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Abstract 

Efficient manipulation of Boolean functions is an important compo- 
nent of many computer-aided design tasks. This paper describes a 
package for manipulating Boolean functions based on the reduced, 
ordered, binary decision diagram (ROBDD) representation. The 
package is based on an efficient implementation of the if-then-else 
(ITE) operator. A hash table is used to maintain a strong carwni- 
cal form in the ROBDD, and memory use is improved by merging 
the hash table and the ROBDD into a hybrid data structure. A 
memory funcfion for the recursive ITE algorithm is implemented 
using a hash-based cache to decrease memory use. Memory 
function efficiency is improved by using rules that detect. when 
equivalent functions are computed. The usefulness of the package 
is enhanced by an automatic and low-cost scheme for rec:ycling 
memory. Experimental results are given to demonstrate why var- 
ious implementation trade-offs were made. These results indicate 
that the package described here is significantly faster and more 
memory-efficient than other ROBDD implementations described in 
the literature. 

1 Introduction 

The efficient representation and manipulation of Boolean functions 
is important for many algorithms in a wide variety of applications. 
In particular, many problems in computer-aided design for digital 
circuits (CAD) can be expressed as a sequence of operations 
performed over a set of Boolean functions. Some exampIes from 
CAD are combinational logic verification [l, 21, sequential-machine 
equivalence [3]. logic optimization of combinational circuits [4]. 
test pattern generation [5], timing verification in the presence of 
false paths [6], and symbolic simulation [7]. 

Hence it is desirable to develop a general-purpose software 
package for manipulating Boolean functions which allows variables 
to be created, and allows standard Boolean operations such as AND, 

OR, and NOT to be performed on functions. The package should 
also allow a function to be tested for tautology - i.e., to determine 
whether the function evaluates to I for all inputs. 

The problem with developing such apackagels that the tautology 
problem is co-NP complete [8]. This implies that all known 
solutions require time which grows exponentially with the number 
of variables in the worst case. However, by developing clever 
representations and efficient manipulation algorithms, it is often 
possible to avoid an exponential computation. 

Many different representations have been proposed for manipu- 
lating Boolean functions and each has a corresponding algorithm 
to test for tautology. However, many of the functions of interest 
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in CAD have an exponential size in the sum-of-:products represen- 
tation [9], and checking tautology in a general Boolean network 
appears to be intractable [lo], making these representations unac- 
ceptable for a general package. 

The representation we have found most useful for manipulating 
Boolean functions is the reduced, ordered, binary-decision diagram 
(ROBDD) [Il. 12. 131. The ROBDD is a canorlical fOm, so the 

tautology test is a constant-time comparison against the unique 
representation of the function 1. While the size of the ROBDD can 

be exponential in the worst case, ROBDD's remain small for many 
of the functions we are interested in. 

We are aware of several computer implementations of ROBDD's, 
but few have been put forward as a reusable package, and fewer still 
have had their performance measured and compared. Our primary 
goal was to develop a generic package interfac:e that would hide 
the details of the package implementation, yet still be efficient in 
computer run-time and memory use. We also wanted to understand 
the various trade-offs possible in an ROBDD package to tailor such 
a package for our applications in CAD. 

2 Programming Techniques 
A hash table associates a value with a key. A hashfunction applied 
to the key selects which of N linked lists the key,value pair is stored. 
The loadfactor of a hash table is defined as cx =: n/N, where n is 
the number of keys stored in the table. 

A memory function for the function F is a table of values 
(z, F(r)) that the function has already computed. If F is called 
with argument 2 again, F(z) is returned without any computation. 

A hash-based cache is a hash table where a collision chain is 
not used to resolve collisions. Instead, at insert time, any existing 
element at the particular array position is discarded and replaced 
with the new entry. At lookup time, if the element does not match 
the stored key, a cache miss occurs and no element is returned. 

A strong canonical form is a form of preconditioning which 
reduces the complexity of an equivalence test between elements in 
a set. A unique id is assigned to each unique element in the set, so 
an equivalence test is a simple scalar test between the unique id’s 
of each element. 

Garbage collection is a class of techniques to periodically free 
unused memory. It is useful when references to the structures being 
freed prevent incremental freeing. The cost of searching for these 
references is amortized over many free operations. 

