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Introduction

m This lecture is based on: Venti: a new approach to archival
storage. Sean Quinlan and Sean Dorward. Bell Labs,
Lucent Technologies. FAST 2002 Conference on File
and Storage Technologies.

m Venti was the first to introduce content-based hashing
for archival storage purposes.

m This approach has become accepted practice since.
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Motivation

m Archival storage is a second class citizen.

m Many systems do not allow access to previous
versions of files or databases.

m Systems like AFS and WAFL do allow it, but only to a
limited number of snapshots. Data is not kept in
perpetuity.

m Common practice is to use an additional system, tape,
for backup. But then, access to backup data is tedious.
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Tape setup

m Tape systems are used as a form of second-level
storage

m Typically: a tape backup system serves several client
machines

m Backup software on the clients interfaces with the tape,
reads the contents of the databases and file-systems
and decides what to backup.

m Data is copied over the network to the tape system
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Tape backup

m Restoring data from backup can be tedious and error
prone

®m The backup system violates the access permission of
the file-system requiring a system-administrator or
privileged software

m Restore operations are infrequent, so problems may
go undetected

m Potential problems: tapes are mislabeled, reused, lost,
drives wander out of alignment, technology becomes
obsolete.
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Trade-off

m There is a trade-off between backup and restore

m Full backup is expensive but provides simple
restore.

= Normally, incremental backup is done. Complicates
restore.
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Main observations

®m The growth in capacity of disk storage allows all data to
be kept on disk, online.

m Use a write-one policy. Never erase data.

m Obviously, some data is too large too be kept, but once
it is decided to keep it, it is never erased.

m Eliminates the tedious task of deciding what to erase.

m Simplifies the system because it does not need to
overwrite nor delete data.
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The Ventl archival
server

m Venti is a block-level network storage system.

m [t is not a database or a file-system. It provides a
block-based back-end for storage applications.

m Venti exports a simple interface: read/write variable
sized blocks of data.
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Unique hashes

m Venti identifies data blocks by a hash of their contents.

m By using a collision resistant hash function with a
sufficiently large output, it is possible to consider the
hash of a data block as unique.

®m The hash is the fingerprint of the block

m The hash is then used as the address of the block for
read/write operations

m This approach results in a storage system with some
Interesting properties
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Hashes as addresses

m As blocks are addressed by their hash, a block cannot
be modified without changing its address

m Intrinsically write-once behavior

® [n most other storage systems the address of a block
never changes
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Backup behavior with
Venti

m Multiple writes of the same data can be coalesced and
do not require additional storage space.

m This simplifies backup behavior

m A client can perform a full-backup, Venti will eliminate
redundancy between the new data and old data. No
space will be wasted by moving from incremental to full
backup.

m Furthermore, data from different applications can also
be eliminated.
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I-Ilashes as addresses

®m The hash function can be viewed as generating a
universal name space for data blocks

m Without cooperating or coordinating multiple clients
can share the name-space of a Venti server

m The low-level block interface places few restrictions on
applications

®m Any application that uses a disk can use Venti

m Traditional backup systems require more control. For
example, they need to crawl over the database or
file-system and differentiate new data from old-data in
order to perform incremental backup.



I-Illashes as addresses

®m The hash of a block is also used for integrity checking

m Since the contents of a block are immutable, the
problem of data coherency is greatly reduced.

m A cache or a mirror cannot contain stale data
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Choice of hash
function

m Venti requires a hash function that generates a unique
fingerprint for every block

m In practice, this is done using a cryptographic hash
m Venti uses Shal which has an output of 160bits

m Probability of a collision:
1. nIs the number of blocks
2. bis the number of bits in the hash:

p < n(n2—1) > %
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Likelihood of a
collision

m In a system with 10'® bytes of data stored as 8KB
blocks the probability of a collision is about 10~

m This is sufficiently unlikely to be ignored

m In the future, larger hashes can be used.
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Using Venti by an
application

m Venti poses a unigue challenge to an application

m Writing Is performed by sending data blocks to the
Venti server

m In order to read a block of data, its fingerprint must be
provided by the application.

m This requires the application to store block fingerprints
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Tree of fingerprints
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Vac

m Vac is like tar or zip, an application that stores many
files and directories as one object.

m The contents of files are stored as a tree of blocks

m The root fingerprint is stored at the file (*.vac) specified
by the user

B The fingerprint is stored in ascii format plus a header
for a total of 45 bytes

m This makes it look as if the entire archive takes up 45
byte on disk
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Vac li

m Vac stores each file as a separate tree of blocks

m This ensures that duplicate copies of a file will be
coalesced on the server

m [f multiple users vac the same data, it will be stored on
the server exactly once.

