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Abstract

In this paper we survey recent advances in the area of sublinear-tioritaigs.

1 Introduction

He area ofsublinear-time algorithmss a new rapidly emerging area of computer science. It
has its roots in the study of massive data sets that occur aratenore frequently in var-

ious applications. Financial transactions with billiorfsrgut data and Internet traffic analyses
(Internet traffic logs, clickstreams, web data) are exampfenodern data sets that show unprece-
dented scale. Managing and analyzing such data sets fateseconsider the traditional notions
of efficient algorithms: processing such massive data setsare than linear time is by far too
expensive and often even linear time algorithms may be tow.sHence, there is the desire to
develop algorithms whose running times are not only polyagrbut in fact aresublinearin n.

Constructing a sublinear time algorithm may seem to be anssiple task since it allows one
to read only a small fraction of the input. However, in recgsars, we have seen development of
sublinear time algorithms for optimization problems angsin such diverse areas as graph theory,
geometry, algebraic computations, and computer grapigsally, the main research focus has
been on designing efficient algorithms in the frameworkmiperty testingfor excellent surveys,
see [26, 30, 31, 40, 49]), which is an alternative notion giragimation for decision problems.
But more recently, we see some major progress in sublinerdlgorithms in the classical model
of randomized and approximation algorithms. In this pawersurvey some of the recent advances
in this area. Our main focus is on sublinear-time algoritfiongombinatorial problems, especially
for graph problems and optimization problems in metric sgac

Our goal is to give a flavor of the area of sublinear-time atgars. We focus on the most
representative results in the area and we aim to illustraie rechniques used to design sublinear-
time algorithms. Still, many of the details of the presentesults are omitted and we recommend
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the readers to follow the original works. We also do not aimedweer the entire area of sublinear-
time algorithms, and in particular, we do not discuss prigpesting algorithms [26, 30, 31, 40,
49], even though this area is very closely related to thearebepresented in this survey.

Organization. We begin with an introduction to the area and then we give saubénear-time
algorithms for a basic problem in computational geometdy}.[Next, we present recent sublinear-
time algorithms for basic graph problems: approximatirggterage degree in a graph [25, 34] and
estimating the cost of a minimum spanning tree [15]. Thendiseuss sublinear-time algorithms
for optimization problems in metric spaces. We present thendeas behind recent algorithms
for estimating the cost of minimum spanning tree [19] andlifgdocation [10], and then we
discuss the quality of random sampling to obtain sublirieae-algorithms for clustering problems
[20, 46]. We finish with some conclusions.

2 Basic Sublinear Algorithms

The concept of sublinear-time algorithms is known for a Menyg time, but initially it has been
used to denote “pseudo-sublinear-time” algorithms, wiadter an appropriatpreprocessingan
algorithm solves the problem in sublinear-time. For exaniflwe have a set af numbers, then
after anO(nlog n) preprocessing (sorting), we can trivially solve a numbegroblems involving
the input elements. And so, if the after the preprocessiegetaments are put in a sorted array,
then inO(1) time we can find théth smallest element, i®(log n) time we can test if the input
contains a given element and also inD(log n) time we can return the number of elements equal
to a given element. Even though all these results are folklore, this is not wigtall nowadays

a sublinear-time algorithm.

In this survey, our goal is to study algorithms for which thput is taken to be in any standard
representation and with no extra assumptions. Then, amithigodoes not have to read the entire
input but it may determine the output by checking only a sub&éhe input elements. It is easy
to see that for many natural problems it is impossible to giwg reasonable answer if not all or
almost all input elements are checked. But still, for somelmemof problems we can obtain good
algorithms that do not have to look at the entire input. Tgfhyc these algorithms amandomized
(because most of the problems have a trivial linear-timerdanistic lower bound) and they return
only anapproximatesolution rather than the exact one (because usually, witlooking at the
whole input we cannot determine the exact solution). Inghisey, we present recently developed
sublinear-time algorithm for some combinatorial optinti@a problems.

Searching in a sorted list. It is well-known that if we can store the input in a sorted grthen
we can solve various problems on the input very efficientigwiever, the assumption that the input
array is sorted is not natural in typical applications. Lehow consider a variant of this problem,
where our goal is teearchfor an element: in a linked sorted list containing distinctelements.

1The assumption that the input elementsdistinctis important. If we allow multiple elements to have the same
key, then the search problem requif®s:) time. To see this, consider the input in which about a halhefe¢lements



Here, we assume that theelements are stored in a doubly-linked, each list elementhbaess to
the next and preceding element in the list, and the list igeddthat is, ifz follows y in the list,
theny < x). We also assume that we have access to all elements in thethish for example,
can correspond to the situation thatallist elements are stored in an array (but the array is not
sorted and we do not impose any order for the array elemddtsy.can we find whether a given
numberz is in our input or is not?

On the first glace, it seems that since we do not have direetsado the rank of any element
in the list, this problem requireQ(n) time. And indeed, if our goal is to design a deterministic
algorithm, then it is impossible to do the search(n) time. However, if we allow randomization,
then we can complete the searchif,/n) expected time (and this bound is asymptotically tight).

