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ABSTRACT 

RIOS (Riverside-Irvine Operating System) is a lightweight 
portable task scheduler written entirely in C. The scheduler 
consists of just a few dozens lines of code, intended to be 
understandable by students learning embedded systems 
programming. Non-preemptive and preemptive scheduler versions 
exist. Compared to the existing open-source solutions FreeRTOS 
and AtomThreads, RIOS on average has 95% fewer lines of total 
C code for a sample multitasking application, a 71% smaller 
executable, and 70% less scheduler time overhead. RIOS source 
code and examples are available for free at 
http://www.riosscheduler.org. RIOS is useful for education and as 
a stepping stone to understanding real-time operating system 
behavior. Additionally, RIOS is a sufficient real-time scheduling 
solution for various commercial applications. 

Categories and Subject Descriptors 

D.4.1 [Operating Systems]: 
Multiprocessing/multiprogramming/multitasking 

General Terms 

Performance, design. 

Keywords 

Embedded systems, task scheduler, preemption, real-time 
operating system, C programming, education. 

1. INTRODUCTION 
Multitasking embedded systems with precise timing may use a 
real-time operating system (RTOS) to schedule tasks at runtime 
using priority-based cooperative or preemptive scheduling 
techniques. Many existing RTOSes provide scheduling services 
and other features useful in multitasking systems like semaphores, 
mutexes, queues, etc. [1][7][8][13]. A new embedded systems 
programmer who needs basic support for multiple tasks may not 
require the many features of an RTOS. Furthermore, attempts to 
study RTOS implementations can be hindered by code sizes of 
thousands of lines spanning dozens of files. RIOS is an alternative 
to an RTOS, providing real-time scheduling of tasks with only 
tens of lines of extra code directly inserted into an application C 
program, requiring no special compilation. The small scheduler is 
easy for students to understand, and is not hidden through API 
(application programming interface) calls as in traditional 
RTOSes. 

We present non-preemptive and preemptive versions of RIOS. 
Both versions utilize a peripheral timer to generate an interrupt 
that contains the RIOS scheduler. Tasks in RIOS are executed 
within the interrupt service routine (ISR), which is atypical 
compared to traditional RTOSes.  

Figure 1(a) shows the typical program stack of the non-
preemptive RIOS scheduler. The main function loops infinitely 
and performs no real behavior, other than to be periodically 
interrupted by a timer ISR. The ISR hosting the RIOS scheduler 
checks if a task is ready to execute, and executes the task if 
necessary, each such execution known as a task tick. For the non-
preemptive version, only one task exists on the program stack at 
any time, and the task must finish before the ISR is called again. 
The programmer must define each task to be a run-to-completion 
task, meaning the task executes some actions and then returns, and 
specifically does not wait on an event, block, or contain an infinite 
loop. Otherwise, ticks of other tasks might be missed. Run-to-
completion tasks are a form of cooperative tasks [1].  

The preemptive scheduler in Figure 1(b) allows nested interrupts 
to occur, which provides higher priority tasks the ability to 
preempt lower priority tasks. Stack overflow occurrence is mostly 
prevented by disallowing self-preemption, meaning at most one 
instance of each task may be present on the stack at any one time. 
The highest priority executing task will always be at the top of 
stack, and the number of stack frames is limited by the number of 
defined tasks in the system. The programmer should define tasks 
as mostly cooperative for the preemptive scheduler to operate 
efficiently. The two versions of RIOS thus provide much of the 
basic functionality necessary to execute concurrent tasks.  

This paper is structured as follows. Section 2 discusses the 
implementation of the existing solutions FreeRTOS and 
AtomThreads. Section 3 discusses the timer abstractions used in 
RIOS. Section 4 details the non-preemptive and preemptive RIOS 
schedulers. Section 5 details our experiences with teaching RIOS 
in embedded systems courses. Section 6 compares RIOS, 

Figure 1: Stack snapshots of: (a) non-preemptive RIOS that 
schedules one of (task1, task2, task3) at a time, (b) preemptive RIOS 

that uses nested timer interrupts to preempt tasks. 
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FreeRTOS, and AtomThreads in terms of binary size, overhead, 
and source code size. Section 7 concludes. 

2. EXISTING EMBEDDED SCHEDULERS 
Many existing RTOS solutions exist; we have selected two for 
comparison to RIOS based on popularity, availability, and quality. 
We chose popular RTOSes because we wish to compare RIOS to 
relevant and modern software, and also because of the support 
provided by existing communities that are helpful when 
developing benchmarks. Availability implies that the RTOSes’ 
code bases are under an open-source license, such as the General 
Public License (GPL), etc. Many commercial systems use an 
open-source RTOS. Notable exceptions are large real-time 
systems with hard critical constraints that require additional 
features like embedded graphics or security. Quality is an 
important feature that considers the size and overhead of task 
scheduling, the memory footprint, etc.  We selected FreeRTOS 
and AtomThreads to compare to RIOS, based on the three metrics. 
Similar comparisons could be made with other solutions.  

