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Abstract

This paper presents a design and implementation
of a whole-program interprocedural optimizer built
in the GCC framework. Through the introduc-
tion of a new language-independent intermediate
representation, we extend the current GCC archi-
tecture to include a powerful mid-level optimizer
and add link-time interprocedural analysis and op-
timization capabilities. This intermediate represen-
tation is an SSA-based, low-level, strongly-typed,
representation which is designed to support both
efficient global optimizations and high-level anal-
yses. Because most of the program is available
at link-time, aggressive “whole-program” optimiza-
tions and analyses are possible, improving the time
and space requirements of compiled programs. The
final proposed organization of GCC retains the im-
portant features which make it successful today, re-
quires almost no modification to either the front-
or back-ends of GCC, and is completely compatible
with user makefiles.

1 Introduction

The GNU Compiler Collection (GCC) [15] is in
many ways the centerpiece of the Free Software
movement. It supports several source languages and
a plethora of back-ends for various targets, provid-
ing a unified target for free software. GCC has
been successful because of its extreme portability,
stability, and because it is able to compile and op-
timize several popular source languages (C, C++,
Java, etc) to each target. Unfortunately, despite the
success of the GCC compiler suite as a whole, the
optimization infrastructure is still not competitive
with commercial compilers.

Over the years, the GCC optimizer has evolved from

compiling a statement at a time, to compiling and
optimizing entire functions at a time, to the (still
very new) support for unit-at-a-time compilation
(compiling and optimizing all of the functions in a
translation unit together). As the scope for analysis
and optimizations increases, the compiler is better
able to reduce the time and space requirements for
the generated code.

This paper proposes the next logical step for the
GCC optimizer: extend it to be able to analyze and
optimize whole programs at link-time1, enabling new
optimizations and making existing analyses and op-
timizations more powerful. For example:

• inlining across translation units
• whole-program alias analysis
• interprocedural register allocation
• interprocedural constant propagation
• data layout optimizations
• exception handling space optimizations
• sorting initializer priorities at link-time

The key challenges to whole-program optimization
are to enable powerful transformations while keep-
ing compile times reasonable, and to keep the user-
visible development process unchanged (e.g. user
makefiles).

The architecture that we propose is based on a new
language-independent low-level code representation
that preserves important type information from the
source code. The use of a low-level, SSA-based rep-
resentation allows the compiler to perform a variety
of optimizations at compile time, off-loading work
from the link-time optimizer. However, the link-
time optimizer can only perform meaningful opti-
mizations on the program if it has enough high-level
information about the program to prove that aggres-
sive optimizations are safe. Because of this, the low-
level code representation is typed (using a language-
independent constructive type system) and directly

1This capability would be optional and could be enabled
only when the program is compiled at the “-O4” level of op-
timization, for example.
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Figure 1: High-Level Compiler Architecture for Whole-Program Optimization

exposes information about structure and array ac-
cesses to the optimizer.

The link-time optimizer is designed to combine the
translation units of a program together and do the
final whole-program optimization. After the pro-
gram is optimized, machine code is generated at
link-time for the entire program at once, allowing a
variety of interprocedural low-level code optimiza-
tions to be performed.

The Low-Level Virtual Machine (LLVM) [10] is an
implementation of the architecture and intermediate
representation [11] described in this paper, which al-
lows us to be more concrete when describing aspects
of the design. This system has served as the host
for several research projects [7, 13, 12] which require
whole-program information as well as a host for a
variety of traditional compiler optimizations.

We hope that the lessons learned by the LLVM
project will be useful to the GCC community, and
are willing to contribute as much code to the GNU
project as there is interest in. We are planning to
have our first public release of LLVM, with a liberal
license, in the Summer of 2003. However, LLVM will
only be discussed when it helps clarify the ideas in
the proposed architecture, this paper is intended to
be a GCC paper, not an LLVM paper.

