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a b s t r a c t

A fuzzy linear state estimation model is employed, which is based on Tanaka’s fuzzy linear
regression model, for modeling uncertainty in power system state estimation. The estima-
tion process is based on uncertainty measurements as well as uncertainty parametric. The
uncertain measurements and the parameters are expressed as fuzzy numbers with a trian-
gular membership function that has middle and spread value reflected on the estimated
states. The proposed fuzzy model is formulated as a linear optimization problem, where
the objective is to minimize the sum of the spread of the states, subject to double inequal-
ity constraints on each measurement. Linear programming technique is employed to
obtain the middle and the symmetric spread for every state variable. The estimated middle
corresponds to the value of the estimated state, while the symmetric spreads represent the
tightest uncertainty interval around that estimated states. For illustrative purposes, the
proposed formulation has been applied to various test systems such as, 4-bus, 6-bus, IEEE
30-bus, IEEE 39-bus, IEEE 57-bus and IEEE 118-bus. Furthermore, an assessment of the
time convergence of the proposed method has been carried out to demonstrate the appli-
cability of the proposed estimator as an on-line tool for estimating the uncertainty bounds
in power system state estimation.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Having an accurate picture of the state of a system is an
important part of the system operations. While a simple
SCADA (Supervisory Control and Data Acquisition) system
has the ability to provide the system operators with raw
information about the system operation conditions, only
a state estimator has the ability of filtering the information
to supply a more accurate picture of the status of the
system.

The conventional purpose of state estimation is to re-
duce the effect of measurement errors by utilizing the
redundancy available in the measurement system. In par-
ticular, the objective is to reduce the variance of the esti-
mates and improve their overall accuracy. The other
major objectives of state estimation methods include:
. All rights reserved.
detection of gross errors, detection of invalid topological
information and detection of model parameter errors.

If the inaccuracy (or error) in the measurements, for a
given estimator, is modelled by some random probability
distribution function, then the set of feasible estimates
can also be modelled by a probability distribution function.
These estimators are, therefore, probabilistic in nature. In
fact probability theory is generally utilized to handle inac-
curacy. Due to the fact that statistics of the measurement
errors are difficult to be probabilistically characterized in
practice, imprecision in error modelling cannot be equated
with randomness, [1], and instead can be associated with
fuzziness [2]. Thus, fuzzy theory can satisfactorily be de-
ployed in such circumstances to overcome this limitation
and address various uncertainties in the modelling of such
statistics. That is particularly due to its ability in handling
uncertainties and vagueness associated with the observa-
tion errors. Generally, in the context of state estimation,
fuzzy estimators are possibilistic in nature. If the observa-
tion errors are assumed to be fuzzy due to uncertainty that
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is inherently present in the system, then the estimates are
assumed to be a range of possible values. Consequently, in
such situations, it is desirable to provide not just a single
‘optimal’ estimate of each state variable but also an uncer-
tainty range within which we can be assured that the ‘true’
state variable must lie. This is attainable by utilizing some
a fuzzy function to represent the estimates as fuzzy esti-
mates with their associated uncertainty ranges as opposed
to crisp estimates (single point only) produced by the con-
ventional estimators [3].

The main theme of this paper is to model the uncertain-
ties associated with the measured quantities in a way that
defines an interval (range) with respect to their nominal
values. The range is governed by the tolerance, of the mea-
suring instrument (a quantification of accuracy usually
provided by the manufacturer) and other factors that are
known to have direct effects on network mathematical
model being used in the estimation procedure. By imple-
menting the proposed fuzzy linear techniques the confi-
dence interval (or bounds) of the state variables can be
computed. Hence, this study presents an estimator based
on fuzzy linear regression formulation for estimating the
uncertainty interval around the system state variables.
This estimator is based on Tanaka’s fuzzy linear regression
formulation. The uncertainty is expressed in both
measurements and network parameters in a unified fuzzy
model. The main objective is to minimize the fuzziness in
the estimated states. This can be achieved by minimize
the sum of spreads of all fuzzy states, subject to double
inequality constraints on each measurement to guarantee
that the original membership is included in the estimated
membership. Linear programming has been employed to
obtain the middle and the symmetric spread of every state
variable. The estimated middle corresponds to the value of
the estimated state, whereas the symmetric spreads in the
membership functions of the state variables represents
the uncertainty interval around that estimated state. Thus,
the primary goal is to minimize the sums of the uncertain-
ties around the states.

2. Uncertainty and state estimation

Schweppe [4] introduced the concepts of uncertainty in
the general context of engineering analysis, estimation and
optimization. In [4] the concept of unknown-but-bounded
errors for modelling uncertainty in estimation problems
was introduced. Measurements are assumed to be inexact
and have errors that are unknown but fall within a
bounded range.

