Distributed by:
JAMECO

www.Jameco.com \downarrow 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

LMV821 Single/ LMV822 Dual/ LMV824 Quad Low Voltage, Low Power, R-to-R Output, 5 MHz Op Amps

General Description

The LMV821/LMV822/LMV824 bring performance and economy to low voltage / low power systems. With a 5 MHz unity-gain frequency and a guaranteed $1.4 \mathrm{~V} / \mathrm{hs}$ slew rate, the quiescent current is only $220 \mu \mathrm{~A}$ /amplifier (2.7 V). They provide rail-to-rail (R-to-R) output swing into heavy loads (600Ω Guarantees). The input common-mode voltage range includes ground, and the maximum input offset voltage is 3.5 mV (Guaranteed). They are also capable of comfortably driving large capacitive loads (refer to the application notes section).
The LMV821 (single) is available in the ultra tiny SC70-5 package, which is about half the size of the previous title holder, the SOT23-5.
Overall, the LMV821/LMV822/LMV824 (Single/Dual/Quad) are low voltage, low power, performance op amps, that can be designed into a wide range of applications, at an economical price.

Features

(For Typical, 5 V Supply Values; Unless Otherwise Noted)
■ Ultra Tiny, SC70-5 Package $\quad 2.0 \times 2.0 \times 1.0 \mathrm{~mm}$

- Guaranteed $2.5 \mathrm{~V}, 2.7 \mathrm{~V}$ and 5 V Performance

Telephone-line Transceiver for a PCMCIA Modem Card

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Machine Model	100 V
Human Body Model	
LMV822/824	2000 V
LMV821	1500 V
Differential Input Voltage	\pm Supply Voltage
Supply Voltage (V ${ }^{+}$- ${ }^{-}$)	5.5 V
Output Short Circuit to V^{+}(Note 3)	
Output Short Circuit to V^{-}(Note 3)	
Soldering Information	$235^{\circ} \mathrm{C}$
\quad Infrared or Convection (20 sec)	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature Range	$150^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Supply Voltage	2.5 V to 5.5 V
Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 85^{\circ} \mathrm{C}$

Thermal Resistance (θ JA)	
Ultra Tiny SC70-5 Package, 5-Pin	
Surface Mount	$440{ }^{\circ} \mathrm{C} / \mathrm{W}$
Tiny SOT23-5 Package, 5-Pin	
Surface Mount	$265{ }^{\circ} \mathrm{C} / \mathrm{W}$
SO Package, 8-Pin Surface Mount	$190{ }^{\circ} \mathrm{C} / \mathrm{W}$
MSOP Package, 8-Pin Mini	
Surface Mount	$235{ }^{\circ} \mathrm{C} / \mathrm{W}$
SO Package, 14-Pin Surface	
Mount	$145{ }^{\circ} \mathrm{C} / \mathrm{W}$
TSSOP Package, 14-Pin	$155{ }^{\circ} \mathrm{C} / \mathrm{W}$

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMV821/822/824 Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1	$\begin{gathered} 3.5 \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
$\mathrm{TCV}_{\text {Os }}$	Input Offset Voltage Average Drift		1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		30	$\begin{gathered} 90 \\ 140 \end{gathered}$	nA \max
l_{OS}	Input Offset Current		0.5	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \max \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 1.7 \mathrm{~V}$	85	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 4 \mathrm{~V}, \mathrm{~V}^{-}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \\ & \mathrm{OV}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	85	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & -1.0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-3.3 \mathrm{~V}, \mathrm{~V}^{+}=1.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	85	$\begin{aligned} & 73 \\ & 70 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.3	-0.2	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			2.0	1.9	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	Sourcing, $R_{L}=600 \Omega$ to 1.35 V , $\mathrm{V}_{\mathrm{O}}=1.35 \mathrm{~V}$ to 2.2 V Sinking, $R_{L}=600 \Omega$ to 1.35 V , $\mathrm{V}_{\mathrm{O}}=1.35 \mathrm{~V} \text { to } 0.5 \mathrm{~V}$	100	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
			90	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		Sourcing, $R_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 1.35 V , $\mathrm{V}_{\mathrm{O}}=1.35 \mathrm{~V}$ to 2.2 V Sinking, $R_{L}=2 k \Omega$ to $1.35, \mathrm{~V}_{\mathrm{O}}=$ 1.35 to 0.5 V	100	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
			95	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$