3 BDD Overview 
3.1 Basic Definitions 

Basic definitions for binary decision diagrams (also known as 
function graphs) are given in [13]. We review some of these 
definitions here for reference. 

Paper 3.1 

40 

27th ACM/IEEE Design Automation Conference@ 

0 1990 IEEE 0738-100X/90/0006/0040 $1 .OO 



A binary decision diagram (BDD) is a directed acyclic graph 
(DAG). The graph has two sink nodes labeled 0 and 1 representing 
the Boolean functions 0 and 1. Each non-sink node is labeled with 
a Boolean variable v and has two out-edges labeled 1 (or then) and 
0 (or else). Each non-sink node represents the Boolean function 
corresponding to its 1 edge if v = 1. or the Boolean function 
corresponding to its 0 edge if v = 0. 

An ordered binary &&ion diagram (OBDD) is a BDD with the 
constraint that the input variables are ordered and every source to 
sink path in the OBDD visits the input variables in ascending order. 

A reduced ordered binary decision diagram (ROBDD) is an OBDD 
where each node represents a distinct logic function. 

Bryant [13] was the first to prove that the ROBDD is well-defined. 
Bryant also showed the ROBDD is a canonical form for a logic 
function; that is, two functions are equivalent if, and only if, the 
ROBDD'S for each function are isomorphic. 

It is well known that the size of the ROBDD for a given function 
depends on the variable order chosen for the function. This paper is 
not concerned with the variable ordering problem. In practice, we 
have found that a simple topological based ordering heuristic, such 
as proposed by Malik et al. [l], is sufficient for many applications 
in CAD. 

4 Implementation 
4.1 Notation 

The sink nodes of the ROBDD are written as 1 and 0. A variable 
is denoted by a lowercase letter, such as v. The variables in the 
ROBDD are totally ordered. We say that v is smaller than w (v < w) 
if v comes before w in the variable order (higher up in the ROBDD). 

At each node F there is a variable v and v is called the fop 
variable of F. The top variable of a set of formulas is the smallest 
of the top variables of those formulas. 

Each node in the ROBDD represents a Boolean function, and is 
written using a capital letter, such as F, and can be denoted by 
the triple (v, G, H), where v is the top variable of F, G is the 
node connected to the I (or then) edge of F, and H is the node 
connected to the 0 (or else) edge of F. A node in the ROBDD which 
represents a function the user is interested in is called a formula. 
Other nodes, which are needed to build a user’s formula, are called 
internal nodes. 

1 F 1 is the number of nodes below F in the ROBDD. 

4.2 ITE Operator 

The If-Then-Else or ITE operator forms the core of the package. 
ITE is a Boolean function defined for three inputs F, G, H which 
computes: If F then G else H. This is equivalent to: 

ite(F,G,W)= F.G+F.H. 

It is well known that the ITE operation can be used to implement 
all two-variable Boolean operations as shown in Figure 1. Aho, 
because ITI% is the logical function performed at each node of the 
ROBDD, it is an efficient building block for many other operations 
on the ROBDD. The programming language function for the ITE 
operator will be written as tie. 

4.3 Unique-Table 

A hash table imposes a strong canonical form on the nodes in the 
ROBDD. so that each node in the ROBDD represents a unique logic 
function. Hence, this hash table is called the unique-table. 

Table 

oool 
0010 
0011 
0100 
0101 
0110 
0111 
loo0 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Name Expression 
0 0 
AND(F,G) F-G 
F>G F-E 
F F 
F<G F.G 
G G 
XOR(F,G) F@G 
OR(F,G) F+G 
NOR(F,G) F+G 
XNOR(F,G) F@G 
NOW3 F 
F>G F+?? 

NO-W) P 
FIG P+G 
NAND(F,G) F-G 
1 1 

The unique-table maps a triple (v, G, H) to an ROBDD node 
F = (v,G,H). Each node in the ROBDD has an entry in the 
unique-table. Before a new node is added to the ROBDD, a lookup 
in the unique-table determines if a node for that function already 
exists. If so, the existing node is used. Otherwise, the new node 
is added to the ROBDD and a new unique-table entry is made. By 
assumption, when we create a new node F, the nodes G and H 
will already obey the strong canonical form. Hence, the function 
F exists in the ROBDD if, and only if, the triple (v, G, H) is already 
in the unique-table, thus maintaining the strong canonical form. 

