milliseconds) as a function of the
number of processes: the amount of time that elapsed until the
completion of a total of a million operations divided equally
among processes. To counteract transient startup effects, we
synchronized the start of the processes (i.e., no process can
start before all others finished their initialization phase).

We pre-tested the algorithms on the given benchmarks
by running hundreds of combinations of exponential backoff
delays on enqueues and dequeues. The results we present
were taken from the best combination of backoff values for
each algorithm in each benchmark. Similarly to Michael and
Scott, we found that for MS-queue algorithm the choice of
backoff did not cause a significant change in performance.
For the algorithm presented in this paper, however, we found
that backoff does effect the performance. Therefore we
present two implementation of our algorithm, in the first
one (denoted new - no pre-backoff) backoff is cal-
led only after a CAS operation fails. In the second one (deno-
ted new - with pre-backoff), a process both calls

@ Springer

330

E. Ladan-Mozes, N. Shavit

pairs benchmark without work

1600 T T '
—=— MS—queue
14001 | —«— new — no pre—backoff |
—— new with pre-backoff
1200+ —o— two lock 7]
—*— work only 1
1000
@
E
o 800F
£
600
400
2001
0
0 2 4 6 8 10 12 14 16

number of processes

Fig. 7 Results of enqueue—dequeue pairs benchmark without work

pairs benchmark with work

1600 T T T
—=— MS-queue
1400 —#— new — no pre—backoff 4
—— new with pre—backoff
1200 —e— two lock B
—*— work only
1000 4
= ,,,,,,.———"'***70—7717///’**7*
£
o 800r
£
600+
4001
2001
v
0
0 2 4 6 8 10 12 14 16

number of processes

Fig. 8 Results of enqueue—dequeue pairs benchmark with work bet-
ween operations

backoff and validates the head pointer before it tries to per-
form the CAS in the dequeue operation (Line D14). If the
validation fails then the dequeue process skips the CAS
operation and restarts the dequeue operation. Each of the
presented data points in our graphs is the average of four
runs.

4.3 Empirical results

Figures 7 and 8 depict the performance results for the
enqueue—dequeue pairs benchmark without and with work
between operations. In Fig. 7 the work only line mea-
sures the time it takes to initiate the queue and run through
the loop of operations, without actually performing enqueues

@ Springer

50% enqueues benchmark without work

1600 T T T T T

1400k —=— MS-queue i
—#— new — no pre—backoff

1200t —+— new with pre-backoff
—e— two lock

1000t —*— work only i

time (ms)
[o]
o
o

4001

2001

0 2 4 6 8 10 12 14 16
number of processes

Fig. 9 Results of 50% enqueues benchmark without work

50% enqueues benchmark with work

1600 T ; : : T
—=— MS-queue
14001 —#—new — no pre-backoff 4
—+— new with pre-backoff
12001 —e—two lock 3
—*—work only /
1000
m T — o o o —
E
o 800F
£
6001
4001
200
0 , , , , , , ,
0 2 4 6 8 10 12 14 16

number of processes

Fig. 10 Results of 50% enqueues benchmark with work between
operations

and dequeues. The work only line in Fig. 8 adds to that
the work being done by the processes between enqueue and
dequeue operations.

Figures 9 and 10 depict the performance results for the
50% enqueues benchmark without and with work between
operations, where the work only lines have the same mea-
ning as in Figs. 7 and 8.

As can be seen, when no work between operation is intro-
duced, our new algorithm is consistently better than MS-
queue in both benchmarks. When we use pre-backoff and
validation in the dequeue operation, the performance gap
between MS-queue and our algorithm is even bigger. When
work is introduced, the performance of the two algorithms in
the enqueue—dequeue pairs benchmark is very similar, and
in the 50% enqueues benchmark there is a small gap.

An optimistic approach to lock-free FIFO queues

331

pairs benchmark of grouped operations without work
1100 T T T T T T T
—=— MS-queue

10008 |y hew-no pre—backoff —

900 | —*— new — with pre—backoff

—e— two lock

7001

6001

time (ms)

4001

300

1001]

0
0 2 4 6 8 10 12 14 16

number of processes

Fig. 11 Results of grouped operation using enqueue—dequeue pairs
benchmark without work

pairs benchmark with work between grouped operations
1100 T T T T T T T
—=— MS-queue
1000r —*— new — no prebackoff 1

900 | —#— new — with prebackoff q

8ok | two lock _— i

7001 b

time (ms)

500 1
4001 J
300 o J
2001 J

1001]

0
0 2 4 6 8 10 12 14 16

number of processes

Fig. 12 Results of grouped operation using enqueue—dequeue pairs
benchmark with work between operations

In all four graphs, the blocking algorithm (two-lock) is
worse than the non-blocking algorithms, and its performance
deteriorates as the number of processes increases.

Figures 11, 12, 13 and 14 present the performance results
for grouped operations using both the enqueue—dequeue pairs
benchmark and the 50% enqueues benchmark (without and
with work between operations). In these benchmarks each
process performs a group of either enqueue or dequeue ope-
rations at a time. The graphs show a similar behavior to
the one observed when the operations were not grouped,
but with gaps between the non-blocking algorithms is smal-
ler. The blocking algorithm, however, deteriorates faster and
the gap between it and the non-blocking algorithms is
bigger.

There are three main reasons for the performance gap
between the non-blocking algorithms. First, there were a

50% enqueue benchmark, without work between grouped operations
1100 T T T T T T T

—=— MS-queue
10001
—#—new - no pre-backoff
900 —+—new — with pre-backoff 1
8001 —e—two lock
7001
g 600F
Q
£ 500F
400
3001
2001+
100+ b
0 , , , , , , ,
0 2 4 6 8 10 12 14 16

number of processes

Fig. 13 Results of grouped operation using 50% enqueues benchmark
without work

50% enqueue benchmark, with work between grouped operations
1100
—=— MS-queue

1000 | —— new - no pre—backoff _—
900} | —* new — with pre-backoff
—e—two lock

500

time (ms)

400

200+ J

1001 B

0
0 2 4 6 8 10 12 14 16

number of processes

Fig. 14 Results of grouped operation using 50% enqueues benchmark
with work between operations

negligible number of calls to £ixList in both benchmarks
— no more than 5 calls for a million operations. From this
we can conclude that almost all enqueue operations were
able to store the correct prev pointer after the CAS opera-
tion in Line EO8. This makes a strong argument in favor of
the optimistic approach.

