
v9fb: A remote framebuffer infrastructure for Linux

Abhishek Kulkarni, Latchesar Ionkov
Los Alamos National Laboratory∗

{kulkarni,lionkov}@lanl.gov

ABSTRACT

v9fb is a software infrastructure that allows extending framebuffer devices in Linux
over the network by providing an abstraction to them in the form of a filesystem hierarchy.
Framebuffer based graphic devices export a synthetic filesystem which offers a simple and
easy-to-use interface for performing common framebuffer operations. Remote framebuffer
devices could be accessed over the network using the 9P protocol support in Linux. We
describe the infrastructure in detail and review some of the benefits it offers similar to
Plan 9 distributed systems. We discuss the applications of this infrastructure to remotely
display and run interactive applications on a terminal while offloading the computation to
remote servers, and more importantly the flexibility it offers in driving tiled-display walls
by aggregating graphic devices in the network.

1. Motivation

The framebuffer device in Linux offers an abstraction for the graphics hardware so that the
applications using them do not have to bother about the low-level hardware interface to the
device. Since the framebuffer is represented as a character device, a userspace application
can open, read and write to it as a regular file. However, performing several routine graphic
device operations like setting the resolution, fetching the color palette involves making use of
a device-specific ioctl system call. This makes it difficult to export these devices as a network
filesystem hierarchy.

Several remote display protocols for exchanging graphics over the network already exist. The
widely used X window system in Linux is inherently based on a client-server model and imple-
ments the X display protocol to exchange bitmap display content between the client and the
server. It, however, has been a target of much criticism since the early days[2] because of its
overly complex architecture, lack of authentication in the protocol and the limited configura-
bility in its client-server setup. Exporting raw pixel data of the framebuffer device makes it
possible to run a window system on the CPU server. With the recent ongoing work on per-
container device namespaces in the Linux kernel, this infrastructure provides the foundation
for implementing a multiplexing window system similar to Rio [8] for Linux.

Remote display provides a way to interact with geographically distributed resources which are
not within the physical proximity of the user. In addition to being used for remote display,
v9fb can also be used in a few other interesting scenarios where it is not possible to use these
other protocols. For instance, v9fb provides an alternative to monitoring the boot process of
a remote machine in a network. This helps in cluster environments where the nodes are not
equipped with a serial console to check the boot activity remotely. The booting node mounts
the remote framebuffer device exported by the control node and the console of the node is
mapped onto the remote framebuffer.

The main motivation for this infrastructure is to ease the setup of tiled-display walls for
modeling and simulation of scientific data. High-resolution displays are increasingly being used
for visualization of large datasets stored at a central storage facility. Display walls made out
of commodity clusters are closely tied to the display nodes and do not allow for dynamic
configurations. Developing simulation and modeling applications for these high-resolution
tiled display walls is typically done using message passing libraries, new programming models or

∗LANL publication: LA-UR-08-05604



software that use proxies to stream graphic commands over the network [12]. v9fb transparently
aggregates the graphic devices in a network and exports a network attached framebuffer thus
allowing greater flexibility in setting up a visualization cluster. Network-centric visualization
is invariably favored since it ensures integrity and security of the data being maintained at
a central location [7]. The application program is provided with a single logical view of the
framebuffer device and thus requires no modifications to its code.

2. Introduction

Everything in Plan 9, including the graphics infrastructure, is implemented as a file server
[9]. The file metaphor describes a well-defined interface to interact with all the resources in a
distributed system. This makes it easy to work with the system, keeping it simple yet powerful.
Raster graphics capability in Plan 9 is provided by devices like /dev/draw, /dev/screen and
/dev/window. Along with the input and console devices, Plan 9 offers a highly configurable
and customizable window system that works equally well over the network [8].

Despite considerable efforts, graphics in Linux remains poorly integrated with the rest of the
system. The limitations of running the X server as a super user (root) further allows security
loopholes which could be used to compromise the system. The framebuffer device abstraction
was introduced in Linux starting with kernel version 2.1.107 [13]. The framebuffer device is an
abstraction for the graphics hardware and is responsible for initializing the hardware, determin-
ing the hardware configuration and capabilities, allocating memory for the graphics hardware
and providing common routines to interact with the graphics hardware. The Linux kernel
contains drivers that support several different video hardware devices. The v9fb infrastructure
exports the raw framebuffer memory and its operations as files. This model could be further
extended to support specialized graphics hardware like Graphics Processing Units (GPUs).