The unique table allows a single multi-rooted DAG to represent 
all of the user’s formulae simultaneously. 

4.4 Recursive Formulation of ITE 

Shannon’s decomposition theorem states that 

where F, and Fc are F evaluated at v = 1 and v = 0 respectively. 
Let F = (2u, T, E) and assume v < zu. Finding the cofactors of F 
with respect to v is trivial: F. = F (if v < v) or T (if v = w), 
andFT=F(ifv<zo)orE(ifv=zo). 

The following recursive formulation is the key to computing 
ite( F, G, H) for functions F, G, H represented in ROBDD form. 
Let Z = ite(F, G, H) and let v be the top variable of F, G, H. 
Then, 

z = v.z.+5*z= 
= v.(F.G+F.H).++(F.G+F~)~ 
= v.(F,.G. +~,.H.)+~.(F~.G,+~~.H~) 
= ite(v,ite(F., G.,H,),ite(Fc, Gv,H+-)) 
= (v,ite(F+,G,,H,),ite(F~,G;;,HT;)) 

The terminal cases for this recursion are: ite(1, F, G) = 
ite(0, G, F) = ite(F, 1,O) = F. 

We note that this formulation is valid for any Boolean function 
of any number of variables. However, we use the ITE function for 
the reasons mentioned earlier. 

4.5 Memory Function for ITE 

We use a memory function to improve the performance of ife. 
Bryant mentioned the use of a memory function for operations 
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Equivalent form 
0 
ite( F, G, 0) 
ite(F,E,O) 
F 
ite(F,O, G) 
G 
ite(F,c,G) 
ite(F,l,G) 
ite(F,O,c) 
ite(F,G,E) 
ite(G,O, 1) 
ite( F, 1, E) 
ite(F,O, 1) 
ite( F, G, 1) 
ite(F,E, 1) 
1 

Figure 1: All two variable functions described using lTE. 



WF, G, HI{ 
if (terminal case) { 

return result; 
} else if (computed-table has entry (F, G, H}) ( 

return result; 
Ieke{ 

let w be the top variable of {F, G, H}; 
T = ite(F.,G., H.); 
E = ite(F=, G=, H=); 
if T equals E return T, 
R = f ind-ormddvnique-table(v, T, E); 
insert-computed-table((F, G, H), R); 
return R, 

I 
1 

Figure 2: The ire algorithm. 

on an ROBDD [13], and this idea has been used in other imple- 
mentations [14. 151. We call the memory function for ite the 
computed-table. The computed-table maps three nodes F, G, H to 
the result node ite(F, G, H) once this result has been computed. 
Assume for now that the computed-table is implemented using a 
hash table. 

4.6 ITE Algorithm 

Figure 2 shows the outline of the complete ite algorithm. With 
the assumption of constant time lookup and insert in the computed 
and unique-tables, all operations in ite take constant time, Observe 
that ire can be called at most once for each combination of nodes 
in F, G, H, i.e., O(lFI - ]G] - IHI) times. So the time complexity is 
O(l FI - ]Gl - I HI). In practice, the typical performance is closer to 
the size of the resulting function. 

An example of ite is shown in Figure 3. 

5 ROBDD Extensions 
5.1 Complement Edges 

The first extension we consider is introducing complement edges 
into the ROBDD. Akers [16] describes using complement edges 
for hand-generated BDD'S. Both l&plus [15] and Madre [ 171 
formulated sets of rules to guarantee canonical ROBDD's using 
complement edges. Our implementation is similar to these. 

Consider, for example, the ROBDD nodes for G and z which 
are similar except that their sink nodes 0 and 1 are interchanged. 
This similarity can be exploited by using complemenf edges. A 
complement edge is an ordinary edge with an extra bit (complement 
bit) set to indicate that the connected formula is to be interpreted 
as the complement of the ordinary formula. Therefore zf could 
be represented by a complement edge to the node for G. saving 
intermediate nodes. 

In our notation, when we say node F (or formula F), we 
are referring to a node referenced through either an ordinary or 
complement edge and 7 is the same node referenced through the 
other kind of edge. Note that we only need one constant node. We 
chose to keep 1, allowing the function 0 to be represented by a 
complement edge to 1. 

