
Using Protothreads for Sensor Node Programming

Adam Dunkels
Swedish Institute of Computer

Science
adam@sics.se

Oliver Schmidt
oliver@jantzer-

schmidt.de

Thiemo Voigt
Swedish Institute of Computer

Science
thiemo@sics.se

ABSTRACT
Wireless sensor networks consist of tiny devices that usually
have severe resource constraints in terms of energy, process-
ing power and memory. In order to work efficiently within
the constrained memory, many operating systems for such
devices are based on an event-driven model rather than on
multi-threading. While event-driven systems allow for re-
duced memory usage, they require programs to be developed
as explicit state machines. Since implementing programs as
explicit state machines is hard, developing, maintaining, and
debugging programs for event-driven systems is difficult.

In this paper, we introduce protothreads, a programming
abstraction for event-driven sensor network systems. Pro-
tothreads simplify implementation of high-level functional-
ity on top of event-driven systems, without significantly in-
creasing the memory requirements. The memory require-
ment of a protothread is that of an unsigned integer.

1. INTRODUCTION
Wireless sensor networks consist of tiny devices that usually
have severe resource constraints in terms of energy, process-
ing power and memory. Most programming environments
for wireless sensor network nodes today are based on an
event-triggered programming model rather than traditional
multi-threading. In TinyOS [7], the event-triggered model
was chosen over a multi-threaded model because of the mem-
ory overhead of threads. According to Hill et al. [7]:

“In TinyOS, we have chosen an event model
so that high levels of concurrency can be handled
in a very small amount of space. A stack-based
threaded approach would require that stack space
be reserved for each execution context.”

While the event-driven model and the threaded model can
be shown to be equivalent [9], programs written in the two
models typically display differing characteristics [1]. The ad-
vantages and disadvantages of the two models are a debated
topic [11, 14].

In event-triggered systems, programs are implemented as
event handlers. Event handlers are invoked in response to
external or internal events, and run to completion. An event
handler typically is a programming language procedure or
function that performs an action, and makes an explicit re-
turn to the caller. Because of the run-to-completion seman-
tics, an event-handler cannot execute a blocking wait. With

run-to-completion semantics, the system can utilize a sin-
gle, shared stack. This reduces the memory overhead over
a multi-threaded system, where memory must be allocated
for a stack for each running program.

The run-to-completion semantics of event-triggered systems
makes implementing certain high-level operations a complex
task. When an operation cannot complete immediately, the
operation must be split across multiple invocations of the
event handler. Levis et al. [10] refer to this as a split-phase
operation. In the words of Levis et al.:

“This approach is natural for reactive pro-
cessing and for interfacing with hardware, but
complicates sequencing high-level operations, as
a logically blocking sequence must be written in
a state-machine style.”

In this paper, we introduce the notion of using protothreads [3,
6] as a method to reduce the complexity of high-level pro-
grams in event-triggered sensor node systems. We argue
that protothreads can reduce the number of explicit state
machines required to implement typical high-level sensor
node programs. We believe this reduction leads to programs
that are easier to develop, debug, and maintain, based on
extensive experience with developing software for the event-
driven uIP TCP/IP stack [4] and Contiki operating sys-
tem [5].

The main contribution of this paper is the protothread pro-
gramming abstraction. We show that protothreads reduce
the complexity of programming sensor nodes. Further, we
demonstrate that protothreads can be implemented in the C
programming language, using only standard C language con-
structs and without any architecture-specific machine code.

The rest of this paper is structured as follows. Section 2
presents a motivating example and Section 3 introduces the
notion of protothreads. Section 4 discusses related work,
and the paper is concluded in Section 5.