2.7V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.
Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	Typ (Note 5)	LMV821/822/824 Limit (Note 6)	Units
V_{0}	Output Swing	$\mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega$ to 1.35 V	2.58	$\begin{aligned} & 2.50 \\ & 2.40 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.13	$\begin{aligned} & 0.20 \\ & 0.30 \end{aligned}$	V max
		$\mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 1.35 V	2.66	$\begin{aligned} & 2.60 \\ & 2.50 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.08	$\begin{aligned} & 0.120 \\ & 0.200 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
I_{0}	Output Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$	16	12	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			26	12	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
I_{S}	Supply Current	LMV821 (Single) LMV822 (Dual)	0.22	$\begin{aligned} & 0.3 \\ & 0.5 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \max \end{gathered}$
			0.45	$\begin{aligned} & 0.6 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$
		LMV824 (Quad)	0.72	$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$

2.5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.25 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	LMV821/822/824 Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1	$\begin{gathered} 3.5 \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
V_{\circ}	Output Swing	$\mathrm{V}^{+}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega$ to 1.25 V	2.37	$\begin{aligned} & 2.30 \\ & 2.20 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.13	$\begin{aligned} & 0.20 \\ & 0.30 \end{aligned}$	V max
		$\mathrm{V}^{+}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 1.25 V	2.46	$\begin{aligned} & 2.40 \\ & 2.30 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.08	$\begin{aligned} & 0.12 \\ & 0.20 \end{aligned}$	V max

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.
Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ $($ Note 5)	LMV821/822/824 Limit (Note 6)	Units
SR	Slew Rate	(Note 7)	1.5		$\mathrm{~V} / \mathrm{\mu s}$
GBW	Gain-Bandwdth Product		5		MHz
Φ_{m}	Phase Margin		61		Deg.
G_{m}	Gain Margin		10		dB
	Amp-to-Amp Isolation	(Note 8)	135		dB
e_{n}	Input-Related Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}$	28		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$

2.7V AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMV821/822/824 Limit (Note 6)	Units
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.1		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
THD	Total Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{V}=-2$, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=4.1 \mathrm{~V} \mathrm{PP}$	0.01		$\%$

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMV821/822/824 Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\overline{\mathrm{TCV}}$ Os	Input Offset Voltage Average Drift		1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		40	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	$\begin{gathered} \mathrm{nA} \\ \max \end{gathered}$
los	Input Offset Current		0.5	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \max \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 4.0 \mathrm{~V}$	90	$\begin{aligned} & 72 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 4 \mathrm{~V}, \mathrm{~V}^{-}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \\ & 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	85	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & -1.0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-3.3 \mathrm{~V}, \mathrm{~V}^{+}=1.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	85	$\begin{aligned} & 73 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{CM}$	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.3	-0.2	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			4.3	4.2	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	Sourcing, $\mathrm{R}_{\mathrm{L}}=600 \Omega$ to 2.5 V , $\mathrm{V}_{\mathrm{O}}=2.5$ to 4.5 V Sinking, $R_{L}=600 \Omega$ to $2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}$ $=2.5$ to 0.5 V	105	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
			105	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		$\begin{aligned} & \text { Sourcing, } R_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}} \\ & =2.5 \text { to } 4.5 \mathrm{~V} \\ & \text { Sinking, } \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5, \mathrm{~V}_{\mathrm{O}}= \\ & 2.5 \text { to } 0.5 \mathrm{~V} \end{aligned}$	105	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
			105	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
V_{\circ}	Output Swing	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega$ to 2.5 V	4.84	$\begin{aligned} & 4.75 \\ & 4.70 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.17	$\begin{gathered} 0.250 \\ .30 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 2.5 V	4.90	$\begin{aligned} & 4.85 \\ & 4.80 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.10	$\begin{aligned} & 0.15 \\ & 0.20 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$