Other works present similar schedulers to RIOS. TinyOS [9] is a 
small open source operating system for embedded systems that 
shares many event-driven, cooperative task characteristics of 
RIOS. However, TinyOS utilizes the nesC programming 
language, requires multiple configuration files to run a simple 
project, and specifically targets sensor network applications. The 
Super Simple Task (SST) scheduler [11] also provides a single 
stack, interrupt driven scheduler. Compared to SST, RIOS is 
leaner and is targeted to the beginning embedded systems 
programmer. Phantom [10] uses a compiler-driven cross-language 
approach, where a POSIX C program is translated to an 
equivalent, multitasking embedded ANSI-C compliant program. 
Quantum Leaps provides an event-driven framework utilizing 
UML (Unified Modeling Language) abstractions [13]. 

FreeRTOS is a widely known RTOS that has been ported to 31 
computer architectures, and is used in numerous commercial 
products [1]. AtomThreads is a very portable small real-time 
scheduler written mostly in C [8]. Despite having substantial 
community support for each of the above schedulers, they are 
complex pieces of software that may not be easily understood by 
beginning embedded software programmers. For example, the 
AVR microcontroller port for FreeRTOS contains approximately 
9500 lines of text (C code and comments), making it impractical 
for a new student to understand the low-level implementation 
details in the few weeks of time that a typical embedded systems 
course might allocate to RTOS design.  

At the user-level, FreeRTOS (and most other RTOSes) provides 
an API that allows a programmer to create tasks and add them to 
the scheduler for execution. Figure 2 shows the various API calls 
required by FreeRTOS and AtomThreads to initialize and run a 
single task. FreeRTOS has the most straightforward usage 
available – merely two API calls to run a task. Other RTOSes like 
AtomThreads require even more function calls and stack 
initialization routines, since each task is allocated its own stack.  

The use of an API hides the behind-the-scenes action of the 
scheduler. Hiding RTOS implementation details is good when the 
focus is on the application; however, for educational purposes 
having a small, understandable scheduler is also desired. Typical 
RTOS designs, including FreeRTOS and AtomThreads, utilize 
inline assembly code to perform context switches during 
multitasking. The use of assembly is required because the 
scheduler kernel must save the values of all registers and program 
counter (PC) of the interrupted task, and restore the registers and 
PC of the task to be switched to. The use of complicated, low-
level context switching routines limits both the understandability 
and portability of the scheduler. Target platforms must be 
specifically targeted with low-level context switch routines 
because of different architecture characteristics, like the number 
and usage of registers, thus requiring effort to port RTOSes to 
different targets. Assembly routines are generally a necessary 
feature of an RTOS, although some past work on schedulers have 
utilized the standard setjmp.h library to implement thread-
switching using C level code only [6]. Engelschall provides an 
overview of many existing thread libraries, noting that 16 of 18 
require inline assembly calls [5]. The non-preemptive version of 
RIOS does not require inline assembly, since a minimum context 
is saved by the ISR and nested interrupts are not allowed. The 
preemptive version of RIOS may require minimal assembly to 
perform context-switching, depending on the target platform. 

Both FreeRTOS and AtomThreads create separate stacks for each 
task, requiring extra initialization and processing during context 
switches to switch the stack pointers to the appropriate task. RIOS 
maintains a single stack of nested task frames, as detailed in 
Section 0. The use of a single stack relaxes the required stack 
management procedure during context switches, which can reduce 
the overhead of scheduling. Note that FreeRTOS does have an 
API available for the use of co-routines that utilize a single stack 
only, however many RTOSes such as AtomThreads do not 
support single-stack programs. 

Figure 2: Creating and running a task in (a) FreeRTOS, (b) AtomThreads, (c) and RIOS. Code is taken from RTOS examples and manuals 
and is abbreviated for figure clarity where necessary. Some parameter names are changed for consistency. 

 int main() { 
 
   xTaskCreate(   

      &function,   
      pcName,   
      usStackDepth,   
      &parameters,   
      uxPriority,   
      &pvCreatedTask); 
 

   vTaskStartScheduler(); 
} 

 

void function() { … } 

(a) FreeRTOS 

int main() { 
   status = atomOSInit(&stack, SIZE); 
   if (status == ATOM_OK) { 
       status = atomThreadCreate( 
                 &threadTaskControlBlock, 
                 priority,  
                 &function,  
                 threadParameter,  
                 &topOfStack, 
                 stackSize); 
      if (status == ATOM_OK) { 
         atomOSStart(); 
      } 
   } 
} 
 
void function() { … } 

(b) AtomThreads 

TimerISR() { 
   //RIOS scheduler 
} 
 
int main() { 
   tasks[0].period = task0_period; 
   tasks[0].elapsedTime = tasks[0].period; 
   tasks[0].TickFct = &function; 
 