This paper is organized as follows: Section 2 de-
scribes the proposed high-level architecture in de-
tail, including modifications that would need to be
made to the GCC infrastructure. Section 3 de-
scribes important aspects of the proposed interme-
diate representation for the system. Section 4 de-
scribes LLVM, our existing implementation of the
proposed design. Section 5 describes other work re-
lated to the proposed design, and Section 6 wraps
up the paper.

2 High-Level Compiler Architecture

The proposed high-level architecture is illustrated in
Figure 1. The essential aspect of this design is that
it separates the current cc1 program into two com-
ponents: a front-end compiler and an optimizing
linker. The front-end retains all of the responsibili-
ties of current GCC front-ends (preprocessing, lex-
ical analysis, parsing, semantic analysis, etc..) and
should work unmodified in the new system. After
each function is parsed and checked for semantic
errors it is “expanded” from the “tree” representa-
tion to the new language-independent intermediate
representation (described in Section 3). Once the
entire translation unit has been translated (and if
no errors have occurred), a standard set of mid-level
optimizations are performed on the translated mod-
ule. After these optimizations are finished, a “.o”
file is emitted which contains IR assembly code for
the representation.

When the optimizing linker is invoked, it reads in all
of the translated IR files and any libraries compiled
to the intermediate representation. It links these
files together into a single-file representation of the
program, on which it can run whole-program analy-
ses and optimizations. Finally, once these analyses
and transformations are complete, the GCC back-
end is invoked to expand the intermediate repre-
sentation into RTL and use the configured target
description to produce a native .s file.

After the optimizing linker produces a native .s file,
the compilation process proceeds through the stan-
dard system assembler and linker (to resolve any
symbols in libraries that were not available in the
IR form), finally producing a native executable.



2.1 Compatibility and Implementation

One of the key features of this design is that it is
compatible with the standard “compile and link”
models of compilation, and is thus fully compati-
ble with existing makefiles. In order to provide this
compatibility, the link phase of the gcc compiler
driver is extended to invoke the optimizing linker
and system assembler (if necessary) during the stan-
dard link step of the compile process. In this way,
any input files that are in the IR format are au-
tomatically linked together and optimized without
interfering with the compilation and linking of stan-
dard translation units and libraries. If no files in the
IR format are present, the entire invocation of the
optimizing linker is skipped.

Another important aspect of the design is how
the compiler works when whole-program optimiza-
tion is not enabled. If not enabled, each transla-
tion unit is either compiled a function at a time
or a unit at a time (depending on the setting of
the -funit-at-a-time switch), through the mid-
level optimizer, RTL expansion, and code genera-
tion phases of the compiler. This produces a native

�.s file, which can be processed with the standard
system assembler and linker, as before.

For this approach to be feasible, a large amount of
code must be shared between the optimizing linker
and the compiler front-ends. This can either be
accomplished through the use of libraries that are
shared between the two (which would contain the
existing GCC back-end, and any shared optimiza-
tions on the IR), or by making both logical pieces be
part of the same binary. In either case, the actual
organization of the existing GCC code base would
not have to change in any substantial way.

2.2 Architectural Issues Affecting Per-
formance

In addition to providing the desired functionality
and compatibility with existing systems, it is cru-
cial that the compiler does not slow down unac-
ceptably — even if whole-program optimization is
only enabled at -O4. In practical terms, this design
addresses the issue by performing as much optimiza-
tion as possible at compile time.

Any time a source file is changed, it must be recom-

piled and the application must be relinked. In order
to reduce the amount of work that must be done,
this design allows most traditional optimizations to
be performed in the compiler front-end stage, rather
than requiring all optimization to occur at the link
stage (as is common for whole-program optimizers).
Because most aggressive scalar optimizations are
performed at compile-time, they would not need to
be rerun at link time, reducing the time for com-
pilation. Of course, the compiler performance issue
does not even arise unless the user is modifying the
program and recompiling at -O4.

