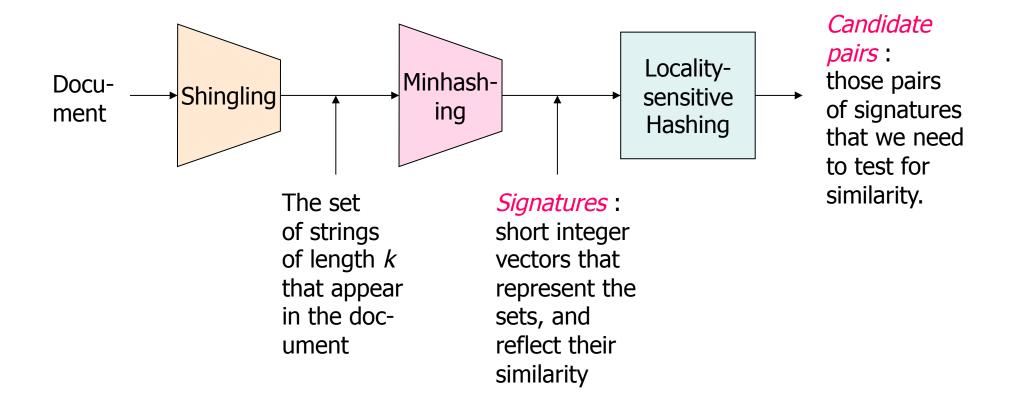
Near Neighbor Search in High Dimensional Data (2)

Locality-Sensitive Hashing (continued)
LS Families and Amplification
LS Families for Common Distance
Measures

Anand Rajaraman

The Big Picture



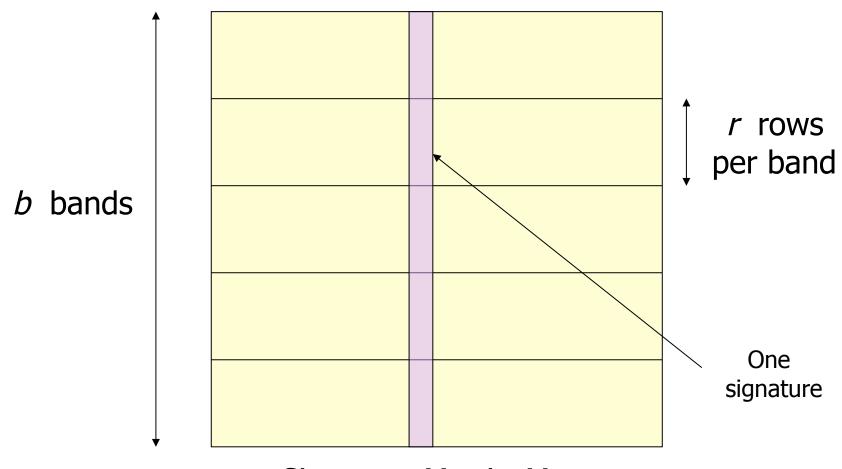
Candidate Pairs

- Pick a similarity threshold s
 - -e.g., s = 0.8.
 - Goal: Find documents with Jaccard similarity at least s.
- Columns i and j are a candidate pair if their signatures agree in at least a fraction s of their rows
- We expect documents i and j to have the same similarity as their signatures.

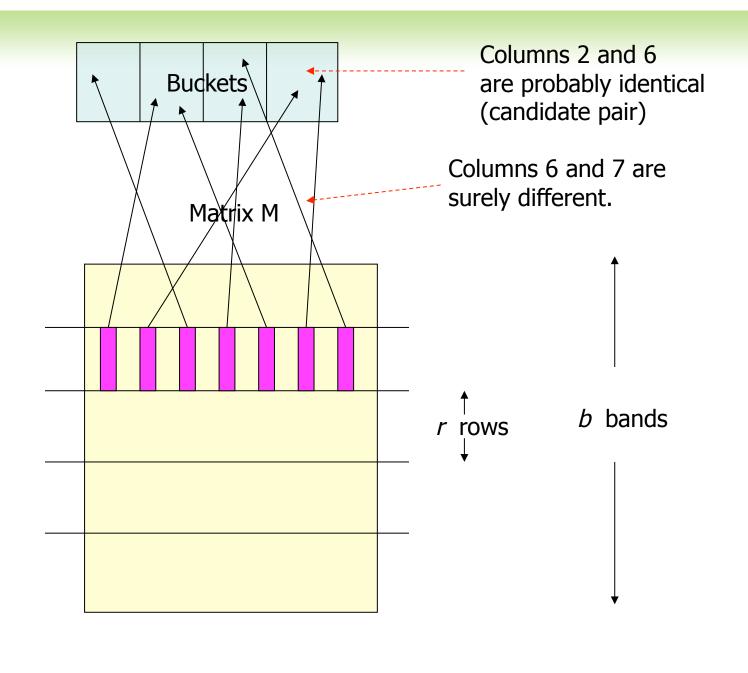
LSH for Minhash Signatures

- Big idea: hash columns of signature matrix
 M several times.
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