These concepts have been extended and developed re-
cently and have been applied by a number of researchers.
Bargiela and Hainsworth [5] introduced bounds on the
measurements, with the intention to increase the robust-
ness of estimation. Brdys and Chen [6], developed a tech-
nique based on bounded states, and they introduced the
term Set Bounded State Estimation (SBSE). Nagar et al.
[7] applied concepts from robust control theory and al-
lowed for uncertainty in both the parameters and the mea-
surements. The uncertainty is isolated with the use of a
Linear Fractional Transformation (LFT), which enables the
preservation of the structure of the uncertainty and allows
for a separate manipulation of the nominal and uncertain
part. A Linear Matrix Inequalities (LMI) [8] approach is
then used to solve the problem to obtain the upper and
lower confidence bounds [9].

In power system state estimation, inequality con-
straints have been applied in optimization to deal with
uncertainties. In [10], inequality constraints are employed
in a LAV estimator for handling uncertainty in pseudo-
measurements, since they are not measured but are known
to vary within bounded intervals. An inequality con-
strained LAV estimator based on penalty functions, was
formulated in [11] to estimate states of external systems.
A parameter-bounding model derived from bounded noise
measurements was used in [12] with a reformulated con-
strained WLS, to handle unmeasured loads in the system.

Al-Othman and Irving have introduced in [13–15] dif-
ferent methods for estimating the uncertainty interval
around the system state variables. One method is based
on using a two-step method is proposed for estimating
the uncertainty interval around the system state variables.
The first step uses weighted least-squares (WLS) as a point
estimator to compute the expected values of the state vari-
ables. A linear programming formulation is then utilized to
find the tightest possible upper and lower bounds on these
estimates [13]. The linear formulation was, however, lim-
ited to modelling uncertainty only in the measurements
which was due to meters inaccuracies, when in fact other
elements (inaccuracies of the network mathematical mod-
el) can indeed contribute to the uncertainty. As an exten-
sion, authors in [14] have introduced another uncertainty
analysis method in which the uncertainties are expressed
in both measurements and network parameters. The
uncertainties in [14] were assumed to be known and
bounded. The problem is formulated as a constrained
non-linear optimization problem. To find the tightest pos-
sible upper and lower bounds of any state variable, the
problem is solved by Sequential Quadratic Programming
(SQP) techniques. In [15] authors have conducted a com-
parison study of both methodologies presented in [13,14]
in terms of accuracy in estimating the uncertainty interval
with various redundancy levels. The study established that
both methods provided almost identical bounds estimates.
Also, the study showed that based on CPU execution time
analysis WLS-LP was found to be faster than the non-linear
method.

The main drawback in those formulations was the ma-
jor computational burden of the process which arises from
the need to perform two (LP) or two (SQP), depending on
the formulation used, solutions for every uncertainty inter-
val sought. For example, minimizing a particular state var-
iable of interest, subject to all the measurement inequality
constraints, provides the lower bound on that state vari-
able. Likewise, maximizing that state variable, again sub-
ject to all the measurement inequalities, provides the
upper bound for that state. Consequently, for real world
large electrical networks that scenario introduces a signif-
icant amount of computation and CPU time, which may
ultimately question the practicality of those formulations.

The proposed fuzzy linear state estimator (FLSE) has an
attractive feature that combats the above drawback. The
proposed (FLSE) computes the interval for all states simul-
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taneously and directly as it converges to the optimal solu-
tion. Unlike the methods presented in [13–15] where
uncertainty intervals is determined by the successive solu-
tion of a series of appropriately formulated linear or non-
linear optimization problems.

Fuzzy theory has also been widely used in power sys-
tem computation. For example, Shahidehpour et al. in
[16,17] have utilized Fuzzy theory to handle the uncer-
tainty in decision making and power purchasing in dereg-
ulated environment. In [18,19] authors have applied fuzzy
set for multi-area generation scheduling and for optimal
reactive power control, respectively. As for state estima-
tion the concept of fuzzy-logic has been employed by
Shabani et al. in [20] to improve the over all performance
of the WLS estimator. A hybrid WLS and fuzzy-logic esti-
mator was developed in [20] to model residual based on
possibility theory. Shahidehpour et al., on the other, have
employed fuzzy sets in conjunction with LAV (Least Abso-
lute value) estimator and LMS (Least Medium Squares)
estimator to robustly eliminate the bad data in [21]. Fur-
thermore, authors in [22] have developed a fuzzy LAV
estimator based on maximizing the sum of individual
memberships. This fuzzy LAV estimator out performed
the standard WLAV in the presence of leverage point.