5V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMV821/822/824 Limit (Note 6)	Units
l_{0}	Output Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	45	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			40	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
$\mathrm{I}_{\text {S }}$	Supply Current	LMV821 (Single)	0.30	$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$
		LMV822 (Dual)	0.5	$\begin{aligned} & 0.7 \\ & 0.9 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{max} \end{aligned}$
		LMV824 (Quad)	1.0	$\begin{aligned} & 1.3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMV821/822/824 Limit (Note 6)	Units
SR	Slew Rate	(Note 7)	2.0	1.4	$\mathrm{V} / \mathrm{\mu s}$ min
GBW	Gain-Bandwdth Product		5.6		MHz
Φ_{m}	Phase Margin		67		Deg.
G_{m}	Gain Margin		15		dB
	Amp-to-Amp Isolation	(Note 8)	135		dB
e_{n}	Input-Related Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}$	24		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.25		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-2, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=4.1 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	0.01		\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series wth 100 pF . Machine model, 200Ω in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°. Output currents in excess of 45 mA over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\max)}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=5 \mathrm{~V}$. Connected as voltage follower with 3 V step input. Number specified is the slower of the positive and negative slew rates.
Note 8: Input referred, $\mathrm{V}^{+}=5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 2.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}_{\mathrm{PP}}$.

LMV821 Single/ LMV822 Dual/ LMV824 Quad

Typical Performance Characteristics

Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, single supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Supply Current vs. Supply Voltage (LMV821)

Sourcing Current vs. Output Voltage ($\mathrm{V}_{\mathrm{S}}=\mathbf{2 . 7 V}$)

10012803
Sinking Current vs. Output Voltage ($\mathrm{V}_{\mathbf{S}}=\mathbf{2 . 7 V}$)

10012802
Sourcing Current vs Output Voltage ($\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$)

10012804
Sinking Current vs. Output Voltage ($\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}$)

Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{s}}=+5 \mathrm{~V}$, single supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Output Voltage Swing vs. Supply Voltage ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$)

10012807
Output Voltage Swing vs. Supply Voltage ($\mathrm{R}_{\mathrm{L}}=600 \Omega$)

Input Voltage Noise vs. Frequency

Output Voltage Swing vs. Supply Voltage ($\mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$)

10012886
Output Voltage Swing vs. Load Resistance

Input Current Noise vs. Frequency

LMV821 Single/ LMV822 Dual/ LMV824 Quad
Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{s}}=+5 \mathrm{~V}$, single supply,
$T_{A}=25^{\circ} \mathrm{C}$. (Continued)

10012810

10012809

FREQUENCY
10012847
Gain and Phase Margin vs. Frequency ($\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, 2 \mathrm{k} \Omega, 600 \Omega$) 2.7 V

Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{s}}=+5 \mathrm{~V}$, single supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Gain and Phase Margin vs. Frequency ($\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, 2 \mathrm{k} \Omega, 600 \Omega$) 5 V

Gain and Phase Margin vs. Frequency (Temp. $=25,-40,8{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$) 5 V

Gain and Phase Margin vs. Frequency $\left(C_{L}=100 \mathrm{pF}, 200 \mathrm{pF}, 0 \mathrm{pF} \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right) 5 \mathrm{~V}$

Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{s}}=+5 \mathrm{~V}$, single supply, $T_{A}=25^{\circ} \mathrm{C}$. (Continued)

Non-Inverting Large Signal Pulse Response

$1 \mu \mathrm{~s} / \mathrm{Div}$
10012821
Inverting Large Signal Pulse Response

10012862
Non-Inverting Small Signal Pulse Response

$0.5 \mu \mathrm{~s} / \mathrm{Div}$
10012824
Inverting Small Signal Pulse Response

Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{s}}=+5 \mathrm{~V}$, single supply,
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Application Note

This application note is divided into two sections: design considerations and Application Circuits.