Partition Into Bands



Signature Matrix M



Partition into Bands – (2)

- Divide matrix M into b bands of r rows.
 - Create one hash table per band
- For each band, hash its portion of each column to its hash table
- Candidate pairs are columns that hash to the same bucket for ≥ 1 band.
- Tune b and r to catch most similar pairs, but few nonsimilar pairs.

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band.
- Hereafter, we assume that "same bucket" means "identical in that band."
- Assumption needed only to simplify analysis, not for correctness of algorithm.

Example of bands

- 100 min-hash signatures/document
- Let's choose choose b = 20, r = 5
 - 20 bands, 5 signatures per band
- Goal: find pairs of documents that are at least 80% similar.

Suppose C₁, C₂ are 80% Similar

- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$.
- Probability C_1 , C_2 are *not* similar in any of the 20 bands: $(1-0.328)^{20} = .00035$.
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives
 - We would find 99.965% pairs of truly similar documents

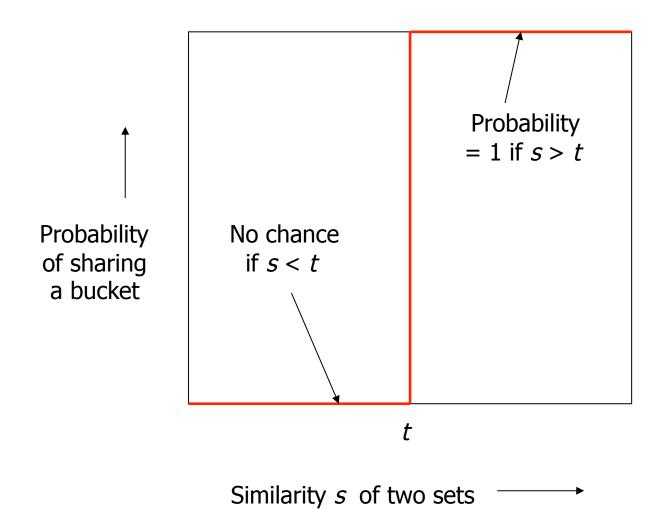
Suppose C₁, C₂ Only 30% Similar

- Probability C_1 , C_2 identical in any one particular band: $(0.2)^5 = 0.00243$
- Probability C₁, C₂ identical in ≥ 1 of 20 bands: 20 * 0.00243 = 0.0486
- In other words, approximately 4.86% pairs of docs with similarity 30% end up becoming candidate pairs
 - False positives

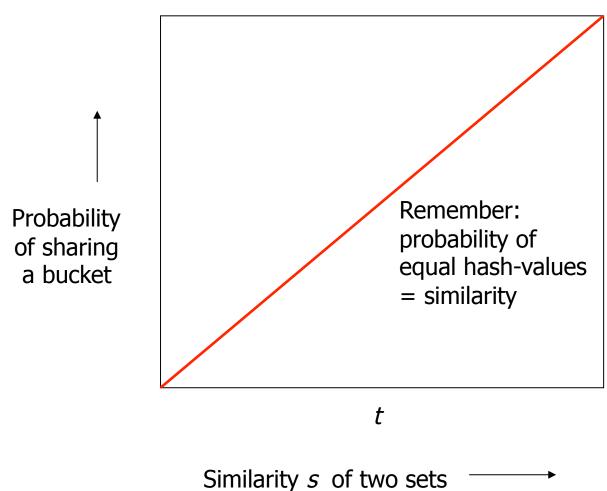
LSH Involves a Tradeoff

- Pick the number of minhashes, the number of bands, and the number of rows per band to balance false positives/ negatives.
- Example: if we had only 15 bands of 5
 rows, the number of false positives would
 go down, but the number of false
 negatives would go up.