3. An overview of Tanaka’s fuzzy linear regression

Fuzzy linear regression was introduced by Tanaka et al.
[23] in 1982. The general from of Tanaka’s formulation is
given by:

Y� ¼ f ðxÞ ¼ A0 þ A1x1 þ A2x2 þ . . .þ Anxn ¼ Ax ð1Þ

where Y� is the output (dependant fuzzy variable),
{x1,x2, . . . ,xn} is a non fuzzy set of crisp independent param-
eters and {A0,A1, . . . , An} is a fuzzy set of symmetric mem-
bers, unknowns, needs to be estimated. Each fuzzy
element in that set may be represented by a symmetrical
triangular membership function, shown in Fig. 1, defined
by a middle and a spread values, pi and ci, respectively.
The middle is known as the model value and the spread de-
notes the fuzziness of that model value.
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Fig. 1. Membership function of fuzzy coefficient A
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Therefore, since Ai = (pi,ci), then Eq. (1) may be rewrit-
ten as:

Y� ¼ f ðxÞ ¼ ðp0; c0Þ þ ðp1; c1Þx1

þ ðp2; c2Þx2 þ . . .þ ðpn; cnÞxn ð2Þ

The output membership function is given as:
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The output membership function is depicted in Fig. 2, and
the intermediate mathematical derivations leading to Eq.
(3) can be found in [23,24].

From regression point of view, Eqs. (1)–(3) may be
applied to m samples where the output can be either
non-fuzzy, (certain or exact), in which no assumption of
ambiguity is associated with the output or fuzzy (uncer-
tain), where uncertainty in the output is involved due to
human judgment or meters imprecision [25]. In this study
both non fuzzy and fuzzy out will be considered.

3.1. Non-fuzzy output model [23]

In this model, Tanaka converted regression model into a
linear programming problem [23]. In this case the objec-
tive is to solve for the best parameters, i.e. A*, such that
the fuzzy output set is associated with a membership value
greater than h as in;

lY�j
ðyjÞP h; j ¼ 1; . . . ;m ð4Þ

where h 2 [0,1] is the degree of the fuzziness and is nor-
mally defined by the user, Y� ¼ A��xi.

Therefore, with Eq. (4) as a condition, the main objec-
tive is to find the fuzzy coefficients that minimize the
spread of all fuzzy output for all data sets. Note that the
fuzziness in the output is due to fuzziness assumed in
the system structure A*. Thus, given non-fuzzy data (yi,xi),
the fuzzy parameters A* = (p,c) may be solve for by the lin-
ear programming formulation as:
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Fig. 2. Membership function of output.
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Fnon-fuzzy ¼min
Xm

j¼1

Xn

i¼1

cixij

 !
ð5Þ

Subject to:

yj P
Xn

i¼1

pixij � ð1� hÞ
Xn

i¼1

cixij ð6Þ

yj 6
Xn

i¼1

pixij þ ð1� hÞ
Xn

i¼1

cixij ð7Þ

In the above formulation yj is the jth observation (con-
stant), xij is a non fuzzy crisp independent parameter,
pi is the ith fuzzy middle and ci is its corresponding sym-
metric spread (both are variables and need to be
estimated).

Also, note that in (6) and (7),
Pn

i¼1pixij, defines the mid-
dle value and

Pn
i¼1cixij defines the symmetric spread to the

left, constraint (6), and to the right, constraint (7), as illus-
trated in Fig. 2. As can be seen from the Fig. 2, as hincreases
the fuzziness of the output increases. This is due to the
need of a wider spread, ci, to validate the input measured
value in condition of satisfying higher h [2].
3.2. Fuzzy output model [24]

Due to human error and various other sources of impre-
cision in the measurements, the output may certainly be
fuzzy. The uncertainty in the measurements is represented
by a fuzzy member as Y�j = (yj,ej), where yj is the middle
value and ej represents the uncertainty in measurement j
as shown in Fig. 3.

Fig. 4 illustrates the overall membership output func-
tion that models uncertainty in the regression parameters
along with the output.

The objective of fuzzy linear regression is to determine
the fuzzy parameters A�� that minimze the sum of spread as
in:

Ffuzzy-output ¼min
Xm

j¼1

Xn

i¼1

cixij

 !
ð8Þ
μ

jy je
je

y0

Fig. 3. Membership function of fuzzy output.
Subject to:

yj P
Xn

i¼1

pixij � ð1� hÞ
Xn

i¼1

cixij þ ð1� hÞej ð9Þ

yj 6
Xn

i¼1

pixij þ ð1� hÞ
Xn

i¼1

cixij � ð1� hÞej ð10Þ

Note that an additional term, (1 � h)ej, emerged in the for-
mulation due to the introduction of fuzziness in the mea-
surements. As mentioned, the Eq. (9) represents the yj

when it lies in the interval to the left of the middle value
with the uncertainty with respect to it added to that inter-
val. In the same manner, Eq. (10) represents the yj when it
lies in the interval to the right of the middle value with the
uncertainty with respect to it added to that interval. The
proof and detailed derivation for both formulation can be
found in [23,24].
4. Proposed power system linear fuzzy state estimation

For a set of measurement equations the well-known
state estimation model is:

z ¼ HðxÞ þ e ð11Þ

where:
z is the (mx1) measurement vector.
H is a vector of non-linear functions that relate the

states to the measurements.
x is an (n x1) state vector to be estimated.
e is an (mx1) measurement error vector.
The measurements are usually obtained from transduc-

ers in the electrical network. For the system to be
observable, it is necessary that m P n and that the m mea-
surements are in locations such that the resulting Jacobian
(sensitivity matrix with respect to the state variables) has
rank n.