The second reason is that the £ixList procedure runs
fast - even though each process traverses the entire list, it
requires only load and store operations. We also ran experi-
ments in which we initialized the queue with different number
of nodes, connected only by their next pointers; the running
time r emained the same. This is due to the fact that once the
fixList procedureis called, it traverses and fixes the entire
list. Though many such processes can run concurrently, they
complete quickly, and perform the fixing for all following
dequeuing processes.

@ Springer

332

E. Ladan-Mozes, N. Shavit

Number of failed CAS in the dequeue operation without work

25 T T T T T T T
—=— MS-queue
__ o | | —*—new - no pre-backoff |
©
g —+—new — with pre—backoff
5 1.5F
g1
el
<
K
51
I}
Qo
€
=
< 0.5F
0 » M
0 2 4 6 8 10 12 14 16

number of processes

Fig. 15 Number of failed CAS in the dequeue operation without work

Number of failed CAS in the dequeue operation with work

25 T T T T T T T
—=— MS-queue
5 | —#— new — no pre-backoff
< —=— new — with pre—backoff
k3
2 15t
(&)
°
2
K
S 1t
o}
Qo
[S
3
(=
0.5F
0 - L L L L L 1
0 2 4 6 8 10 12 14 16

number of processes

Fig. 16 Number of failed CAS in the dequeue operation with work

The third reason for the performance gap is the num-
ber of failed CAS operations performed by the algorithms.
Figures 15 and 16 show the number of failed CAS operations
in the dequeue method without and with work. Figures 17
and 18 show the number of failed CAS operations in the
enqueue method without and with work. The numbers for
the enqueue—dequeue pairs benchmark and the 50% bench-
mark are similar.

These graphs show the main advantage of our algorithm,
and the importance of the pre-backoff and validation for our
algorithm. When no work is introduced (Fig. 15), the number
of failed CAS operations in the dequeue method is similar
for MS-queue and for our algorithm without pre-backoff.
Adding pre-backoff and validation reduces the number of
failed CASes by an order of magnitude. The introduction
of work (Fig. 16) causes more failed CAS operations in our
algorithm, though this number is still much smaller when pre-
backoffing and validation are used. Adding work imposes

@ Springer

Number of failed CAS in the enqueue operation without work
25 T T T T T T T

—=— MS-queue

—#—new — no pre—backoff

N
L

[| —— new — with pre-backoff

-
[S4)
T

number of failed CAS (x10°)

0.5

0 2 4 6 8 10 12 14 16
number of processes

Fig. 17 Number of failed CAS in the enqueue operation without work

Number of failed CAS in the enqueue operation with work

25 T T T T T T T
2
-y
o
E%
215
O —=— MS-queue
3
= —#— new - no pre-backoff
o1 —— new - with pre-backoff]
8
£
3
c
0.5 B
0 -
0 2 4 6 8 10 12 14 16

number of processes

Fig. 18 Number of failed CAS in the enqueue operation with work

different scheduling patterns on the operations and has an
affect similar to backoffing. As mentioned before, for
MS-queue, we observed similar results with and without
backoffs. Our algorithm is more sensitive to the tuning of the
backoff mechnism, and therefore introducing work between
operations causes more contention and hence more failed
CAS operations.

Figures 17 and 18 show the importance of having only
one CAS operation in the enqueue method, instead of two as
in MS-queue. These graphs show that there are an order of
magnitude less failed CAS operations in the enqueue method
in our new algorithm, both with and without pre-backoff,
and with work and without work between operations. This
is a result of the additional CAS operation required by the
MS-queue enqueue method, and is the main advantage
allowed by our new optimistic doubly - linked list structure.

One can observe that in our tested benchmarks, the diffe-
rence in the number of failed CAS operations is much bigger

An optimistic approach to lock-free FIFO queues

333

than the performance gained by the reduction of this number.
This fact suggests that reducing the number of CAS opera-
tions performed (both successful and unsuccessful) is only
one component in gaining performance. The better perfor-
mance achieved by our algorithm using pre-backoff and vali-
dation emphasis the importance of these techniques.

Based on the above benchmarks, we believe that our new
algorithm can serve as a viable alternative to the MS-queue
for implementing linearizable FIFO queues on architectures
in which the cost of a CAS or similar universal synchroniza-
tion operation is high.

5 Correctness proof

This section contains a proof that our algorithm has the desi-
red properties of a lock-free FIFO queue.

5.1 Modelling shared memory

Our model of multiprocessor computation follows [9], though
for brevity, we will use operational style arguments. We take
the standard approach and view memory as being linea-
rizable [9,12]. This means that we treat basic read/write
(load/store) and CAS operations as atomic actions. Lineari-
zability assures us, among other properties, that when two
memory locations x and y are initialized to 0, and processor
A runs a program which writes 1 to x and then 1 to y, then if
processor B reads y and sees that it is 1, a subsequent read
of x will return 1 as well.

Since we treat basic read/write (load/store) and CAS ope-
rations as atomic actions, we can take the standard approach
of viewing them as if they occurred one after the other in
sequence [1], and denote the union of all shared and local
memory after each such operation as the system state. Hen-
ceforth, all our arguments will be on such sequences of ope-
rations and states in a given execution.

5.2 Memory management

Our memory management module is based on an external
shared pool of nodes, from which new nodes are taken and
into which dequeued nodes are freed, in the same style used
by [19]. This external pool is managed by a different manage-
ment layer. A process is granted a new node from the pool by
invoking a newNode() method. We assume that the next
and prev pointers of this node are initialized to null, and
once a process is granted a new node from the pool, this
node is no longer in the pool and it cannot be given to ano-
ther process until it is returned to the pool. A node is returned
to the pool by invoking a free() method on it.

5.3 A concurrent FIFO queue specification

A sequential FIFO queue as defined in [3] is a data structure
that supports two operations: enqueue and dequeue. The
engueue operation takes a value as an argument, inserts it to
the queue, and does not return a value. The dequeue opera-
tion does not take an argument, deletes and returns the oldest
value from the queue, or returns null if the queue is empty. In
our implementation we encapsulate the values inside nodes.
Thus, the enqueue method allocates a new node from the
pool of nodes in which the value passed to it is placed, and
the dequeue method releases a node back to that pool. We
prove that our concurrent queue implementation is lock-free
and that it is linearizable to the sequential FIFO queue spe-
cification.

5.4 Linearizability proof

To show that our algorithm is linearizable to a sequential
FIFO queue, we define linearization points for each
enqgueue and dequeue operation, and then show that any
execution of our implementation with these linearization
points is equivalent to an execution of the sequential FIFO
queue.