Optionally with this design, the compiler could try
to minimize the amount of recompilation necessary
when a change occurs by keeping track of which in-
terprocedural information is used to modify func-
tions in other translation units, building a depen-
dence graph between the modules [4]. In practice,
however, this would make the compiler much more
complicated and prone to subtle bugs that are hard
to reproduce. We feel that although the cost of re-
compilation is still fairly substantial in our system
(native code must be regenerated for the entire ap-
plication), that the extra complexity introduced into
the compiler must be weighed against the recompi-
lation time penalties, and thus may be impractical.

3 Code Representation

The representation used to analyze and manipu-
late the program determines what kinds of transfor-
mations are possible and when in the compilation
process they must be performed to be successful.
As mentioned earlier, we propose using a language-
independent, low-level, SSA-based, strongly-typed
representation as the sole representation used for
the mid-level and link-time optimizers. This repre-
sentation is a first-class assembly language, which
includes all of the information necessary to rep-
resent the program (and is in fact directly inter-
pretable). Concrete details of the representation
used by LLVM are included in Section 3.2.

Using a low-level three-address code representation
based on Static Single Assignment [6] form enables
the direct application of many well-known and effi-
cient global optimizations. SSA form permits sparse
optimizations that do not, in general, require bit-
vector data-flow analysis to compute results. Using
a three-address code representation (as opposed to



an tree structured representation) also makes trans-
formations easy to develop and reason about.

Many transformations need information about the
high-level behavior of the program to be effective. In
order to preserve this information, we propose that
the representation maintain a strong (but language-
neutral) type system, which captures information
about pointer, structure, and array accesses in the
program. Working with the LLVM system we find
that this type information allows for a variety of
high-level analyses and transformations [7, 13, 12]
while the nature of the low-level representation
makes it very easy to manipulate. Another advan-
tage of type information is that it makes detecting
and understanding bugs in transformations much
easier.

The goal of the program representation is to enable
as many different types of optimizations as possible.
Because of this, it is important that the represen-
tation be able to represent all parts of a program
(including global variables, and file scope asm state-
ments, for example) in a form that allows transfor-
mations to modify it. Another useful feature of the
representation is a stable textual format (“assem-
bly language”) that can be read and written by the
compiler. Given this, it is trivial to write unit tests
for transformations and to debug transformations
in isolation from the rest of the compiler, and the
representation can be directly interpreted for imme-
diate feedback on a transformation.

3.1 Performance Aspects of the Repre-
sentation

Once the optimizing linker brings together the com-
piled program into one module, the interprocedu-
ral analysis and optimization passes are used to im-
prove the program. Because these passes operate on
the entire program at once, however, the efficiency
of each analysis or optimization is critical. For this
reason, several aspects of the representation are de-
signed to make these transformations as efficient as
possible.

In particular, the use of an SSA-based representa-
tion allows for efficient, sparse, global optimizations,
and can make flow-sensitivity much less important
in many analyses (reducing cost substantially). In
addition, the three-address code representation has
a small memory footprint and simple memory own-

ership semantics (eliminating the need for it to live
on a garbage collected heap). In our experience with
LLVM, code optimizers for a sparse representation
can be several times faster than optimizations on a
dense representation like RTL.

3.2 A Concrete LLVM Example

Figure 2 gives an example of a C function and
the corresponding LLVM module it compiles to.
The example shows several important aspects of the
LLVM representation. In particular, it gives a sim-
ple example of the type system, basic instruction
flavor, and demonstrates some instructions. More
details about the LLVM representation can be found
in the LLVM language reference [11].

LLVM uses a simple constructive type system com-
posed of primitive types, structures, arrays, and
pointers. Although this is a very simple type sys-
tem, we believe that it contains the key features nec-
essary for a front-end to lower any high-level type
onto it. For example, the LLVM C++ front-end
lowers classes with inheritance into nested structure
types. Types are very important in the LLVM sys-
tem, and everything that can be used as an operand
to an instruction has a type.

Functions in LLVM contain a list of basic blocks,
and each basic block contains a list of instructions.
LLVM has only 29 instructions, which include stan-
dard instructions like load, xor, setcc, etc and a
phi instruction for representing SSA form2. In-
traprocedural control flow in LLVM is very simple
(consisting of conditional branches, unconditional
branches, and the switch instruction).

