
Near Neighbor Search in
High Dimensional Data (2)

Anand Rajaraman

Locality-Sensitive Hashing (continued)
LS Families and Amplification

LS Families for Common Distance
Measures

The Big Picture

Shingling Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Minhash-
ing

Signatures :
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity.

Candidate Pairs

•  Pick a similarity threshold s
– e.g., s = 0.8.
– Goal: Find documents with Jaccard similarity

at least s.
•  Columns i and j are a candidate pair if

their signatures agree in at least a fraction
s of their rows

•  We expect documents i and j to have the
same similarity as their signatures.

LSH for Minhash Signatures

•  Big idea: hash columns of signature matrix
M several times.

•  Arrange that (only) similar columns are
likely to hash to the same bucket, with
high probability

•  Candidate pairs are those that hash to the
same bucket

Partition Into Bands

Signature Matrix M

r rows
per band

b bands

 One
signature

Matrix M

r rows b bands

Buckets
Columns 2 and 6
are probably identical
(candidate pair)

Columns 6 and 7 are
surely different.

Partition into Bands – (2)

•  Divide matrix M into b bands of r rows.
– Create one hash table per band

•  For each band, hash its portion of each
column to its hash table

•  Candidate pairs are columns that hash to
the same bucket for ≥ 1 band.

•  Tune b and r to catch most similar pairs,
but few nonsimilar pairs.

Simplifying Assumption

•  There are enough buckets that columns
are unlikely to hash to the same bucket
unless they are identical in a particular
band.

•  Hereafter, we assume that “same bucket”
means “identical in that band.”

•  Assumption needed only to simplify
analysis, not for correctness of algorithm.

Example of bands

•  100 min-hash signatures/document
•  Let’s choose choose b = 20, r = 5

– 20 bands, 5 signatures per band
•  Goal: find pairs of documents that are at

least 80% similar.

Suppose C1, C2 are 80% Similar

•  Probability C1, C2 identical in one
particular band: (0.8)5 = 0.328.

•  Probability C1, C2 are not similar in any of
the 20 bands: (1-0.328)20 = .00035 .
–  i.e., about 1/3000th of the 80%-similar column

pairs are false negatives
– We would find 99.965% pairs of truly similar

documents

Suppose C1, C2 Only 30% Similar

•  Probability C1, C2 identical in any one
particular band: (0.2)5 = 0.00243

•  Probability C1, C2 identical in ≥ 1 of 20
bands: 20 * 0.00243 = 0.0486

•  In other words, approximately 4.86% pairs
of docs with similarity 30% end up
becoming candidate pairs
– False positives

LSH Involves a Tradeoff

•  Pick the number of minhashes, the
number of bands, and the number of rows
per band to balance false positives/
negatives.

•  Example: if we had only 15 bands of 5
rows, the number of false positives would
go down, but the number of false
negatives would go up.

Analysis of LSH – What We Want

 Similarity s of two sets

Probability
of sharing
a bucket

t

No chance
if s < t

Probability
= 1 if s > t

What One Band of One Row Gives
You

Similarity s of two sets

Probability
of sharing
a bucket

t

Remember:
probability of
equal hash-values
= similarity

b bands, r rows/band

•  Columns C and D have similarity s
•  Pick any band (r rows)

– Prob. that all rows in band equal = s r
– Prob. that some row in band unequal = 1 - s r

•  Prob. that no band identical = (1 - s r)b

•  Prob. that at least 1 band identical =
 1 - (1 - s r)b

What b Bands of r Rows Gives You

Similarity s of two sets

Probability
of sharing
a bucket

t

s r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

t ~ (1/b)1/r

Example: b = 20; r = 5

 s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

LSH Summary
•  Tune to get almost all pairs with similar

signatures, but eliminate most pairs that
do not have similar signatures.

•  Check in main memory that candidate
pairs really do have similar signatures.

•  Optional: In another pass through data,
check that the remaining candidate
pairs really represent similar
documents.

The Big Picture

Shingling Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Minhash-
ing

Signatures :
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity.

Theory of LSH

•  We have used LSH to find similar
documents
–  In reality, columns in large sparse matrices

with high Jaccard similarity
– e.g., customer/item purchase histories

•  Can we use LSH for other distance
measures?
– e.g., Euclidean distances, Cosine distance
– Let’s generalize what we’ve learned!

Families of Hash Functions

•  For min-hash signatures, we got a min-
hash function for each permutation of rows

•  An example of a family of hash functions
– A (large) set of related hash functions

generated by some mechanism
– We should be able to effciently pick a hash

function at random from such a family

Locality-Sensitive (LS) Families

•  Suppose we have a space S of points
with a distance measure d.

•  A family H of hash functions is said to
be (d1,d2,p1,p2)-sensitive if for any x
and y in S :

1.  If d(x,y) < d1, then prob. over all h in H,
that h(x) = h(y) is at least p1.

2.  If d(x,y) > d2, then prob. over all h in H,
that h(x) = h(y) is at most p2.

A (d1,d2,p1,p2)-sensitive function

Pr[h(x) = h(y)]

d(x,y)

d1 d2

p2

p1

Example: LS Family

•  Let S = sets, d = Jaccard distance, H is
family of minhash functions for all
permutations of rows

•  Then for any hash function h in H,
 Pr[h(x)=h(y)] = 1-d(x,y)

•  Simply restates theorem about min-
hashing in terms of distances rather than
similarities

Example: LS Family – (2)

•  Claim: H is a (1/3, 2/3, 2/3, 1/3)-sensitive
family for S and d.

If distance < 1/3
(so similarity > 2/3)

Then probability
that minhash values
agree is > 2/3

•  For Jaccard similarity, minhashing gives
us a (d1,d2,(1-d1),(1-d2))-sensitive family
for any d1 < d2.

