Venti

Ohad Rodeh

Venti — p.1/3

Introduction

m This lecture is based on: Venti: a new approach to archival
storage. Sean Quinlan and Sean Dorward. Bell Labs,
Lucent Technologies. FAST 2002 Conference on File
and Storage Technologies.

m Venti was the first to introduce content-based hashing
for archival storage purposes.

m This approach has become accepted practice since.

Venti — p.2/3

Motivation

m Archival storage is a second class citizen.

m Many systems do not allow access to previous
versions of files or databases.

m Systems like AFS and WAFL do allow it, but only to a
limited number of snapshots. Data is not kept in
perpetuity.

m Common practice is to use an additional system, tape,
for backup. But then, access to backup data is tedious.

Venti — p.3/3

Tape setup

m Tape systems are used as a form of second-level
storage

m Typically: a tape backup system serves several client
machines

m Backup software on the clients interfaces with the tape,
reads the contents of the databases and file-systems
and decides what to backup.

m Data is copied over the network to the tape system

Venti — p.4/3

Tape backup

m Restoring data from backup can be tedious and error
prone

®m The backup system violates the access permission of
the file-system requiring a system-administrator or
privileged software

m Restore operations are infrequent, so problems may
go undetected

m Potential problems: tapes are mislabeled, reused, lost,
drives wander out of alignment, technology becomes
obsolete.

Venti — p.5/3

Trade-off

m There is a trade-off between backup and restore

m Full backup is expensive but provides simple
restore.

= Normally, incremental backup is done. Complicates
restore.

Venti — p.6/3

Main observations

®m The growth in capacity of disk storage allows all data to
be kept on disk, online.

m Use a write-one policy. Never erase data.

m Obviously, some data is too large too be kept, but once
it is decided to keep it, it is never erased.

m Eliminates the tedious task of deciding what to erase.

m Simplifies the system because it does not need to
overwrite nor delete data.

Venti — p.7/3

The Ventl archival
server

m Venti is a block-level network storage system.

m [t is not a database or a file-system. It provides a
block-based back-end for storage applications.

m Venti exports a simple interface: read/write variable
sized blocks of data.

Venti — p.8/3

Unique hashes

m Venti identifies data blocks by a hash of their contents.

m By using a collision resistant hash function with a
sufficiently large output, it is possible to consider the
hash of a data block as unique.

®m The hash is the fingerprint of the block

m The hash is then used as the address of the block for
read/write operations

m This approach results in a storage system with some
Interesting properties

Venti — p.9/3

Hashes as addresses

m As blocks are addressed by their hash, a block cannot
be modified without changing its address

m Intrinsically write-once behavior

® [n most other storage systems the address of a block
never changes

Venti — p.10/3

Backup behavior with
Venti

m Multiple writes of the same data can be coalesced and
do not require additional storage space.

m This simplifies backup behavior

m A client can perform a full-backup, Venti will eliminate
redundancy between the new data and old data. No
space will be wasted by moving from incremental to full
backup.

m Furthermore, data from different applications can also
be eliminated.

Venti —p.11/3

I-Ilashes as addresses

®m The hash function can be viewed as generating a
universal name space for data blocks

m Without cooperating or coordinating multiple clients
can share the name-space of a Venti server

m The low-level block interface places few restrictions on
applications

®m Any application that uses a disk can use Venti

m Traditional backup systems require more control. For
example, they need to crawl over the database or
file-system and differentiate new data from old-data in
order to perform incremental backup.

I-Illashes as addresses

®m The hash of a block is also used for integrity checking

m Since the contents of a block are immutable, the
problem of data coherency is greatly reduced.

m A cache or a mirror cannot contain stale data

Venti — p.13/3

Choice of hash
function

m Venti requires a hash function that generates a unique
fingerprint for every block

m In practice, this is done using a cryptographic hash
m Venti uses Shal which has an output of 160bits

m Probability of a collision:
1. nIs the number of blocks
2. bis the number of bits in the hash:

p < n(n2—1) > %

Venti — p.14/3

Likelihood of a
collision

m In a system with 10'® bytes of data stored as 8KB
blocks the probability of a collision is about 10~

m This is sufficiently unlikely to be ignored

m In the future, larger hashes can be used.