   TimerOn(task0_period); 
 
   while(1); //Wait for interrupt 
} 
 

void function() { … } 

(c)  RIOS 



3. TIMER ABSTRACTION 
The RIOS scheduler C code can run on a wide variety of target 
microprocessors. The only requirement is that the microprocessor  
have a peripheral timer that can be set to tick at a specific rate, 
with each tick calling an interrupt service routine (ISR). Most 
embedded microprocessors satisfy that requirement. RIOS 
assumes the following timer-related functions exist: 

• TimerISR() -- An ISR function called when a peripheral 
timer ticks.  

• TimerSet(int) -- A function that sets the rate at which 
the peripheral timer ticks.  

• TimerOn()/TimerOff() -- Functions that enable/disable 
the peripheral timer.  

Before using the RIOS scheduler code, a programmer must 
therefore implement the timer-related functions for the particular 
target microprocessor. Figure 3 shows an example for an AVR 
ATMEGA324P microprocessor. Implementing the timer-related 
functions for other microprocessors is typically straightforward.  

4. RIOS 
RIOS provides a simple, C-based approach to providing simple 
multitasking functionality in embedded designs. The technique 
hinges on the calling of task tick functions within peripheral timer 
interrupts. Every task in RIOS has an associated state, such that a 
call to the tick function of the task results in an update of the task 
state. Thus, tasks are non-blocking and require global storage of 
state. RIOS is built around the model of synchronous state 
machines, such that a call to a task tick function results in 
execution of the actions of a single state. RIOS is not limited to 
state machines however; normal code blocks can also be used if 
desired. The only requirement for the use of RIOS for a target 
platform is that nested interrupts are allowed either by default or 
by re-enabling interrupts immediately once the Interrupt Service 
Routine (ISR) has been entered, as is the case with most common 
embedded processors. In the following sections, we present non-
preemptive and preemptive versions of RIOS. 

4.1 Non-preemptive scheduler 
The first presented version of RIOS is a non-preemptive 
multitasking scheduler. Each task must be defined by the 
programmer to be run-to-completion. We present two uses of the 
scheduler: tasks defined as basic code blocks, and tasks defined as 
state machines. We highlight the use of state machines in RIOS 

Figure 3: Implementations of the timer-related functions for a 8 
MHz AVR ATMEGA324P. 

 

Figure 4: A complete sample program using the non-
preemptive RIOS scheduler with simple tasks. 

 typedef struct task { 
   unsigned long period; // Rate at which the task should tick 
   unsigned long elapsedTime; // Time since task's last tick 
   void (*TickFct)(void); // Function to call for task's tick 
} task; 
 
task tasks[2]; 
const unsigned char tasksNum = 2; 
const unsigned long tasksPeriodGCD = 200; //Timer tick rate 
const unsigned long periodToggle       = 1000;  
const unsigned long periodSequence   = 200; 
 
void TickFct_Toggle(void); 
void TickFct_Sequence(void); 
 
unsigned char processingRdyTasks = 0; 
void TimerISR() { 
   unsigned char i; 
   if (processingRdyTasks) { 
      printf("Timer ticked before task processing done.\n"); 
   } 
   else { // Heart of the scheduler code 
      processingRdyTasks = 1; 
      for (i=0; i < tasksNum; ++i) { 
         if (tasks[i].elapsedTime >= tasks[i].period) { // Ready 
            tasks[i].TickFct(); //execute task tick 
            tasks[i].elapsedTime = 0; 
         } 
         tasks[i].elapsedTime += tasksPeriodGCD; 
      } 
      processingRdyTasks = 0; 
   } 
} 
 
void main() { 
   // Priority assigned to lower position tasks in array 
   unsigned char i=0; 
   tasks[i].period = periodSequence; 
   tasks[i].elapsedTime = tasks[i].period; 
   tasks[i].TickFct = &TickFct_Sequence; 
   ++i; 
   tasks[i].period = periodToggle; 
   tasks[i].elapsedTime = tasks[i].period; 
   tasks[i].TickFct = &TickFct_Toggle; 
 
   TimerSet(tasksPeriodGCD); 
   TimerOn(); 
 
   while(1) { Sleep(); } 
} 
 
// Task: Toggle an output 
void TickFct_Toggle()   { 
   static unsigned char init = 1; 
   if (init) { // Initialization behavior 
      B0 = 0; 
      init = 0; 
   } 
   else { // Normal behavior 
      B0 = !B0; 
   } 
} 
 