Let a successful CAS operation be one that modified the
memory location it accessed.

Definition 1 The linearization points of the enqueue and
dequeue methods are:

e engueue methods are always successful and are linea-
rized at the successful CAS in Line E07,

e successful dequeue methods, that is, ones returning a
non-null value, are linearized at the successful CAS in
Line D14, and

e unsuccessful dequeue methods, ones that return null
because the queue is empty, are linearized in Line DOS.

Definition 2 A new node created in Line E02 is considered
to be in the queue after the successful CAS on the tail
in Line EQ7 which sets the tail to point to this node, and
until a successful CAS on the head in Line D14 redirects
the head pointer from it. The state of the queue consists of
all the nodes that are in the queue. In the empty state of the
queue there is only one node in the queue, and it is considered
to be a dummy node.

Note that both the nodes pointed by the tail and the
head are in the queue, however the value in the node pointed
by the head itself is always considered a dummy value.

The above definition defines only which nodes are in the
queue, but does not assume any order between them. This
order will be argued later on when we prove the main theorem,
Theorem 1. In Theorem 1 we will show that the nodes in

@ Springer

334

E. Ladan-Mozes, N. Shavit

the queue are ordered according to the linearization order of
the enqueue operations. We will then be able to conclude
that our concurrent algorithm is linearizable to a sequential
implementation of a FIFO queue.

We first prove some basic properties of the states of the
queue, properties that follow directly from the code. Based
on these properties we will then prove that Theorem 1 holds
in any state of the queue. We use the following technical
definitions in the proofs:

Definition 3 Considertwonodes A and B in the queue, where
the next pointer of node B points to node A. Node A is called
the successor of node B, and node B is called the predecessor
of node A.

Definition 4 Consider a successful CAS on the tail (head).
The old value replaced by this CAS operation is denoted as
the replaced tail (replaced head), and the new value of the
tail (head) immediately after this successful CAS is denoted
as the modified tail (modified head).

Definition 5 Define the state of the queue when the queue
is first initialized as the initial state.

Lemma 1 In the initial state the queue is empty. In addition,
the tag of the tail, the tag of the head and the tag of
the next pointer of the dummy node are all equal.

Proof From the code of the init_gueue method, a new
node is created in Line 101 and both head and tail point
to it in Lines 103 and 104. Thus by Definition 2 the queue is
empty when it is first initialized and this node is considered
dummy. Also from the code, in lines 102 the tag of the next
pointer of this dummy node is set to zero, and in Lines 103
and 104 the tags of the tail and the head are also set to
Zero0. O

Lemma 2 In the state immediately following a successful
CAS on the tail in Line EO7, the following hold:

e Themodified tail points to the new node created
by the process performing the CAS, and its tag is one
greater than the replaced tail’s tag.

e The next pointer of the new node pointed by the
modified tail points to the node pointed by the
replaced tail, and its tag is one greater than
the replaced tail’s tag.

e Thetail’s tag equalsthe tag of the next pointer
of the node it points to.

Proof From Lemma 1, in the initial state the tail’s tag
equals the tag of the next pointer of the node it points to.

From the code, the tail can only be modified in the
CAS in Line E07, and thus no other operation can change the

@ Springer

tail’s value. If an enqueue process successfully perfor-
med the CAS in Line E0Q7, then, by the code, the modified
tail points to the new node created in Line E02 and its tag
is one greater than the tag of the replaced tail.

The next pointer of the new node created in Line E02
is written by the enqueuing process in Line E06, before
the successful CAS in Line E07, but after the execution of
Line EO5. Line EO06 sets the next pointer of this new node
to point to the same node as pointed-to by the replaced
tail while its tag is set to be one greater than the tag of
the replaced tail.

From all the above, it follows that in any state of the queue,
thetail’s tagequalsthe tag of the next pointer of the
node it points to. O

Lemma 3 In the states following a true evaluation of the
condition in Line D07, and until the dequeue method leaves
the condition block in Line D22, the head and tail values
read in the last D04 and D05 existed together in any state of
the queue in which the the tail was read in DOS.

Proof The condition in Line D07 evaluates to true if the
head read in Line D04 equals the head read in Line DO7.
That is, the head did not change in this interval. The tail
is read in Line D05 within this interval, therefore the lemma
follows. O

Lemma 4 [n the state in which a node is freed and returned
to the pool of nodes in Line D15, the node is not in the queue.

Proof From the code, anodeis freed in Line D15, after a suc-
cessful CAS on the head in Line D14. The node that is freed
in Line D15 is the one pointed-to by the replaced head.
From Definition 2, the node pointed-to by the replaced
head is no longer in the queue after the successful CAS in
Line D14. O

Lemma 5 In any state, only the successful CAS operation in
Line EO7 can modify the tail pointer and only the success-
ful CAS operation in Line D14 can modify the head pointer.
In addition, in any state, the next pointer of a node in the
queue never changes.

Proof Examining the code of all methods, the only instruc-
tion that can write the tail is the CAS operation in Line
E07, and the only instruction that can write the head is the
CAS operation in Line D14. Also from the code, the next
pointer of a node allocated in Line EO2 is written in Line
E06, before the CAS in Line EO7. From the properties of the
memory management module (Sect. 5.2) and from Lemma 4,
this new node was not in the queue when it was allocated, and
it is thus not in the queue when its next pointer is written
(Line E06). By Definition 2, after the successful CAS in Line
E07 the new node is in the queue. Examining the code of all
the methods reveals that this is the only instruction that writes

An optimistic approach to lock-free FIFO queues

335

/S N
A, x+1 Next , x
B, x
Node B Node A

Fig. 19 A correct setting of the prev pointer between two nodes

the next pointer of any node, and thus the next pointer of
anode in the queue is never changed. O

Lemma 6 An unsuccessful dequeue method does not
perform any CAS operations and does not change any next
pointers.

Proof By Definition | and Lemma 3, the linearization point
of an unsuccessful dequeue method is the last read of the
tail in Line D05, in which both the head and the tail
co-existed in the state in which the null value was returned in
Line D20. An unsuccessful dequeue method fails the condi-
tion in Line DO8 and immediately returns null in Line D20.
Thus, no CAS operations were performed and no next poin-
ters were modified. O

Lemma 7 In any state, if node A is the successor of node B
and both A and B are in the queue, then the tag of the next
pointer of node B is one greater then the tag of the next
pointer of A.