Let us first sample uniformly at random a sebf ©(/n) elements from the input. Since we
have access to all elements in the list, we can select thgiseD(/n) time. Next, we scan all the
elements inS and inO(/n) time we can find two elements i, p andg, such thap < = < ¢,
and there is no element ifi that is betweem andq. Observe that since the input consistrof
distinct numbersp andq are uniquely defined. Next, we traverse the input list comtgi all the
input elements starting atuntil we find either the sought keyor we find elemeng.

Lemma1l The algorithm above completes the search in expe€@égn) time. Moreover, no
algorithm can solve this problem i{,/n) expected time.

Proof. The running time of the algorithm if equal @(/n) plus the number of the input elements
betweenp and¢. SinceS contains©(y/n) elements, the expected number of input elements
betweenp and ¢ is O(n/|S|) = O(y/n). This implies that the expected running time of the
algorithm isO(y/n).

For a proof of a lower bound d¢t(,/n) expected time, see, e.g., [14]. O

2.1 Geometry: Intersection of Two Polygons

Let us consider a related problem but this time in a geomsétitng. Given two convex polygons
A andB in R?, each withn vertices, determine if they intersect, and if so, then findiatdn their
intersection.

It is well known that this problem can be solved@in) time, for example, by observing that
it can be described as a linear programming instance in 2kions, a problem which is known
to have a linear-time algorithm (cf. [24]). In fact, withind same time one can either find a point
that is in the intersection ol and B, or find a lineL that separated from B (actually, one can
even find a bitangent separating ligei.e., a line separating and B which intersects with each
of A andB in exactly one point). The question is whether we can obtdieteer running time.

The complexity of this problem depends on the input repregiem. In the most powerful
model, if the vertices of both polygons are stored in an amapyclic order, Chazelle and Dobkin
[13] showed that the intersection of the polygons can berated in logarithmic time. However,
a standard geometric representation assumes that theisnpot stored in an array but rathdr

has key 1, another half has key 3, and there is a single eleminkey 2. Then, searching for 2 requir@én) time.



and B are given by their doubly-linked lists of vertices such teath vertex has as its successor
the next vertex of the polygon in the clockwise order. Can veatiest if A and B intersect?

(b)
Figure 1:(a) Bitangent lineC separatingC' 4 andCg, and (b) the polygo,.

Chazelle et al. [14] gave af(/n)-time algorithm that reuses the approach discussed above
for searching in a sorted list. Let us first sample uniforntlyseadom®©(,/n) vertices from each
A andB, and letC'y andC'g be the convex hulls of the sample point sets for the polygbasd
B, respectively. Using the linear-time algorithm mentioabdve, inO(,/n) time we can check if
C4 andC’p intersects. If they do, then the algorithm will get us a pdiatt lies in the intersection
of C4, andC'z, and hence, this point lies also in the intersectiomand B. Otherwise, let be
the bitangent separating line returned by the algorithra Esgure 1 (a)).

Let a andb be the points inC that belong toA and B, respectively. Let;; anda, be the two
vertices adjacent te in A. We will define now a new polygo®,. If none ofa; andas, is on the
sideC'4 of £ the we defineP, to be empty. Otherwise, exactly oneaqfandas, is on the side”',
of £; let it bea;. We define polygorP, by walking froma to a; and then continue walking along
the boundary ofA until we crossC again (see Figure 1 (b)). In a similar way we define polygon
Pg. Observe that the expected size of eactPgfand Pg is at mostO(y/n).

It is easy to see that and B intersects if and only if eitheA intersectsPg or B intersects
P,. We only consider the case of checkingdifintersectsPgz. We first determine it intersects
Pg. If yes, then we are done. Otherwise, k&t be a bitangent separating line that separétgs
from Pz. We use the same construction as above to determine a sgbpdaly, of A that lies on
the Py side of £ 4. Then, A intersectsPg if and only if () 4 intersectsPg. Since@ 4 has expected
sizeO(y/n) and so doe#’s, testing the intersection of these two polygons can be dod¥ {/n)
expected time. Therefore, by our construction above, we Baled the problem of determining
if two polygons of sizen intersect by reducing it to a constant number of problemamsgs of
determining if two polygons of expected si@¥/n) intersect. This leads to the following lemma.

Lemma 2 [14] The problem of determining whether two consegons intersect can be solved in
O(y/n) expected time, which is asymptotically optimal.

Chazelle et al. [14] gave not only this result, but they alsowsd how to apply a similar
approach to design a number of sublinear-time algorithmsdme basic geometric problems. For
example, one can extend the result discussed above togestehsection of two convex polyhedra



in R3 with n vertices inO(,/n) expected time. One can also approximate the volume ofeartex
convex polytope to within a relative errer> 0 in expected tim&(,/n /). Or even, for a pair of
two points on the boundary of a convex polytapavith »n vertices, one can estimate the length of
an optimal shortest path outsid®ebetween the given points ifl(,/n) expected time.