Everything in LLVM is explicit: there are no fall-
through branches, all address arithmetic is exposed
(at the level of structures, pointers, and arrays), and
all references to memory use the load and store

instructions. This makes the language more uniform
and simple to analyze and transform.

The getelementptr instruction in LLVM provides
the mechanism for structured address arithmetic3.
The getelementptr instruction is exactly analo-
gous to sequences of array subscript and structure

2SSA φ-nodes are eliminated during the register allocation
phase of native code generation.

3LLVM code can also cast a pointer to an integer type,
add an arbitrary offset to it, then cast it back to a pointer, if
unstructured address arithmetic is necessary.



typedef struct QuadTree {
double Data ;
struct QuadTree ∗ Chi ldren [ 4 ] ;

} QT;

void Sum3rdChildren (QT ∗T,
double ∗ Result ) {

double Ret ;
i f (T == 0) { Ret = 0 ;
} else {

QT ∗ Child3 =
T [ 0 ] . Chi ldren [ 3 ] ;

double V;
Sum3rdChildren ( Child3 , &V) ;
Ret = V + T [ 0 ] . Data ;

}
∗Result = Ret ;

}

(a) Example function

%st r u c t . QuadTree = type { double , [ 4 x %QT∗ ] }
%QT = type %st ru c t . QuadTree

void %Sum3rdChildren(%QT∗ %T, double∗ %Result ) {
entry : %V = al loca double ; ; %V i s type ’ double ∗ ’

%tmp.0 = seteq %QT∗ %T, null ; ; type ’ bool ’
br bool %tmp . 0 , label %endi f , label % e l s e

e l s e : ; ; tmp.1 = &T[ 0 ] . Children [ 3 ] ’ Children ’ = Fie ld #1
%tmp.1 = getelementptr %QT∗ %T, long 0 , ubyte 1 , long 3
%Child3 = load %QT∗∗ %tmp .1
ca l l void %Sum3rdChildren(%QT∗ %Child3 , double∗ %V)
%tmp .2 = load double∗ %V
%tmp.3 = getelementptr %QT∗ %T, long 0 , ubyte 0
%tmp .4 = load double∗ %tmp .3
%tmp .5 = add double %tmp.2 , %tmp .4
br label %end i f

end i f : %Ret = phi double [ %tmp.5 , % e l s e ] , [ 0 . 0 , % entry ]
store double %Ret , double∗ %Result
ret void ; ; Return with no value

}

(b) Corresponding LLVM code

Figure 2: C and LLVM code for a function

index expressions, returning the address of the last
element indexed4. For example, the %tmp.1 instruc-
tion in Figure 2(b) first indexes into the 0th element
from the pointer, then into the 1st structure element
(the “Children” member), then into the 3rd element
of the array. Structured address arithmetic exposes
the necessary high-level information about structure
and array accesses directly to analyses and transfor-
mations which need it.

One important aspect of the LLVM language is that
all references to memory happen with load and
store instructions, and that there is no “address-
of” operation. In LLVM, all objects which live in
memory (global variables, functions, the heap, and
the stack) are explicitly allocated and exposed by
their address, not their value. In Figure 2, for ex-
ample, the V variable is required to live in memory
so that its address may be passed into a recursive
invocation of Sum3rdChildren. Because it is im-
possible to take the address of a virtual register,
stack memory must be explicitly allocated with the
alloca instruction5, and any references to V must
use load and store instructions. This dramatically
simplified def-use chain construction for virtual reg-
isters, which would otherwise require some form of
alias-analysis to construct.

A final example illustrating how LLVM simplifies

4The example in Figure 2(a) uses the strange syntax
’T[0].x’ instead of using the equivalent ’T->x’ to make the
correspondence more clear.