Proof Follows from Definition 3, and Lemmas 1, 2, and 5.
O

In the following Lemmas we show that the “backwards”
direction of the doubly-linked list is constructed correctly.
Thatis, if the tags of the prev pointer and the next pointer
in the same node are equal, then the prev pointer of that
node points to its predecessor node — the node whose next
pointer points to it. This is crucial to the correctness of our
algorithm since the dequeue method decides which node to
dequeue based on the order defined by the prev pointers.
We will use these lemmas to prove in Theorem 1 that our
queue is linearizable. A correct setting of the prev pointers
is depicted in Fig. 19.

Lemma 8 In any state, when curNode is set in Lines FO3
or FO7 to point to a node A that is in the queue, then its tag
is set to equal the tag of the next pointer of A.

Proof From the code, curNode is set to equal the tail pas-
sed to the £ixList procedure in Line FO3. The fixList
procedure is called from the dequeue method in Line D10,
and thus, by Lemma 3, the tail and head pointers passed

to it co-existed in the state the tail was read in Line DO0S5.
By Lemma 2, the tag of this tail equals the tag of the
next pointer of the node it points to. In Line FO5 the next
pointer of the node pointed by curNode is read. By Lem-
mas 2, 5, and 7, it follows that the tag of this next pointer
is one less than the tag of curNode. In Line FO7, when
curNode is set, it is set to point the same node pointed by
this next pointer and its tag is set to be one less than its
current tag. Hence the Lemma follows. O

Lemma 9 In any state, when the prev pointer of node A
that is in the queue is written by the £ixList procedure in
Line FO06, it is set to point to A’s predecessor node, and its
tag is set to equal A’s next pointer tag, as they existed in
the state before the last execution of Line FOS.

Proof The £ixList procedureis called from the dequeue
method in Line D10, and thus, by Lemma 3, the tail and
head pointers passed to it co-existed in the state the tail
was read in Line DO5. The fixList execution traverses
the nodes that were in the queue by the time it was cal-
led. For each node encountered in the traversal, pointed by
curNode, the fixList procedure reads its next poin-
ter (FO5). Denote the node pointed by curNode as node B
and its successor read in Line FO5 as node A. By Lemma 2
and 8, for any node B pointed to by curNode, the tag of
curNode equals the tag of the next pointer of B.

In Line FO6, the fixList procedure writes the prev
pointer of node A. The prev pointer is set to point to node B
and its tag is set to be one less than the tag of curNode,
as they existed in the last execution of Line FO5. If by the
time the prev pointer is written in Line FO6 node A is still in
the queue, then from Lemmas 5 and 7, the tag of the prev
pointer of A written in Line FO6 equals the tag of A’s next
pointer. Note that by Definition 2 and Lemma 5, A is in the
queue until the head is CASed from it to another node, and
if A is in the queue then so is its predecessor B.

The fixList procedure traverses the nodes until it
reaches the node pointed-to by the head passed to it or until
this head is no longer equal to the head pointer of the queue
(FO4). Thus, the fixList stops only if it traversed all the
nodes that were in the queue at the last read of Line D05, or if
some dequeue process that read the same head as passed
to the £ixList procedure successfully performed the CAS
in Line D14. Note that a change to the tail pointer does
not affect the fixList procedure. O

Lemma 10 /n any state, when the prev pointer of node A
that is in the queue is written by an enqueue process in
Line EOS, it is set to point to A’s predecessor node, and its
tag is set to equal A’s next pointer tag, as they existed at
the time the tail was CASed by this enqueue.

Proof From the code, the prev pointer of a node can only
be written by an enqueueing process in Line EO8, after

@ Springer

336

E. Ladan-Mozes, N. Shavit

it succeeded in the CAS in Line EO7. This successful
engueueing process can only write the prev pointer of
the node pointed-to by the replaced tail it read in
Line E05. Let A be the node pointed to by the replaced
tail and denote the new node inserted to the queue by this
enqgueue process as node B.

Note that among all concurrent processes that read the
same replaced tail, only the process that successfully
CASed it can write A’s prev pointer. In Line EO8 the prev
pointer of node A is set to point to node B and its tag is set
toequal the replaced tail’s tag.Since by Lemma?2
thereplaced tail’s tagequalsthe tagofthenext
pointer of A, A’s prev pointer tag equals A’s next pointer
tag. O

Lemma 11 Consider two nodes A and B in the queue, where
node A is the successor of node B. In any state in which A’s
prev pointer tag equals A’s next pointer tag, A’s prev
pointer points to node B.

Proof From the code, the prev pointer of node A is only
modified in the following places:

e In Line EO8, by an enqueue method after a successful
CAS on the tail that inserted A’s predecessor to the
queue.

e In Line F06, by the fixList procedure.

From Lemmas 9 and 10 the claim follows. O

Lemma 12 [n any state, the head's tag equals the tag
of the next pointer of the node it points to (that is in the
queue by Definition 2), and in the state immediately following
a successful CAS on the head in Line D14, the modified
head points to the predecessor of the node pointed-to by the
replaced head

Proof By Definition 5, when the queue is initialized both
the tag of the head and the tag of the next pointer of the
dummy node are set to zero, therefore the claim holds in the
initial empty state. Assume the claim holds in some state of
the queue.

The head can only be CASed by a dequeueing process
in Line D14. Denote the node pointed-to by the head read
by a dequeueing process in the last execution of line D05 as
node A. In Line D06 the dequeue process reads the prev
pointer of A. In Lines D09, before the head can be CASed in
Line D14, the process checks that the head’s tag equals
A’s prev pointer tag read in Line D06. If they are, then
by Lemmas 5, 7, and 11, the prev pointer of A points
to A’s predecessor, and the tag of the next pointer of the
predecessor node is one greater than the tag of A’s next
pointer.

The successful CAS in Line D14 modified the head to
point to A’s predecessor with a tag which is one greater than

@ Springer

the replaced head’s tag. It thus equals the tag of the
next pointer of the node it points to. O

Lemma 13 [f the tail’s tag equals the head’s tag as
they were read by a dequeue method in the last executions
of Lines D04 and DOS, then both point to the same node.

Proof From Definitions 2 and 5, and Lemma 1, this claim is
true in the initial, empty state of the queue. From Lemma 3,
the head and tail co-existed in the last execution of Line
DO05. From Lemma 2, the tail’s tag equals the tag
of the next pointer of the node it points to, and from
Lemma 12 the head’s tag also equals the tag of the next
pointer of the node it points to. Thus, when the tail and
head tags are equal, they must point to the same node. O

We now prove Theorem 1 which is the main theorem of the
linearizability proof. It defines the order between the nodes
in the queue, and establishes the relation between this order
and the linearization order of the enqueue and dequeue
methods.