To maintain a canonical form, we must constrain where comple- 
ment edges are used. A dot on an edge indicates it is a complement 
edge. The following 4 pairs of functions are functionally equivalent: 

I = ite(F, G, H) 
= (a, ite( F,, G,, H,), ite( F=, Gr, Hz)) 
= (a,ite(l,C,H),ite(B,O, Ii)) 
= (0, c, (b, ite(Bb,Ob, Hb),ite(Bg,Oi;, Hg))) 
= (a, C, (b, ite(l.,O, l),ite(O,O, D))) 
= (a,C,(hO,D)) 

Figure 3: Example of ite() 

The ROBDD must follow this rule: the then edge of every node 
must be a regular edge. Thus, we always choose the left member 
of each equivalent pair above. This guarantees a canonical form, 
as no function-preserving change to an ROBDD which follows this 
rule can yield a different ROBDD which also follows this rule. 

Therefore G and G are represented by the same node, and 
the complement operation and the identification of complement 
functions takes constant time. Therefore we add another terminal 
case to ire: ite(F,O, 1) = F. Complement edges are realized at 
a negligible processing cost in ite. There is no added memory 
overhead because we use the low bit of each node pointer as the 
complement bi& although a separate bit could be used on a machine 
where this is not allowed. 

For the set of 12 examples presented in Section 6, we find that 
the final DAG is 7% smaller when complement edges are used. 
However, the total run-time needed to form the DAG for these 
examples is decreased by almost a factor of 2. The large decrease 
in run-time is mostly due to the ability of the ROBDD package to 
support a constant-time complement operation. 

5.2 Standard Triples 

For the function and parameters ite(F1, Fz,&) there may exist 
parameters GI, Gz, Gs suchthatite(Fr, F2, FJ) = ite(G1, Gz,G3) 
but Fi # Gi for some i. We definean equivalencerelation on sets of 
three functions Fl , F2, F3 based on the equivalence of the Boolean 
function lTE(Fr , F2, F3). We would like to choose a standard 
triple from each equivalence set where the result of the ite is stored. 
Therefore, on any call to ite(F1, Fz, Fs), the standard arguments 

GI, Gz, Gs are substituted first before any lookup or entries are 
made in the computed-table. This improves the efficiency of the 
computed-table by reducing the storage required in the computed- 
table and eliminating some recomputation which would yield an 
equivalent result. 

Because of the strong canonical form and the use of complement 
edges, it is possible to recognize when two functions are equal or 
the complements of each other in constant time. Using only these 
two queries, we can easily detect when equivalent two-variable 
Boolean functions are computed. For example the following calls 
to ite are all functionally equivalent to F + G: 

ite(F, F, G) = ite(F, 1,G) = ite(G, 1, F) := ite(G,G, F). 

We choose the standard triple from this set as follows. 
following simplifications are applied to the arguments 
where possible: 

First, the 
of the ite 

ite(F,F,G) + ite(F,l,G) 
ite(F, G, F) + ite( F, G, 0) 
ite(F, G, F) =P ite( F, G, 1) 
ite(F,F,G) + ite(F,O,G) 
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As stated previously checking F = G and F = ?f? are constant 
time operations. Next, consider the following equivalent pairs: 

ite( F, I, G) = ite(G, 1, F) 
ite( F, G, 0) = ite(G, F, 0) 
ite(F, G, 1) 

-- 
= ite(G, F, 1) 

ite(F,O,G) = ite(C,O,F) 
ite(F,G,@ = ite(G,F,F) 

To choose the unique element, for example, between ite( F, 1, G) 
and ite(G, 1, F), the first argument of the i:e is given the formula 
with the smallest top variable. In the case of a tie, the formulas are 
ordered based on their unique id (in C, the address of the node). 

At this point, the simplified arguments to tie are F,G,H. 
Complement edges lead to the following equivalences: 

-- --- 
ite(F,G, H) = ite(B,H,G) = ite(F,G,H) = ite(F,H,G) 

A unique triplet is chosen from these four forms according to 
the rule that the first and second arguments to ite should not be 
complement edges. Given arbitrary values for F, G, and H, this 
condition is met by exactly one of the above forms. For the last two 
cases, the computation will yield the complement of the function, 
and then the function will be complemented before it is returned. 