 // Task: Sequence a 1 across 3 outputs 
void TickFct_Sequence() { 
   static unsigned char init = 1; 
   unsigned char tmp = 0; 
   if (init) { // Initialization behavior 
      B2 = 1; B3 = 0; B4 = 0; 
      init = 0; 
   } 
   else { // Normal behavior 
      tmp = B4; B4 = B3; B3 = B2; B2 = tmp; 
   } 

} 

RIOS 

scheduler 

Task 1 

Task 2 

Entry 

point 

Loop interrupted 

by TimerISR() 

Definitions 

ISR(TIMER1_COMPA_vect) { //(TimerISR) Timer interrupt service routine 
   //RIOS kernel code 
} 
 
TimerSet(int milliseconds) { 
   TCNT1 = 0; 
   OCR1A = milliseconds*1000; 
} 
 
TimerOn() { 
   TCCR1B = (1<<WGM12)|(1<<CS11); //Clear  timer  on  compare. Prescaler = 8 
   TIMSK1 = (1<<OCIE1A); //Enables compare match interrupt 
   SREG |= 0x80; //Enable global interrupts 
} 
 

TimerOff() { 
   TIMSK1 &= (0xFF ^ (1<<OCIE1A)); //Disable compare match interrupt 
} 



because synchronous state machines provide a consistent and 
logical programming model for teaching students embedded 
design. 

4.1.1 Basic tasks 
A program that demonstrates the use of non-preemptive RIOS 
with basic code blocks as tasks is shown in Figure 4. The program 
toggles and strobes outputs on port B as defined in the Toggle task 
and the Sequence task. A task struct is described near the top of 
the program. The struct defines all of the components of a task, 
which include the following variables: 

• period: the interval that the task should be executed. 

• elapsedTime: the amount of time that has passed since 
the previous execution of the task. 

• TickFct: a pointer to the task’s tick function. 

To create and schedule a task, a new task struct instance is 
declared, the above variables are assigned, and the task struct 
instance is inserted into the tasks array at the start of the main() 
function. Compared to the previously examined RTOSes that 
require multiple API calls, RIOS provides a simple and 
transparent process for task initialization. 

The main() function first initializes the tasks array as noted above, 
and then configures the peripheral timer to periodically signal an 
interrupt. The timer should be configured to call an ISR at a rate 
equivalent to the greatest common divisor of all task periods to 
ensure that the ISR will always execute exactly when at least one 
task is ready. The main() function then enters an infinite loop, to 
be interrupted periodically by the ISR. 

The ISR hosts the RIOS scheduler code, as seen in Figure 4. The 
non-preemptive scheduling code requires only about 10 lines of C 
code. Compared to previously evaluated RTOSes, RIOS can fit 
into a single C file alongside application code and can be easily 
understood by beginning embedded system students. The heart of 
the scheduling code is a loop that iterates over the tasks array. If 
the elapsedTime of a task is greater than or equal to the period of 
the task, than the tick function TickFct is executed. RIOS is built 
to execute a single tick of a task when the task period expires, thus 
tick functions should be run-to-completion, meaning they should 
not block, wait, or contain infinite loops. Once the tick function 
returns, the elapsedTime of each task is incremented by the timer 
period. 

Priority is given to tasks that have a lower position in the tasks 
array, as the loop in the scheduler evaluates the elapsedTime of 
task[0] first. In the non-preemptive version of RIOS, a flag 
processingRdyTasks is set while the scheduler is active and is 
reset when the scheduler finishes. If processingRdyTasks is set at 
the start of an ISR, than the previous task could not complete 
within the timer period and an error is thrown to avoid stack 
overflow situations. Thus, task tick functions scheduled by the 
non-preemptive scheduler should never block or wait for 
resources that may not be available by the end of the timer period. 

A program utilizing the non-preemptive RIOS scheduler has a 
maximum stack depth of three frames, as shown earlier in Figure 
1(a). A program always contains at least the main() function stack 
that is stuck in an infinite loop, as well as periodic ISR calls and a 
single running task. The non-preemptive version of RIOS does not 
require any inline assembly routines, since no executing task 
should ever be interrupted and the call to the ISR will save the 
return address to main() automatically in the function prologue.  

Figure 5: Sample program using non-preemptive RIOS with 
state machine tasks. 

 unsigned char processingRdyTasks = 0; 
void TimerISR() { 
   unsigned char i; 
   if (processingRdyTasks) { 
      printf("Timer ticked before task processing done.\n"); 
   } 
   else { // Heart of the scheduler code 
      processingRdyTasks = 1; 
      for (i=0; i < tasksNum; ++i) { 
         if (tasks[i].elapsedTime >= tasks[i].period) { // Ready 
            tasks[i].state = tasks[i].TickFct(tasks[i].state); 
            tasks[i].elapsedTime = 0; 
         } 
         tasks[i].elapsedTime += tasksPeriodGCD; 
      } 
      processingRdyTasks = 0; 
   } 
} 
void main() { 
   unsigned char i=0;  
   tasks[i].period = periodToggle; 
   tasks[i].elapsedTime = tasks[i].period; 
   tasks[i].TickFct = &TickFct_Toggle; 
   tasks[i].state = -1;  
   i++ ; 
   tasks[i].period = periodSequence; 
   tasks[i].elapsedTime = tasks[i].period; 
   tasks[i].TickFct = &TickFct_Sequence; 
   tasks[i].state = -1; 
 