Theorem 1 The order induced by the next pointers of
nodes in the queue from tail to head, is the inverse of
the linearization order of the enqueue operations that inser-
ted these nodes to the queue.

Proof We prove the theorem by induction on the length of
the execution, examining all system states and the enqueue
and dequeue methods that can be applied in them. We start
by proving that Theorem 1 holds in the empty state of the
queue.

Lemma 14 Theorem 1 holds in the initial empty
state of the queue.

Proof By Definitions 2 and 5 and Lemma 1, the initial state
of the queue is the empty state. There is one dummy node in
the queue and the tail and head pointers both point to it.
Thus, no order is induced by the next pointers. Therefore
Theorem 1 holds. O

We now show by induction that Theorem 1 holds in any
system state. By Lemma 5, in any state of the queue, the
only operations that can change the state of the queue (i.e.
the nodes that are in the queue) are the CAS operations on
the tail in Line EO7 and on the head in Line D14. By
Lemma 6, an unsuccessful dequeue method does not perform
any CAS operations. Therefore, in this proof we only need
to consider successful enqueue and dequeue methods,
which are linearized at these CAS operations.

1. Assume that the system is in the initial empty state and
that Theorem 1 holds true.

An optimistic approach to lock-free FIFO queues

337

(a) From Lemma 1, in this state the tail equals the
head. From the code, a dequeue operation in
this state will fail the condition in Line D08 and
thus will be unsuccessful. By Lemma 6, no CAS
operations were performed and no next pointers
were changed. Hence, there is no change in the state
of the queue and Theorem 1 still holds.

(b) Consider the first successful CAS on the tail in
Line EO7. By Definition 2 and Lemma 2, after this
successful CAS, the modified tail points to
the new node created by the enqueuing process
in Line E02, and this node is in the queue. By Lem-
mas | and 2, the next pointer of the new node
points to the dummy node. By Lemma 5, this next
pointer is not changed as long as this node is in the
queue. Thus, the order of the nodes currently in the
queue from tail to head asinduced by the next
pointers is first the new node and then the dummy
node. Hence Theorem 1 holds.

2. Assume that in some system state the queue contains one
or more non-dummy nodes and that Theorem 1 holds
true. By Theorem 1, the nodes in the queue are orde-
red according to their next pointers and this order is
the inverse of the linearization order of the enqueue
operations that inserted these nodes.

(a) Consider a successful CAS in Line EQ7 in this state,
performed by an enqueue operation. According to
the properties of the memory management module
described in Sect. 5.2 and by Lemma 4, the new
node created by this enqueue operation in Line
EO02 is not in the queue before this successful CAS.
By the induction assumption, before this success-
ful CAS, the first node in the order induced by the
next pointers of nodes in the queue was pointed-to
by the replaced tail and was inserted by the
last linearized enqueue operation.

By Definition 2 and Lemma 2, after this success-
ful CAS, the modified tail points to the new
node, and the next pointer of the new node points
to the same node pointed-to by the replaced
tail.

From all the above it follows that (1) this linearized
engueue operation is now the last in the lineari-
zation order, (2) the new node it inserted is now the
first in the order of nodes in the queue, and (3) the
next pointer of this node points to the first node
in the order of nodes that were in the queue before
this operation (before the linearization point of this
operation).

Hence Theorem 1 still holds.

(b) Consider a successful CAS on the head in Line
D14 in this state, performed by a successful
dequeue operation. Denote the node pointed-to

by the replaced head as A and the node poin-
ted by the modified head as node B.

By the induction assumption, before this successful
CAS, A is the last (“oldest”) node in the order indu-
ced by the next pointers of nodes in the queue. The
enqgueue operation that inserted A is linearized
before all other enqueue operations that inserted
nodes that are in the queue in this state.

By Definition 2 and Lemma 12, after this successful
CAS the modified head points to predecessor
of node A (denoted B) and node A is no longer in
the queue. Since the modified head points to
B, B is now considered a dummy node.

From all the above it follows that: (1) this lineari-
zed dequeue operation removed the last node in
the order induced by the next pointers of nodes
in the queue at the linearization time, and (2) the
modified headpointstothe currentlastnodein
the order induced by the next pointers of nodes in
the queue immediately after the dequeue’s linea-
rization point.

If this CAS causes the head’s tag to be equal to
the tail’s tag, thenby Lemma 13, the tail also
points to node B. By the induction assumption and
by Definition 2, the queue is now empty. In this
empty state, the tail and head point to the same
node and their tags, as well as B’s next pointer’s
tag, are equal.

Hence Theorem 1 holds in the case in which there
are still nodes in the queue after the CAS as well as
in the case in which this CAS causes the queue to
become empty. O

Corollary 1 The concurrent FIFO queue algorithm is linea-
rizable to the sequential FIFO queue.

Proof From Theorem 1 it follows that in any state, all the
nodes in the queue are ordered by their next pointers. By Defi-
nition 1, the linearization point of a dequeue operation is the
CAS onthe head in Line D14. By these, and by Lemma 12 it
must be that in each state, a linearized successful dequeue
operation deletes the “oldest” node in the queue in this state.
Thus, the order of values inserted to the queue by the lineari-
zed enqueue operations is the same as the order of values
deleted by the linearized dequeue operations. O

5.5 Lock-freedom proof

In this section we prove that our concurrent implementation
is lock-free. To do so we need to show that if one process
fails in executing an enqueue or a dequeue, then other
processes must be succeeding infinitely often, and the system
as a whole is making progress.

@ Springer

338

E. Ladan-Mozes, N. Shavit

Lemma 15 [f an enqueue method failed to insert its node
in Line EOQ7, then another enqueue method succeeded.

Proof By Definition 2 and Lemma 2, a node is inserted to the
queue at the successful CAS in line EO7 and by Lemma 5 this
CAS is the only place in which the tail pointer is modified.
If an enqueue method failed in EQ7, then the value of the
tail is no longer the same as read by this method in Line
EOS5. The value of the tail can only be changed if another
engueue method succeeded in performing the CAS in Line
EQ07, and thus another node was inserted to the queue. O

Lemma 16 Any execution of £ixList eventually termi-
nates.