Analysis of LSH – What We Want



What One Band of One Row Gives You



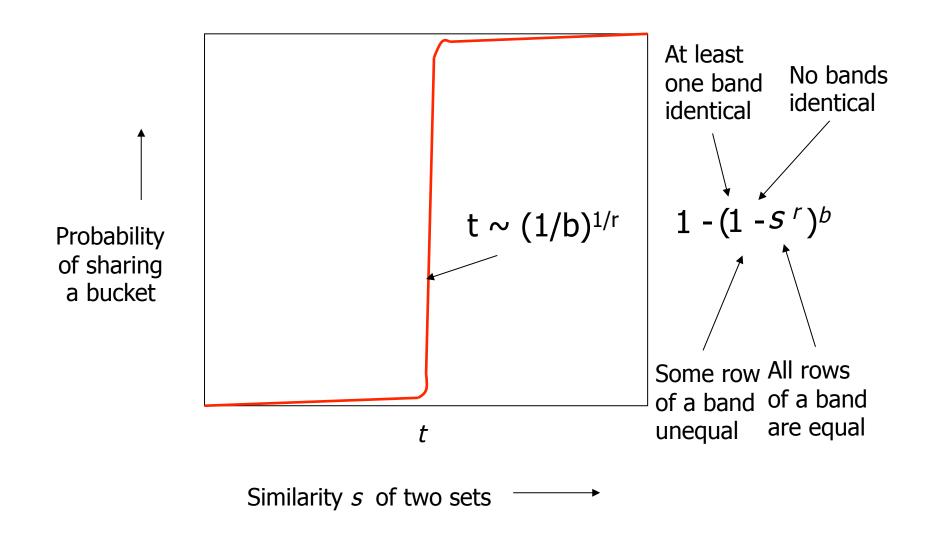
Similarity *s* of two sets

b bands, r rows/band

- Columns C and D have similarity s
- Pick any band (r rows)
 - Prob. that all rows in band equal = s ^r
 - Prob. that some row in band unequal = $1 s^r$
- Prob. that no band identical = $(1 s^r)^b$
- Prob. that at least 1 band identical =

$$1 - (1 - s^r)^b$$

What b Bands of r Rows Gives You



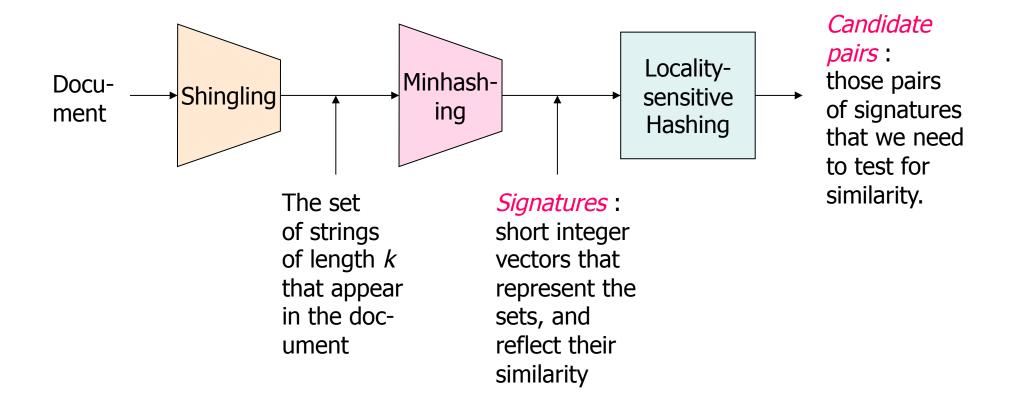
Example: b = 20; r = 5

s	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents.

The Big Picture



Theory of LSH

- We have used LSH to find similar documents
 - In reality, columns in large sparse matrices with high Jaccard similarity
 - e.g., customer/item purchase histories
- Can we use LSH for other distance measures?
 - e.g., Euclidean distances, Cosine distance
 - Let's generalize what we've learned!

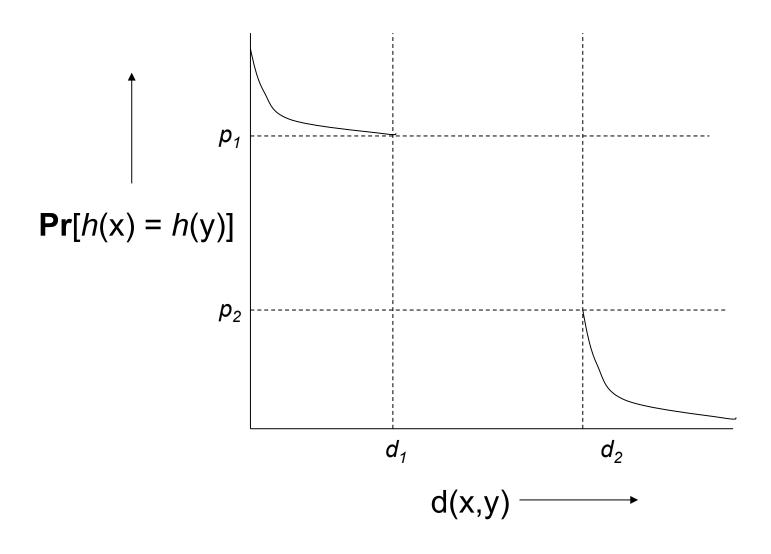
Families of Hash Functions

- For min-hash signatures, we got a minhash function for each permutation of rows
- An example of a family of hash functions
 - A (large) set of related hash functions generated by some mechanism
 - We should be able to effciently pick a hash function at random from such a family