   TimerSet(tasksPeriodGCD); 
   TimerOn(); 
   while(1) { Sleep(); } 
} 
enum TG_States { TG_s1 }; 
int TickFct_Toggle(int state) { 
   switch(state) { // Transitions 
      case -1: // Initial transition 
         B0 = 0; // Initialization behavior 
         state = TG_s1; break; 
      case TG_s1: 
         state = TG_s1; break; 
      default: 
         state = -1; 
    } switch(state) { // State actions 
      case TG_s1: 
         B0 = !B0; break; 
      default: 
         break; 
   } 
   return state; 
}  
enum SQ_States { SQ_s1, SQ_s2, SQ_s3 }; 
int TickFct_Sequence(int state) { 
   switch(state) { // Transitions 
      case -1: // Initial transition 
         state = SQ_s1; break; 
      case SQ_s1: 
         state = SQ_s2; break; 
      case SQ_s2: 
         state = SQ_s3; break; 
      case SQ_s3: 
         state = SQ_s1; break; 
      default: 
         state = -1; 
    } switch(state) { // State actions 
      case SQ_s1: 
         B2 = 1; B3 = 0; B4 = 0; break; 
      case SQ_s2: 
         B2 = 0; B3 = 1; B4 = 0; break; 
      case SQ_s3: 
         B2 = 0; B3 = 0; B4 = 1; break; 
      default: 
         break; 
   } 
   return state; 
} 
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4.1.2 State machines 
State machines are a powerful model that can be used to teach 
structured methods of embedded system design [11][13]. We have 
specifically designed RIOS for use with state machines by 
including a state attribute into the task struct. The RIOS scheduler 
will update the state of a task by executing a tick of the state 
machine, which results in the state machine transitioning to the 
next state and executing the actions within the new state.  

Figure 5 shows an abbreviated sample program using the non-
preemptive RIOS scheduler with state machines. The same tasks 
from Figure 4 have been implemented as state machines, where 
task Toggle toggles pin 0 on port B, and task Sequence strobes 
pins 5-7 on port B. The Toggle task tick function will execute 
every 1000 milliseconds, while the Sequence task function 
executes every 200 milliseconds.  Every 1000 milliseconds both 
tasks will be ready to execute, and Toggle will be executed 
because Toggle has a higher priority (lower position in tasks). 
Since both tasks are relatively simple and require little 
computation time, preemption is not necessary for this example. 

The scheduler supports state machines directly by passing the 
state of a task as an argument to the task tick function, and 
updating the task state with a new value when the tick function 
returns.  Initially, state machines are assigned a state value of -1, 
implying that the state machine has not yet executed. On the first 
call to the tick function, the state will transition from the -1 state 
to the real initial state, in this case SQ_s1 and TG_s1, and execute 
any actions of the state. This technique prevents initial state 
actions from being skipped on the first call of the tick function. 
State machines are written as two consecutive switch statements, 
the first determining the next state to transition to, and then 
second executing the actions of that state. This structured method 
of writing state machines provides a useful template for beginning 
students, since state machines can be designed at a higher 
abstraction level (e.g., a drawing), and easily translated into code. 
The state machine code can immediately be incorporated into a 
multitasking RIOS-based system by performing the simple 
initialization of the tasks struct. Other RTOSes evaluated in this 
work require the use of infinite loops and API function calls to 
implement periodic functions. For example, FreeRTOS requires 
the use of the vTaskDelayUntil() function within an infinite loop 
in the tick function to specify a frequency with which to wake up 
and execute the task. Structured state machines that tick 
periodically provide a conceptually simpler framework for 
students than blocks of code with timed delays. 

4.2 Preemptive scheduler 
To support systems that require finer-grained timing than run-to-
completion tasks, we introduce a RIOS scheduler that supports 
preemption of lower priority tasks. Figure 6 shows the entire 
preemptive scheduler kernel – approximately 15-20 lines of C 
code. The scheduler in Figure 6 is similar to the non-preemptive 
RIOS version in that an array of tasks is iterated over to determine 
if the task is ready to run. A new data structure runningTasks is 
introduced that tracks the tasks that are executing. runningTasks 
effectively acts as a stack where the highest priority task is located 
at the top of the stack. When a task completes, the task is removed 
from the top of runningTasks and the next lower-priority task 
begins execution. An idle task is always allocated at the bottom of 
the runningTasks stack and can not be removed. 