Proof The fixList procedure exits its loop if it either
reaches the node pointed-to by the head or if the head
is changed. The fixList procedure is called with head
and tail values that, by Lemma 3, existed in the state in
which the tail value was read. By Theorem 1 and
Lemmas 5 and 8, the nodes in the queue are ordered by
their next pointers, this order never changes, and the fix-
List traverses the nodes in the queue by the next pointers
order. Therefore the number of nodes traversed by fixList
cannot increase from their number in the state in which the
fixList wascalled. By the code, any successful dequeue
operation will change the head pointer. Thus, fixList
may stop before it accessed all the nodes that existed in the
queue in the state from which it was called. Hence, within a
finite number of steps, any £ixList execution will end.

Lemma 17 If a dequeue method failed to delete a node
when executing the CAS in Line D14, then another dequeue
method must have succeeded to do so.

Proof In order for the dequeue operation to be lock-free,
the £ixList procedure called from the dequeue opera-
tion in Line D11 must eventually end, and the head’s tag
must eventually be equal to the prev pointer’s tag of the
node it points to, denoted A, so that the condition in Line
D09 will fail and a value can be returned. Lemma 16 proves
that the £ixList procedure eventually ends. Lemmas 9, 10
and 11 prove that any operation that sets the prev pointer
of a node in the queue, sets it such that its tag equals the
next pointer tag in the same node. By Lemma 12, when
A’s prev pointer is set, its tag equals the head’s tag.

Note that all concurrent processes that try to modify A’s
prev pointer while A is in the queue, will try to write the
same value. These processes can be:

e A slow enqueue process that inserted A’s predecessor
node (Line EOS8).

e Calls to the fixList procedure made by other
dequeuing processes.

@ Springer

By Lemma 10, if A is in the queue then this enqueue ope-
ration sets the prev pointer of A such that its tag equals
A’s next pointer tag and thus, by Lemma 12, equals the
head’s tag.

If A is still in the queue and pointed-to by the head, all
concurrent dequeue operations will read the same value
of the head in Line D04, and thus will call the fixList
procedure with the same head value. The exact value of the
tail is not important, as long as it is possible to reach A
form the tail, and by Theorem‘l this must be possible.

Since by Lemma 16 eventually all £ixList procedures
called by the concurrent dequeue operations with the same
head value will end, then eventually A’s prev pointer tag
will equal the tag of the head.

From Lemma 5, the head can only be modified in the
CAS in Line D14. Thus when A’s prev pointer tag equals
thehead’s tag,thenifadequeuing process failed to CAS
the head in Line D14 it must be that the head was changed
by another successful dequeuing process.

From the Lemmas 15, 16, and 17 it follows that:

Corollary 2 The concurrent FIFO queue algorithm is lock-
free.

6 Code in the Java programming language of our new
algorithm

This section presents a short version of the Java code for the
queue data structure and the enqueue and dequeue methods.
The Java Concurrency package implements the MS-queue
algorithm in the class ConcurrentLinkedQueue. We follo-
wed this implementation and modified it to support our new
algorithm. Following the notation used in the Java program-
ming language, the enqueue operation is called of fer and
the dequeue operation is called pol1.

public class OptimisticLinkedQueue<E> extends AbstractQueue<E>
implements Queue<E>, java.io.Serializable {
private static class Node<E> {
private volatile E item;
private volatile Node<E> next;
private volatile Node<E> prev;

Node (E x) { item = x; next = null; prev = null; }
Node (E x, Node<E> n) { item = x; next = n; prev = null; }

E getItem() {
return item;

}

void setItem(E val) {
this.item = val;

}

Node<E> getNext () {
return next;

}

void setNext (Node<E> val) {
next = val;

}

Node<E> getPrev() {
return prev;

}

void setPrev(Node<E> val) {

An optimistic approach to lock-free FIFO queues

339

prev = val;
}
}
private static final
AtomicReferenceFieldUpdater<OptimisticLinkedQueue, Node>
tailUpdater =
AtomicReferenceFieldUpdater.newUpdater
(OptimisticLinkedQueue.class, Node.class, "tail");
private static final
AtomicReferenceFieldUpdater<OptimisticLinkedQueue, Node>
headUpdater =
AtomicReferenceFieldUpdater.newUpdater
(OptimisticLinkedQueue.class, Node.class, "head");
private boolean casTail (Node<E> cmp, Node<E> val) {
return tailUpdater.compareAndSet (this, cmp, val);
}

private boolean casHead (Node<E> cmp, Node<E> val) {
return headUpdater.compareAndSet (this, cmp, val);
}
Jxx
* Pointer to the head node, initialized to a dummy node. The first
* actual node is at head.getPrev().
*/
private transient volatile Node<E> head = new Node<E>(null, null);

/** Pointer to last node on list **/
private transient volatile Node<E> tail = head;

VAt

* Creates a <tt>ConcurrentLinkedQueue</tt> that is initially empty.

*/
public OptimisticLinkedQueue() {}

Jxx
* Enqgueues the specified element at the tail of this queue.
*/

public boolean offer(E e) {

if (e == null) throw new NullPointerException() ;
Node<E> n = new Node<E>(e, null);
for (;;) {
Node<E> t = tail;
n.setNext (t);
if (casTail(t, n)) {
t.setPrev(n);
return true;

}

Jxx
* Dequeues an element from the queue. After a successful
casHead, the prev and next pointers of the dequeued node are
set to null to allow garbage collection.

*/
public E poll() {
for (;;) {
Node<E> h = head;
Node<E> t = tail;
Node<E> first = h.getPrev();
if (h == head) {
if (h = t) {
if (first == null){
fixList(t, h);
continue;
}
E item = first.getItem();
if (casHead(h, first)) {
h.setNext (null) ;
h.setPrev(null);
return item;

}
else
return null;

}
Jxx
* Fixing the backwords pointers when needed
*/
private void fixList (Node<E> t, Node<E> h) {
Node<E> curNodeNext ;
Node<E> curNode = t;
while (h == this.head && curNode != h){
curNodeNext = curNode.getNext () ;
curNodeNext .setPrev (curNode) ;

curNode = curNode.getNext () ;

7 Related work

There are many linearizable [9] concurrent FIFO queue algo-
rithms in the literature. A survey can be found in [22]. These
algorithms can be categorized according to whether they are
blocking or non-blocking; and whether they are based on sta-
tic allocation of a circular array, or on a dynamic allocation
of nodes in a linked-list. Our linearizable algorithm belongs
to the group of non-blocking dynamically allocated FIFO
queues.