Locality-Sensitive (LS) Families

- Suppose we have a space S of points with a distance measure d.
- A family **H** of hash functions is said to be (d₁,d₂,p₁,p₂)-sensitive if for any x and y in S:
 - 1. If $d(x,y) \le d_1$, then prob. over all h in H, that h(x) = h(y) is at least p_1 .
 - 2. If $d(x,y) \ge d_2$, then prob. over all h in H, that h(x) = h(y) is at most p_2 .

A (d_1, d_2, p_1, p_2) -sensitive function



Example: LS Family

- Let S = sets, d = Jaccard distance, H is family of minhash functions for all permutations of rows
- Then for any hash function h in H,
 Pr[h(x)=h(y)] = 1-d(x,y)
- Simply restates theorem about minhashing in terms of distances rather than similarities

Example: LS Family – (2)

• Claim: **H** is a (1/3, 2/3, 2/3, 1/3)-sensitive family for *S* and *d*.

If distance $\leq 1/3$ (so similarity $\geq 2/3$)

Then probability that minhash values agree is $\geq 2/3$

 For Jaccard similarity, minhashing gives us a (d1,d2,(1-d1),(1-d2))-sensitive family for any d1 < d2.

Amplifying a LS-Family

- Can we reproduce the "S-curve" effect we saw before for any LS family?
- The "bands" technique we learned for signature matrices carries over to this more general setting.
- Two constructions:
 - AND construction like "rows in a band."
 - OR construction like "many bands."

AND of Hash Functions

- Given family H, construct family H' consisting of r functions from H.
- For $h = [h_1, ..., h_r]$ in **H**', h(x)=h(y) if and only if $h_i(x)=h_i(y)$ for all i.
- Theorem: If **H** is (d_1,d_2,p_1,p_2) -sensitive, then **H**' is $(d_1,d_2,(p_1)^r,(p_2)^r)$ -sensitive.
- Proof: Use fact that h_i's are independent.

OR of Hash Functions

- Given family H, construct family H' consisting of b functions from H.
- For $h = [h_1, ..., h_b]$ in **H'**, h(x)=h(y) if and only if $h_i(x)=h_i(y)$ for some i.
- Theorem: If **H** is (d_1,d_2,p_1,p_2) -sensitive, then **H'** is $(d_1,d_2,1-(1-p_1)^b,1-(1-p_2)^b)$ -sensitive.

Composing Constructions

- r-way AND construction followed by b-way
 OR construction
 - Exactly what we did with minhashing
- Take points x and y s.t. Pr[h(x) = h(y)] = p
 - H will make (x,y) a candidate pair with prob. p
- This construction will make (x,y) a candidate pair with probability 1-(1-p^r)^b
 - The S-Curve!

AND-OR Composition

Example: Take H and construct H' by the AND construction with r = 4. Then, from H', construct H" by the OR construction with b = 4.

Table for Function 1-(1-p⁴)⁴

р	1-(1-p ⁴) ⁴
.2	.0064
.3	.0320
.4	.0985
.5	.2275
.6	.4260
.7	.6666
.8	.8785
.9	.9860

Example: Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.8785,.0064)-sensitive family.

OR-AND Composition

- Apply a b-way OR construction followed by an r-way AND construction
- Tranforms probability p into (1-(1-p)b)r.
 - The same S-curve, mirrored horizontally and vertically.
- Example: Take H and construct H' by the OR construction with b = 4. Then, from H', construct H" by the AND construction with r = 4.

Table for Function $(1-(1-p)^4)^4$

р	(1-(1-p) ⁴) ⁴
.1	.0140
.2	.1215
.3	.3334
.4	.5740
.5	.7725
.6	.9015
.7	.9680
.8	.9936

Example: Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9936,.1215)-sensitive family.

Cascading Constructions

- Example: Apply the (4,4) OR-AND construction followed by the (4,4) AND-OR construction.
- Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9999996,.0008715)sensitive family.
- Note this family uses 256 of the original hash functions.

