
Venti
Ohad Rodeh

Venti – p.1/37



Introduction
This lecture is based on: Venti: a new approach to archival
storage. Sean Quinlan and Sean Dorward. Bell Labs,
Lucent Technologies. FAST 2002 Conference on File
and Storage Technologies.
Venti was the first to introduce content-based hashing
for archival storage purposes.
This approach has become accepted practice since.

Venti – p.2/37



Motivation
Archival storage is a second class citizen.
Many systems do not allow access to previous
versions of files or databases.
Systems like AFS and WAFL do allow it, but only to a
limited number of snapshots. Data is not kept in
perpetuity.
Common practice is to use an additional system, tape,
for backup. But then, access to backup data is tedious.

Venti – p.3/37



Tape setup
Tape systems are used as a form of second-level
storage
Typically: a tape backup system serves several client
machines
Backup software on the clients interfaces with the tape,
reads the contents of the databases and file-systems
and decides what to backup.
Data is copied over the network to the tape system

Venti – p.4/37



Tape backup
Restoring data from backup can be tedious and error
prone
The backup system violates the access permission of
the file-system requiring a system-administrator or
privileged software
Restore operations are infrequent, so problems may
go undetected
Potential problems: tapes are mislabeled, reused, lost,
drives wander out of alignment, technology becomes
obsolete.

Venti – p.5/37



Trade-off
There is a trade-off between backup and restore

Full backup is expensive but provides simple
restore.
Normally, incremental backup is done. Complicates
restore.

Venti – p.6/37



Main observations
The growth in capacity of disk storage allows all data to
be kept on disk, online.
Use a write-one policy. Never erase data.
Obviously, some data is too large too be kept, but once
it is decided to keep it, it is never erased.
Eliminates the tedious task of deciding what to erase.
Simplifies the system because it does not need to
overwrite nor delete data.

Venti – p.7/37



The Venti archival
server

Venti is a block-level network storage system.
It is not a database or a file-system. It provides a
block-based back-end for storage applications.
Venti exports a simple interface: read/write variable
sized blocks of data.

Venti – p.8/37



Unique hashes
Venti identifies data blocks by a hash of their contents.
By using a collision resistant hash function with a
sufficiently large output, it is possible to consider the
hash of a data block as unique.
The hash is the fingerprint of the block
The hash is then used as the address of the block for
read/write operations
This approach results in a storage system with some
interesting properties

Venti – p.9/37



Hashes as addresses
As blocks are addressed by their hash, a block cannot
be modified without changing its address
Intrinsically write-once behavior
In most other storage systems the address of a block
never changes

Venti – p.10/37



Backup behavior with
Venti

Multiple writes of the same data can be coalesced and
do not require additional storage space.
This simplifies backup behavior
A client can perform a full-backup, Venti will eliminate
redundancy between the new data and old data. No
space will be wasted by moving from incremental to full
backup.
Furthermore, data from different applications can also
be eliminated.

Venti – p.11/37



Hashes as addresses
II

The hash function can be viewed as generating a
universal name space for data blocks
Without cooperating or coordinating multiple clients
can share the name-space of a Venti server
The low-level block interface places few restrictions on
applications
Any application that uses a disk can use Venti
Traditional backup systems require more control. For
example, they need to crawl over the database or
file-system and differentiate new data from old-data in
order to perform incremental backup. Venti – p.12/37



Hashes as addresses
III

The hash of a block is also used for integrity checking
Since the contents of a block are immutable, the
problem of data coherency is greatly reduced.
A cache or a mirror cannot contain stale data

Venti – p.13/37



Choice of hash
function

Venti requires a hash function that generates a unique
fingerprint for every block
In practice, this is done using a cryptographic hash
Venti uses Sha1 which has an output of 160bits
Probability of a collision:
1. n is the number of blocks
2. b is the number of bits in the hash:

p ≤
n(n−1)

2
×

1
2b

Venti – p.14/37



Likelihood of a
collision

In a system with 10
18 bytes of data stored as 8KB

blocks the probability of a collision is about 10
−20

This is sufficiently unlikely to be ignored
In the future, larger hashes can be used.

Venti – p.15/37



Using Venti by an
application

Venti poses a unique challenge to an application
Writing is performed by sending data blocks to the
Venti server
In order to read a block of data, its fingerprint must be
provided by the application.
This requires the application to store block fingerprints

Venti – p.16/37



Tree of fingerprints
Store the tree of fingerprints on the server.