5When the back-end is invoked, all fixed sized allocas
in the entry block are treated the same as address-exposed
automatic variables.

the development of transformations is the operators
that it lacks. In particular, LLVM does not have
(or need) any unary operators or a copy instruc-
tion. Instead of providing the standard negate and
bitwise complement unary operators, LLVM repre-
sents these with standard binary operators where
one operand is a constant (“neg x” = “sub 0, x”
and “not x” = “xor x, -1”). This reduces the de-
pendence on a “canonical form” for the representa-
tion and simply reduces the number of instructions
that need to be handled.

The lack of a copy instruction is possible through
the use of SSA form, and because def-use chains are
trivially computed and always available. Any time
a copy instruction would be inserted (to replace a
redundant computation for example) it is sufficient
to replace any uses of the destination with uses of
the source operand (by following the def-use chains),
implicitly performing copy propagation automati-
cally. This simple feature has actually avoided sev-
eral phase-ordering issues that would otherwise re-
quire unnecessary passes over the representation to
do copy propagation between other passes.

4 LLVM Compiler Infrastructure

The LLVM Compiler Infrastructure [10] currently
consists of approximately 130,000 lines of C++ code
and a the front-end, which is a patch against the
mainline GCC CVS tree. This code largely im-
plements the design presented in this paper, al-



though there are some differences. This section de-
scribes these differences, the implementation status
of LLVM, some other features of LLVM that make
writing transformations simpler, and some insights
that we have had while working on LLVM.

4.1 Implementation Status

The LLVM C front-end is based on the main-
line GCC CVS repository. It generates code
by calling LLVM versions of functions that are
equivalent to the RTL-expansion routines (e.g.
llvm expand expr, llvm expand function start,
make decl llvm, etc) during compilation. These
routines build up an LLVM version of the trans-
lation unit, which is then written to the “.s” file
all at once (allowing “unit-at-a-time” style transfor-
mations to be performed from within GCC in the
future).

Instead of modifying the cc1 binary to interface di-
rectly to the LLVM optimizations written in C++,
cc1 directly emits the expanded code without any
optimization at all. When the gcc compiler driver
invokes the “assembler”, we actually have it invoke
a program called gccas which parses the LLVM as-
sembly file, runs a series of LLVM optimizers on it,
then emits a compressed bytecode file (the .o file).
The interface to gccas is intentionally designed to
be identical to the interface of the standard system
as tool, to avoid having to make changes to spec
files.

When the user (or a makefile) links the program
using our gcc compiler driver, it invokes our gccld
tool. This tool reads the .o files specified, links in
the appropriate bytecode files from any .a files, and
then runs a series of interprocedural optimizations
on the program. At this time, we directly emit an
LLVM bytecode file for the entire program, instead
of automatically invoking a native code generator.

Once the program has been optimized and is avail-
able in a single bytecode file, there are several ways
to execute the resultant program. LLVM provides
a very slow (but portable) reference interpreter for
bytecode files, a Sparc V9 native code generator, a
C back-end, and a Just-In-Time (JIT) compiler for
the IA32 architecture.

A large number of LLVM optimizations and analy-
ses are available, including passes for:

• Traditional SSA based optimizations: ADCE,
GCSE, LICM, PRE, SCCP, induction variable
canonicalization, reassociation, value number-
ing, register promotion, etc...

• Control Flow Graph based optimizations and
analyses: critical edge elimination, loop canon-
icalization, various dominator, post-dominator,
and control dependence graph related analyses,
interval construction, natural loop construc-
tion, CFG simplification, path profiling instru-
mentation, etc...

• Interprocedural analyses and transformations:
call graph construction, several interprocedu-
ral alias analyses, global variable merging, dead
global elimination, inlining, Data Structure
Analysis [13], automatic pool allocation [12],
interprocedural mod/ref, etc...

In addition to pure infrastructure, the LLVM system
also provides a large test suite. The three main sec-
tions of the test suite are the regression tests (which
contain thousands of tests for transformations and
other tools), feature tests (which demonstrate how
instructions and idioms are used in LLVM), and pro-
gram tests (which compile benchmarks and other
programs with the various code generators, ensur-
ing that they produce code whose behavior agrees
with a native compiler). The LLVM web site also
hosts a variety of documentation describing aspects
of the infrastructure.