The Linux kernel 2.6 offers support for the 9P protocol in the form of loadable kernel modules
[1]. This allows the kernel to communicate with synthetic fileservers using the 9P distributed
resource sharing protocol. v9fb leverages this support to implement a pseudo-framebuffer
device which acts as an in-kernel 9P client that communicates with a framebuffer fileserver.
The framebuffer appears as a regular character device to the applications using it. Every
operation on this device is transparently translated into a 9P message that is sent across to
the remote framebuffer fileserver. v9fb can work on any of the transport mechanisms like TCP
or virtio offered by the 9P2000 implementation in the Linux kernel.

Figure 1: The local framebuffer device is exported by v9fbfs and mounted in the namespace
of a remote CPU server which can draw to the remote device

The synthetic framebuffer filesystem v9fbfs exports a hierarchy that corresponds to various
framebuffer operations which can be executed just by reading off or writing to these files.
This also allows the framebuffer devices to be mounted locally and to interact with them
as if they were local devices as shown in Figure 1. v9fbfs runs on all the display nodes in
a visualization cluster and permits a highly-configurable and dynamic setup in which remote



display devices can be attached or detached to rendering nodes based on their processing load.
v9fb is scalable and can be optimized to support many display devices driving a tiled display
wall with an effective resolution of over million pixels.

Coupled with the XCPU cluster management framework [5], this provides a holistic high-
performance visualization environment that is easy to monitor and maintain. It allows a clear
segregation of the display nodes from the render nodes and supports heterogeneous display
hardware setup as a result of the framebuffer abstraction.

In many cases, simple pixel-based remote display can deliver superior performance than the
more complex designs [15] based on other thin-client platform designs. The framebuffer syn-
thetic filesystems allow adding multiple layers above the framebuffer much easier. Compression,
encryption or the support for high-level drawing primitives on top of the framebuffer can be
easily added without affecting the whole model.

Figure 2: Running simulation and modeling programs directly on a hardware-accelerated frame-
buffer in absence of the X11 window system

Hardware-accelerated framebuffer makes use of the GPU operations to render graphics on
the framebuffer device. Several libraries can use the framebuffer as a target to display high-
resolution 2D and 3D graphics. With some of the upcoming changes in the Linux graphics
stack like the changes in DRM (Direct Rendering Manager) and Gallium3D, the new proposed
architecture for 3D graphics drivers, it would be much easier to display 3D hardware-accelerated
graphics on the framebuffer without needing the X server at all as shown in Figure 2. As The
framebuffer can be utilized as a drawing surface by the OpenGL applications, the X server and
many other graphic drawing libraries like Simple DirectMedia Layer (SDL) or General Graphics
Interface (GGI).

The remainder of this paper is organized as follows. In Section 3, we look at some of the
related work on remote visualization systems and network-attached framebuffers. Section 4
offers a detailed design overview of the v9fb infrastructure describing how each component
in the system interacts with the others. The actual implementation details are discussed in
Section 5. We conclude by mentioning some of the future work in the last section.

3. Related Work

A number of existing proprietary solutions for remote visualization are available. Along with
parallel graphics rendering toolkits and cluster management tools, these solutions provide
a complete software environment for large-scale modeling and simulations. HP’s Remote
Graphics software, Sun’s Visualization System and SGI’s Remote Visualization are among many
other proprietary solutions that offer remote access to 2D and 3D graphics. Most of these
remote display solutions primarily rely on VNC which uses the Remote Framebuffer Protocol
(RFB) to exchange display updates over the network.

Tiled display walls usually use pixel-based streaming software to stream the rendered data to
the display nodes or a network attached framebuffer. The Scalable Adaptive Graphics Envi-



ronment (SAGE), developed at the University of Illinois Chicago, is a distributed visualization
architecture specifically designed for decoupling graphics rendering from the graphics display
[6]. SAGE dispatches visualization jobs for rendering to the appropriate resource in a cluster
and streams the resultant pixel data to the remote display. Others, like TeraVision, JuxtaView
also provide an infrastructure for remotely displaying imagery in a cluster.