Amplifying a LS-Family

•  Can we reproduce the “S-curve” effect we
saw before for any LS family?

•  The “bands” technique we learned for
signature matrices carries over to this
more general setting.

•  Two constructions:
– AND construction like “rows in a band.”
– OR construction like “many bands.”

AND of Hash Functions

•  Given family H, construct family H’
consisting of r functions from H.

•  For h = [h1,…,hr] in H’, h(x)=h(y) if and
only if hi(x)=hi(y) for all i.

•  Theorem: If H is (d1,d2,p1,p2)-sensitive,
then H’ is (d1,d2,(p1)r,(p2)r)-sensitive.

•  Proof: Use fact that hi ’s are independent.

OR of Hash Functions

•  Given family H, construct family H’
consisting of b functions from H.

•  For h = [h1,…,hb] in H’, h(x)=h(y) if and
only if hi(x)=hi(y) for some i.

•  Theorem: If H is (d1,d2,p1,p2)-sensitive,
then H’ is (d1,d2,1-(1-p1)b,1-(1-p2)b)-
sensitive.

Composing Constructions

•  r-way AND construction followed by b-way
OR construction
– Exactly what we did with minhashing

•  Take points x and y s.t. Pr[h(x) = h(y)] = p
– H will make (x,y) a candidate pair with prob. p

•  This construction will make (x,y) a
candidate pair with probability 1-(1-pr)b

– The S-Curve!

AND-OR Composition

•  Example: Take H and construct H’ by the
AND construction with r = 4. Then, from
H’, construct H’’ by the OR construction
with b = 4.

Table for Function 1-(1-p4)4

p 1-(1-p4)4

.2 .0064

.3 .0320

.4 .0985

.5 .2275

.6 .4260

.7 .6666

.8 .8785

.9 .9860

Example: Transforms a
(.2,.8,.8,.2)-sensitive
family into a
(.2,.8,.8785,.0064)-
sensitive family.

OR-AND Composition

•  Apply a b-way OR construction followed
by an r-way AND construction

•  Tranforms probability p into (1-(1-p)b)r.
– The same S-curve, mirrored horizontally and

vertically.
•  Example: Take H and construct H’ by the

OR construction with b = 4. Then, from
H’, construct H’’ by the AND construction
with r = 4.

Table for Function (1-(1-p)4)4

p (1-(1-p)4)4

.1 .0140

.2 .1215

.3 .3334

.4 .5740

.5 .7725

.6 .9015

.7 .9680

.8 .9936

Example:Transforms a
(.2,.8,.8,.2)-sensitive
family into a
(.2,.8,.9936,.1215)-
sensitive family.

Cascading Constructions

•  Example: Apply the (4,4) OR-AND
construction followed by the (4,4) AND-
OR construction.

•  Transforms a (.2,.8,.8,.2)-sensitive
family into a (.2,.8,.9999996,.0008715)-
sensitive family.

•  Note this family uses 256 of the original
hash functions.

Summary

•  Pick any two distances x < y
•  Start with a (x, y, (1-x), (1-y))-sensitive

family
•  Apply constructions to produce (x, y, p, q)-

sensitive family, where p is almost 1 and q
is almost 0.

•  The closer to 0 and 1 we get, the more
hash functions must be used.

LSH for Cosine Distance

•  Random Hypeplanes
– Technique similar to minhashing

•  A (d1,d2,(1-d1/180),(1-d2/180))-sensitive
family for any d1 and d2.

Random Hyperplanes

•  Pick a random vector v, which
determines a hash function hv with two
buckets.

•  hv(x) = +1 if v.x > 0; = -1 if v.x < 0.
•  LS-family H = set of all functions

derived from any vector.
•  Claim: For points x and y,

 Pr[h(x)=h(y)] = 1 – d(x,y)/180

Proof of Claim

x

y

Look in the
plane of x
and y.

Prob[Red case]
= θ/180

θ
Hyperplane
normal to v
h(x) ≠ h(y)

v

Hyperplane
normal to v
h(x) = h(y)

v

Signatures for Cosine Distance

•  Pick some number of random vectors,
and hash your data for each vector.

•  The result is a signature (sketch) of +1’s
and –1’s for each data point

•  Can be used for LSH like the minhash
signatures for Jaccard distance.

•  Amplified using AND and OR
constructions

How to pick random vectors

•  Expensive to pick a random vector in M
dimensions for large M
– M random numbers

•  A more efficient approach
–  It suffices to consider only vectors v

consisting of +1 and –1 components.
– Why is this more efficient?

LSH for Euclidean Distance

•  Simple idea: hash functions correspond to
lines.

•  Partition the line into buckets of size a.
•  Hash each point to the bucket containing

its projection onto the line.
•  Nearby points are always close; distant

points are rarely in same bucket.

Projection of Points

Bucket
width a

Randomly
 chosen
 line

Points at
distance d

If d << a, then
the chance the
points are in the
same bucket is
at least 1 – d /a.

Projection of Points

Bucket
width a

Randomly
 chosen
 line

Points at
distance d

θ

d cos θ

If d >> a, θ must
be close to 90o

for there to be
any chance points
go to the same
bucket.

An LS-Family for Euclidean Distance
•  If points are distance d < a/2, prob. they are in

same bucket ≥ 1- d/a = 1/2
•  If points are distance > 2a apart, then they can

be in the same bucket only if d cos θ ≤ a
–  cos θ ≤ ½
–  60 < θ < 90
–  I.e., at most 1/3 probability.

•  Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of
hash functions for any a.

•  Amplify using AND-OR cascades