In all the results mentioned above, the input objects haes bepresented by a linked struc-
ture: either every point has access to its adjacent veriticé® polygon inR?, or the polytope is
defined by a doubly-connected edge list, or so. These inpuésentations are standard in com-
putational geometry, but a natural question is whetherishicessary to achieve sublinear-time
algorithms — what can we do if the input polygon/polytop ipresented by a set of points and
no additional structure is provided to the algorithm? Inrsacscenario, it is easy to see that no
o(n)-time algorithm can solve exactly any of the problems disedsabove. That is, for example,
to determine if two polygons with vertices intersect one nee@$n) time. However, still, we can
obtain some approximation to this problem, one which is diesd in the framework oproperty
testing

Suppose that we relax our task and instead of determinimgi{¢onvex) polytopesl andB in
R? intersects, we just want to distinguish between two casteerel and B are intersection-free,
or one has to “significantly modify’A and B to make them intersection-free. The definition of
the notion of “significantly modify” may depend on the applion at hand, but the most natural
characterization would be to remove at leastpoints inA and B, for an appropriate parameter
(see [18] for a discussion about other geometric charaetigon). Czumaj et al. [23] gave a simple
algorithm that for any > 0, can distinguish between the case whtand B do not intersect, and
the case when at least points has to be removed frohand B to make them intersection-free:
the algorithm returns the outcome of a test if a random sawipt®((d/<) log(d/<)) points from
A intersects with a random sample®f(d/<) log(d/¢)) points from5B.

Sublinear-time algorithms: perspective. The algorithms presented in this section should give
a flavor of the area and give us the first impression of what dove@n by sublinear-time and what
kind of results one can expect. In the following sectionsyuiEpresent more elaborate algorithms
for various combinatorial problems for graphs and for neetpaces.

3 Sublinear Time Algorithmsfor Graphs Problems

In the previous section, we introduced the concept of sahlitime algorithms and we presented
two basic sublinear-time algorithms for geometric proldemin this section, we will discuss
sublinear-time algorithms for graph problems. Our mairu®d on sublinear-time algorithms
for graphs, with special emphasizes on sparse graphs egpeeisby adjacency lists where combi-
natorial algorithms are sought.

3.1 Approximating the Average Degree

Assume we have access to the degree distribution of theesmif an undirected connected graph
G = (V,E), i.e., for any vertexw € V we can query for its degree. Can we achieve a good
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approximation of the average degreeCirby looking at a sublinear number of vertices? At first
sight, this seems to be an impossible task. It seems thabdpmating the average degree is
equivalent to approximating the average of a set oumbers with values betwednandn — 1,
which is not possible in sublinear time. However, Feige [@%jved that one can approximate the
average degree i?(/n /<) time within a factor o2 + ¢.

The difficulty with approximating the average of a setaiumbers can be illustrated with the
following example. Assume that almost all numbers in theutrget arel and a few of them are
n — 1. To approximate the average we need to approximate how n@wrences of. — 1 exist.

If there is only a constant number of them, we can do this owlipbking at{2(n) numbers in the
set. So, the problem is that these large numbers can “hidgieirset and we cannot give a good
approximation, unless we can “find” at least some of them.

Why is the problem less difficult, if, instead of an arbitrast sf numbers, we have a set of
numbers that are the vertex degrees of a graph? For examplwid still have a few vertices of
degreer — 1. The pointis that in this case any edge incident to such axedn be seen at another
vertex. Thus, even if we do not sample a vertex with high degre will see all incident edges at
other vertices in the graph. Hence, vertices with a largeesegannot “hide.”

We will sketch a proof of a slightly weaker result than thagorally proven by Feige [25].
Let d denote the average degreeGh= (V, E) and letds denote the random variable for the
average degree of a sgtof s vertices chosen uniformly at random frarh We will show that if
we sets > (3/n /<90 for an appropriate constagt thendg > (% — ¢) - d with probability at least
1—¢/64. Additionally, we observe that Markov inequality immedigtimplies thatls < (1+¢)-d
with probability at least — 1/(1 + ¢) > /2. Therefore, our algorithm will pick /e setsS;, each
of size s, and output the set with the smallest average degree. Here@robability that all of
the setsS; have too high average degree is at mdst- £/2)/® < 1/8. The probability that
one of them has too small average degree is at @o% = 1/8. Hence, the output value will
satisfy both inequalities with probability at leetd. By replacinge with /2, this will yield a
(2 4 )-approximation algorithm.

Now, our goal is to show that with high probability one doe$ moderestimate the average
degree too much. L€t be the set of thg/= n vertices with highest degree @and letL = V'\ H
be the set of the remaining vertices. We first argue that the cluthe degrees of the vertices
in L is at Ieast(% — ¢) times the sum of the degrees of all vertices. This can beyess#én by
distinguishing between edges incident to a vertex filoand edges withir/. Edges incident to
a vertex fromL contribute with at least to the sum of degrees of vertices In which is fine
as this is at least/2 of their full contribution. So the only edges that may caussbfems are
edges within/. However, sincéH | = /= n, there can be at most: such edges, which is small
compared to the overall number of edges (which is at leastl, since the graph is connected).