Note that these rules effectively detect equivalences according 
to DeMorgan’s Laws. FOT example. suppose that A and B are both 
regular edges, and we 6rst compute A + B. which will become -- -- 
ite(A, 1, B). If we later compute A . B as ite(A, B, 0). this will 
become ite(A, I, B). The computed table will have the resulr. 
which will only need to be complemented before being returned. 
Likewise, we can dztect when redundant computation is performed, 
for example F + F = ite(F,l,F) = ite(F,l, 1) = 1. Bryant’s 
apply operation, which performs an arbitrary operation on two 
formulae [13], does not recognize these equivalences. 

The complete set of terminal cases for the recursion are: 
ite(F, 1,O) = ite(l, F, G) = ite(0, G, F) = ite(G, F, F) = F 
and ite(F,O, 1) = F. 

5.3 The itexonstant Algorithm 

The ife~onsfantalgorithm. outlined in Figure 4. is amodification of 
ife which returns a result only if it is a constant function; otherwise, 
it returns a failure value. ire~onstant is useful for testing logical 
implication because F 5 G (i.e., F implies G) is the same as 
itexonstati(F, G, 1) = 1. This can be done much more efficiently, 
on average, than computing the result of the ife and checking for a 
constant value because no intermediate nodes are constructed and 
the routine exits as soon as the result is found to be nonconstant. 

5.4 Garbage Collection 

The implementation described here is the first to include automatic 
garbage collection. Each node F has a reference count of the 
number of other nodes that reference it plus the number of user 
formulae that reference it. This count is maintained incrementally. 
References from the unique-table or from computed-table entries 
are not included. A node with areference count of 0 is called dead. 

When a user formula is tieed, the reference count of the corre- 
sponding node F = (v, G, H) is decremented. If the new reference 
count for F is 0. then the reference counts of the nodes G and H are 
recursively decremented. F cannot be freed at this time because 
it may be referenced by computed-table entries. The memory 
overhead of maintaining pointers from F to the elements of the 
computed-table which point to it is excessive, so we choose to use 
garbage collection instead. 

itexomtant(F, G, H){ 
if (trivial case) ( 

return result (0. I or nonronstant); 
) else if (computed-table has entry for (F,G,H)) { 

return non-constant; 
} else { 

let v be the top variable of F, G, H; 
T = ite_constant(F., G,, H.); 
if (T # 1 and T # 0) return non-constant; 
E = ite_constant( FF, Gf, Hr); 
if (E # T) return nonxonstant; 
insert_computed-table({F, G, H}, T); 
return T; 

-. 

Figure 4: The ifexonstanf algorithm. 

If a lookup in the computed-table returns a dead node, a reclaim 
operation is performed. First, the reference count of the node is 
incremented. If it was dead (which is always true at the top level), 
the fhen and else nodes are recursively reclaimed. This brings the 
dead node and any dead nodes under it back into the ROBDD. 

Reference counting is used to keep an accurate count of the the 
number of dead nodes in the DAG. The number of dead nodes 
influences the memory management strategy. If the load factor in 
the unique-table exceeds 4 after an insertion the following check 
is made. If 10% of all nodes are dead, then garbage collection is 
performed. Garbage collection consists of deleting all computed- 
table entries that reference dead nodes and then freeing all dead 
nodes. If there are not enough dead nodes, then the unique-table and 
computed-table are both increased in size and all of the elements 
are re-hashed into the larger tables. Garbage collection is done at 
very low cost during this resize. 

Memory overflow is handled using a similar technique. When 
the memory usage for the unique-table and computed-table exceeds 
a user-specified memory limit, and 10% of the nodes are dead, 
a garbage collection is done to free enough memory to continue. 
Otherwise the package gives up, automatically freeing intermediates 
(T = ite(F.,G., H.) in Figure 2) on its way out of the tie and 
returning the zero pointer to the user. It is up to the user to give up 
OT free unneeded formulae and continue. 

The reference count and variable index share a single word in 
a node and only 8 bits are allocated for the reference count, so 
salurafing increment and decrement operations are used. If the 
count overflows, the node will never be freed. guaranteeing correct 
operation of the package. In practice few nodes (other than the 
constant node) hit a reference count as large as 255. 

These techniques provide effective memory management at a 
very low cost. For the set of 12 examples presented in Section 6. 
on average only 3% of the run-time is spent in garbage collection 
and resizing and 7% in free and reclaim operations. 