LLVM is also still under development. In particular,
the C++ front-end is nearing completion (runtime li-
brary support for exception handling is the major
missing portion), Sparc V9 support for the JIT is
in development, and a system for runtime optimiza-
tion of statically compiled binaries is in the research
phases.

4.2 Differences from the Proposal

The biggest difference between the proposal and the
LLVM implementation is the lack of an LLVM to
RTL conversion pass. For our research purposes,
we use a C back-end, which provides much of the
same functionality as a full fledges RTL back-end,
but is much slower. We expect that this component
can be added upon demand.

Another big difference between the current imple-
mentation and the proposal is the interface between



the cc1 program and the mid-level optimizer. For
expediency of implementation we currently have the
two tools as separate executables, although this ob-
viously incurs more overhead than linking the two
components together. Once the subject of including
C++ code in GCC is better decided, we can look to
resolve this issue.

4.3 Support for Developers

One of the strengths of the LLVM infrastructure is
that it has some interesting utilities for constructing
passes, finding bugs in those passes, and building a
compiler around a selection of these passes. This
strength is important for two reasons: it allows new
people to get into the system and get productive
relatively fast, and it also allows experienced devel-
opers to be more productive than they otherwise
would. The most important features are: a strong
consistency checker, a “pass manager”, and a tool
we call “bugpoint”.

The LLVM infrastructure includes a stringent
checker for LLVM code, which ensures that type
relationships, SSA properties (e.g., all definitions
dominates their uses), and other LLVM invariants
haven’t been violated by a transformation. This
checker is automatically run after passes when in
development mode to ensure that these passes are
not corrupting the input for other passes that are
run. Additionally, when in development mode, an
automated memory leak detector is automatically
enabled, which detects violations of the LLVM rep-
resentation’s ownership model. This light-weight
checker is implemented using only a few additions
to constructors and destructors for the classes which
make up the representation, no garbage collector is
necessary.

The LLVM “Pass Manager” provides a structured
environment for passes to execute in. Transfor-
mations in LLVM use a declarative syntax to in-
dicate which other passes are prerequisites (e.g.
break-critical-edges), which analyses are re-
quired (e.g. natural loop information, alias analy-
sis, value numbering, interprocedural mod/ref info,
etc...), and which analyses are preserved or de-
stroyed by the transformation being run. This
structured pass model makes it easier for developers
to fit code into the system, and it also makes con-
struction of tools (e.g. gccas and gccld) a simple
matter of handling command-line arguments and se-

lecting a sequence of passes to run.

bugpoint, another useful tool, is best described
as an “automated test-case reducer”. Given an
LLVM program (or fragment) and a list of passes to
run, it attempts to reduce the test-case (and list of
passes) to the minimum which still exposes a prob-
lem. bugpoint can currently diagnose passes which
crash/assert during optimization and passes which
misoptimize the program (by executing the resul-
tant program with a code generator, assuming a de-
terministic program)6. If a test-case causes a pass
to crash, bugpoint is usually able to reduce the
test-case down to the few LLVM instructions and
basic block which cause the problem. If a pass (or
combination of passes) miscompiles the test-case, it
can isolate a single function which is being miscom-
piled. The bugpoint tool is possible because of the
modularity of the pass manager and the ability to
read, write, and modify a representation of whole
programs.

4.4 Surprises and Insights from LLVM

Through the experience of developing LLVM, we
have developed several insights which may be use-
ful to a broad audience. First, implementing a type-
safe linker for C is a non-trivial exercise. C programs
often rely on implicit prototypes for called functions,
or use prototypes that are blatantly wrong. We have
also seen cases where global data is declared to have
different types in different translation units (which,
in practice, behaves similarly to a COMMON block
in FORTRAN). A normal binary linker does not
typically have problems with these issues, but they
must be handled explicitly with a type-safe linker.
On the other hand, this information is often useful
to the programmer, like the “lint” tool.