m Repeatedly vac-ing the same directory will not use up
more storage

m Even if the directory changes, only the changes take
up additional space
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The plan-9
file-system

Plan-9 is a Unix-like operating system from Bell labs
m [t can be downloaded from the bell-labs site

m It has a file system that supports snapshots

m Previously, the plan9-FS was stored on a combination
of magnetic disks and write-once optical jukebox

Venti — p.20/3



The plan-9
file-system I

ne jukebox provides permanent storage

®m The disks act as a writeable-cache for the jukebox

m The cache provides faster access and also
accumulates changes between snapshots

® When a snapshot is taken, all modified blocks are
written to permanent storage
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The Plan-9
file-system llI

m The cache can be smaller than the active file-system

m However, accesses that miss the cache are
significantly slower since changing platters in the
jukebox takes seconds

m This performance penalty makes certain operations on
backup storage prohibitively expensive

m Also, when the cache is reinitialized due to corruption,
the file-server spends several days filling the cache
before performance returns to normal

Venti — p.22/3



Plan9-FS based on
Venti

m The new version of Plan9-FS uses Venti as its
back-end instead of an optical jukebox

m This simplifies things because Venti has the same
latency as a disk
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Implementation

®m An append-only log for data blocks

® An index that maps fingerprints to locations in the log

Network ,
Venti Server
Client FS B

Block Index :h—— ——j
Cache Cache __D ata_

Client

== j Index
Client RS

Figure 3. A block diagram of the Venti prototype.
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The log

® Since Venti is intended for archival storage, robustness
IS particularly important

®m The log is placed on a RAID array to protect against
disk errors

®m The log is append only, data is never overwritten nor
erased

m The log is separated into arenas

m Data is compressed before being inserted into an
arena
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The index

® The index is implemented by a disk resident hash-table
®m The index is divided into fixed-sized buckets
m Each bucket is stored as a single disk-block

m Each bucket contains the index-map for a small section
of the fingerprint space

®m A hash function is used to map fingerprints into
buckets in a relatively uniform fashion.

m Binary search is used inside a bucket

m This structure provides an almost always one disk
access per lookup.
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The index Il
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Performance issues

® The main disadvantage of Venti compared to a
standard block-based system is the need to go through
the index

m Three techniques are used to offset this disadvantage:
caching, striping, and write buffering.
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Caching

m One cache for the index, another for data blocks.

m First, the data cache is checked. Second, the index
cache.

m Caching, however, does not help writing new data
much.

m First, Venti needs to check if the block already exists.
Since the block is new, it is obviously not in cache.

m Since the fingerprint is essentially random, it will most
likely miss the index cache.

m Therefore, the write performance will be limited to the
random |O performance of the index disk.



Hardware

m The prototype Venti server is implemented with

1. Plan 9 operating system
2. 10000 lines of C code

3. Dual 550Mhz Pentium Il
4. 2GB of memory

5. 100Mbit/sec Ethernet

6

. The data log is stored on 500GB MaxTronic IDE
RAID-5 array

/. The index resides on a string of 8 Seagate Cheetah
18XL 9GB SCSI disks
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Base performance

®m The main problem occurs when performing un-cached
reads

Table 1. The performance of read and write operations in Mbytes/s for 8 Kbyte blocks

3 Sequential Reads  Random Reads  Virgin Writes  Duplicate Write:
Uncached 0.9 04 3.7 5.6
Index Cache 4.2 0.7 - 6.2
Block Cache 0.8 - - 6.5
Raw Raid 14.8 1.0 124 124
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Historical data

m Two file servers: Bootes and Emelie
m Boots: 1990-1997, block-size 6KB
m Emelie: 1998-2001, block-size 16KB

m Total of 522 user accounts, 50-100 active at any one
time

m Large data sets: astronomical data, chess end games,
etc.
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File servers
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Figure 6. Graphs of the various sizes of two Plan 9 file servers.
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De-duplication

Table 2. The percentage reduction in the size of data
stored on Venti.

bootes  emelie
Elimination of duplicates | 27.8%  31.3%
Elimination of fragments | 10.2%  25.4%
Data Compression 33.8% 54.1%
Total Reduction 59.7% 76.5%
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Reliability and
Recovery

m Part of Venti’'s charter is to build a reliable permanent
store

m Special tools were built to check for integrity and
recover from corruption
m Examples:
1. Veritying the structure of an arena
2. Checking that there is an index entry for each data
block

m These tools directly access the storage and are
executed on the server
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Summary

m Venti introduced the concept of content-addressable
storage

m Now a fully established concept

m EMC sells the Centera product
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