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The Big Picture 

Shingling Docu- 
ment 

The set 
of strings 
of length k 
that appear 
in the doc- 
ument 

Minhash- 
ing 

Signatures : 
short integer 
vectors that 
represent the 
sets, and 
reflect their 
similarity 

Locality- 
sensitive 
Hashing 

Candidate 
pairs : 
those pairs 
of signatures 
that we need 
to test for 
similarity. 



Candidate Pairs 

•  Pick a similarity threshold s 
– e.g., s = 0.8. 
– Goal: Find documents with Jaccard similarity 

at least s. 
•  Columns i and j are a candidate pair if 

their signatures agree in at least a fraction 
s of their rows 

•  We expect documents i and j to have the 
same similarity as their signatures. 



LSH for Minhash Signatures 

•  Big idea: hash columns of signature matrix 
M  several times. 

•  Arrange that (only) similar columns are 
likely to hash to the same bucket, with 
high probability 

•  Candidate pairs are those that hash to the 
same bucket 



Partition Into Bands 

Signature Matrix M 

r  rows 
per band 

b  bands 

   One 
signature 



Matrix M 

r  rows b  bands 

Buckets 
Columns 2 and 6 
are probably identical  
(candidate pair) 

Columns 6 and 7 are 
surely different. 



Partition into Bands – (2) 

•  Divide matrix M into b  bands of r  rows. 
– Create one hash table per band 

•  For each band, hash its portion of each 
column to its hash table 

•  Candidate pairs are columns that hash to 
the same bucket for ≥ 1 band. 

•  Tune b and r  to catch most similar pairs, 
but few nonsimilar pairs. 



Simplifying Assumption 

•  There are enough buckets that columns 
are unlikely to hash to the same bucket 
unless they are identical in a particular 
band. 

•  Hereafter, we assume that “same bucket” 
means “identical in that band.” 

•  Assumption needed only to simplify 
analysis, not for correctness of algorithm. 



Example of bands 

•  100 min-hash signatures/document 
•  Let’s choose choose b = 20, r = 5 

– 20 bands, 5 signatures per band 
•  Goal: find pairs of documents that are at 

least 80% similar. 



Suppose C1, C2 are 80% Similar 

•  Probability C1, C2 identical in one 
particular band: (0.8)5 = 0.328. 

•  Probability C1, C2 are not  similar in any of 
the 20 bands: (1-0.328)20 = .00035 . 
–  i.e., about 1/3000th of the 80%-similar column 

pairs are false negatives 
– We would find 99.965% pairs of truly similar 

documents 



Suppose C1, C2 Only 30% Similar 

•  Probability C1, C2 identical in any one 
particular band: (0.2)5  = 0.00243 

•  Probability C1, C2 identical in ≥ 1 of 20 
bands:  20 * 0.00243 = 0.0486 

•  In other words, approximately 4.86% pairs 
of docs with similarity 30% end up 
becoming candidate pairs 
– False positives 



LSH Involves a Tradeoff 

•  Pick the number of minhashes, the 
number of bands, and the number of rows 
per band to balance false positives/
negatives. 

•  Example: if we had only 15 bands of 5 
rows, the number of false positives would 
go down, but the number of false 
negatives would go up. 



Analysis of LSH – What We Want 

       Similarity s  of two sets 

Probability 
of sharing 
a bucket 

t 

No chance 
if s < t 

Probability 
= 1 if s > t 



What One Band of One Row Gives 
You 

Similarity s  of two sets 

Probability 
of sharing 
a bucket 

t 

Remember: 
probability of 
equal hash-values 
= similarity 



b bands, r rows/band 

•  Columns C and D have similarity s 
•  Pick any band (r rows) 

– Prob. that all rows in band equal = s r  
– Prob. that some row in band unequal = 1 - s r  

•  Prob. that no band identical  = (1 - s r)b 

•  Prob. that at least 1 band identical =                  
   1 - (1 - s r)b 



What b  Bands of r  Rows Gives You 

Similarity s  of two sets 

Probability 
of sharing 
a bucket 

t 

s r  

All rows 
of a band 
are equal 

1 - 

Some row 
of a band 
unequal 

( )b  

No bands 
identical 

1 - 

At least 
one band 
identical 

t ~ (1/b)1/r  



Example: b  = 20; r  = 5 

 s  1-(1-sr)b 

.2    .006 

.3    .047 

.4    .186 

.5    .470 

.6    .802 

.7    .975 

.8    .9996 



LSH Summary 
•  Tune to get almost all pairs with similar 

signatures, but eliminate most pairs that 
do not have similar signatures. 