For a given set of measurements, where m � n, x can not
be exactly determined, instead, x can be estimated and it is
denoted as x̂. Eq. (11) is linearized around some operating
point xo using Taylor series expansion, retaining the first
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two terms and ignoring the higher order terms. This leads
to the following relationship:

Dz ¼ JðxoÞ � Dxþ e ð12Þ

where:
Dz is = z � J(xo).
J is the Jacobian of H(xo), i.e. J = @H(xo)/ox
Dx is ¼ x̂� xo.
The Newton–Raphson method is employed as an itera-

tive method, since it is known that power system models
are amenable to solution using the N-R approach. The
dependence on the iteration index is implicitly assumed
for Dx, J and Dz, where the current state vector is updated
at each iteration until a stopping criterion is reached.

The linearized power system in (12) for the Jth mea-
surement can be rewritten as:

Dzj ¼ Dx1Jj1 þ Dx2Jj2 þ . . .þ DxnJjn ð13Þ

If we define the change in the system state variables, Dx, to
be a fuzzy member having a middle and a spread values, pi

and ci, respectively. Then, Eq. (13) can be expressed as:

DZj ¼ ðp1; c1ÞJj1 þ ðp2; c2ÞJj2 þ . . .þ ðpn; cnÞJjn ð14Þ

Note that the modal value pi (i.e. the middle) for a given
unknown, represents the value of the change in the system
state variables, Dxi, at the current iteration of the linear-
ized model. The spread ci on the other hand, which is sym-
metric, corresponds to the incremental confidence interval
of that state variable. Therefore, Dx can be defined:

Dx � ½ðp1; c1Þ; ðp2; c2Þ; . . . ðpn; cnÞ� ð15Þ

Tanaka’s fuzzy linear regression models are modified in or-
der to be used as state estimator instead. In those linear
fuzzy formulations, the optimal state estimate vector x̂
may be determined by minimizing the sum of the spread
of all state variables. In this case the change in state vari-
ables, subject to a number of constraint representing mea-
surements can be expressed as:

Fnon-fuzzy ¼min
Xm

j¼1

Xn

i¼1

ci Jij

 !
ð16Þ

Subject to:

yj P
Xn

i¼1

pi Jij � ð1� hÞ
Xn

i¼1

ci Jij ð17Þ

yj 6
Xn

i¼1

pi Jij þ ð1� hÞ
Xn

i¼1

ci Jij ð18Þ

Similarly, the fuzzy output model may be given as:

Ffuzzy-output ¼min
Xm

j¼1

Xn

i¼1

ci Jij

 !
ð19Þ

Subject to:
yj P
Xn

i¼1

pi Jij � ð1� hÞ
Xn

i¼1

ci Jij þ ð1� hÞej ð20Þ

yj 6
Xn

i¼1

pi Jij þ ð1� hÞ
Xn

i¼1

ci Jij � ð1� hÞej ð21Þ
where h is the degree of the fuzziness and is specified by
the decision maker. In the context of power system state
estimation ei may represent the transducer tolerance
which is usually provided by the manufacturer of the me-
ter it self. Both models are linear programming models and
they can be solved by any linear programming package.

Repeated linearization and solution of (11) then solves
the non-linear problem via the Newton–Raphson ap-
proach. The solution of the power system state estimation
in equation by the proposed fuzzy linear formulation can
be explained as:

Suppose that at iterations k, the state variable is up-
dated by

x̂kþ1 ¼ x̂k þ Dxk ð22Þ

where the incremental change in state variable Dxk, is
computed by either fuzzy linear models above, Eqs. (16)–
(18) or, Eqs. (19)–(21), and it can be expressed

Dxk ¼ ½p1;p2; . . . ;pn�
T
k ð23Þ

where pi correspond to the middle value of the incremental
change of the system state variables, i.e. (voltage magni-
tudes and phase angles) at the at iterations k.