OpenGL toolkits for cluster-based rendering like Chromium [3] or VirtualGL use techniques
like function call interposing to ”snoop” the OpenGL protocol and transfer it over the wire
to the remote proxies in a cluster. This techniques make it difficult to keep up with the
evolving standards and specifications described by OpenGL and add to the overhead in terms
of complexity of the architecture.

IBM’s Scalable Graphics Engine (SGE-3) offers a hardware-based approach to a network-
attached framebuffer[10, 14]. It aggregates the pixel data generated by a rendering cluster to
drive a high-resolution tiled display wall. Several other sort-first rendering systems like WireGL
allow unmodified graphics application to be scaled to work on a high-resolution tiled-display.

4. Design Overview

The Linux framebuffer was designed to extend a hardware-independent abstraction to the un-
derlying graphics hardware. Some hardware running Linux did not support the VGA text mode,
and the framebuffer proved to be a device-independent way of emulating a text console on
these machines. Besides, since the VGA fonts could only cover a 512 character-set simulta-
neously there was no way to represent UTF-8 on the Linux console. The framebuffer support
brought in Unicode console terminal emulators to Linux and more importantly the ability to
do graphics without having to rely on the overly loaded X Window system.

The Linux framebuffer device exports the graphic device’s raw memory which can be directly
accessed from a userspace application. Even though this device memory can be accessed using
the basic file operations, Linux has not excessively made use of the file metaphor to provide a
generic and consistent way of controlling devices. A framebuffer device defines several device-
specific ioctls which could be used to initialize or control the device. A typical application to
draw a pixel to the framebuffer device is shown below.

Framebuffer Operation Programmatic equivalent

1 Open the framebuffer device. fd=open("/dev/fb0",O_RDWR)

2 Get fixed screen information ioctl(fd,FBIOGET_FSCREENINFO,&f)

3 Get variable screen information ioctl(fbfd,FBIOGET_VSCREENINFO,&v)

4 Determine screen resolution size=v.xres*v.yres*v.bits_per_pixel/8

5 Map the framebuffer memory mmap(0,size,PROT_WRITE,MAP_SHARED,fd,0)

6 Draw to the mapped memory area *(fbp+ location)=32

7 Close the framebuffer device close(fd)

Table 1: Basic framebuffer operations and their programmatic equivalents for drawing a pixel
on the framebuffer. This table is just to illustrate the flow of operations involved when accessing
the framebuffer device.

The motivation of v9fb was to eliminate the specialized ad-hoc interface to the framebuffer
device in favor of the more familiar file-centric device interface. The exported framebuffer
device interface is textual rather than binary and can be mounted to a remote machine over
the network. It provides specialized files that can be accessed to control the framebuffer device,
fetch framebuffer device information or draw to the framebuffer.

In addition to providing a hierarchical framebuffer filesystem, v9fb also provides the infras-
tructure to run unmodified Linux framebuffer applications through the v9fb kernel framebuffer
driver. This allows the existing framebuffer graphic applications like modeling and simulations
programs to seamlessly utilize a distributed environment for rendering or displaying.



The v9fb infrastructure consists of several entities interacting with each other to make the
process of accessing remote framebuffer devices as transparent as possible.

• v9fbfs

• v9fb kernel module

• v9fbaggr

• v9fbmuxfs

v9fbfs is a userspace 9P fileserver that exports a filesystem hierarchy of the framebuffer. The
v9fb kernel module creates a virtual framebuffer device that acts a 9P client translating all
the framebuffer operations into POSIX-like file I/O operations. These calls are forwarded to
either to v9fbfs or v9fbaggr over the 9P protocol. v9fbaggr is another userspace 9P fileserver
which aggregates the framebuffer resources provided by multiple v9fbfs fileservers to export a
logical view of a single large framebuffer. v9fbaggr offers an exactly similar interface as v9fbfs
thus making it seamless to communicate with the v9fb kernel module.

Figure 3: High-performance computing environment for large-scale modeling and simulations
using XCPU and V9FB

Figure 3 shows a typical setup of a rendering cluster environment using XCPU and V9FB.
At the first glance, the control node appears as a potential bottleneck in this environment.
However, the control node only acts as a front-end for submitting jobs. With support for
dynamic namespaces offered by XCPU, the aggregated framebuffer device could be mounted
in the namespace of each rendering node which directly writes on to a specific framebuffer of
the display wall.

v9fbmuxfs is a userspace 9P fileserver which is almost similar to v9fbfs. v9fbmuxfs divides a
framebuffer into multiple regions exporting each as a logical framebuffer device. It multiplexes
the access to each of these regions to simultaneously display the framebuffer output from
several clients. Since most modern graphic cards support tiled framebuffers, each tile could be
rendered by different machine to achieve a much faster performance.

v9fb offers secure delivery of the display data since it uses the authentication support in
9P2000 protocol. The 9P auth information negotiates authentication between the client and
the fileserver before exchange of raw pixel data takes place. The ordered delivery of messages



in 9P protocol ensures there is no corruption of the frame pixels. Synchronization has not been
taken into account but could easily be added into v9fb.