2. MOTIVATION
To illustrate how high-level functionality is implemented
using state machines, we consider a hypothetical energy-
conservation mechanism for wireless sensor nodes. The mech-
anism switches the radio on and off at regular intervals. The
mechanism works as follows:

enum {
ON,
WAITING,
OFF

} state;

void radio_wake_eventhandler() {
switch(state) {

case OFF:
if(timer_expired(&timer)) {

radio_on();
state = ON;
timer_set(&timer, T_AWAKE);

}
break;

case ON:
if(timer_expired(&timer)) {

timer_set(&timer, T_SLEEP);
if(!communication_complete()) {
state = WAITING;

} else {
radio_off();
state = OFF;

}
}
break;

case WAITING:
if(communication_complete()

|| timer_expired(&timer)) {
state = ON;
timer_set(&timer, T_AWAKE);

} else {
radio_off();
state = OFF;

}
break;

}
}

Figure 1: The radio sleep cycle implemented with

events.

1. Turn radio on.

2. Wait for tawake milliseconds.

3. Turn radio off, but only if all communication has com-
pleted.

4. If communication has not completed, wait until it has
completed. Then turn off the radio.

5. Wait for tsleep milliseconds. If the radio could not be
turned off before tsleep milliseconds because of remain-
ing communication, do not turn the radio off at all.

6. Repeat from step 1.

To implement this protocol in an event-driven model, we
first need to identify a set of states around which the state
machine can be designed. For this protocol, we can see three
states: on – the radio is turned on, waiting – waiting for any
remaining communication to complete, and off – the radio
is off. Figure 3 shows the resulting state machine, including
the state transitions.

PT_THREAD(radio_wake_thread(struct pt *pt)) {
PT_BEGIN(pt);

while(1) {
radio_on();
timer_set(&timer, T_AWAKE);
PT_WAIT_UNTIL(pt, timer_expired(&timer));

timer_set(&timer, T_SLEEP);
if(!communication_complete()) {
PT_WAIT_UNTIL(pt, communication_complete()

|| timer_expired(&timer));
}

if(!timer_expired(&timer)) {
radio_off();
PT_WAIT_UNTIL(pt, timer_expired(&timer));

}
}

PT_END(pt);
}

Figure 2: The radio sleep cycle implemented with

protothreads.

To implement this state machine in C, we use an explicit
state variable, state, that can take on the values OFF, ON,
and WAITING. We use a C switch statement to perform
different actions depending on the state variable. The code
is placed in an event handler function that is called whenever
an event occurs. Possible events in this case are that a timer
expires and that communication completes. The resulting
C code is shown in Figure 1.

We note that this simple mechanism results in a fairly large
amount of C code. The structure of the mechanism, as it is
described by the six steps above, is not immediately evident
from the C code.

3. PROTOTHREADS
Protothreads [6] are an extremely lightweight stackless type
of threads, designed for severely memory constrained sys-
tems. Protothreads provide conditional blocking on top of
an event-driven system, without the overhead of per-thread
stacks.

We developed protothreads in order to deal with the com-

OFF

communication
active

communicaion
completed

ON

WAITING

t_awake timer expired

t_sleep timer expired

Figure 3: State machine realization of the radio

sleep cycle protocol.

plexity of explicit state machines in the event-driven uIP
TCP/IP stack [4]. For uIP, we were able to substantially
reduce the number of state machines and explicit states
used in the implementations of a number of application level
communication protocols. For example, the uIP FTP client
could be simplified by completely removing the explicit state
machine, and thereby reducing the number of explicit states
from 20 to one.

3.1 Protothreads versus events
Programs written for an event-driven model typically have
to be implemented as explicit state machines. In contrast,
with protothreads programs can be written in a sequential
fashion without having to design explicit state machines.
To illustrate this, we return to the radio sleep cycle example
from the previous section.

Figure 2 shows how the radio sleep cycle mechanism is im-
plemented with protothreads. Comparing Figure 2 and Fig-
ure 1, we see that the protothreads-based implementation
not only is shorter, but also more closely follows the spec-
ification of the radio sleep mechanism. Due to the linear
code flow of this implementation, the overall logic of the
sleep cycle mechanism is visible in the C code. Also, in the
protothreads-based implementation we are able to make use
of regular C control flow mechanisms such as while loops
and if statements.