In [5], Gottlieb, Lubachevsky, and Rudolph present a
statically-allocated blocking FIFO queue that does not use
locks. A process must wait until its turn to insert/delete a
value to/from the queue, and a faster process can be delayed
by a slower one indefinitely.

Treiber [29] presents several dynamically-allocated imple-
mentations of FIFO queues that are non-blocking. The draw-
back of his solutions is that they require a dequeue process
to traverse the entire list in order to delete a node.

Stone [28] presents an algorithm that requires only one
CAS per enqueue or dequeue operation. When a node is
enqueued, the tail is set to point to the new node, and the link
of the previous node (pointed-to by the old tail), is set to point
to the new node. To dequeue a node, a process follows the
chain of links, and tries to CAS the head accordingly. Howe-
ver, this implementation is blocking since an enqueuer can
block dequeuers if its update of the previous link is delayed.
It is also non-linearizable, since a slow enqueuer can observe
an empty queue, even though a faster enqueuer already inser-
ted a node into the queue.

In [24], Prakash, Lee, and Johnson present a FIFO queue
algorithm that is non-blocking, uses two CAS operations for
an enqueue and one for a dequeue. It requires a snapshot of
the current state of the queue on two variables in both enqueue
and dequeue operations. To be non-blocking, in cases when
more than one CAS is needed, an intermediate state is detec-
ted, and faster processes can complete the work of slower
ones.

Valois [32] presents two new non-blocking algorithms,
one using dynamic allocation and the other using static allo-
cation. The dynamic allocation algorithm eliminates the need
for the snapshots used in [24] and solves the synchronization
and contention problems when the queue becomes empty by
setting the head to point to the last node dequeued and not to
the node currently at the front of the queue. As in [24], this
algorithm also requires two CAS operations to perform an
enqueue, and one CAS operation to perform a dequeue. In
this algorithm, the tail can lag behind the head, implying that

@ Springer

340

E. Ladan-Mozes, N. Shavit

dequeued nodes cannot be simply freed, rather, a reference
counting mechanism is needed. As described by Michael
and Scott [19], this mechanism causes fairly quick memory
consumption, hence it is impractical. Valois also presents
two other alternatives: the first one in which the tail does not
always point to the last or second to last node, and the second
one in which only a successful enqueue process updates the
tail. The first alternative causes processes to spend time on
traversing the list. The second alternative causes the algo-
rithm to become blocking. The static allocation array imple-
mentation described is simple but requires unaligned CAS
operations and is thus impractical on real-world multipro-
cessor machines.

The linearizable shared FIFO queue presented by Michael
and Scott in [19] is the most popular lock-free (and hence
non-blocking) dynamically-allocated queue known in the
literature. It is based on a single-linked list, where nodes are
inserted at the tail and deleted from the head. An enqueue ope-
ration requires two CAS operations, and a dequeue requires
one CAS operation (as in [24,32]). As in the Prakash, Lee,
and Johnson algorithm, this algorithm uses a snapshot. Howe-
ver, it is a simpler one, applied only to one variable. As in
Valois algorithm, it requires a dummy node that is always
kept at the head of the queue. Thus, the value that is dequeued
from the queue is always the one in the node followed by the
node pointed-to by the head.

Tsigas and Zhang present in [30] another implementation
of a statically-allocated non-blocking queue. By letting the
tail and head lag at most m nodes behind the actual last/first
node, each of their enqueue operations requires 14+1/m CAS
operations on average and a dequeue requires only one CAS
operation.

Scherer and Scott [26] present a dual-data-structure ver-
sion of a FIFO queue, in which performance improvements
are derived by splitting the dequeue operation into a request
operation and a follow-up operation, which are linearized
separately, while preserving the correct FIFO order. This
dual-queue presents different semantics since dequeue opera-
tions wait for the queue to become non-empty and the queue
determines the order in which pending requests are granted.

Blocking FIFO queues are discussed in several papers
regarding spin locks. The most well known are the MCS-
lock [17] and CLH-lock [4,16] algorithms. Though these
algorithms are blocking, there is an interesting point in which
our algorithm is similar to the CLH-lock algorithm. All queue
algorithms involve two operations — setting a tail pointer and
setting a node-to-node pointer. In the CLH-lock, as in our
new algorithm, each thread reads the shared tail pointer (or
lock pointer) without modifying it, and then “optimistically”
points its private node’s pointer to the proposed predecessor.
Only then does it compete with others to insert its node into
the queue, making it public. The single CAS operation is
needed only for setting the tail pointer and not for the node-

@ Springer

to-node pointer which is set privately. On the other hand, in
the MS-queue, the new node is first inserted into the queue
and made public (as in the MCS-lock), and only then is the
second pointer updated. This implies, for the MS-queue, that
a strong synchronization operation must be used for setting
both the a tail pointer and the node-to-node pointer.

All dynamically-allocated non-blocking algorithms face
the problem of allocating and releasing nodes, and with it the
ABA problem [7,20]. Valois [32] has used reference counting
to solve the problem. Herlihy et al. [7] and Michael [20]
present generic memory management mechanisms that can
be applied in the implementation of many non-blocking data
structures. In [6], Herlihy et al. present two ways in which
the ROP technique can be applied to the MS-queue.

In our algorithm we optimistically build a doubly-linked
list. The design of such doubly-linked lists is discussed in
the literature in the context of double-ended queues. In [2], a
double-ended queue implementation is presented. This imple-
mentation uses a DCAS operation, currently not supported
on real-world multiprocessor machines.

In [8], an obstruction-free double-ended queue is presen-
ted, based only on CAS operations. The obstruction-free
requirement (a non-blocking condition that is weaker than
lock-freedom) optimistically assumes that each process will
have enough time in which it executes in isolation, and has
a mechanism to overcome interference if it occurs. By wea-
kening the non-blocking progress requirement, they are able
to present a simple and practical implementation of double-
ended queue.