Now, letdy be the degree of a vertex with the smallest degref .irfBince we aim at giving a
lower bound on the average degree of the sampled verticesanveafely assume that all sampled
vertices come from the sét We know that each vertex ih has a degree betweéranddy. Let
X;, 1 <1 < s, be the random variable for the degree of ttievertex fromS. Then, it follows



from Hoeffding bounds that

E[Y7_, X;)e?

Pr[ZXig(l—g)-E[ZXi}] < ¢ dm

We know that the average degree is at lelast| H | /n, because any vertex ii has at least degree
dy. Hence, the average degree of a verteXiis at least(3 — ) - dy - |H|/n. This just means
E[X;] > (5—¢)-dy-|H|/n. By linearity of expectation we &[>’ | X;] > s-(3—¢)-dy-|H|/n.
This implies that, for our choice &f with high probability we haves > (% —¢)-d.

Feige showed the following result, which is stronger witbpect to the dependence an

Theorem 3 [25] UsingO(e~! - \/n/dy) queries, one can estimate the average degree of a graph
within a ratio of (2 + ¢), provided thatl > dp.

Feige also proved th&t(s~! - \/n/d) queries are required, whedés the average degree in the
input graph. Finally, any algorithm that uses only degreerigs and estimates the average degree
within a ratio2 — § for some constant requires(2(n) queries.

Interestingly, if one can also use neighborhood queries) this possible to approximate the
average degree usif®(/n/c°1)) queries with a ratio of1 + ), as shown by Goldreich and Ron
[34]. The model for neighborhood queries is as follows. Wauage we are given a graph and we
can query for théth neighbor of vertex. If v has at least neighbors we get the corresponding
neighbor; otherwise we are told thahas less thanneighbors. We remark that one can simulate
degree queries in this model wit(log n) queries. Therefore, the algorithm from [34] uses only
neighbor queries.

For a sketch of a proof, let us assume that we know thé/séthen we can use the following
approach. We only consider vertices frdm If our sample contains a vertex frofi we ignore
it. By our analysis above, we know that there are only few edgtsn H and that we make only
a small error in estimating the number of edges withinWe loose the factor of two, because
we “see” edges froni. to H only from one side. The idea behind the algorithm from [34fois
approximate the fraction of edges frabnto H and add it to the final estimate. This has the effect
that we count any edge betweérand H twice, canceling the effect that we see it only from one
side. This is done as follows. For each vertexe sample froml we take a random set of incident
edges to estimate the fractiorfv) of its neighbors that is iff. Let A(v) denote the estimate
we obtain. Then our estimate for the average degree will be,, (1 + AMv)) - d(v)/]S N L),
whered(v) denotes the degree of If for all vertices we estimate(v) within an additive error
of £, the overall error induced by thewill be small. This can be achieved with high probability
queryingO(log n/c?) random neighbors. Then the output value will big a ¢)-approximation of
the average degree. The assumption that we kHowan be dropped by taking a set®@f/n/¢)
vertices and setting to be the set of vertices with larger degree than all vertinethis set
(breaking ties by the vertex number).

(We remark that the outline of a proof given above is difféfeom the proof in [34].)

Theorem 4 [34] Given the ability to make neighbor queries to the input gréhtihere exists an
algorithm that make©(,/n/d, - e~°")) queries and approximates the average degre€!ito
within a ratio of (1 + ¢).



3.2 Minimum Spanning Trees

One of the most fundamental graph problems is to compute armam spanning tree. Since the
minimum spanning tree is of size linear in the number of gedj no sublinear algorithm for sparse
graphs can exists. Itis also know that no constant factameqipation algorithm witho(n?) query
complexity in dense graphs (even in metric spaces) exigis [Biven these facts, it is somewhat
surprising that it is possible to approximate the cost of aimum spanning tree in sparse graphs
[15] as well as in metric spaces [19] to within a factor(dft- ¢).

In the following we will explain the algorithm for sparse gtes by Chazelle et al. [15]. We will
prove a slightly weaker result than in [15]. Lét= (V, E') be an undirected connected weighted
graph with maximum degre® and integer edge weights frofri, ..., W}. We assume that the
graph is given in adjacency list representation, i.e., f@rg vertexv there is a list of its at most
D neighbors, which can be accessed fronfurthermore, we assume that the vertices are stored
in an array such that it is possible to select a vertex unifpahrandom. We assume also that the
values ofD andWV are known to the algorithm.

The main idea behind the algorithm is to express the cost aharmam spanning tree as the
number of connected components in certain auxiliary syfigr@fG. Then, one runs a random-
ized algorithm to estimate the number of connected compenemrach of these subgraphs.

To start with basic intuitions, let us assume thit = 2, i.e., the graph has only edges of
weight1 or 2. LetG® = (V, E() denote the subgraph that contains all edges of weight (a) mos
1 and letc™") be the number of connected component&/if. It is easy to see that the minimum
spanning tree has to link these connected components bg eflgeeight2. Since any connected
component inG() can be spanned by edges of weightany minimum spanning tree @ has
) — 1 edges of weigh? andn — 1 — (¢) — 1) edges of weight. Thus, the weight of a minimum
spanning tree is

n—1—(Y-1+2-(cV-1) = n-24cY = n-W4+b .