When performing interprocedural analysis, having
as much of the program available as possible in-
creases the precision of the analyses. For this rea-
son, we have compiled several libraries to LLVM
form that allow them to be analyzed and optimized
with the program. This has several interesting con-
sequences: first, the library code itself can be spe-
cialized and optimized with the program (for exam-
ple, optimizing qsort by inlining the comparison
functions, so indirect calls do not need to be used).
Second, this dramatically reduces the need for ad-
hoc annotations on functions indicating properties

6A third mode, for debugging back-end bugs, is planned.



Source wc -l GCC LLVM Pass Times # LLVM Pass xforms

Filename LOC CSE 1 IC GER GCSE Sum IC GER GCSE

combine.c 11103 0.70s .431s .027s .141s .599s 16182 141 2734
expr.c 10747 0.52s .141s .009s .072s .222s 6540 41 2870
cse.c 8779 0.50s .187s .012s .061s .260s 10925 59 1894
reload1.c 7117 0.37s .058s .008s .034s .100s 5735 86 1830
c-decl.c 6968 0.42s .022s .005s .031s .058s 3299 3 2221
insn-recog.c 6957 0.34s .082s .004s .090s .176s 5238 0 654
loop.c 6648 0.33s .013s .001s .003s .017s 1671 7 264
c-typeck.c 6604 0.46s .028s .005s .026s .059s 4481 14 1993

Table 1: Transformation timings for source files from the SPEC CPU2000 176.gcc benchmark

such as “const” and “pure”. Instead, simple in-
terprocedural analyses can be used, which have the
advantage of applying to user code as well as the
built-in functions.

Finally, we have found that investing in making the
system easier to develop for, and debug in, has been
worth it. In particular, the bugpoint tool can nar-
row down a test-case from thousands of lines of C
code to a dozen lines of LLVM code in a few seconds:
doing the same manually would take much longer.
Making the development environment detect prob-
lems early is also extremely valuable to developers,
making them more productive and making it easier
to bring new people on. Having a modular system
also helps keep people from getting overwhelmed
when they first start on the project.

4.5 Optimizer Performance

The LLVM representation allows for efficient trans-
formations and analyses, both for aggressive inter-
procedural transformation and traditional optimiza-
tions. In order to quantify this performance, we
compared the performance of the GCC “cse” pass
with the performance of the LLVM transformations
closest to it (see Table 1). For these tests, we
compiled the 8 largest single .c files in the SPEC
CPU2000 176.gcc benchmark (which is based on the
GCC 2.7.2.2 source code). The numbers were col-
lected on a 1.7GHz AMD 2100+ Athlon processor.

The timings for the cse pass were collected when
compiling with GCC 3.2 and the -O3 option. The
actual timings were acquired as the average of 5 runs
with the -ftime-report option and the compiler
configured for a i686-pc-linux-gnu target. The
cse 2 pass was ignored, the timings just include
the first invocation of the cse pass.

For the LLVM timings, we chose to use a com-
bination of the Instruction Combining, Global
Expression Reassociation, and Glocal Common
Subexpression Elimination passes. The combina-
tion of these three phases is believed to be strictly
more powerful than the cse pass. The Instruc-
tion Combining pass supersumes value numbering,
constant folding and trivial dead code elimination
phases, plus it performs a variety of transforma-
tions similar to the GCC “combine” pass (described
below). The reassociation pass transforms chained
occurrences of commutative operations to promote
better code motion. The GCSE pass is a well known
technique to remove common subexpressions. The
table shows the execution time for each pass as well
as the sum of the three. The table also shows the
number of transformations that each pass makes
(instructions combined, instructions reassociated,
common subexpressions deleted).