DESIGN CONSIDERATIONS

This section covers the following design considerations:

1. Frequency and Phase Response Considerations
2. Unity-Gain Pulse Response Considerations
3. Input Bias Current Considerations

FREQUENCY AND PHASE RESPONSE CONSIDERATIONS

The relationship between open-loop frequency response and open-loop phase response determines the closed-loop stability performance (negative feedback). The open-loop phase response causes the feedback signal to shift towards becoming positive feedback, thus becoming unstable. The further the output phase angle is from the input phase angle, the more stable the negative feedback will operate. Phase Margin (ϕ_{m}) specifies this output-to-input phase relationship at the unity-gain crossover point. Zero degrees of phasemargin means that the input and output are completely in phase with each other and will sustain oscillation at the unity-gain frequency.
The AC tables show ϕ_{m} for a no load condition. But ϕ_{m} changes with load. The Gain and Phase margin vs Frequency plots in the curve section can be used to graphically determine the ϕ_{m} for various loaded conditions. To do this, examine the phase angle portion of the plot, find the phase margin point at the unity-gain frequency, and determine how far this point is from zero degree of phase-margin. The larger the phase-margin, the more stable the circuit operation.
The bandwidth is also affected by load. The graphs of Figure 1 and Figure 2 provide a quick look at how various loads affect the ϕ_{m} and the bandwidth of the LMV821/822/824 family. These graphs show capacitive loads reducing both ϕ_{m} and bandwidth, while resistive loads reduce the bandwidth but increase the ϕ_{m}. Notice how a 600Ω resistor can be
added in parallel with 220 picofarads capacitance, to increase the $\phi_{\mathrm{m}} 20^{\circ}$ (approx.), but at the price of about a 100 kHz of bandwidth.
Overall, the LMV821/822/824 family provides good stability for loaded condition.

FIGURE 1. Phase Margin vs Common Mode Voltage for Various Loads

Application Note (Continued)

FIGURE 2. Unity-Gain Frequency vs Common Mode Voltage for Various Loads

UNITY GAIN PULSE RESPONSE CONSIDERATION

A pull-up resistor is well suited for increasing unity-gain, pulse response stability. For example, a 600Ω pull-up resistor reduces the overshoot voltage by about 50%, when driving a 220 pF load. Figure 3 shows how to implement the pull-up resistor for more pulse response stability.

FIGURE 3. Using a Pull-up Resistor at the Output for Stabilizing Capacitive Loads

Higher capacitances can be driven by decreasing the value of the pull-up resistor, but its value shouldn't be reduced beyond the sinking capability of the part. An alternate approach is to use an isolation resistor as illustrated in Figure 4

Figure 5 shows the resulting pulse response from a LMV824, while driving a $10,000 \mathrm{pF}$ load through a 20Ω isolation resistor.

FIGURE 4. Using an Isolation Resistor to Drive Heavy Capacitive Loads

FIGURE 5. Pulse Response per Figure 4

INPUT BIAS CURRENT CONSIDERATION

Input bias current (I_{B}) can develop a somewhat significant offset voltage. This offset is primarily due to I_{B} flowing through the negative feedback resistor, R_{F}. For example, if I_{B} is 90 nA (max @ room) and R_{F} is $100 \mathrm{k} \Omega$, then an offset of 9 mV will be developed ($\mathrm{V}_{\mathrm{OS}}=I_{\mathrm{B}} \times \mathrm{R}_{\mathrm{F}}$). Using a compensation resistor $\left(\mathrm{R}_{\mathrm{C}}\right)$, as shown in Figure 6, cancels out this affect. But the input offset current (los) will still contribute to an offset voltage in the same manner - typically 0.05 mV at room temp.

(a)

10012859
FIGURE 6. Canceling the Voltage Offset Effect of Input Bias Current

APPLICATION CIRCUITS

This section covers the following application circuits:

1. Telephone-Line Transceiver
2. "Simple" Mixer (Amplitude Modulator)

Application Note (Continued)

3. Dual Amplifier Active Filters (DAAFs)

- a. Low-Pass Filter (LPF)
- b. High-Pass Filter (HPF)

4. Tri-level Voltage Detector

TELEPHONE-LINE TRANSCEIVER

The telephone-line transceiver of Figure 7 provides a fullduplexed connection through a PCMCIA, miniature transformer. The differential configuration of receiver portion (UR), cancels reception from the transmitter portion (UT). Note that the input signals for the differential configuration of UR, are the transmit voltage $\left(\mathrm{V}_{T}\right)$ and $\mathrm{V}_{T} / 2$. This is because $R_{\text {match }}$ is chosen to match the coupled telephone-line impedance; therefore dividing V_{T} by two (assuming R1 >> $\mathrm{R}_{\text {match }}$). The differential configuration of UR has its resistors chosen to cancel the V_{T} and $\mathrm{V}_{\mathrm{T}} / 2$ inputs according to the following equation:

$$
V_{0}=V_{T}\left(\frac{R_{4}}{R_{3}+R_{4}}\right)\left(1+\frac{R_{2}}{R_{1}}\right)-\frac{V_{T}}{2}\left(\frac{R_{2}}{R_{1}}\right)=V_{T} \frac{1}{3}(3)-\frac{V_{T}}{2}(2)=0
$$