Next, let us consider an arbitrary integer valueliér DefiningG® = (V, E®), whereE® is the
set of edges itz with weight at most, one can generalize the formula above to obtain that the
costMST of a minimum spanning tree can be expressed as

wo1
MST = n—W + Zc(i) .
=1

This gives the following simple algorithm.

APPROXMSTWEIGHT(G, ¢)
fori=1toW —1
Compute estimatar® for ¢

output MST =n — W + S W1 e®

Thus, the key question that remains is how to estimate theébeuof connected components.
This is done by the following algorithm.



APPROXCONNECTEDCOMPS(G, s)
{ Input: an arbitrary undirected grapli- }
{ Output: ¢&: an estimation of the number of connected componerts jof
chooses verticesuy, . . ., us uniformly at random
fori=1tosdo
chooseX according taPr[X > k] = 1/k
run breadth-fist-search (BFS) starting:auntil either
(1) the whole connected component containintpas been explored,
(2) X vertices have been explored
if BFS stopped in case (1hen b, = 1
outputé =237 | b;

To analyze this algorithm let us fix an arbitrary connectethgonent” and let|C| denote the
number of vertices in the connected component.cldenote the number of connected components
in G. We can write

Il 1 c
b >, PrwmeC]PrXzc= 3 SHeo=
connected component connected component

And by linearity of expectation we obtalf[¢] = c.

To show that is concentrated around its expectation, we apply Chebysieepality. Since;
is an indicator random variable, we have

Varlp,] = E[pY| - E[b]? < E[b] = E[b;] = ¢/n .

Theb; are mutually independent and so we have

S 2 S .
Varlg = Var[*-3b] = %Y Varp] < 5
1=1 =1

With this bound forVar|¢|, we can use Chebyshev inequality to obtain

n-c 1
< .
$-A2.-n2 7 A\.5

Prlle — B[] > An] <

From this it follows that one can approximate the number ohexted components within additive
error of A\n in a graph with maximum degréee in O(DALL_%)") time and with probabilityl — o. The
following somewhat stronger result has been obtained iih [Ntice that the obtained running

time isindependent of the input size

Theorem 5 [15] The number of connected components in a graph with maximuraed@egan be
approximated with additive error at most\ n in O(£ log(D/))) time and with probability /4.



Now, we can use this procedure with parameters- ¢/(21W) ando = 4 in algorithm
APPROXMSTWEIGHT. The probability that at least one call toPAROXCONNECTEDCOMPS IS
not within an additive erroe-An is at mostl/4. The overall additive error is at mosten /2.
Since the cost of the minimum spanning tree is at leastl > n/2, it follows that the algorithms
computes inO(D - W3 - logn/e?) time a(1 + ¢)-approximation of the weight of the minimum
spanning tree with probability at lea&t4. In [15], Chazelle et al. proved a slightly stronger result

which has running timendependent of the input size

Theorem 6 [15] Algorithm APPROXMSTWEIGHT computes a valué/ST that with probability
at least3/4 satisfies

(1—¢)-MST < MST < (1+¢)  MST .
The algorithm runs irO(D - W/<2) time.

The same result also holds whénis only the average degree of the graph (rather than the
maximum degree) and the edge weights are reals from thevahter 1] (rather than integers)
[15]. Observe that, in particular, for sparse graphs forclvhihe ratio between the maximum and
the minimum weight is constant, the algorithm from [16hs in constant time

It was also proved in [15] that any algorithm estimatig 7' requiresQ(D - W/e?) time.

3.3 Other Sublinear-time Resultsfor Graphs

In this section, our main focus was on combinatorial al¢pong for sparse graphs. In particular,
we did not discuss a large body of algorithms for dense greggiresented in the adjacency matrix
model. Still, we mention the results of approximating tteeof the maximum cut inonstant time
for dense graphs [28, 32], and the more general results appubximating all dense problems
in Max-SNP inconstant timg2, 8, 28]. Similarly, we also have to mention about the ense
of a large body of property testing algorithms for graphsjclvhin many situations can lead to
sublinear-time algorithms for graph problems. To give espntative references, in addition to
the excellent survey expositions [26, 30, 31, 40, 49], wetwarmention the recent results on
testability of graph properties, as described, e.g., id4[3, 6, 11, 21, 33, 43].