Synthetic fileservers allow easy addition and removal of functional layers to the architecture.
These can further be in the form of fileservers or simple libraries acting on the exported files.
For instance, to make efficient use of the network bandwidth the raw pixel data transferred over
the network can be compressed before sending. Several performance optimization techniques
have been taken into account to achieve a good performance.

4.1. Performance Optimization

v9fb has been designed with low-latency high-bandwidth links in mind where the remote display
nodes are connected to the control nodes using a suitably high-speed network interconnect like
Gigabit Ethernet. Transmitting raw pixel data over the wire consumes considerable bandwidth
for real-time visual applications like video streams and interactive simulations.

4.2. Framebuffer compression

The raw framebuffer data can be compressed using various compression algorithms before
transmitting it across the network. This reduces the load on the network, however adds to
the overhead of post-processing the data before displaying it on the framebuffer. Compression
helps in low-latency links where the network gets overloaded by large bursts of raw pixel data.
Video hardware has already started supporting compression at the device level to reduce power
consumption [11]. Compression is done on a per-line basis by using a simple compression
algorithm like run-length encoding (RLE) or the LZ77 algorithm.

4.3. Framebuffer caching

Caching the framebuffer data at the client can improve the performance in case of non-
interactive applications where most accesses involve reading from a static framebuffer. A
write to the remotely mounted framebuffer invalidates the cache, and the changes have to
be propagated back to the framebuffer fileserver. Introducing caching, however, adds to
unmanaged complexity and the performance increases are seldom guaranteed[15].

4.4. Double Buffering

Double buffering at the client and server side can improve performance in most cases. The
network-attached framebuffer acts as a back buffer used by the framebuffer fileserver. The
scanout buffer acts as a front buffer which represents the memory of the video device. Flipping
between the two buffers compensates the network delay to a certain extent and can allow a
continuous stream of frames on the video display.

4.5. Multiplexed operations

Multiple clients writing to a single framebuffer pose a potential bottleneck in performance.
Multiple reads and writes can be multiplexed at the server with separate threads performing
the operations at once. This would significantly add to the performance of v9fbaggr which
essentially communicates to multiple framebuffer fileservers v9fbfs simultaneously. When mul-
tiple Treads or Twrites are to be done in parallel, multiple threads are spawned by the server
handling these request in parallel.

5. Implementation

5.1. v9fbfs

v9fbfs, along with the other user-space framebuffer fileservers has been implemented using
libspfs, a library belonging to the NPFS project[4] which facilitates writing 9P2000 compliant
userspace fileservers in Linux. v9fbfs is a userspace 9P fileserver which scans the local machine
for existing framebuffer devices and exports an interface in the form of a file hierarchy given
below.

/ctl
/data
/mmio
/fscreeninfo
/vscreeninfo
/cmap



/con2fbmap
/state

5.1.1. ctl file

The ctl file is used to control the framebuffer server and perform some several framebuffer
display operations. It supports the following commands :

pandisplay The pandisplay command is used to pan or wrap the display when the X or Y
offset of the display have changed.

blank blankmode Blank the framebuffer based on the supplied blank mode. This could be
used to suspend or power down remote idle displays to save power.

reload Reload the framebuffer filesystem interface. This looks for newly added framebuffer
devices and exports them.

5.1.2. data file

The data file represents the actual raw framebuffer memory buffer usually represented by the
/dev/fb[0-7] device in Linux. Writing to this file writes directly to the framebuffer memory.
Similarly, this file is read to fetch the current framebuffer contents.

5.1.3. mmio file

This file represents the memory-mapped IO memory of the framebuffer device. Userspace
applications can program the MMIO registers by reading or writing to this file. This can be
used to provide hardware acceleration to the framebuffer from the userspace.