FIGURE 7. Telephone-line Transceiver for a PCMCIA Modem Card

Note that Cr is included for canceling out the inadequacies of the lossy, miniature transformer. Refer to application note AN-397 for detailed explanation.

"SIMPLE" MIXER (AMPLITUDE MODULATOR)

The mixer of Figure 8 is simple and provides a unique form of amplitude modulation. Vi is the modulation frequency $\left(F_{M}\right)$, while $a+3 V$ square-wave at the gate of Q 1 , induces a carrier frequency (F_{C}). Q1 switches (toggles) U1 between inverting and non-inverting unity gain configurations. Offsetting a sine wave above ground at Vi results in the oscilloscope photo of Figure 9.
The simple mixer can be applied to applications that utilize the Doppler Effect to measure the velocity of an object. The difference frequency is one of its output frequency components. This difference frequency magnitude ($/ \mathrm{F}_{\mathrm{M}}-\mathrm{F}_{\mathrm{C}} /$) is the key factor for determining an object's velocity per the Doppler Effect. If a signal is transmitted to a moving object, the reflected frequency will be a different frequency. This difference in transmit and receive frequency is directly proportional to an object's velocity.

FIGURE 8. Amplitude Modulator Circuit

FIGURE 9. Output signal per the Circuit of Figure 8

DUAL AMPLIFIER ACTIVE FILTERS (DAAFs)

The LMV822/24 bring economy and performance to DAAFs. The low-pass and the high-pass filters of Figure 10 and Figure 11 (respectively), offer one key feature: excellent sensitivity performance. Good sensitivity is when deviations in component values cause relatively small deviations in a filter's parameter such as cutoff frequency (Fc). Single amplifier active filters like the Sallen-Key provide relatively poor sensitivity performance that sometimes cause problems for high production runs; their parameters are much more likely to deviate out of specification than a DAAF would. The DAAFs of Figure 10 and Figure 11 are well suited for high volume production.

Application Note (Continued)

FIGURE 10. Dual Amplifier, 3 kHz Low-Pass Active Filter with a Butterworth Response and a Pass Band Gain of Times Two

FIGURE 11. Dual Amplifier, 300 Hz High-Pass Active Filter with a Butterworth Response and a Pass Band Gain of Times Two

Table 1 provides sensitivity measurements for a $10 \mathrm{M} \Omega$ load condition. The left column shows the passive components for the 3 kHz low-pass DAAF. The third column shows the components for the 300 Hz high-pass DAAF. Their respective sensitivity measurements are shown to the right of each component column. Their values consists of the percent change in cutoff frequency (Fc) divided by the percent change in component value. The lower the sensitivity value, the better the performance.
Each resistor value was changed by about 10 percent, and this measured change was divided into the measured change in Fc. A positive or negative sign in front of the measured value, represents the direction Fc changes relative to components' direction of change. For example, a sensitivity value of negative 1.2 , means that for a 1 percent increase in component value, Fc decreases by 1.2 percent.

Note that this information provides insight on how to fine tune the cutoff frequency, if necessary. It should be also noted that R_{4} and R_{5} of each circuit also caused variations in the pass band gain. Increasing R_{4} by ten percent, increased the gain by 0.4 dB , while increasing R_{5} by ten percent, decreased the gain by 0.4 dB .

TABLE 1.