Venti — p.15/3

Using Venti by an
application

m Venti poses a unigue challenge to an application

m Writing Is performed by sending data blocks to the
Venti server

m In order to read a block of data, its fingerprint must be
provided by the application.

m This requires the application to store block fingerprints

Venti — p.16/3

Tree of fingerprints

P,
HD) —7 Do
H(D,
P, 2
H(D,) | > D, \
Root H(P,)
H(D 0
P -
H(P,) \ --------------- :
Root H(P,)) — s H(P,) "
H(D,) \9 Root H(P,) N
\ D,

Figure 1. A tree structure for storing a linear sequence

f blocks : :
RASRE Figure 2. Build a new version of the tree.

Venti —p.17/3

Vac

m Vac is like tar or zip, an application that stores many
files and directories as one object.

m The contents of files are stored as a tree of blocks

m The root fingerprint is stored at the file (*.vac) specified
by the user

B The fingerprint is stored in ascii format plus a header
for a total of 45 bytes

m This makes it look as if the entire archive takes up 45
byte on disk

Venti — p.18/3

Vac li

m Vac stores each file as a separate tree of blocks

m This ensures that duplicate copies of a file will be
coalesced on the server

m [f multiple users vac the same data, it will be stored on
the server exactly once.

m Repeatedly vac-ing the same directory will not use up
more storage

m Even if the directory changes, only the changes take
up additional space

Venti — p.19/3

The plan-9
file-system

Plan-9 is a Unix-like operating system from Bell labs
m [t can be downloaded from the bell-labs site

m It has a file system that supports snapshots

m Previously, the plan9-FS was stored on a combination
of magnetic disks and write-once optical jukebox

Venti — p.20/3

The plan-9
file-system I

ne jukebox provides permanent storage

®m The disks act as a writeable-cache for the jukebox

m The cache provides faster access and also
accumulates changes between snapshots

® When a snapshot is taken, all modified blocks are
written to permanent storage

Venti — p.21/3

The Plan-9
file-system llI

m The cache can be smaller than the active file-system

m However, accesses that miss the cache are
significantly slower since changing platters in the
jukebox takes seconds

m This performance penalty makes certain operations on
backup storage prohibitively expensive

m Also, when the cache is reinitialized due to corruption,
the file-server spends several days filling the cache
before performance returns to normal

Venti — p.22/3

Plan9-FS based on
Venti

m The new version of Plan9-FS uses Venti as its
back-end instead of an optical jukebox

m This simplifies things because Venti has the same
latency as a disk

Venti — p.23/3

Implementation

®m An append-only log for data blocks

® An index that maps fingerprints to locations in the log

Network ,
Venti Server
Client FS B

Block Index :h—— ——j
Cache Cache __D ata_

Client

== j Index
Client RS

Figure 3. A block diagram of the Venti prototype.

Venti — p.24/3

The log

® Since Venti is intended for archival storage, robustness
IS particularly important

®m The log is placed on a RAID array to protect against
disk errors

®m The log is append only, data is never overwritten nor
erased

m The log is separated into arenas

m Data is compressed before being inserted into an
arena

Venti — p.25/3

data log

Arcrie

arena,

header

arena,

arena,

data
blocks

v
A

directory

trailer

Figure 4. The format of the data log.

hY

data blocks

header,

offset

/

block header

magic

Venti — p.26/3

The index

® The index is implemented by a disk resident hash-table
®m The index is divided into fixed-sized buckets
m Each bucket is stored as a single disk-block

m Each bucket contains the index-map for a small section
of the fingerprint space

®m A hash function is used to map fingerprints into
buckets in a relatively uniform fashion.

m Binary search is used inside a bucket

m This structure provides an almost always one disk
access per lookup.

Venti — p.27/3

The index Il

index

bucket,

bucket,

bucket,

/
AN

Figure 5. Format of the index.

bucket

entry,

entry,

enfry,

entry

fingerprint

l'ypﬁ

s1zZe

address

Venti — p.28/3

Performance issues

® The main disadvantage of Venti compared to a
standard block-based system is the need to go through
the index

m Three techniques are used to offset this disadvantage:
caching, striping, and write buffering.