In addition to checking if a task is ready to run, the condition in 
the scheduler is updated to check if the priority of the task is 
greater than the currently executing task, and if the task is not 
already running. Recall that priority is established by position in 

the array, where lower elements in tasks have priority. Priority 
based on position in the tasks array is useful because we can 
simply compare the loop iterator i to the task at the top of 
runningTasks to determine if the task would have priority in the 
scheduler. Also, we note that RIOS does not allow self-
preemption as self-preemption is rarely useful for applications 
targeted by RIOS and introduces situations where stack overflows 
can occur easily without special handling. 

There are small critical sections in the scheduler code, in order to 
prevent nested ISR calls while the scheduler is performing 
administrative tasks. Immediately preceding the call of a tick 
function, the task must first be marked as running and pushed onto 
the stack of runningTasks. If another call to TimerISR occurs 
before runningTasks was updated with the current tasks’ priority, 
but after currentTask had been incremented, than a lower priority 
task could possibly execute within the new scheduler stack frame, 
since the value of runningTasks[currentTask] would be idleTask. 
Similarly, a critical section that follows the execution of the tick 
function protects runningTasks from corruption if TimerISR is 
called immediately before decrementing currentTask. 

The ISR entry and exit points are bounded by context switching 
helper macros SaveContext() and RestoreContext(). Depending on 
the platform, a call to the ISR may not save all of the registers 
required to be able to seamlessly return to the interrupted position 
in the program. For example, on the AVR architecture only the 
registers used by the ISR, i.e. the call-saved registers r2-r17 and 
r28-r29, are pushed onto the ISR stack during the prologue. Thus, 
an assembly routine must be provided that also stores the 
temporary registers and any other special registers provided by the 
architecture. Since RIOS utilizes only a single stack, the assembly 
calls are generally limited to pushing or popping of registers on or 
off the stack only. 

Figure 6: Preemptive RIOS scheduler 

 unsigned char runningTasks[4] = {255}; //Track running tasks-[0] always idleTask 
const unsigned long idleTask = 255;       // 0 highest priority, 255 lowest 
unsigned char currentTask = 0;     // Index of highest priority task in runningTasks 
 
void TimerISR() { 
   unsigned char i; 
   SaveContext(); //save temporary registers, if necessary 
   for (i=0; i < tasksNum; ++i) {                             // Heart of scheduler code 
      if (  (tasks[i].elapsedTime >= tasks[i].period)  // Task ready 
          && (runningTasks[currentTask] > i)    // Task priority > current task priority 
          && (!tasks[i].running)         // Task not already running (no self-preemption) 
         ) { 
 
         DisableInterrupts(); // Critical section 
         tasks[i].elapsedTime = 0;  // Reset time since last tick 
         tasks[i].running = 1;          // Mark as running 
         currentTask += 1; 
         runningTasks[currentTask] = i;      // Add to runningTasks 
         EnableInterrupts(); // End critical section 
 
         tasks[i].state = tasks[i].TickFct(tasks[i].state);      // Execute tick 
 
         DisableInterrupts(); // Critical section 
         tasks[i].running = 0; 
         runningTasks[currentTask] = idleTask; // Remove from runningTasks 
         currentTask -= 1; 
         EnableInterrupts(); // End critical section 
      } 
      tasks[i].elapsedTime += tasksPeriodGCD; 
   } 
   RestoreContext();//restore temporary registers, if necessary 
} 



Figure 7 shows a stack trace of an example program using the 
RIOS preemptive scheduler. The example consists of three tasks 
as outlined in the given table; each task is assigned a period with 
which to execute their given tick functions, a runtime that 
indicates how long the task takes to complete, and a priority 
(lower number indicates higher priority). The greatest common 
divisor of the set of tasks is 250 ms, thus the timer ISR is 
configured to tick at a rate of 250 ms. Each task is initially marked 
as ready to run at the start of the system, thus on the first tick of 
the ISR, every task is ready to execute. The scheduler executes the 
tasks in order of their priority, and is initially able to complete T1, 
T2 and a portion of T3 prior to the next tick of the ISR. A second 
ISR frame is pushed onto the stack, and T1 is executed by RIOS. 
Since T2 is not yet ready, and T3 is marked as running in a lower 
stack frame, RIOS skips them and the ISR returns to yield control 
back to T3. T3 can not complete its 500ms runtime requirement 
before the next ISR tick, thus again a second ISR frame is pushed 
onto the stack and the tasks that are ready and have higher priority 
are executed. Eventually, after approximately 900 milliseconds, 
T3 is able to complete, and the original ISR frame returns to yield 
control to the sleeping main() function. 