Component (LPF)	Sensitivity (LPF)	Component (HPF)	Sensitivity (HPF)
R_{a}	-1.2	C_{a}	-0.7
C_{1}	-0.1	R_{b}	-1.0
R_{2}	-1.1	R_{1}	+0.1
R_{3}	+0.7	C_{2}	-0.1
C_{3}	-1.5	R_{3}	+0.1
R_{4}	-0.6	R_{4}	-0.1
R_{5}	+0.6	R_{5}	+0.1

Active filters are also sensitive to an op amp's parameters -Gain and Bandwidth, in particular. The LMV822/24 provide a large gain and wide bandwidth. And DAAFs make excellent use of these feature specifications.
Single Amplifier versions require a large open-loop to closed-loop gain ratio - approximately 50 to 1 , at the Fc of the filter response. Figure 12 shows an impressive photograph of a network analyzer measurement (hp3577A). The measurement was taken from a 300 kHz version of Figure 10. At 300 kHz , the open-loop to closed-loop gain ratio @ Fc is about 5 to 1 . This is 10 times lower than the 50 to 1 "rule of thumb" for Single Amplifier Active Filters.

FIGURE 12. 300 kHz, Low-Pass Filter, Butterworth Response as Measured by the HP3577A Network Analyzer

In addition to performance, DAAFs are relatively easy to design and implement. The design equations for the lowpass and high-pass DAAFs are shown below. The first two equation calculate the Fc and the circuit Quality Factor (Q) for the LPF (Figure 10). The second two equations calculate the Fc and Q for the HPF (Figure 11).

Application Note

(Continued)

$$
\begin{equation*}
F_{C}=\frac{\sqrt{R_{5}}}{2 \pi \sqrt{R_{a}} \cdot \sqrt{R_{2}} \cdot \sqrt{R_{4}} \cdot \sqrt{C_{1}} \cdot \sqrt{C_{3}}} \tag{LPF}
\end{equation*}
$$

$$
Q=2 \pi F_{C} \sqrt{C_{1}} \cdot \sqrt{C_{3}}
$$

(HPF)

$$
\begin{aligned}
F_{C} & =\frac{\sqrt{R_{4}}}{2 \pi \sqrt{R_{1}} \cdot \sqrt{R_{3}} \cdot \sqrt{R_{5}} \cdot \sqrt{C_{a}} \cdot \sqrt{C_{2}}} \\
Q & =2 \pi F_{C} \sqrt{C_{a}} \cdot \sqrt{C_{2}}
\end{aligned}
$$

To simplify the design process, certain components are set equal to each other. Refer to Figure 10 and Figure 11. These equal component values help to simplify the design equations as follows:

$$
\begin{aligned}
\text { (LPF) } \quad R_{a}=R_{2} & =\frac{1}{2 \pi F_{c} \sqrt{C_{1}} \cdot \sqrt{C_{3}}} \\
R_{3} & =\frac{Q}{2 \pi F_{c} \sqrt{C_{1}} \cdot \sqrt{C_{3}}} \\
\text { (HPF) } \quad R_{1}=R_{3} & =\frac{1}{2 \pi F_{c} \sqrt{C_{a}} \cdot \sqrt{C_{2}}} \\
R_{b} & =\frac{Q}{2 \pi F_{c} \sqrt{C_{a}} \cdot \sqrt{C_{2}}}
\end{aligned}
$$

To illustrate the design process/implementation, a 3 kHz , Butterworth response, low-pass filter DAAF (Figure 10) is designed as follows:

1. Choose $\mathrm{C}_{1}=\mathrm{C}_{3}=\mathrm{C}=1 \mathrm{nF}$
2. Choose $R_{4}=R_{5}=1 \mathrm{k} \Omega$
3. Calculate R_{a} and R_{2} for the desired Fc as follows:

$$
\begin{aligned}
R_{\mathrm{a}}=R_{2} & =\frac{1}{2 \pi\left(F_{\mathrm{C}}\right) \mathrm{C}} \\
& =\frac{1}{2 \pi(3 \mathrm{kHz}) 1 \mathrm{nF}} \\
& =53.1 \mathrm{k} \Omega \\
& \cong 53.6 \mathrm{k} \Omega \text { (Practical Value) }
\end{aligned}
$$

4. Calculate R_{3} for the desired Q. The desired Q for a Butterworth (Maximally Flat) response is 0.707 (45 degrees into the s-plane). R_{3} calculates as follows:

$$
\begin{aligned}
R_{3} & =\frac{Q}{2 \pi\left(F_{C}\right) C} \\
& =\frac{0.707}{2 \pi(3 \mathrm{kHz}) 1 \mathrm{nF}} \\
& =37.5 \mathrm{k} \Omega \\
& \cong 37.4 \mathrm{k} \Omega \text { (Practical Value) }
\end{aligned}
$$

Notice that R_{3} could also be calculated as 0.707 of R_{a} or R_{2}. The circuit was implemented and its cutoff frequency measured. The cutoff frequency measured at 2.92 kHz .
The circuit also showed good repeatability. Ten different LMV822 samples were placed in the circuit. The corresponding change in the cutoff frequency was less than a percent.