4 Sublinear Time Approximation Algorithms for Problemsin
Metric Spaces

One of the most widely considered models in the area of sedtiime approximation algorithms
is thedistance oracle moddbr metric spaces. In this model, the input of an algorithra setP
of n points in a metric spacgP, d). We assume that it is possible to compute the distaiieg;)
between any pair of poings ¢ in constant time. Equivalently, one could assume that thersthm
is given access to the x n distance matrix of the metric space, i.e., we have oraclesacto the
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matrix of a weighted undirected complete graph. Since tHed@scription size of this matrix is
O(n?), we will call any algorithm witho(n?) running time asublinear algorithm

Which problems can and cannot be approximated in sublingss th the distance oracle
model? One of the most basic problems is to find (an approiometf the shortest or the longest
pairwise distance in the metric space. It turns out thathloetest distance cannot be approximated.
The counterexample is a uniform metric (all distanceslamith one distance being set to some
very small values. Obviously, it require€2(n?) time to find this single short distance. Hence,
no sublinear time approximation algorithm for the shortistance problem exists. What about
the longest distance? In this case, there is a very si%ﬂalpproximation algorithm, which was
first observed by Indyk [37]. The algorithm chooses an abjtpointp and returns its furthest
neighborg. Letr, s be the furthest pair in the metric space. We claim tHat¢) > 3 d(r, s). By
the triangle inequality, we haw§r, p) + d(p, s) > d(r, s). This immediately implies that either
d(p,r) > 3 d(r,s) ord(p,s) > 3 d(r,s). This shows the approximation guarantee.

In the following, we present some recent sublinear-timemwtigms for a few optimization
problems in metric spaces.

4.1 Minimum Spanning Trees

We can view a metric space as a weighted complete gfaphA natural question is whether we
can find out anything about the minimum spanning tree of tregtly As already mentioned in the
previous section, it is not possible to finddMm?) time a spanning tree in the distance oracle model
that approximates the minimum spanning tree within a conésator [37]. However, it is possible
to approximate the weightf a minimum spanning tree within a factor @f + <) in O(n /W)
time [19].

The algorithm builds upon the ideas used to approximate gighwof the minimum spanning
tree in graphs described in Section 3.2 [15]. Let us first nlesthat for the metric space problem
we can assume that the maximum distanc@{s/c) and the shortest distancelis This can be
achieved by first approximating the longest distanc®im) time and then scaling the problem
appropriately. Since by the triangle inequality the lorighkstance also provides a lower bound
on the minimum spanning tree, we can round ugd tall edge weights that are smaller than
Clearly, this does not significantly change the weight of theimum spanning tree. Now we
could apply the algorithm APROXMSTWEIGHT from Section 3.2, but this would not give us an
o(n?) algorithm. The reason is that in metric case we have a compietph, i.e., the average
degree isD = n — 1, and the edge weights are in the interMallV’|, wherelW = O(n/e). So, we
need a different approach. In the following we will outline idea how to achieve a randomized
o(n?) algorithm. To get a near linear time algorithm as in [19]liertideas have to be applied.

The first difference to the algorithm from Section 3.2 is tivhen we develop a formula for the
minimum spanning tree weight, we use geometric progresasirad of arithmetic progression.
Assuming that all edge weights are powers(bf ), we defineG® to be the subgraph af’
that contains all edges of length at m@st+ ). We denote by:”) the number of connected
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components ir7. Then we can write

r—1
MST = n—W+e-» (1+e) -V, (1)

=0

wherer = log,, . W — 1.

Once we have (1), our approach will be to approximate the murabconnected components
¢ and use formula (1) as an estimator. Although geometricression has the advantage that
we only need to estimate the connected componentsHrO(logn/e) subgraphs, the problem is
that the estimator is multiplied byt + )’. Hence, if we use the procedure from Section 3.2, we
would get an additive error afrn - (1 +¢)?, which, in general, may be much larger than the weight
of the minimum spanning tree.

The basic idea how to deal with this problem is as follows. Wk wge a different graph
traversal than BFS. Our graph traversal runs only on a sulfigbeovertices, which are called
representative verticesEvery pair of representative vertices are at distanceastte (1 + &)
from each other. Now, assume there areepresentative vertices and consider the graph induced
by these vertices (there is a problem with this assumptitinchwvill be discussed later). Running
algorithm APPROXCONNECTEDCOMPS on this induced graph makes an error-okm, which
must be multiplied by(1 + )’ resulting in an additive error of) - (1 + )" - m. Since the
m representative vertices have pairwise distancél + <), we have a lower bound/ST >
m - ¢ - (1+¢)". Choosing\ = ¢%/r would result in &1 + ¢)-approximation algorithm.

Unfortunately, this simple approach does not work. One lpralis that we cannot choose a
random representative point. This is because we have nma knowledge of the set of repre-
sentative points. In fact, in the algorithm the points areseim greedily during the graph traversal.
As a consequence, the decision whether a vertex is a repa&gervertex or not, depends on the
starting point of the graph traversal. This may also meanthiganumber of representative vertices
in a connected component also depends on the starting gdhme graph traversal. However, it is
still possible to cope with these problems and use the approatlined above to get the following
result.