5. CLASSROOM EXPERIENCES 
We have utilized the non-preemptive version of RIOS in 
introductory embedded systems courses for the past 3 years. RIOS 
is used in tandem with a digital e-book and a software toolset, 
named PES (Programming Embedded Systems), both of which 
were created specifically for the course [12]. The PES tools 
include: RIMS, a MIPS-based microcontroller simulator, RIBS, a 
graphical state machine designer, and RITS, a timing diagram 
viewer to evaluate I/O. 

PES focuses on teaching time-oriented programming techniques, 
culminating with the introduction of RIOS and multitask 
scheduling. Initially, PES introduces the concept of a synchronous 
state machine and how state machines can be used to capture 
desired behavior. The first examples are single-state machine 
systems that do not require scheduling. More advanced systems 
are gradually introduced that add additional tasks, and PES 
develops the programming techniques to support the additional 
complexity. Multitasking is initially introduced by providing a 
template for round-robin scheduling that inserts an infinite loop in 
the main function code to call separate functions for each task. 
Timing is supported by a periodic timer interrupt that sets a flag. 
This technique is simple, but does not support tasks with different 
periods. To introduce support for scheduling tasks with different 
periods, the task struct is described and a RIOS scheduler is 
placed into the main code. To allow power-saving modes, RIOS is 
moved to the timer ISR and replaced in the main function code by 
a call to Sleep(). PES also describes a version of RIOS used to 
support event-driven state machine designs. Event triggers can be 

added into RIOS easily by adding an additional flag to the task 
struct that indicates if the task has been triggered, and by checking 
the status of the flag when determining if the task is ready to tick. 
The preemptive version of RIOS has not yet been incorporated 
into PES, but we hope to include it in future courses. Table 1 
describes the progression of PES from simple systems to complex 
multitasking systems requiring RIOS. 

The culmination of our introductory embedded systems course is 
a two-week project. Since we started using PES and RIOS in the 
classroom, student projects have become noticeably more 
complex.  Three years ago, the typical submission used a single 
microcontroller, one or two peripherals, and a maximum of three 
state machines. The projects yielded by PES-instructed students 
typically contain two or three communicating microcontrollers, 
multiple peripherals, and five or six state machines. We have 
found that students can handle complicated multitasking situations 
much easier, and thus the project quality has increased. Examples 
and comparison of student projects are available online at 
http://www.riosscheduler.org. 

6. RIOS VS. RTOS COMPARISON 

6.1 Scheduling overhead 
A primary metric of the quality of a scheduler is the overhead, or 
how much time a program spends determining which task to run 
next, and switching contexts to execute the task.  Every RTOS 
utilizes a timer interrupt to provide a basic method for tracking 
time elapsed in the system. We calculate overhead for each RTOS 
by starting a separate hardware timer at the beginning of the timer 
interrupt, and recording the difference in time when the interrupt 
returns. In RIOS, the tick function call is executed within the ISR, 
thus we stop the hardware timer whenever a tick function is 
currently being executed. Note that due to the inclusion of 
profiling code, the overhead is slightly higher in all cases. 

The program executed consists of 3 tasks of varying runtime, 
priority, and period. Task1 is a short-lived (1ms runtime), high 
priority task that executes rapidly (25ms period). Task2 has a 
medium-length runtime (5ms), medium priority, and a medium-
length period (50ms). Task3 has a long runtime (25ms), low 
priority, and executes rarely (100ms). Each task consists of a 
single delay() function call that simulates some computation. The 

Figure 7: Stack trace of a 3-task program using the RIOS preemptive scheduler. 

Task Period Runtime Priority 

T1 250 10 1 

T2 500 100 2 

T3 1000 500 3 

Table 1: Course topics culminate with RIOS 

 

1. Capture simple behavior as a graphical state machine. 

2. Translate graphical state machines to C code. 

3. Capture more complex systems as multiple state machines. 

4. Round-robin multitasking of state machines with same period. 

5. RIOS multitasking of state machines with different periods. 
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system is run for 1 second of total time, and the amount of 
overhead for each interrupt is added to a global sum. The targeted 
architecture is an AVR-ATMega324P, which is a small 8-bit 
RISC microcontroller from Atmel that is configured to run with 
an 8MHz clock [1]. The timer tick of RIOS and each RTOS is 
configured to generate interrupts at the greatest common divisor 
of each task period, 25 ms, to minimize unnecessary overhead. 
Within 1 second of time, the scheduler is required to perform 10 
preemptions of Task3 in order to yield to Task1 or Task2. 

The scheduling overhead of RIOS, FreeRTOS, and AtomThreads 
are shown in Figure 8(a). RIOS requires ~1250 microseconds of 
overhead, approximately 30% of the overhead required by 
FreeRTOS or AtomThreads. RIOS is faster because of its 
simplicity. RIOS does not check for stack overflow, or if tasks are 
ready to unblock. Also, RTOSes tend to implement extra function 
calls within the scheduler, e.g., FreeRTOS calls the functions 
vTaskIncrementTick() and vTaskSwitchContext(), which requires 
prologue and epilogue stack management and thus require a few 
more cycles per tick. For best comparisons, the RTOSes were 
made as lean as possible. The FreeRTOS build does not include 
semaphores, queues, mutexes, and most of the API calls except 
those necessary to enable periodic tasks (vDelayTaskUntil). The 
majority of extra delay per tick (~50 ms) in FreeRTOS compared 
to RIOS comes from the subroutine to check for ready tasks. 