TRI-LEVEL VOLTAGE DETECTOR

The tri-level voltage detector of Figure 13 provides a type of window comparator function. It detects three different input voltage ranges: Min-range, Mid-range, and Max-range. The output voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ is at V_{Cc} for the Min-range. V_{O} is clamped at GND for the Mid-range. For the Max-range, V_{O} is at V_{ee}. Figure 14 shows a V_{O} vs. V_{1} oscilloscope photo per the circuit of Figure 13.
Its operation is as follows: V_{1} deviating from GND, causes the diode bridge to absorb I_{IN} to maintain a clamped condition $\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right)$. Eventually, I_{IN} reaches the bias limit of the diode bridge. When this limit is reached, the clamping effect stops and the op amp responds open loop. The design equation directly preceding Figure 14, shows how to determine the clamping range. The equation solves for the input voltage band on each side GND. The mid-range is twice this voltage band.

$$
\Delta V=\frac{R}{R_{1}}\left(V_{C C}-V_{\text {Diode }}\right)
$$

Application Note (Continued)

FIGURE 13. Tri-level Voltage Detector

FIGURE 14. X, Y Oscilloscope Trace showing $\mathrm{V}_{\text {Out }}$ vs $\mathrm{V}_{\text {IN }}$ per the Circuit of Figure 13

Connection Diagrams

Ordering Information

Package	Temperature Range	Packaging Marking	Transport Media	NSC Drawing
	$\begin{gathered} \text { Industrial } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			
5-Pin SC-70-5	LMV821M7	A15	1k Units Tape and Reel	MAA05
	LMV821M7X		3k Units Tape and Reel	
5-Pin SOT23-5	LMV821M5	A14	1k UnitsTape and Reel	MF05A
	LMV821M5X		3k Units Tape and Reel	
8-Pin SOIC	LMV822M	LMV822M	Rails	M08A
	LMV822MX		2.5k Units Tape and Reel	
8-Pin MSOP	LMV822MM	LMV822	1k Units Tape and Reel	MUA08A
	LMV822MMX		3.5k Units Tape and Reel	
14-Pin SOIC	LMV824M	LMV824M	Rails	M14A
	LMV824MX		2.5k Units Tape and Reel	
14-Pin TSSOP	LMV824MT	LMV824MT	Rails	MTC14
	LMV824MTX		2.5k Units Tape and Reel	

SC70-5 Tape and Reel Specification

SOT-23-5 Tape and Reel Specification

Tape Format

Tape Section	\# Cavities	Cavity Status	Cover Tape Status
Leader	$0(\mathrm{~min})$	Empty	Sealed
$($ Start End $)$	$75(\mathrm{~min})$	Empty	Sealed
Carrier	3000	Filled	Sealed
	250	Filled	Sealed
Trailer			
(Hub End)	$125(\mathrm{~min})$	Empty	Sealed
	$0(\mathrm{~min})$	Empty	Sealed

Tape Dimensions

8 mm	0.130	0.124	0.130	0.126	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012
	(3.3)	(3.15)	(3.3)	(3.2)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)
Tape Size	DIM A	DIM Ao	DIM B	DIM Bo	DIM F	DIM Ko	DIM P1	DIM W

Reel Dimensions

8 mm	7.00	0.059	0.512	0.795	2.165	$0.331+0.059 /-0.000$	0.567	$\mathrm{~W} 1+0.078 /-0.039$
	330.00	1.50	13.00	20.20	55.00	$8.40+1.50 /-0.00$	14.40	$\mathrm{~W} 1+2.00 /-1.00$
Tape Size	A	B	C	D	N	W 1	W 2	W 3

Physical Dimensions inches (millimeters) unless otherwise noted

SC70-5
NS Package Number MAA05

LAND PATTERN RECOMMENDATION

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

Notes

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