Theorem 7 [19] The weight of a minimum spanning tree ofaipoint metric space can be ap-
proximated inO(n/s°™)) time to within a(1 +¢) factor and with confidence probability at leakt

4.11 Extensions: Sublinear-time (2 + ¢)-approximation of metric TSP and Steiner trees

Let us remark here one direct corollary of Theorem 7. By thd lwedwn relationship (see, e.g.,
[51]) between minimum spanning trees, travelling salestoars, and minimum Steiner trees, the
algorithm for estimating the weight of the minimum spanniree from Theorem 7 immediately
yieldsO(n /M) time (2+¢)-approximation algorithms for two other classical probésmmetric
spaces (or in graphs satisfying the triangle inequalitygtingating the weight of théravelling
salesman touand theminimum Steiner tree
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4.2 Uniform Facility Location

Similarly to the minimum spanning tree problem, one cameste the cost of theetric uniform
facility location problem inO(n/c°™M) time [10]. This problem is defined as follows. We are
given ann-point metric spacéP, d). We want to find a subsét C P of open facilities such that

[F|+> d(p,F)

peEP

is minimized. Hered(p, F') denote the distance fromto the nearest point i. It is known that
one cannot find a solution that approximates the optimalisolwvithin a constant factor in(n?)
time [50]. However, it is possible to approximate destof an optimal solution within a constant
factor.

The main idea is as follows. Let us denoteByp, r) the set of points fronP with distance at
mostr from p. For eaclp € P letr, be the unique value that satisfies

> (rp—dlpg)=1.

q€B(p,rp)

Then one can show that

Lemma8 [10] X
Z'Opt < er < 6- Opt ,

peP

where Opt denotes the cost of an optimal solution to the metric uniftaaility location problem.

Now, the algorithm is based on a randomized algorithm thea fgiven pointp, estimates;, to
within a constant factor in timé(r, - n - log n) (recall that-, < 1). Thus, the smaller,, the faster
the algorithm. Now, lep be chosen uniformly at random frof. Then the expected running time
to estimate, is O(nlogn - Y pr,/n) = O(nlogn - Elr,]). We pick a random sample sgtof
s = 1001log n/E[r,] points uniformly at random fron®. (The fact that we do not kno#|r,| can
be dealt with by using a logarithmic number of guesses.) Memise our algorithm to compute
for eachp € S a valuer, that approximates, within a constant factor. Our algorithm outputs
2. > s Tp as an estimate for the cost of the facility location probleysing Hoeffding bounds
it is easy to prove that - >, approximatesy ; ., = Opt within a constant factor and
with high probability. Clearly, the same statement is truremwwe replace the, values by their
constant approximations,. Finally, we observe that expected running time of our atgor will

be O(n/e°M). This allows us to conclude with the following.

Theorem 9 [10] There exists an algorithm that computes a constant factpragpmation to the
cost of the metric uniform facility location problemdn log® n) time and with high probability.
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4.3 Clustering via Random Sampling

The problems of clustering large data sets into subsetstéek) of similar characteristics are one
of the most fundamental problems in computer science, tipagaresearch, and related fields.
Clustering problems arise naturally in various massivesgdsaapplications, including data mining,
bioinformatics, pattern classification, etc. In this seatiwe will discuss theiniformly random
samplingfor clustering problems in metric spaces, as analyzed irré@ent papers [20, 46].

(b) (c) @

(@) ) °

Figure 2:(a) A set of points in a metric space, (b) #slustering (white points correspond to the center
points), and (c) the distances used in the cost for3tmeedian.

Let us consider a classical clustering problem known agthedian problemGiven a finite
metric spacg P, d), the goal is to find a sef’ C P of k centers (points inP) that minimizes
>_pep d(p, C), whered(p, C) denotes the distance fropto the nearest point i@v. Thek-median
problem has been studied in numerous research papersntiigko be\P-hard and there exist
constant-factor approximation algorithms runningn k) time. In two recent papers [20, 46],
the authors asked the question about the quality of the mmijorandom sampling approach to
k-median, that is, is the quality of the following generic sote:

(1) choose a multiséf C P of sizes i.u.r. (with repetitions),
(2) run ana-approximation algorithnd,, on inputS to compute a solutiod’, and

(3) return setC* (the clustering induced by the solution for the sample).

The goal is to show that already a sublinear-size samplé seitl suffice to obtain a good
approximation guarantee. Furthermore, as observed in(g&8 also [45]), in order to have any
guarantee of the approximation, one has to consider thé&yoathe approximation as a function
of the diameter of the metric space. Therefore, we considedel with the diameter of the metric
spaceA given, that is, withd : P x P — [0, A].

Using techniques from statistics and computational |eatheory, Mishra et al. [46] proved
that if we sample asetof s = O ((%)2 (k Inn + 1n(1/5))> points fromP i.u.r. (independently

and uniformly at randomand runa-approximation algorithrnd, to find an approximation of the
k-median forS, then with probability at leagt— J, the output set of centers haaverage distance
to the nearest center of at mastw - med( P, k) + ¢, wheremed(P, k) denotes thaverage distance

to thek-medianC, that is,med(P, k) = Zver 409\ will now briefly sketch the analysis due

n

to Czumaj and Sohler [20] of a similar approximation guararat with a smaller bound fox.
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Let C,,; denote an optimal set of centers Brand letcos{ X, C') be the average cost of the

clustering of seX’ with center set’, thatis,cos{ X, C') = W Notice thatost{ P, C,,) =

med(P, k). The analysis of Czumaj and Sohler [20] is performed in twpste

(i) We first show that there is a setlo€enters” C S such thatost.S, C') is a good approximation
of med(P, k) with high probability.