Acknowledgements We wish to thank Doug Lea for a helpful discus-
sion. We would also like to thank the anonymous DISC2004 referees
for their many helpful comments.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit,
N.: Atomic snapshots of shared memory. J. ACM. 40(4), 873—
890 (1993)

2. Agesen, O., Detlefs, D., Flood, C., Garthwaite, A., Martin, P., Moir,
M., Shavit, N., Steele, G.: DCAS-based concurrent deques. Theo.
Comput. Syst. 35(3), 349-386 (2002)

3. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to
Algorithms, 2nd edn. MIT Press, Cambridge (2001)

4. Craig, T.: Building FIFO and priority-queueing spin locks from
atomic swap. Technical Report TR 93-02-02, Department of Com-
puter Science, University of Washington (1993)

5. Gottlieb, A., Lubachevsky, B.D., Rudolph, L.: Basic techniques
for the efficient coordination of very large numbers of cooperating
sequential processors. ACM Trans. Progr. Lang. Syst. 5(2), 164—
189 (1983)

6. Herlihy, M., Luchangco, V., Martin, P., Moir, M.: Dynamic-
sized lock-free data structures. In: Proceedings of the Twenty-first
Annual Symposium on Principles of Distributed Computing, pp.
131-131. ACM, New York (2002)

An optimistic approach to lock-free FIFO queues

341

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Herlihy, M., Luchangco, V., Moir, M.: The repeat offender
problem: A mechanism for supporting lock-free dynamic-sized
data structures. In: Proceedings of the 16th International Sympo-
sium on Distributed Computing, vol. 2508, pp. 339-353. Springer,
Heidelberg (2002). A improved version of this paper is in prepa-
ration for journal submission

Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchroni-
zation: double-ended queues as an example. In: Proceedings of the
23rd International Conference on Distributed Computing Systems,
pp. 522-529. IEEE (2003)

Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condi-
tion for concurrent objects. ACM Trans. Progr. Lang. Syst.
(TOPLAS) 12(3), 463492 (1990)

Hwang, K., Briggs, F.A.: Computer Architecture and Parallel Pro-
cessing. McGraw-Hill, New York (1990)

Intel. Pentium Processor Family User’s Manual: vol 3. In: Archi-
tecture and Programming Manual, 1994

Lamport, L.: Specifying concurrent program modules. ACM Trans.
Progr. Lang. Syst. 5(2), 190-222 (1983)

Lea, D.: The java concurrency package (JSR-166). http://gee.cs.
oswego.edu/dl/concurrency-interest/index.html

Lea, D.: The java.util.concurrent synchronizer framework. In:
‘Workshop on Concurrency and Synchronization in Java Programs,
pp. 1-9 (2004)

Luchangco, V., Moir, M., Shavit, N.: On the uncontended com-
plexity of consensus. In: Proceedings of the 17th International
Conference on Distributed Computing, pp. 45-59 (2003)
Magnussen, P., Landin, A., Hagersten, E.: Queue locks on cache
coherent multiprocessors. In: Proceedings of the 8th Internatio-
nal Symposium on Parallel Processing (IPPS), pp. 165-171. IEEE
Computer Society (1994)

Mellor-Crummey, J., Scott, M.: Algorithms for scalable synchroni-
zation on shared—memory multiprocessors. ACM Trans. Comput.
Syst. 9(1), 21-65 (1991)

Mellor-Crummey, J.M.: Concurrent queues: Practical fetch-and-¢
algorithms. Technical Report 229, University of Rochester (1987)
Michael, M., Scott, M.: Nonblocking algorithms and preemption-
safe locking on multiprogrammed shared—memory multiproces-
sors. J. Parallel Distrib. Comput. 51(1), 1-26 (1998)

Michael, M.M.: Hazard pointers: safe memory reclamation for
lock-free objects. IEEE Trans. Parallel Distrib. Syst. 15(6), 491—
504 (2004)

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Moir, M.: Practical implementations of non-blocking
synchronization primitives. In: Proceedings of the 16th Annual
ACM Symposium on Principles of Distributed Computing, pp.
219-228 (1997)

Moir, M., Shavit, N.: Chapter 47 — Concurrent Data Structures —
Handbook of Data Structures and Applications, 1st edn. Chapman
and Hall/CRC, London (2004)

Prakash, S., Lee, Y.-H., Johnson, T.: Non-blocking algorithms for
concurrent data structures. Technical Report 91-002, Department
of Information Sciences, University of Florida (1991)

Prakash, S., Lee, Y.-H., Johnson, T.: A non-blocking algorithm
for shared queues using compare-and-swap. IEEE Trans. Com-
put. 43(5), 548-559 (1994)

Rajwar, R., Goodman, J.: Speculative lock elision: enabling highly
concurrent multithreaded execution. In: Proceedings of the 34th
Annual International Symposium on Microarchitecture, pp. 294—
305 (2001)

Scherer, W.N., Scott, M.L.: Nonblocking concurrent data struc-
tures with condition synchronization. In: Proceedings of the 18th
International Symposium on Distributed Computing, pp. 174-187.
Springer, Berlin (2004)

Stone, H.S.: High-performance Computer Architecture. Addison-
Wesley Longman, Reading (1987)

Stone, J.: A simple and correct shared-queue algorithm using
compare-and-swap. In:Proceedings of the 1990 Conference on
Supercomputing, pp. 495-504. IEEE Computer Society

Treiber, R.K.: Systems programming: coping with parallelism.
Technical Report RJ 5118, IBM Almaden Research Center (1986)
Tsigas, P,, Zhang, Y.: A simple, fast and scalable non-blocking
concurrent fifo queue for shared memory multiprocessor sys-
tems. In: Proceedings of the Thirteenth Annual ACM Symposium
on Parallel Algorithms and Architectures, pp. 134-143. ACM,
New york (2001)

Valois, J.: Implementing lock-free queues. In: Proceedings of the
Seventh International Conference on Parallel and Distributed Com-
puting Systems, pp. 64—-69 (1994)

Valois, J.D.: Lock-free linked lists using compare-and-swap. In:
Symposium on Principles of Distributed Computing, pp. 214-222
(1995)

Weaver, D., Germond, T.: The SPARC Architecture Manual Ver-
sion 9. Prentice Hall, Englewood Cliffs (1994)

@ Springer

http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

	An optimistic approach to lock-free FIFO queues
	Abstract
	Introduction
	The optimistic queue algorithm
	Optimistic synchronization
	Performance
	The Algorithm in Detail
	The optimistic queue data structure
	The optimistic queue operations
	Updating the prev pointer
	The ABA problem and memory integrity
	The tagging mechanism
	Preventing the ABA problem in the tail and head pointers
	Detecting and fixing the ABA problem in the prev pointer
	The rolling-over of tags
	Preserving memory integrity
	Garbage collected languages --- a simple solution
	Performance
	The benchmarks
	The experiments
	Empirical results
	Correctness proof
	Modelling shared memory
	Memory management
	A concurrent FIFO queue specification
	Linearizability proof
	Lock-freedom proof
	Code in the Java programming language of our new algorithm
	Related work
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