Since the optimal spreads represent a quantified mea-
sure of how uncertain we are about their respective mid-
dles i.e. state variables, and then the interval of
confidence due to uncertainty can be constructed by add-
ing or subtracting the spreads to or from their respective
middles. For instance, the lower bound of the incremental
changes at iterations k can be calculated as:

Dx�k ¼ Dxk � ½c1; c2; . . . ; cn�Tk ð24Þ

And likewise, the upper bound of the incremental changes
at iterations k can be calculated as:

Dxþk ¼ Dxk þ ½c1; c2; . . . ; cn�Tk ð25Þ

Ultimately, the lower bound of the interval at iterations k
of all states can be computed:

x̂�kþ1 ¼ x̂k þ Dx�k ð26Þ

And the similarly, the upper bound of that interval is com-
puted as:

x̂þkþ1 ¼ x̂k þ Dxþk ð27Þ

Upon choosing an appropriate initial guess xo, an arbitrary
initial guess of considered state variables, N-R should iter-
ate until the stopping criterion is reached. Thus the non-
linear problem is solved and eventually not only the states
are computed by the fuzzy linear estimator but also, an
uncertainty range of the state variables (voltage magni-
tudes and phase angles) are contracted within which we
can be assured that the ‘‘true” state may lie with high
confidence.

It is important to mention that the fundamental concept
of power system state estimation is to determine the esti-
mated x̂ which best fits the redundant set of measurements
z. The proposed fuzzy formulation provides the set of esti-
mates x̂ (middle values) along with an upper bound of x̂þ

and lower bound x̂� for the estimated middle values.
Determination of estimated middle values is extremely
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crucial. Upper and lower bounds (which are computed
with the help of the spread) are added features that gener-
ally offer two relevant indications:

	 An extended confidence in the particular system states
estimates.

	 A possible violation of some operation limits or system
closeness to dangerous states, i.e. in case when the mid-
dle estimate looks acceptable, but the spread is already
approaching the system limits.

4.1. Implementation of case studies

This section presents some typical results obtained by
applying the proposed algorithms to the 4-bus system
from [26], 6-bus test system from [27], IEEE 30-bus, IEEE
39-bus, IEEE 57-bus and IEEE 118-bus test network data
from [28]. A set of MATLABTM files has been developed to
facilitate the computation of all state variables to illustrate
the concepts. The LP problems have been solved by the
function linprog() incorporated in the MATLABTM optimiza-
tion toolbox [29].

Selected measurements, (i.e. active and reactive power
injections, active and reactive power flow and current
magnitudes with redundancy levels
1.8 to 2.2), have been
acquired from load-flow solution for all test cases. To sim-
ulate parametric uncertainty, elements of the admittance
matrix have been perturbed by adding uniformly distrib-
uted random values to the nominal values of those ele-
ments over an interval (for example [�1%, 1%]) and
therefore, approximately representing typical inaccuracies
related to the acquisition and computation of network
transmission lines resistances R, reactances X and the total
line charging values B (susceptance). As a matter of fact
variation or, (ambiguity), in the network parameters is
mainly a function of line loading and other factors like
ambient temperature and wind speed [30–32]. While mea-
surements used for in all the test cases were acquired from
base case load-flow, a 1–5% uncertainty in the parameters
seems to be appropriate for the small and medium size test
cases. A relatively larger uncertainty range, i.e. 7–10%, is
acceptable for the IEEE 57 & IEEE118 test cases due to
the increase in transmission lines and, therefore leading
to an increase in the overall degree of the parameters
uncertainty. Hence, all implementation based on those
ranges of parameters uncertainty have been carried out
and presented.

The fuzziness in the output (uncertainty in the mea-
surements) due to meters inaccuracies is modelled in the
Table 1
Estimated state variables and uncertainty bounds for the four-bus network with h

Busi WLS Fuzzy-LP�

jVij hi jVij hi

1 0.9666 0 0.9557 0
2 0.9476 �0.9349 0.9362 �0.9503
3 0.9354 �1.9639 0.9244 �1.9951
4 0.9870 1.7687 0.9761 1.6823
adopted formulation by the ei coefficient. These coeffi-
cients correspond to the overall accuracy of the meter,
(such as ±3%), and can usually be provided by the manufac-
turer. Nonetheless, different values for the elements of po-
sitive and negative tolerances are permissible so that a
transducer can be specified to have asymmetric accuracy
if required (e.g. an accuracy of �3% to +5% of the nominal
value) [33]. In fact, in all test cases the meters accuracies
were obtained by generating normally distributed values
multiplied by symmetric meter tolerances and are there-
fore approximately modelling unknown uncertainty in a
given reading of measurement, but it is bounded between
+ or � the value of the meter tolerance.

This assumption corresponds to real-life situation
where acquired measurement values are not exact but
are contained within the range specified by the accuracy
of meters. It is important to mention that the transducer
tolerances ei are assumed to be known and fixed. In re-
alty the instrument inaccuracies will increase as the
instruments age under the action of various processes
and as the instruments may not be recalibrated. It
should be noted that measurement recalibration is rarely
carried out in a systematic manner by utilities [34,35],
mainly due to the fact that large numbers of measure-
ments exist in a power network and the time and exper-
tise required to check each individual transducer would
be expensive.