•  Check in main memory that candidate 
pairs really do have similar signatures. 

•  Optional: In another pass through data, 
check that the remaining candidate 
pairs really represent similar 
documents. 



The Big Picture 

Shingling Docu- 
ment 

The set 
of strings 
of length k 
that appear 
in the doc- 
ument 

Minhash- 
ing 

Signatures : 
short integer 
vectors that 
represent the 
sets, and 
reflect their 
similarity 

Locality- 
sensitive 
Hashing 

Candidate 
pairs : 
those pairs 
of signatures 
that we need 
to test for 
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Theory of LSH 

•  We have used LSH to find similar 
documents 
–  In reality, columns in large sparse matrices 

with high Jaccard similarity 
– e.g., customer/item purchase histories 

•  Can we use LSH for other distance 
measures? 
– e.g., Euclidean distances, Cosine distance  
– Let’s generalize what we’ve learned! 



Families of Hash Functions 

•  For min-hash signatures, we got a min-
hash function for each permutation of rows 

•  An example of a family of hash functions 
– A (large) set of related hash functions 

generated by some mechanism 
– We should be able to effciently pick a hash 

function at random from such a family 



Locality-Sensitive (LS) Families 

•  Suppose we have a space S  of points 
with a distance measure d. 

•  A family H of hash functions is said to 
be (d1,d2,p1,p2)-sensitive  if for any x  
and y  in S : 

1.  If d(x,y) < d1, then prob. over all h  in H, 
that h(x) = h(y) is at least p1. 

2.  If d(x,y) > d2, then prob. over all h  in H, 
that h(x) = h(y) is at most p2. 



A (d1,d2,p1,p2)-sensitive function 

Pr[h(x) = h(y)] 

d(x,y) 

d1 d2 

p2 

p1 



Example: LS Family 

•  Let S = sets, d = Jaccard distance, H is 
family of minhash functions for all 
permutations of rows 

•  Then for any hash function h in H,  
 Pr[h(x)=h(y)] = 1-d(x,y) 

•  Simply restates theorem about min-
hashing in terms of distances rather than 
similarities 



Example: LS Family – (2) 

•  Claim: H is a (1/3, 2/3, 2/3, 1/3)-sensitive 
family for S  and d. 

If distance < 1/3 
(so similarity > 2/3) 

Then probability 
that minhash values 
agree is > 2/3 

•  For Jaccard similarity, minhashing gives 
us a (d1,d2,(1-d1),(1-d2))-sensitive family 
for any d1 < d2. 



Amplifying a LS-Family 

•  Can we reproduce the “S-curve” effect we 
saw before for any LS family? 

•  The “bands” technique we learned for 
signature matrices carries over to this 
more general setting. 

•  Two constructions: 
– AND construction like “rows in a band.” 
– OR construction like “many bands.” 



AND of Hash Functions 

•  Given family H, construct family H’ 
consisting of r  functions from H. 

•  For h = [h1,…,hr] in H’, h(x)=h(y) if and 
only if hi(x)=hi(y) for all i. 

•  Theorem: If H is (d1,d2,p1,p2)-sensitive, 
then H’ is (d1,d2,(p1)r,(p2)r)-sensitive. 

•  Proof: Use fact that hi ’s are independent. 



OR of Hash Functions 

•  Given family H, construct family H’ 
consisting of b  functions from H. 

•  For h = [h1,…,hb] in H’, h(x)=h(y) if and 
only if hi(x)=hi(y) for some i. 

•  Theorem: If H is (d1,d2,p1,p2)-sensitive, 
then H’ is (d1,d2,1-(1-p1)b,1-(1-p2)b)-
sensitive. 



Composing Constructions 

•  r-way AND construction followed by b-way 
OR construction 
– Exactly what we did with minhashing 

•  Take points x and y s.t. Pr[h(x) = h(y)] = p 
– H will make (x,y) a candidate pair with prob. p 

•  This construction will make (x,y) a 
candidate pair with probability 1-(1-pr)b 

– The S-Curve! 



AND-OR Composition 

•  Example: Take H and construct H’ by the 
AND construction with r = 4.  Then, from 
H’, construct H’’ by the OR construction 
with b = 4. 