Venti – p.17/37



Vac
Vac is like tar or zip, an application that stores many
files and directories as one object.
The contents of files are stored as a tree of blocks
The root fingerprint is stored at the file (*.vac) specified
by the user
The fingerprint is stored in ascii format plus a header
for a total of 45 bytes
This makes it look as if the entire archive takes up 45
byte on disk

Venti – p.18/37



Vac II
Vac stores each file as a separate tree of blocks
This ensures that duplicate copies of a file will be
coalesced on the server
If multiple users vac the same data, it will be stored on
the server exactly once.
Repeatedly vac-ing the same directory will not use up
more storage
Even if the directory changes, only the changes take
up additional space

Venti – p.19/37



The plan-9
file-system

Plan-9 is a Unix-like operating system from Bell labs
It can be downloaded from the bell-labs site
It has a file system that supports snapshots
Previously, the plan9-FS was stored on a combination
of magnetic disks and write-once optical jukebox

Venti – p.20/37



The plan-9
file-system II

The jukebox provides permanent storage
The disks act as a writeable-cache for the jukebox
The cache provides faster access and also
accumulates changes between snapshots
When a snapshot is taken, all modified blocks are
written to permanent storage

Venti – p.21/37



The Plan-9
file-system III

The cache can be smaller than the active file-system
However, accesses that miss the cache are
significantly slower since changing platters in the
jukebox takes seconds
This performance penalty makes certain operations on
backup storage prohibitively expensive
Also, when the cache is reinitialized due to corruption,
the file-server spends several days filling the cache
before performance returns to normal

Venti – p.22/37



Plan9-FS based on
Venti

The new version of Plan9-FS uses Venti as its
back-end instead of an optical jukebox
This simplifies things because Venti has the same
latency as a disk

Venti – p.23/37



Implementation
An append-only log for data blocks
An index that maps fingerprints to locations in the log

Venti – p.24/37



The log
Since Venti is intended for archival storage, robustness
is particularly important
The log is placed on a RAID array to protect against
disk errors
The log is append only, data is never overwritten nor
erased
The log is separated into arenas
Data is compressed before being inserted into an
arena

Venti – p.25/37



The log II

Venti – p.26/37



The index
The index is implemented by a disk resident hash-table
The index is divided into fixed-sized buckets
Each bucket is stored as a single disk-block
Each bucket contains the index-map for a small section
of the fingerprint space
A hash function is used to map fingerprints into
buckets in a relatively uniform fashion.
Binary search is used inside a bucket
This structure provides an almost always one disk
access per lookup.

Venti – p.27/37



The index II

Venti – p.28/37



Performance issues
The main disadvantage of Venti compared to a
standard block-based system is the need to go through
the index
Three techniques are used to offset this disadvantage:
caching, striping, and write buffering.

Venti – p.29/37



Caching
One cache for the index, another for data blocks.
First, the data cache is checked. Second, the index
cache.
Caching, however, does not help writing new data
much.
First, Venti needs to check if the block already exists.
Since the block is new, it is obviously not in cache.
Since the fingerprint is essentially random, it will most
likely miss the index cache.
Therefore, the write performance will be limited to the
random IO performance of the index disk.
Therefore, Venti stripes the index across a number of
disks.

Venti – p.30/37



Hardware
The prototype Venti server is implemented with
1. Plan 9 operating system
2. 10000 lines of C code
3. Dual 550Mhz Pentium III
4. 2GB of memory
5. 100Mbit/sec Ethernet
6. The data log is stored on 500GB MaxTronic IDE

RAID-5 array
7. The index resides on a string of 8 Seagate Cheetah

18XL 9GB SCSI disks
Venti – p.31/37



Base performance
The main problem occurs when performing un-cached
reads

Venti – p.32/37



Historical data
Two file servers: Bootes and Emelie
Boots: 1990-1997, block-size 6KB
Emelie: 1998-2001, block-size 16KB
Total of 522 user accounts, 50-100 active at any one
time
Large data sets: astronomical data, chess end games,
etc.

Venti – p.33/37



File servers

Venti – p.34/37



De-duplication

Venti – p.35/37



Reliability and
Recovery

Part of Venti’s charter is to build a reliable permanent
store
Special tools were built to check for integrity and
recover from corruption
Examples:
1. Verifying the structure of an arena
2. Checking that there is an index entry for each data

block
These tools directly access the storage and are
executed on the server

Venti – p.36/37



Summary
Venti introduced the concept of content-addressable
storage
Now a fully established concept
EMC sells the Centera product

Venti – p.37/37


	Introduction
	Motivation
	Tape setup
	Tape backup
	Trade-off
	Main observations
	The Venti archival server
	Unique hashes
	Hashes as addresses
	Backup behavior with Venti
	Hashes as addresses II
	Hashes as addresses III
	Choice of hash function
	Likelihood of a collision
	Using Venti by an application
	Tree of fingerprints
	Vac
	Vac II
	The plan-9 file-system
	The plan-9 file-system II
	The Plan-9 file-system III
	Plan9-FS based on Venti
	Implementation
	The log
	The log II
	The index
	The index II
	Performance issues
	Caching
	Hardware
	Base performance
	Historical data
	File servers
	De-duplication
	Reliability and Recovery
	Summary