5.5 Management of the Computed Table 

Another modification we use is to implement the computed table as 
a hash-basedcache. We call this the caching computed-table. 

A caching computed-table takes advantage of a high locality of 
reference. A computed-table entry is created for every non-trivial 
recursive call to ire. but newer entries overwrite the older ones if 
the hashing function is satisfactory. This decreases the frequency 
of garbage collection which improves the run-time of the package. 
The caching computed-table requires less memory because it is not 
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necessary to link the elements together in a collision chain. Also. 
by controlling the ratio of the number of unique-table entries to the 
number of caching computed-table entries, it is easy to control the 
memory and run-time badeaff for the memory function. 

The use of a caching computed-table introduces the possibility 
of recalculating previous result-s and invalidates our previous time- 
complexity analysis. In fats the worstcase complexity of the ife 
operation is now exponential in the unlikely event that all keys hash 
to the same value. Experimentally, however. we find that the gain 
both in terms of average space and time is enough to wamnt the 
risk of using the cache. 

Note that the computed-table remains valid even across top-level 
calls to tie. Therefore, we initialize the computed-table only once 
when the ROBDD is created rather than at each top level call to ire. 

For the 12 circuits presented in Section 6. the caching computed- 
table requires 16% more recursive calls to tie than the hashing 
computed-tabIe, but the run-time is increased by onIy 6%. The 
caching computed-table causes computation to be repeated for 
some nodes because of a miss in the computed-table; however, the 
hashing computed-table requires more processing for the operations 
of lookup and garbage collection. Because of the lower memory 
overhead. we feel the caching computed-table is the best solution 
for this application. 

Another experiment was performed to measure the effect of 
computed-table lookups which come from old data which happens 
to be left in the table. Approximately 17% more ife recursive steps 
are required if the computed-table is purged at each top-level call 
to ite and the run-time is increased by 22%. Note that not purging 
the cache also avoids the linear time operation of allocating and 
deallocating the cache. 

5.6 Merging the Unique-table and DAG 

Instead of using separatedatashuctures for the unique-table and the 
ROBDD DAG, we combine the unique-table and the ROBDD into a 
single data structure. Each node now has an additional field which 
is the collision chain link in the unique-table. Hence. seemingly 
random elements of the ROBDD are linked together in the collision 
chain which is required for fast lookup of a node in the ROBDD. 
This leads to an improvement in memory usage as well as a small 
decrease in the overhead for memory allocation. 

To analyze the memory usage, we assume that the caching 
computed-table and the merged-DAG unique-table use the same 
number of bins. We find that a load factor of 4 for the unique-table 
provides a reasonable trade-off between the time to find an entry 
in the hash table and the memory overhead per en&y. When the 
load factor is 4, the memory usage is only 22 bytes per node.’ This 
comes from 4 words for each merged-DAG unique-table enby and 
l/4 of a 4 word entry in the compute&table (on average per node). 
The hash-table bin overhead adds an extra 2 bytes per entry (on 
average). Note that this is the amortized cost per node for the entire 
ROBDD package and not just the ROBDD itself. This memory usage 
has been verified experimentally. 

6 Experimental Results 
6.1 Forming the BDD for Digital Circuits 

The first data we present is the run-time and memory requirements 
for converting the combinational portion of several large digital 
circuits into the ROBDD representation. These circuits are standard 

‘We assume a 32-bit machine. 
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Tircuit #in #outFixed Order 1 vtiable=l Size CPU 
(nodes) (sec.) 

c432 36 7 30,200 79.5 
C499 41 32 49,786 85.0 
C880 60 26 7,655 10.5 
C13S5 41 32 39.858 80.4 
Cl908 33 25 12,463 28.9 
C2670 233 140 unable 
c3540 50 22 2208.947 704.0 
C5315 178 123 32,193 51.0 
C6288 32 32 unable 
C7552 207 108 unable 
des 256 245 7,128 29.9 
rot 135 107 7,405 8.0 

Size CPU 
(nodes) (sec.) -- 

18,153 60.4 

unable 
5,895 60.5 

Table 1: ROBDD Results for large digital circuits. 

benchmarks available in the public domain [ 181 and they are known 
to have large sum-of-products representations. 