3.2 Protothreads versus threads
The main advantage of protothreads over traditional threads
is that protothreads are very lightweight: a protothread
does not require its own stack. Rather, all protothreads run
on the same stack and context switching is done by stack
rewinding. This is advantageous in memory constrained sys-
tems, where a stack for a thread might use a large part of the
available memory. In comparison, the memory requirements
of a protothread that of an unsigned integer. No additional
stack is needed for the protothread.

Unlike a thread, a protothread runs only within a single
C function and cannot span over other functions. A pro-
tothread may call normal C functions, but cannot block in-
side a called function. Blocking inside nested function calls
is instead implemented by spawning a separate protothread
for each potentially blocking function. Unlike threads, pro-
tothreads makes blocking explicit: the programmer knows
exactly which functions that potentially may yield.

3.3 Comparison
Proto-

Feature Events Threads threads

Control structures No Yes Yes

Debug stack retained No Yes Yes

Implicit locking Yes No Yes

Preemption No Yes No

Automatic variables No Yes No

Table 1: Qualitative comparison between events,

threads and protothreads

Table 1 summarizes the features of protothreads and com-
pares them with the features of events and threads. The

void radio_wake_thread(struct pt *pt) {
switch(pt->lc) {
case 0:

while(1) {
radio_on();
timer_set(&timer, T_AWAKE);

pt->lc = 8;
case 8:

if(!timer_expired(&timer)) {
return;

}

timer_set(&timer, T_SLEEP);
if(!communication_complete()) {

pt->lc = 13;
case 13:

if(!(communication_complete() ||
timer_expired(&timer))) {

return;
}

}

if(!timer_expired(&timer)) {
radio_off();

pt->lc = 18;
case 18:

if(!timer_expired(&timer)) {
return;

}

}
}
}

}

Figure 4: C switch statement expansion of the pro-

tothreads code in Figure 2

names of the features are from [1].

Control structures. One of the advantages of threads over
events is that threads allow programs to make full use
of the control structures (e.g., if conditionals and while
loops) provided by the programming language. In the
event-driven model, control structures must be bro-
ken down into two or more pieces in order to imple-
ment continuations [1]. In contrast, both threads and
protothreads allow blocking statements to be used to-
gether with control structures.

Debug stack retained. Because the manual stack man-
agement and the free flow of control in the event-driven
model, debugging is difficult as the sequence of calls
is not saved on the stack [1]. With both threads and
protothreads, the full call stack is available for debug-
ging.

Implicit locking. With manual stack management, as in
the event-driven model, all yield points are immedi-
ately visible in the code. This makes it evident to the
programmer whether or not a structure needs to be
locked. In the threaded model, it is not as evident that

a particular function call yields. Using protothreads,
however, potentially blocking statements are explicitly
implemented with a PT WAIT statement. Program code
between such statements never yields.

Preemption. The semantics of the threaded model allows
for preemption of a running thread: the thread’s stack
is saved, and execution of another thread can be con-
tinued. Because both the event-driven model and pro-
tothreads use a single stack, preemption is not possible
within either of these models.

Automatic variables. Since the threaded model allocates
a stack for each thread, automatic variables—variables
with function local scope automatically allocated on
the stack—are retained even when the thread blocks.
Both the event-driven model and protothreads use a
single shared stack for all active programs, and rewind
the stack every time a program blocks. Therefore, with
protothreads, automatic variables are not saved across
a blocking wait. This is discussed in more detail below.

3.4 Limitations
While protothreads allow programs to take advantage of
a number of benefits of the threaded programming model,
protothreads also impose some of the limitations from the
event-driven model. The most evident limitation from the
event-driven model is that automatic variables—variables
with function-local scope that are automatically allocated
on the stack—are not saved across a blocking wait. While
automatic variables can still be used inside a protothread,
the contents of the variables must be explicitly saved before
executing a wait statement. The reason for this is that pro-
tothreads rewind the stack at every blocking statement, and
therefore potentially destroy the contents of variables on the
stack.