5.1.4. fscreeninfo file

Reading from this file retrieves the fixed screen information of the framebuffer graphic device.
The device-specific framebuffer information like device type, visual properties, acceleration
support, the framebuffer memory length and addresses, the length of the scanline in bytes and
the memory-mapped I/O addresses of the device is exported by this file. Fixed information
cannot be changed, thus this file cannot be written to.

5.1.5. vscreeninfo file

Reading from this file fetches the virtual screen information of the framebuffer. This can
be used to determine the display capabilities of the framebuffer, supported resolutions and
color palettes, acceleration flags, bits-per-pixel and the margin and sync lengths among other
information. Any of the virtual screen information can be changed by writing to this file.

5.1.6. cmap file

Get/Put the color palette information.

5.1.7. con2fbmap file

Used to map the console onto the framebuffer device and vice versa.



5.1.8. state file

State of the framebuffer device which is used by v9fbaggr to maintain synchronization between
multiple displays.

Reading and/or writing to a particular file invokes a corresponding framebuffer device-specific
operation which talks to the underlying framebuffer device. This provides an alternative to
using the ioctl system call for device communication and consequently allows the device to be
accessed over the network. This filesystem interface exported by v9fbfs can also be mounted
as a filesystem using V9FS.

$ ./v9fbfs -d
Found framebuffer device /dev/fb0 ...
/dev/fb0 : VESA VGA
Framebuffer device memory from 0xfb000000 to 0xfb600000
Length: 6291456 bytes
Framebuffer MMIO from (nil) to (nil)
Length: 0 bytes
listening on port 8883

By mounting v9fbfs as a filesystem, framebuffer applications can use this interface to draw
to the framebuffer device. With recent support for per-process namespaces in Linux, it allows
each process to have an exclusive view of the framebuffer device.

$ mount -t 9p 192.168.10.1 /mnt/fb -o port=8883, uname=abhishek, debug=511
$ ls /mnt/fb/fb0/
cmap con2fbmap ctl data fscreeninfo state vscreeninfo
$ cat /mnt/fb/fb0/fscreeninfo
VESA VGA
4211081216 6291456
0 0
2
0 0 0
4096
0 0

v9fbfs can handle multiple framebuffer devices (upto 8). Applications drawing on the top of
the framebuffer usually accept a command-line parameter to draw to a different framebuffer
device. Alternatively, the global FRAMEBUFFER environment variable can be set to use a
different framebuffer device.

5.2. v9fbaggr

v9fbaggr is a userspace 9P server and client typically running on a control node. On startup,
v9fbaggr reads a configuration file v9fbaggr.conf which specifies the remote framebuffer devices
that it needs to aggregate and their relative geometry to export a single logical framebuffer
device.

A typical configuration file for a 3x3 tiled display wall is shown below.

tile1=192.168.10.40!8883, tile2=192.168.10.64!8883, tile3=192.168.10.67
tile4=192.168.10.41!8883, tile5=192.168.10.65!8883, tile6=192.168.10.68
tile7=192.168.10.42!8883, tile8=192.168.10.66!8883, tile9=192.168.10.69

Currently, each newline in the configuration file represents a new row in the geometry of the
tiled display wall. Each entry is represented by a nodename followed by its network address
and the port on which the server is listening. Use of a rigid data representation format like
s-expressions might be considered in the future.

v9fbaggr communicates to the framebuffer fileserver v9fbfs running on these machines, fetches
their fixed and variable display information and aggregates the remote display resources to



provide a logical view of the 3x3 tiled display wall as a single unit of display. Since, v9fbaggr
exports an exactly similar interface as that of v9fbfs, application remain transparent of the
underlying multiple display devices spread across the network. Framebuffer operations like
panning the display, turning the display blank, reloading the fileservers are translated such that
they apply to all the remote framebuffer devices aggregated by v9fbaggr. In addition to this,
the commands accepted by the ctl file also takes an additional parameter, the node name, to
which the operation is to be applied.

v9fbaggr implements a memory management unit to translate the virtual address of the ag-
gregated framebuffer to an address of a specific framebuffer device based on the geometry
and layout of the tiled display wall. The virtual aggregated framebuffer provides a contiguous
linear memory to the application using it. Each memory access to this framebuffer is translated
to a 9P read or write to the appropriate framebuffer fileserver. The framebuffer memory of
remote framebuffer devices are represented as segments and mapped onto the virtual aggre-
gated framebuffer exported by v9fbaggr. Memory accesses to this framebuffer pass through a
segment selector which points to the various segment pointers depending on the actual layout
of the framebuffer devices. v9fbaggr allows unmodified applications and programs to be run
on a tiled display wall.