Table for Function 1-(1-p4)4 

p 1-(1-p4)4 

.2 .0064 

.3 .0320 

.4 .0985 

.5 .2275 

.6 .4260 

.7 .6666 

.8 .8785 

.9 .9860 

Example: Transforms a 
(.2,.8,.8,.2)-sensitive 
family into a 
(.2,.8,.8785,.0064)- 
sensitive family. 



OR-AND Composition 

•  Apply a b-way OR construction followed 
by an r-way AND construction 

•  Tranforms probability p into (1-(1-p)b)r. 
– The same S-curve, mirrored horizontally and 

vertically. 
•  Example: Take H and construct H’ by the 

OR construction with b = 4.  Then, from 
H’, construct H’’ by the AND construction 
with r = 4. 



Table for Function (1-(1-p)4)4 

p (1-(1-p)4)4 

.1 .0140 

.2 .1215 

.3 .3334 

.4 .5740 

.5 .7725 

.6 .9015 

.7 .9680 

.8 .9936 

Example:Transforms a 
(.2,.8,.8,.2)-sensitive 
family into a 
(.2,.8,.9936,.1215)- 
sensitive family. 



Cascading Constructions 

•  Example: Apply the (4,4) OR-AND 
construction followed by the (4,4) AND-
OR construction. 

•  Transforms a (.2,.8,.8,.2)-sensitive 
family into a (.2,.8,.9999996,.0008715)-
sensitive family. 

•  Note this family uses 256 of the original 
hash functions. 



Summary 

•  Pick any two distances x < y 
•  Start with a (x, y, (1-x), (1-y))-sensitive 

family 
•  Apply constructions to produce (x, y, p, q)-

sensitive family, where p  is almost 1 and q  
is almost 0. 

•  The closer to 0 and 1 we get, the more 
hash functions must be used. 



LSH for Cosine Distance 

•  Random Hypeplanes 
– Technique similar to minhashing  

•  A (d1,d2,(1-d1/180),(1-d2/180))-sensitive 
family for any d1 and d2. 



Random Hyperplanes 

•  Pick a random vector v, which 
determines a hash function hv  with two 
buckets. 

•  hv(x) = +1 if v.x > 0; = -1 if v.x < 0. 
•  LS-family H = set of all functions 

derived from any vector. 
•  Claim: For points x and y,  

 Pr[h(x)=h(y)] = 1 – d(x,y)/180 



Proof of Claim 

x 

y 

Look in the 
plane of x 
and y. 

Prob[Red case] 
= θ/180 

θ 
Hyperplane 
normal to v 
h(x) ≠ h(y) 

v 

Hyperplane 
normal to v 
h(x) = h(y) 

v 



Signatures for Cosine Distance 

•  Pick some number of random vectors, 
and hash your data for each vector. 

•  The result is a signature (sketch) of +1’s 
and –1’s for each data point 

•  Can be used for LSH like the minhash 
signatures for Jaccard distance. 

•  Amplified using AND and OR 
constructions 



How to pick random vectors 

•  Expensive to pick a random vector in M 
dimensions for large M 
– M random numbers 

•  A more efficient approach 
–  It suffices to consider only vectors v  

consisting of +1 and –1 components. 
– Why is this more efficient? 



LSH for Euclidean Distance 

•  Simple idea: hash functions correspond to 
lines. 

•  Partition the line into buckets of size a. 
•  Hash each point to the bucket containing 

its projection onto the line. 
•  Nearby points are always close; distant 

points are rarely in same bucket. 



Projection of Points 

Bucket 
width a 

Randomly 
  chosen 
    line 

Points at 
distance d 

If d  << a, then 
the chance the 
points are in the 
same bucket is 
at least 1 – d /a. 



Projection of Points 

Bucket 
width a 

Randomly 
  chosen 
    line 

Points at 
distance d 

θ 

d cos θ 

If d  >> a, θ must 
be close to 90o 

for there to be 
any chance points 
go to the same 
bucket. 



An LS-Family for Euclidean Distance 
•  If points are distance  d < a/2, prob. they are in 

same bucket ≥ 1- d/a = 1/2 
•  If points are distance > 2a apart, then  they can 

be in the same bucket only if d cos θ ≤ a  
–  cos θ ≤ ½  
–  60 < θ < 90 
–  I.e., at most 1/3 probability. 

•  Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of 
hash functions for any a. 

•  Amplify using AND-OR cascades 