4.2. Application of FLSE on 4-bus test system

Table 1 present typical results obtained by the proposed
FLSE, when applied to the 4-bus network from [26] and
shown in Fig. 5. The transducer tolerance is assumed to
= 0.5.

Fuzzy-LP middle Fuzzy-LP+

jVij hi jVij hi

0.9666 0 0.9776 0
0.9476 �0.9349 0.9591 �0.9196
0.9354 �1.9639 0.9464 �1.9326
0.9870 1.7687 0.9978 1.8550
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be of ±3% of nominal values, while parametric uncertain-
ties are bounded by ±1%. For comparison purposes, the
Weighted Least Squares (WLS) estimates have been ob-
tained for the perturbed set of measurements. Note that
the estimated center points of the interval, (Fuzzy-LP Mid-
dle), obtained by the FLSE are identical to those obtained
by WLS estimates. This particular outcome is expected
since the FLSE aims to minimize the sum of spreads of all
fuzzy parameters and states which is analogous to the least
squares criterion [2]. It must be stressed that no general-
ization may be made based upon this outcome, particularly
if WLS assumptions (normality and homogeneity of error
terms) are violated [2].

As for the uncertainty interval, the estimated upper and
lower bound are shown in Table 1, where the estimated cen-
ter points appear to be fuzzy, (uncertain) or non crisp (a crisp
estimate occurs when its corresponding spread or width is
0), since during convergence a spread was produced and
therefore an upper bound and a lower bound have been
eventually produced by Eqs. (24–27). In this particular test,
if the supplied set of measurements is noise-free, the FLSE
spread will definitely be zero indicating no uncertainty in
the estimates. It is also apparent that the estimated center
points lie exactly in the middle of the confidence interval.
This particular outcome is expected since a symmetric
spread was adopted by FLSE to model the uncertainties.

The FLSE has been found to perform reliably, with con-
vergence occurring in 4 iterations. This is consistent with
the behaviour of the Newton Raphson process in solving
other types of power system state estimation problems. Fur-
thermore, the execution time was found to be 0.4490 s, see
Table 4. With the same initial guess the state estimation
problem was solved for the 4-bus system by (WLS). Table 4
shows that WLS required 5 iterations to converge (with
the same tolerance of 10�7) and considerably less CPU time.

4.3. Application of FLSE on 6-bus test system

Table 2 shows the fuzzy state estimates for the 6-bus
network from [27] and shown in Fig. 6, where the trans-
ducer tolerance is assumed to be of ±3% of nominal values,
while parametric uncertainties are bounded by ±1%. The
algorithm converged in 3 iterations, with execution time
0.4106 s, see Table 4.

4.4. Application of FLSE on IEEE 30-bus test system

Table 3 shows the fuzzy state estimates for the IEEE30-
bus network from [28], where the transducer tolerance is
Table 2
Estimated state variables and uncertainty bounds for the six-bus network with

Busi WLS Fuzzy-LP�

jVij hi jVij hi

1 0.9922 0 0.9735 0
2 0.9901 �3.8625 0.9706 �3.9269
3 1.0120 �4.5438 0.9930 �4.6370
4 0.9258 �4.5463 0.9050 �4.6692
5 0.9217 �5.7330 0.9009 �5.8938
6 0.9383 �6.4765 0.9165 �6.6631
assumed to be of ±3% of nominal values, while parametric
uncertainties are bounded by ±1%. The algorithm con-
verged in 3 iterations, with execution time 0.6474 s see
Table 4.

4.5. Application of FLSE on IEEE 39-bus test system

The proposed FLSE has been applied to the IEEE39-bus
network, from [28], where the transducer tolerance is as-
sumed to be of ±5% of nominal values, while parametric
uncertainties are bounded by ±3%. The algorithm
converged in 3 iterations with execution time 0.7111 s,
see Table 4.

4.6. Application of FLSE to IEEE 57-bus and 118-bus test
systems

The proposed Fuzzy LP algorithm has been applied on
the IEEE57-bus and IEEE118-bus systems. The CPU time
as well as the number of iterations required for conver-
gence of the IEEE57-bus and IEEE118-bus systems is
shown in Table 4.

Note that in this study it is found that the degree of
fuzziness h seems to have no significant effect on the com-
putation of spreads ci, which appears to be rather counter
intuitive. One reason is due to the fact that having to esti-
mate incremental changes of state variable (in the linear-
ized domain) that are relatively very small. Had there
been any change in the value of the degree of fuzziness h
prior the estimation at any given iteration, this would yield
a very small change in the values of spreads ci, (to the order
of 10-5). This small change is really insignificant and is
likely to be trivial in the computation of the final incre-
mental changes of the spreads ci.