5.3. v9fb kernel module

The v9fb kernel module typically runs on the control node or the head node and creates a
pseudo-framebuffer device which translates framebuffer device operations into corresponding
9P calls. The intended use of this kernel module is to mount the filesystem exported by
v9fbaggr so that it can act as a passthrough framebuffer device to draw transparently to the
tiled display wall. It could also be used to mount a single remote framebuffer device for remote
workstation display applications.

$ modprobe v9fb address=192.168.1.40
$ dmesg | tail -n 2
[118398.958865] v9fb: Enabling remote framebuffer support
[118398.960945] fb1: Remote frame buffer device

$ rmmod v9fb
$ dmesg | tail -n 1
[118401.461253] v9fb: Unmounting remote framebuffer device

The kernel module has been written so that v9fb can support existing framebuffer applications
without having to change them. It translates the device specific ioctl calls into a corresponding
9P call. For instance, to get the virtual screen information of a framebuffer device, the ioctl
call to be used is as follows -

ioctl(fd, FBIOGET_VSCREENINFO, vscr);
/* vscr is a structure to hold the variable screen
information */

The v9fb kernel module translates this into an appropriate 9P operation to read from the
vscreeninfo file as shown below.

<<< (0x8059660) Twalk tag 0 fid 3 newfid 4 nwname 1 ’vscreeninfo’
>>> (0x8059660) Rwalk tag 0 nwqid 1 (0000000000000005 0 ’’)

<<< (0x8059660) Twalk tag 0 fid 4 newfid 5 nwname 0
>>> (0x8059660) Rwalk tag 0 nwqid 0
<<< (0x8059660) Topen tag 0 fid 5 mode 0
>>> (0x8059660) Ropen tag 0 (0000000000000005 0 ’’) iounit 0

<<< (0x8059660) Tread tag 0 fid 5 offset 0 count 8168
>>> (0x8059660) Rread tag 0 count 110 data 31303234 20373638 20313032
34203736 38203020 300a3332 20300a31 36203820 30203820 38203020 30203820



30203234 20382030 0a300a30 0a343239 34393637

<<< (0x8059660) Tclunk tag 0 fid 5
>>> (0x8059660) Rclunk tag 0
<<< (0x8059660) Tclunk tag 0 fid 4
>>> (0x8059660) Rclunk tag 0

This provides a way to serialize and deserialize device-specific framebuffer calls and obtain the
equivalent functionality by marshalling these calls using 9P. Most of the framebuffer ioctl()
calls are only done at the initialization time and once the display has b een setup properly,
majority of the traffic involves reading from and writing to the framebuffer memory. Thus,
multiplexing the reads and writes promises considerable performance gains.

5.4. v9fbmuxfs

v9fbmuxfs is similar to v9fbfs in a way that it exports the framebuffer device interface as
a filesystem. It however divides a single framebuffer device into separate regions exporting
each as a virtual framebuffer device which a client can write to. Simultaneous rendering and
display of a single frame by multiple clients or multiple graphic processing units on a single
client can be done with the help of v9fbmuxfs. A working implementation of v9fbmuxfs has
been completed. It allows several framebuffer applications to simultaneously write to distinct
regions of a single framebuffer under the assumption that the region is a framebuffer device
itself. Several issues about applications contending to control the framebuffer device are yet
to be addressed.

6. Future Work

Several issues still remain to be dealt with to use v9fb in a production visualization environment.
Due to constraints in time, actual performance metrics for driving tiled display walls using v9fb
could not be obtained by the time of this writing. Overall performance can be tuned using
several ways discussed in Section 4. Apart from this, we are working to support the following
features for the v9fb infrastructure.

6.1. Support for input events

Sending keyboard and mouse events over the network forms an integral part of remote display
technologies. Currently, v9fb does not address the forwarding of input events over the network.
Extending v9fb to support input events is trivial and we have started working on it.