From the table, we can see that the LLVM op-
timizations always run in less time than the cse

pass, and with the exception of the “combine.c”
case, took about half as much time. Despite being
faster overall, the LLVM transformations are more
powerful than the cse pass, which only operates
on extended basic blocks. The slowest individual
transformation by far is the instruction combina-
tion pass, which uses a work-list driven approach to
perform “peephole” style optimization on the SSA
graph (giving it global transformation powers) for a
large collection of algebraic identities (such as fold-
ing “(A− (A&B))” into “(A& ∼ B)”), that the cse
pass does not perform. Together, the three trans-
formations are quite effective.

In addition to simple scalar optimizations, LLVM is
designed to support aggressive interprocedural anal-
yses and optimizations at link-time. As an example,
we consider the Data Structure Analysis algorithm,



a context-sensitive flow-insensitive memory analy-
sis framework. On the same hardware as above it
is capable of analyzing entire programs in seconds:
2.5s the povray and 1.2s for the 255.vortex pro-
grams, which are about 136,000 and 67,000 lines of
C code respectively [13]. Other simpler algorithms
may obviously run much more quickly.

5 Related Work

There is a vast amount of related work on inter-
procedural optimization in research and commercial
compilers [1, 8, 2, 9, 3]. To avoid major changes
to the build process, all of these compilers com-
bine the program together at link-time in a very
high-level representation, before any substantial op-
timization is performed. Most often, this represen-
tation takes the form of the source language Ab-
stract Syntax Tree (AST) with source language-
specific nodes removed. Once the program is com-
bined at link-time, optimization for the entire pro-
gram commences, starting with interprocedural op-
timizations.

In contrast, the approach described here immedi-
ately optimizes and translates the program to a
low-level, but strongly-typed, intermediate repre-
sentation which is suitable for optimization both at
compile- and link-time. Because substantial opti-
mization is performed at compile-time, the inter-
procedural optimizers have less work to perform at
link-time, reducing the amount of time a recompi-
lation requires. Previous work [13, 7, 10, 12] has
shown that a low-level representation with type in-
formation can support aggressive high-level analyses
and transformations.

Another successful class of interprocedural opti-
mizers target very low-level optimizations. These
“smart-linkers” typically operate at the level of the
machine code, performing optimizations such as in-
terprocedural register allocation and code layout op-
timizations [16, 14, 5]. Although these tools have
been successful, and require little or no modification
to the source compiler, they are not capable of per-
forming high-level optimizations at all. Also, these
optimizations can all be performed in our frame-
work, because code generation occurs for the entire
program at a time, exposing the necessary interpro-
cedural information.

Within the GCC project, several projects in de-
velopment or recently merged onto the mainline
are relevant. In particular, the ast-optimizer

project and its tree-ssa subproject aim to im-
prove optimization in GCC by migrating optimiza-
tions from the target-specific RTL representation
to a target-independent AST representation. The
representation proposed in this paper is similar to
the tree-ssa GIMPLE representation in some ways
(both are language-independent, SSA based, and do
not allow nested expressions), but they are different
in many other ways.

In particular, the GIMPLE representation is not ca-
pable of representing the entire translation unit be-
ing compiled: a lot of information about the pro-
gram is stored only in global variables, or are im-
mediately emitted to the output assembly file. Also,
the GIMPLE representation has operations which
are closer to the source level. For example, vari-
able definitions can have their address taken, which
makes the def-use chain representation much more
complex in the GIMPLE representation. On the
other hand, the tree-ssa project is much better in-
tegrated into GCC, is written in the C language, and
does not require the introduction of a completely
new intermediate representation.

6 Conclusion

This paper presents the design for an aggressive,
but realistic, interprocedural optimization compo-
nent for the GNU Compiler Collection. This design
is capable of supporting a broad range of whole-
program optimization techniques, is reasonable in
terms of compilation time, and has already been
implemented. We hope our efforts will accelerate
the process of making GCC produce code which is
more competitive with commercial compilers, and
perhaps LLVM can be directly adopted as an op-
tional part of the compiler itself. We encourage
members of the community who are interested in
the proposed architecture or LLVM itself to contact
the authors with any feedback, questions, or ideas.
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