Many optimizing C compilers, including gcc, are able to de-
tect if an automatic variable is unsafely used after a blocking
statement. Typically a warning is produced, stating that
the variable in question “might be used uninitialized in this
function”. While it may not be immediately apparent for
the programmer that this warning is related to the use of au-
tomatic variables across a blocking protothreads statement,
it does provide an indication that there is a problem with
the program. Also, the warning indicates the line number
of the problem which assists the programmer in identifying
the problem.

The limitation on the use of automatic variables can be han-
dled by using an explicit state object, much in the same way
as is done in the event-driven model. The state object is a
chunk of memory that holds the contents of all automatic
variables that need to be saved across a blocking statement.
It is, however, the responsibility of the programmer to allo-
cate and maintain such a state object.

It should also be noted that protothreads do not limit the
use of static local variables. Static local variables are vari-
ables that are local in scope but allocated in the data section.
Since these are not placed on the stack, they are not affected
by the use of blocking protothreads statements. For func-
tions that do not need to be re-entrant, using static local

variables instead of automatic variables can be an accept-
able solution to the problem.

3.5 Implementation
Protothreads are based on a low-level mechanism that we
call local continuations [6]. A local continuation is simi-
lar to ordinary continuations [12], but does not capture the
program stack. Local continuations can be implemented in
a variety of ways, including using architecture specific ma-
chine code, C-compiler extensions, and a non-obvious use of
the C switch statement. In this paper, we concentrate on
the method based on the C switch statement.

A local continuation supports two operations; it can be ei-
ther set or resumed. When a local continuation is set, the
state of the function—all CPU registers including the pro-
gram counter but excluding the stack—is captured. When
the same local continuation is resumed, the state of the func-
tion is reset to what it was when the local continuation was
set.

A protothread consists of a C function and a single local
continuation. The protothread’s local continuation is set
before each conditional blocking wait. If the condition is
true and the wait is to be performed, the protothread ex-
ecutes an explicit return statement, thus returning to the
caller. The next time the protothread is invoked, the pro-
tothread resumes the local continuation that was previously
set. This will effectively cause the program to jump to the
conditional blocking wait statement. The condition is re-
evaluated and, once the condition is false, the protothread
continues to execute the function.

#define RESUME(lc) switch(lc) { case 0:

#define SET(lc) lc = __LINE__; case __LINE__:

Figure 5: The local continuation resume and set op-

erations implemented using the C switch statement.

Local continuations can be implemented using standard C
language constructs and a non-obvious use of the C switch
statement. With this technique, the local continuation is
represented by an unsigned integer. The resume opera-
tion is implemented as an open switch statement, and the
set operation is implemented as an assignment of the local
continuation and a case statement, as shown in Figure 5.
Each set operation sets the local continuation to a value
that is unique within each function, and the resume oper-
ation’s switch statement jumps to the corresponding case
statement. The case 0: statement in the implementation
of the resume operation ensures that the resume statement
does nothing if is the local continuation is zero.

Figure 4 shows the example radio sleep cycle mechanism
from Section 2 with the protothreads statements expanded
using the C switch implementation of local continuations.
We see how each PT WAIT UNTIL statement has been replaced
with a case statement, and how the PT BEGIN statement
has been replaced with a switch statement. Finally, the
PT END statement has been replaced with a single right curly
bracket, which closes the switch block that was opened by
the PT BEGIN statement. We also note the similarity between

Figure 4 and the event-based implementation in Figure 1.
While the resulting C code is very similar in the two cases,
the process of arriving at the code is different. With the
event-driven model, the programmer must explicitly design
and implement a state machine. With protothreads, the
state machine is automatically generated.

The non-obviousness of the C switch implementation of local
continuations is that the technique appears to cause prob-
lems when a conditional blocking statement is used inside
a nested C control statement. For example, the case 13:
statement in Figure 4 appears inside an if block, while the
corresponding switch statement is located at a higher block.
However, this is a valid use of the C switch statement: case
statements may be located anywhere inside a switch block.
They do not need to be in the same level of nesting, but
can be located anywhere, even inside nested if or for blocks.
This use of the switch statement is likely to first have been
publicly described by Duff [2]. The same technique has later
been used by Tatham to implement coroutines in C [13].