4.7. Discussion and results analysis

Based on the time performance shown in the previous
section in Table 4, the proposed fuzzy LP estimator was
found to converge in either one less or an equal number
of the conventional WLS. On the other hand, the CPU exe-
cution time of the fuzzy LP estimator required for conver-
gence is relatively higher that WLS estimator. This slightly
more CPU time of the fuzzy LP may be attributed to having
to solve a constrained state estimation linear programming
problem, where each measurement considered in the esti-
mation process is represented by two constraints in the
fuzzy domain. This in turn leads to the construction of
2m constraints leading to a slightly more computational
h = 0.5.

Fuzzy-LP middle Fuzzy-LP+

jVij hi jVij hi

0.9922 0 1.0110 0
0.9901 �3.8625 1.0096 �3.7980
1.0120 �4.5438 1.0309 �4.4507
0.9258 �4.5463 0.9466 �4.4233
0.9217 �5.7330 0.9426 �5.5722
0.9383 �6.4765 0.9600 �6.2898



Fig. 6. Single-line diagram of 6-bus system.
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effort than the conventional WLS estimator. Nonetheless,
looking at the CPU time required for execution of test sys-
tems considered in this study, it can be said that the
proposed fuzzy estimator posses no significant computa-
tional burden. Furthermore, for improved computational
efficiency, particularly for large actual systems, the dual
formulation may be employed [36]. Tanaka et al., in [24],
derived the dual formulation of their primal formulation
presented in Eqs. 7,8,9 or 12,13,14, where the number of
equations is related to the number variables, n, as opposed
to the number of constraints, i.e. 2m.

4.8. Advantages and practicalities

The availability of the upper and lower bounds on state
estimates can have practical advantages for the power sys-
tem operator. For critical quantities, such as a power flow
which is close to its thermal, stability or contractual limit,
the operator can gain confidence that the true value is not
exceeding the constraint provided that the state estimate
and both bounds are all within the limit. The uncertainty
range on the estimate also gives a useful indication of the
quality of the metering configuration for the relevant part
of the power system. For example, where a voltage level of-
ten has a wide estimated uncertainty range, this would
suggest that the metering in that area is insufficient. This
type of additional information could be very useful during
the installation or upgrading of an online state estimator.
In addition with the introduction of parametric variation
in the formulation, a more realistic and accurate uncer-
tainty range is attainable now about the different system
quantities.

Some other advantages of FLSE are (as apposed to other
conventional estimators):

	 It has the ability to provide ‘‘interval” estimation rather
than ‘‘point” estimation.

	 Execution time is reasonable, which makes the pro-
posed FLSE efficient and applicable to large electric
networks.

	 The FLSE is able to provide direct estimates along with
their bound without having to relay on any other esti-
mator i.e. WLS or LAV as an intermediate stage.

	 The FLSE is more suitable for uncertainty modelling and
analysis due to its possibilistic nature.

	 Parametric uncertainty may be introduced and modeled
along with the measurement uncertainty in a combined
framework. As a consequence, computation of more
realistic analysis of the bounds is possible.

However, the FLSE may have the following disadantages:

	 Linearization is needed. Therefore, the construction of
Jacobian is required in every iteration of N-R.



Table 3
Estimated state variables and uncertainty bounds for the 30-bus network with h = 0.5.

Busi WLS Fuzzy-LP� Fuzzy-LP middle Fuzzy-LP+

jVij hi jVij hi jVij hi jVij hi

1 1.0696 0 1.0405 0 1.0696 0 1.0986 0
2 1.0719 �0.0943 1.0422 �0.1871 1.0719 �0.0943 1.1017 �0.0014
3 1.0601 �0.9809 1.0288 �1.1479 1.0601 �0.9809 1.0914 �0.8139
4 1.0567 �1.2286 1.0255 �1.4056 1.0567 �1.2286 1.0879 �1.0517
5 1.0504 �1.0305 1.0218 �1.2822 1.0504 �1.0305 1.0791 �0.7789
6 1.0493 �1.5273 1.0182 �1.7576 1.0493 �1.5273 1.0805 �1.2970
7 1.0407 �1.7776 1.0104 �2.0500 1.0407 �1.7776 1.0710 �1.5052
8 1.0382 �1.9067 1.0066 �2.1644 1.0382 �1.9067 1.0698 �1.6489
9 1.0575 �2.3387 1.0263 �2.5542 1.0575 �2.3387 1.0888 �2.1232