Venti — p.29/3

Caching

m One cache for the index, another for data blocks.

m First, the data cache is checked. Second, the index
cache.

m Caching, however, does not help writing new data
much.

m First, Venti needs to check if the block already exists.
Since the block is new, it is obviously not in cache.

m Since the fingerprint is essentially random, it will most
likely miss the index cache.

m Therefore, the write performance will be limited to the
random |O performance of the index disk.

Hardware

m The prototype Venti server is implemented with

1. Plan 9 operating system
2. 10000 lines of C code

3. Dual 550Mhz Pentium Il
4. 2GB of memory

5. 100Mbit/sec Ethernet

6

. The data log is stored on 500GB MaxTronic IDE
RAID-5 array

/. The index resides on a string of 8 Seagate Cheetah
18XL 9GB SCSI disks

Venti — p.31/3

Base performance

®m The main problem occurs when performing un-cached
reads

Table 1. The performance of read and write operations in Mbytes/s for 8 Kbyte blocks

3 Sequential Reads Random Reads Virgin Writes Duplicate Write:
Uncached 0.9 04 3.7 5.6
Index Cache 4.2 0.7 - 6.2
Block Cache 0.8 - - 6.5
Raw Raid 14.8 1.0 124 124

Venti — p.32/3

Historical data

m Two file servers: Bootes and Emelie
m Boots: 1990-1997, block-size 6KB
m Emelie: 1998-2001, block-size 16KB

m Total of 522 user accounts, 50-100 active at any one
time

m Large data sets: astronomical data, chess end games,
etc.

Venti — p.33/3

File servers

—a— Jukebox
—=— Venti

Emelie: storage size

Bootes: storage size

b dul-01

F Jan-01

F Jul-00

 Jan-00

F Jul-99

- Jan-99

L Jul-g8

| Jan-98

Jul-97

isW+-r------—-—-—-—-"-—""———————— —‘—ﬁd:tiveﬂlesYStem

Jan-98
Juk97
Jan-g7
Jul-96
Jan-96
Juk95
Jan-g5
Jul-94
Jan-94
Juk83
Jan-93
Juk92
Jan-92
Juk91

(a9} eag

Jan-91
Juk90

Emelie: ratio of archival to active data

Bootes: ratio of archival to active data

—&—Venti | Active

_—__.__;"_ e e

=

—=—a—=

===

Julk01

+ Jan-01

- Jul-00

+ Jan-00

- Jul99

= Jan-99

L Jul-98

L Jan-98

- Jul-97

Jan-g7

2
3
<
g
]
g
=
ﬂ
I

|

I

I

I

I

I

|

I

I

I

I

I

I

I

|

I

|

I

|
M~

fF+———-———-—="= - — — — — — -

3 —— =
2__
1_

Figure 6. Graphs of the various sizes of two Plan 9 file servers.

Venti — p.34/3

De-duplication

Table 2. The percentage reduction in the size of data
stored on Venti.

bootes emelie
Elimination of duplicates | 27.8% 31.3%
Elimination of fragments | 10.2% 25.4%
Data Compression 33.8% 54.1%
Total Reduction 59.7% 76.5%

Venti — p.35/3

Reliability and
Recovery

m Part of Venti’'s charter is to build a reliable permanent
store

m Special tools were built to check for integrity and
recover from corruption
m Examples:
1. Veritying the structure of an arena
2. Checking that there is an index entry for each data
block

m These tools directly access the storage and are
executed on the server

Venti — p.36/3

Summary

m Venti introduced the concept of content-addressable
storage

m Now a fully established concept

m EMC sells the Centera product

Venti — p.37/3

	Introduction
	Motivation
	Tape setup
	Tape backup
	Trade-off
	Main observations
	The Venti archival server
	Unique hashes
	Hashes as addresses
	Backup behavior with Venti
	Hashes as addresses II
	Hashes as addresses III
	Choice of hash function
	Likelihood of a collision
	Using Venti by an application
	Tree of fingerprints
	Vac
	Vac II
	The plan-9 file-system
	The plan-9 file-system II
	The Plan-9 file-system III
	Plan9-FS based on Venti
	Implementation
	The log
	The log II
	The index
	The index II
	Performance issues
	Caching
	Hardware
	Base performance
	Historical data
	File servers
	De-duplication
	Reliability and Recovery
	Summary