First, each combinational network was converted into an 
unbounded-fanin NOR representation. Then the primary inputs 
to the combinational logic were ordered using the topological or- 
dering heuristic given in [l]. An attempt W~JLI; made to create the 
ROBDD for each output function using the same variable ordering 
for all outputs. A limit of 2 megabytes (Mb:) was placed on the 
memory usage of the ROBDD package. A hash-based cache was 
used for the computed-table, and a load factor of 4 was used for the 
unique-table. The ratio of the number of bins in the computed-table 
to the number of bins in the unique-table was 1. The data is 
presented in Table 1. 

The CPU time is given in seconds on a Sun 3/60 with 8 Mb of 
memory. Shown in the table are the results for both a fixed input 
order (where one input variable ordering is ,used for all outputs 
simultaneously) and a variable input order (where different input 
orderings are used for each output). Example C3540 required 12 
Mb to complete; the rest finished within the 2 Mb limit For 
C2670, C6288, and C75.52, we were unable to form the ROBDD 
for all outputs using a fixed input order. Example C6288 is a 32- 
bit multiplier for which it has been proven that the ROBDD always 
requires exponential size for some output [13] even for the optimum 
input ordering. We were able to form the ROBDD for only the first 
12 outputs of this example with a 12 Mb memory limit placed on 
the package. 

The results presented here are more than ten times faster than 
the times than reported in [l. 21. even when accounting for the 
difference in the machines.’ This improvement comes only from 
the implementation of the ROBDD package as described here; the 
variable orders, although probably not identical, were created using 
similar algorithms. 

6.2 Implication-Set Results 

The F-sets of a digital circuit are defined as [ 93: 

Fij(S) = {ZIS = i * 2 = j} 

'Required 12mBtocomplcte. 
‘For example, C432 required between 529 and I.423 seconds on a Sun 

3R60 in [2] and a between 530 and 1232 seconds on a DEC VAX 8650 in 
[l] (forming each BDD twice) depending on the program options used. If 
we assume a ratio of 4:3 for Sun 3R60 to Sun 3/6O. and a ratio of 2:l for 
DEC VAX 8650 to Sun 3/60, the run-time ratios arc: in the range g-22 and 
6-14 respectively. Other examples show larger differences. 



1 Example 1 Cl0 size 1 FlOsize 1 CPU ) 
I I (se4 

C432 1 2,470 1 2,534 1 168 
c499 2.753 2,753 816 
C880 2,900 2,916 81 
Cl355 20,530 20,530 1.425 
Cl908 15,178 15,332 477 
c5315 41,742 43,130 1.020 
rot 1 7,943 1 10,175 1 177 

Table 2: F-set computation results. 

That is, fox example, tbe Fro-set of a signal s is the set of other 
signals z in the network such that J = 1 implies z = 0. Trevillyan 
and Berman show how to use the F-sets and subsets of the F-sets 
(called C-sets) in a logic optimization algorithm. 

A trivial algorithm to compute the F-sets is to check if s 5 Z 
for all pairs of signals 8 and 2 in the circuit. This check is done 
using the ite~onskznt algorithm described earlier. Table 2 shows 
the results of forming the F-set for each example from the previous 
section. Shown in the table is the total size of the &-set and Fro- 
set for each example. Note that we are unable to form the F-sets 
for C2670, C3540, C6288, and C7552 because we are unable to 
simultaneously create the ROBDD for every node in these networks. 

The surprising conclusion is that the C-set is a substantial 
percentage of the F-set for most circuits. Also, we were able to 
compute the F-sets for many of these large circuits. 

7 Conclusions 
This paper has presented an efficient implementation of a package 
for manipulating Boolean functions represented as ROBDDS. This 
implementation is substantially faster than straightforward imple- 
mentations of the original algorithms reported in [13]. The use 
of the caching computed-table, and other improvements such as 
merging the unique-table and ROBDD. lead to a version of the 
ROBDD package which is faster and much more memory efficient 
than versions implemented at CMU, for which experimental results 
have not been reported. 

The amortized cost for all memory used by the package is 
approximately 22 bytes per node, which is substantially below that 
reported for similar packages. The run-time on a set of standard 
circuits shows the superiority of this implementation compared to 
similar packages. We have presented data for computing the F-sets 
in a circuit, and are the tirst to show that the C-set approximation 
for the F-sets appears to be quite good. 
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