10 1.0585 �2.9667 1.0282 �3.1171 1.0585 �2.9667 1.0889 �2.8162
11 1.0670 �2.2262 1.0329 �2.4723 1.0670 �2.2262 1.1011 �1.9802
12 1.0651 �1.5697 1.0331 �1.5770 1.0651 �1.5697 1.0971 �1.5625
13 1.0799 0.8656 1.0479 0.6788 1.0799 0.8656 1.1119 1.0524
14 1.0564 �1.9683 1.0243 �2.0865 1.0564 �1.9683 1.0884 �1.8501
15 1.0585 �2.4010 1.0268 �2.4020 1.0585 �2.4010 1.0901 �2.4000
16 1.0559 �2.3555 1.0242 �2.4643 1.0559 �2.3555 1.0876 �2.2467
17 1.0516 �2.9974 1.0210 �3.1444 1.0516 �2.9974 1.0821 �2.8504
81 1.0459 �3.7323 1.0144 �3.7621 1.0459 �3.7323 1.0773 �3.7024
19 1.0436 �4.3441 1.0119 �4.4041 1.0436 �4.3441 1.0753 �4.2841
20 1.0480 �4.2075 1.0162 �4.2551 1.0480 �4.2075 1.0798 �4.1598
21 1.0643 �2.9044 1.0350 �3.1048 1.0643 �2.9044 1.0936 �2.7039
22 1.0708 �2.8385 1.0416 �3.0295 1.0708 �2.8385 1.1000 �2.6475
23 1.0793 �1.8738 1.0475 �1.9351 1.0793 �1.8738 1.1112 �1.8124
24 1.0665 �2.3494 1.0351 �2.4557 1.0665 �2.3494 1.0980 �2.2431
25 1.0762 �0.7157 1.0424 �0.9989 1.0762 �0.7157 1.1100 �0.4325
26 1.0638 �1.2811 1.0282 �1.5384 1.0638 �1.2811 1.0993 �1.0238
27 1.0868 0.3060 1.0528 �0.0102 1.0868 0.3060 1.1208 0.6223
28 1.0515 �1.4348 1.0202 �1.6898 1.0515 �1.4348 1.0828 �1.1799
29 1.0827 �0.6183 1.0438 �1.0490 1.0827 �0.6183 1.1216 �0.1876
30 1.0785 �1.5834 1.0373 �2.0106 1.0785 �1.5834 1.1197 �1.1562

Table 4
CPU and execution time (CPU: Pentium 4, 1.7 GHZ).

Test system Fuzzy LP WLS

# iterations CPU time (s) # iterations CPU time (s)

Four-bus 4 0.4490 5 0.21252
Six-bus 3 0.4106 3 0.17996
IEEE 30-bus 4 0.6474 4 0.28292
IEEE 39-bus 3 0.7111 4 0.27158
IEEE 57-bus 3 0.8595 3 0.16113
IEEE 118-bus 3 1.7449 3 0.36153
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	 Bounds are always symmetric which is due to the trian-
gular membership functions adopted by the FLSE. Rep-
resenting the uncertainties by an asymmetric
membership function would provide a better estimation
of the bounds.

	 The FLSE is unable to handle faulty measurements and
outliers. The FLSE is very sensitive to outliers [1,37].
Based on this fact, it is expected that the FLSE would
produce deceptive estimation of the center points and
their respective upper and lower bounds.

In general, the Breakdown Point1 is a known concept
used to quantify the robustness of an estimator which was
1 Breakdown Point may be defined as the smallest fraction of contami-
nations that critically offsets the estimator from the true measurements
[1,5].
introduced by Donoho and Huber in [38]. In theory the high-
est breakdown point one can achieve is 0.5 (or 50%) because
for any higher contamination level, one is not guaranteed to
be able to distinguish the good points from the bad.

Based on experimentation, FLSE was found to fail with a
single outlier in the measurement set and therefore leading
to having a 0% Breakdown Point (Note that both the Least
squares (LS) and the Least absolute value (LAV) also have
0% Breakdown Point [39] and may fail with a single outlier).
That breakdown percentage clearly shows how vulnerable
the FLSE is to outliers. Nonetheless, this weakness may be
overcome by using a high breakdown point static estima-
tor, (such as Least Median Squares (LMS) or Least Trimmed
Squares (LTS) [39–41]), where any outliers would be iden-
tified and eliminated from the measurement set, prior to
the estimation process for the uncertainty bounds.

5. Conclusion

An analysis of uncertainty in power system state estima-
tion is presented in this paper. The uncertainty is modelled
and is assumed to be present in the system parameters and
in the measurements which take into account known meter
accuracies. A Fuzzy linear estimator was employed to esti-
mate the both the states and their respective upper and
lower bounds. The provision of bounds by the proposed
FLSE offers useful additional information to the power sys-
tem operator. By examining bounds on the estimates one
can infer the quality of the metering configuration and
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determine the proximity of estimated quantities to voltage
and flow limits with greater confidence.

When applied and tested on various standard systems,
the proposed estimator can be considered as a very effi-
cient tool in estimating the unknowns and their confidence
interval due to uncertainty and imprecision. Based on the
convergence and the time assessment, the advocated esti-
mator proved to be could be used as a valuable on-line tool
for power system state estimation.
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