6.2 Binary and code size 
An important metric of a scheduler is the size of the compiled 
scheduler code. Embedded systems are often limited by memory 
size, and thus a scheduler should be small so that space exists for 
the application. Figure 8(b) shows compiled binary sizes of RIOS, 
FreeRTOS, and AtomThreads for a sample application. All 
programs were compiled using the –Os flag. All extra modules 
not required, such as semaphores and mutexes, were not linked 
into the RTOS builds. As shown in Figure 8(b), RIOS requires an 
executable of only 830 bytes, compared to 3668 and 2172 bytes 
for FreeRTOS and AtomThreads, respectively. 

The amount of source code of a scheduler is important when 
considering an educational environment. If the objective is to 
teach basic scheduling techniques to students, than interpreting 
thousands of lines of codes spread amongst 10 files is a 
distraction. The main benefit of RIOS is that a small amount of 
readable code can enable multitasking, albeit without some of the 
features supported by complete RTOSes. We used the open source 
tool cloc [4] to determine the amount of actual lines of code of 
each RTOS. cloc filters out blank lines and comments, thus Figure 
8(c) shows the raw number of lines of code. The RIOS sample 
program consists of 116 lines of code. FreeRTOS and 
AtomThreads consist of 4242 and 733 lines, respectively. 
FreeRTOS is much larger than AtomThreads or RIOS because 
FreeRTOS contains more features and modules (which can be 
disabled at runtime for producing comparably sized binaries). 

Nonetheless, RIOS provides a comprehensible approach for 
students in an educational environment. 

7. CONCLUSION 
We presented non-preemptive and preemptive versions of RIOS, a 
lightweight scheduler for embedded systems. It was shown that 
basic multitasking of periodic tasks can be performed in 
approximately a dozen lines of code. Compared to FreeRTOS and 
AtomThreads, RIOS requires 95% less code, is 70% faster, and 
results in 71% smaller binaries on average. RIOS requires that 
tasks are periodic, however when coupled with the synchronous 
state machine programming model RIOS may provide an effective 
platform for teaching embedded multitasking. Marked 
improvements in student project quality has been noted while 
using RIOS in introductory embedded programming classes. 

8. ACKNOWLEDGMENTS 
This work was supported in part by a U.S. Department of 
Education GAANN fellowship and by the U.S. National Science 
Foundation (CNS 1016792, DUE 0836905,  CPS 1136146). 

9. REFERENCES 
[1] Adya, A., Howell, J., Theimer, M., Bolosky, W. J., and 

Douceur, J. R. 2002. Cooperative Task Management Without 
Manual Stack Management. USENIX. 

[2] Atmel Corporation. 2012. http://www.atmel.com/. 

[3] Barry, R. FreeRTOS. http://www.freertos.org/. 

[4] Danial, A. 2006. cloc: Count Lines of Code. Northrop 
Grumman Corporation. 

[5] Engelschall, R. 2000. Portable multithreading: the signal 
stack trick for user-space thread creation. USENIX 2000.  

[6] Engelschall, R. 2005. Gnu pth - the gnu portable threads, 
http://www.gnu.org/software/pth/. 

[7] Labrosse, J. J. 1998. Microc/OS-II (2nd ed.). R & D Books. 

[8] Lawson, K., AtomThreads. http://atomthreads.com/. 

[9] Levis, P., Madden, S., Polastre, J., Szewczyk, R., 
Whitehouse, K., Woo, A., Gay, D., Hill, J., Welsh, M., 
Brewer, E., and Culler, D. 2004. TinyOS: An operating 
system for wireless sensor networks. In Ambient 
Intelligence. Springer-Verlag. 

[10] Nacul, A.C., Givargis, T. 2005. Lightweight Multitasking 
Support for Embedded Systems using the Phantom 
Serializing Compiler. DATA '05. 

[11] Samek, M. and Ward, R. 2006. "Build a Super Simple 
Tasker", Embedded Systems Design. 

[12] Vahid, F., Givargis, T., Miller, B. 2012. Programming 
Embedded Systems, An Introduction to Time-Oriented 
Programming. UniWorld Publishing, Lake Forest, CA.  

[13] Quantum Leaps. http:///www.state machine.

Figure 8: Comparison of (a) scheduling overhead for 1 second of execution time, (b) compiled binary size, and (c) lines of code. 

(a) (b) (c) 