Summary

- Pick any two distances x < y
- Start with a (x, y, (1-x), (1-y))-sensitive family
- Apply constructions to produce (x, y, p, q)sensitive family, where p is almost 1 and q is almost 0.
- The closer to 0 and 1 we get, the more hash functions must be used.

LSH for Cosine Distance

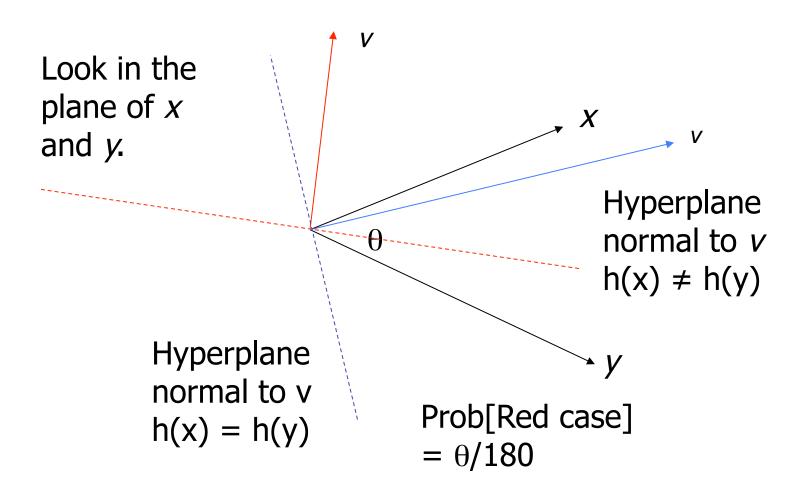
- Random Hypeplanes
 - Technique similar to minhashing
- A (d₁,d₂,(1-d₁/180),(1-d₂/180))-sensitive family for any d₁ and d₂.

Random Hyperplanes

- Pick a random vector v, which determines a hash function h_v with two buckets.
- $h_v(x) = +1$ if v.x > 0; = -1 if v.x < 0.
- LS-family H = set of all functions derived from any vector.
- Claim: For points x and y,

$$Pr[h(x)=h(y)] = 1 - d(x,y)/180$$

Proof of Claim



Signatures for Cosine Distance

- Pick some number of random vectors, and hash your data for each vector.
- The result is a signature (sketch) of +1's and -1's for each data point
- Can be used for LSH like the minhash signatures for Jaccard distance.
- Amplified using AND and OR constructions

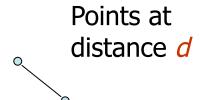
How to pick random vectors

- Expensive to pick a random vector in M dimensions for large M
 - M random numbers
- A more efficient approach
 - It suffices to consider only vectors v consisting of +1 and -1 components.
 - Why is this more efficient?

LSH for Euclidean Distance

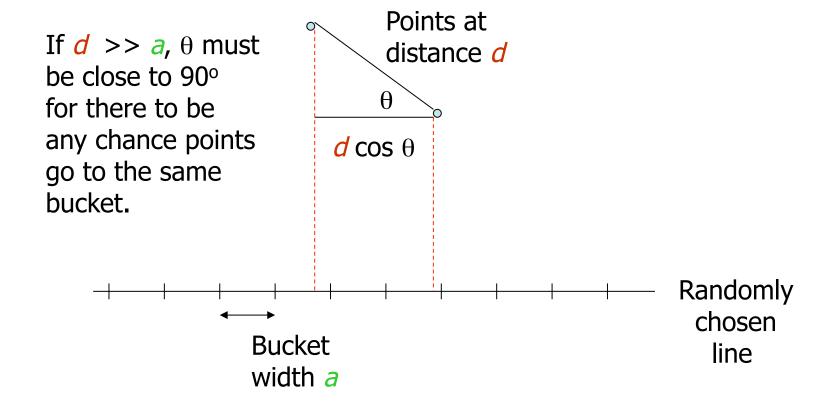
- Simple idea: hash functions correspond to lines.
- Partition the line into buckets of size a.
- Hash each point to the bucket containing its projection onto the line.
- Nearby points are always close; distant points are rarely in same bucket.

Projection of Points



If d << a, then the chance the points are in the same bucket is at least 1 - d/a.

Projection of Points



An LS-Family for Euclidean Distance

- If points are distance d ≤ a/2, prob. they are in same bucket ≥ 1- d/a = 1/2
- If points are distance ≥ 2a apart, then they can be in the same bucket only if d cos θ ≤ a
 - $-\cos\theta \leq \frac{1}{2}$
 - $-60 \le \theta \le 90$
 - I.e., at most 1/3 probability.
- Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash functions for any a.
- Amplify using AND-OR cascades