6.2. Hardware-accelerated framebuffer

Due to the proprietary binary-only drivers distributed by major graphic card manufacturing
firms like NVIDIA, it has become difficult to use hardware acceleration for the framebuffer.
With several initiatives to revamp the state of graphics in Linux, it would soon be possible
to use the framebuffer or the in-kernel Direct Rendering Manager (DRM) to draw to the
video memory. DirectFB is a thin library which provides hardware graphics acceleration to the
framebuffer. A DirectFB extension to v9fb would allow using hardware acceleration to draw
high-resolution 3D graphics on the framebuffer device.

6.3. Communication between v9fbfs

One of the most common uses of the tiled display wall is to display high-resolution imagery.
Moving and panning of images on the tiled display wall results in resending the pixel data from
the control nodes to all the display nodes. This forms a potential bottleneck at the control
node. Enabling communication between the individual framebuffer fileservers would increase
the performance of interactive applications on the display wall.

7. Conclusion

v9fb provides a novel approach of accessing remote devices over the network in Linux using
concepts and ideas employed by Plan 9 since its inception. Withstanding the several difficulties
posed by the rigid device subsystem in Linux, this scheme could be easily extended to allow
exporting various other devices as a filesystem over the network. v9fb finds various applica-
tions in high performance computing and remote visualization technologies. It offers flexibility
and configurability leading to dynamic architectures in a large-scale modeling and simulation
environment. We are working on several optimizations to this infrastructure to make it capable



enough for use in production environments.

References

[1] Eric Van Hensbergen and Ron Minnich. Grave robbers from outer space: Using 9p2000
under linux. In In Proceedings of Freenix Annual Conference, pages 83–94, 2005.

[2] Don Hopkins. The X-Windows Disaster. UNIX-HATERS Handbook.

[3] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D. Kirchner,
and James T. Klosowski. Chromium: a stream-processing framework for interactive
rendering on clusters. ACM Trans. Graph., 21(3):693–702, 2002.

[4] Latchesar Ionkov. The NPFS project. http://sourceforge.net/projects/npfs.

[5] Ronald Minnich and Andrey Mirtchovski. XCPU: a new, 9p-based, process management
system for clusters and grids. In CLUSTER. IEEE, 2006.

[6] Krishnaprasad Naveen, Vishwanath Venkatram, Chandrasekhar Vaidya, Schwarz Nicholas,
Spale Allan, Zhang Charles, Goldman Gideon, Leigh Jason, and Johnson Andrew. SAGE:
the Scalable Adaptive Graphics Environment.

[7] Brian Paul, Sean Ahern, Wes Bethel, Eric Brugger, Rich Cook, Jamison Daniel, Ken
Lewis, Jens Owen, and Dale Southard. Chromium Renderserver: Scalable and Open
Remote Rendering Infrastructure. IEEE Transactions on Visualization and Computer
Graphics, 14(3):627–639, 2008.

[8] Rob Pike. Rio: Design of a concurrent window system. February 2000.

[9] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard Trickey,
and Phil Winterbottom. Plan 9 from Bell Labs. Computing Systems, 8(3):221–254,
Summer 1995.

[10] Prabhat and Samuel G. Fulcomer. Experiences in driving a cave with IBM scalable
graphics engine-3 (SGE-3) prototypes. In VRST ’05: Proceedings of the ACM symposium
on Virtual reality software and technology, pages 231–234, New York, NY, USA, 2005.
ACM.

[11] Hojun Shim, Naehyuck Chang, and Massoud Pedram. A compressed frame buffer to
reduce display power consumption in mobile systems. In ASP-DAC ’04: Proceedings of
the 2004 conference on Asia South Pacific design automation, pages 818–823, Piscataway,
NJ, USA, 2004. IEEE Press.

[12] Munjae Song. A Survey on Projector-based PC Cluster Distributed Large Screen Displays
and Shader Technologies.

[13] Geert Uytterhoeven. The Linux Frame Buffer Device Subsystem. Linux Expo ’99, 1999.

[14] Bin Wei, Douglas W. Clark, Edward W. Felten, Kai Li, and Gordon Stoll. Performance
issues of a distributed frame buffer on a multicomputer. In HWWS ’98: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 87–96,
New York, NY, USA, 1998. ACM.

[15] S. Jae Yang, Jason Nieh, Matt Selsky, and Nikhil Tiwari. The Performance of Remote
Display Mechanisms for Thin-Client Computing. In In Proceedings of the 2002 USENIX
Annual Technical Conference, 2002.