The implementation of protothreads using the C switch state-
ments imposes a restriction on programs using protothreads:
programs cannot utilize switch statements together with
protothreads. If a switch statement is used by the program
using protothreads, the C compiler will is some cases emit
an error, but in most cases the error is not detected by
the compiler. This is troublesome as it may lead to unex-
pected run-time behavior which is hard to trace back to an
erroneous mixture of one particular implementation of pro-
tothreads and switch statements. We have not yet found a
suitable solution for this problem.

4. RELATED WORK
Kasten and Römer [8] have also identified the need for new
abstractions for managing the complexity of event-triggered
programming. They introduce OSM, a state machine pro-
gramming model based on Harel’s StateCharts. The model
reduces both the complexity of the implementations and the
memory usage. Their work is different from protothreads in
that OSM requires support from an external OSM compiler
to produce the resulting C code, whereas protothreads only
make use of the regular C preprocessor.

5. CONCLUSIONS
Many operating systems for wireless sensor network nodes
are based on an event-triggered programming model. In
order to implement high-level operations under this model,
programs have to be written as explicit state machines. Soft-
ware implemented using explicit state machines is often hard
to understand, debug, and maintain.

We have presented protothreads as a programming abstrac-
tion that reduces the complexity of implementations of high-
level functionality for event-triggered systems. With pro-
tothreads, programs can perform conditional blocking on top
of event-triggered systems with run-to-completion seman-
tics, without the overhead of full multi-threading.

Acknowledgments
This work was partly financed by VINNOVA, the Swedish
Agency for Innovation Systems, and the European Commis-
sion under contract IST-004536-RUNES.

6. REFERENCES
[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and

J. R. Douceur. Cooperative Task Management
Without Manual Stack Management. In Proceedings of
the USENIX Annual Technical Conference, pages
289–302, 2002.

[2] T. Duff. Re: Explanation please! Usenet news article,
Message-ID: <8144@alice.UUCP>, August 1988.

[3] A. Dunkels. Protothreads web site. Web page. Visited
2005-03-18. http://www.sics.se/˜adam/pt/

[4] A. Dunkels. Full TCP/IP for 8-bit architectures. In
Proceedings of The First International Conference on
Mobile Systems, Applications, and Services
(MOBISYS ‘03), May 2003.

[5] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny
networked sensors. In Proceedings of the First IEEE
Workshop on Embedded Networked Sensors, Tampa,
Florida, USA, November 2004.

[6] A. Dunkels and O. Schmidt. Protothreads –
Lightweight Stackless Threads in C. Technical Report
T2005:05, Swedish Institute of Computer Science.

[7] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. In Proceedings of the 9th International
Conference on Architectural Support for Programming
Languages and Operating Systems, November 2000.

[8] O. Kasten and K. Römer. Beyond event handlers:
Programming wireless sensors with attributed state
machines. In The Fourth International Conference on
Information Processing in Sensor Networks (IPSN),
Los Angeles, USA, April 2005.

[9] H. C. Lauer and R. M. Needham. On the duality of
operating systems structures. In Proc. Second
International Symposium on Operating Systems,
October 1978.

[10] P. Levis, S. Madden, D. Gay, J. Polastre,
R. Szewczyk, A. Woo, E. Brewer, and D. Culler. The
Emergence of Networking Abstractions and
Techniques in TinyOS. In Proc. NSDI’04, March 2004.

[11] J. K. Ousterhout. Why threads are a bad idea (for
most purposes). Invited Talk at the 1996 USENIX
Technical Conference, 1996.

[12] J. C. Reynolds. The discoveries of continuations. Lisp
Symbol. Comput., 6(3):233–247, 1993.

[13] S. Tatham. Coroutines in C. Web page, 2000.
http://www.chiark.greenend.org.uk/
˜sgtatham/coroutines.html

[14] R. von Behren, J. Condit, and E. Brewer. Why events
are a bad idea (for high-concurrency servers). In
Proceedings of the 9th Workshop on Hot Topics in
Operating Systems, May 2003.