(i) Next we show that with high probability, every solutiéhfor P with cost much bigger than
med(P, k) is either not a feasible solution fét(i.e.,C' Z S) orcost{.S,C') > « - med(P, k)
(that is, the cost of’ for the sample sef is large with high probability).

SinceS contains a solution with cost at mastmed(P, k) for some smalk, A, will compute
a solutionC* with cost at mosty - ¢ - med(P, k). Now we have to prove that no solutiéhfor P
with cost much bigger thamed( P, k) will be returned, or in other words, thatdf is feasible forS
then its cost is larger tham- ¢- med(P, k). But this is implied by (ii). Therefore, the algorithm will
not return a solution with too large cost, and the sampliray(is- «)-approximation algorithm.

Theorem 10 [20] Let0 < < 1,a > 1,0 < 8 < 1 ande > 0 be approximation parameters.

If s > < (k + % : (a -In(1/6) + k- In (i%g))) for an appropriate constant, then for the

solution set of center§™, with probability at leastt — ¢ it holds the following

cost{V,C*) < 2(a+ ) -med(Pk)+¢ .

To give the flavor of the analysis, we will sketch (a simplaajti) of the analysis:

3Aa(l+a/B)In(1/5) — . —
Lemmall If s > STed(P) thenPr[cos( S, C*) < 2(a+ ) - med(P, k)] > 1 — 6.

Proof. We first show that if we consider the clusteringofvith the optimal set of centeis,,,
for P, thencos(S, C,,;) is a good approximation afied(P, k). The problem with this bound is
that in general, we cannot expec,; to be contained in the sample set Therefore, we have to
show also that the optimal set of centers $ocannot have cost much worse thas{.S, C.,,).

Let X; be the random variable for the distance ofitiepoint in.S to the nearest center 6f,,,,.
Then,cos(S, Cope) = Y21, Xi, and, sinceB[X;] = med(P, k), we also havened(P, k) =
1.E[Y" X;]. Hence,

Pr[COStS, Copr) > (14 2) -med(P k)] =Pr[> X;>(1+2)-E]>_ Xi]] .
1<i<s 1<i<s
Observe that each; satisfied) < X; < A. Therefore, by Chernoff-Hoeffding bound we obtain:
_ smed(P,k)-min{(8/a),(8/a)?}
3A

Pr[ ) X;>(1+8/a)-BE[ Y X]] <e < 4. (2)

1<i<s 1<i<s

This gives us a good bound for the costooist.S, C,,:) and now our goal is to get a similar
bound for the cost of the optimal set of centers$orLet C' be the set ok centers inS obtained
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by replacing each € C,,; by its nearest neighbor ifi. By the triangle inequalitycost S, C') <
2.costS, C,,:). Hence, multiseb contains a set of centers whose cost is at mast(1 + §/«) -
med(P, k) with probability at leastt — 6. Therefore, the lemma follows becaukg returns an
a-approximationC™* of the k-median fors. O

Next, we only state the other lemma that describe part (iinefanalysis of Theorem 10.

Lemmal2 Lets > < - <k - % : (a ‘In(1/0) + k- In (";%3))) for an appropriate constant

LetC be the set of all sets éfcentersC' of P withcos{ P, C') > (2« + 6 3) - med(P, k). Then,
Pr[3C, € C: C, C S and cost S, C,) < 2(a+ B)med(P k)] < 6 . O

Observe that comparing the result from [46] to the resulthedrem 10, Theorem 10 improves
the sample complexity by a factor &f - logn/e while obtaining a slightly worse approximation
ratio of 2 (o + 3) med(P, k) + ¢, instead of2amed(P, k) + ¢ as in [46]. However, since the
polynomial-time algorithm with the best known approxineatiguarantee has = 3 + % for the
running time ofO(n°) time [9], this significantly improves the running time of [46r all realistic
choices of the input parameters while achieving the sameajspation guarantee. As a highlight,
Theorem 10 yields a sublinear-time algorithm that in tieng2 - (k + log(1/6)))?) — fully inde-
pendent of: — returns a set of centers for which the average distance to the nearest miscian
mostO(med(P, k)) + ¢ with probability at least — §.

Extensions. The result in Theorem 10 can be significantly improved if weuase the input
points are inEuclidean spac®’. In this case the approximation guarantee can be improved to
(a+ ) med(P, k) + ¢ at the cost of increasing the sample siz@i@% (kd+log(1/9))).

Furthermore, a similar approach as that sketched aboveecapfied to study similar generic
sample schemes for other clustering problems. As it is shoWB0], almost identical analysis
lead to sublinear (independent @hsample complexity for the classidaimeans problemAlso, a
more complex analysis can be applied to study the samplelegitygfor themin-sumk-clustering
problem[20].

4.4 Other Results

Indyk [37] was the first who observed that some optimizatiosbfems in metric spaces can be
solved in sublinear-time, that is, irfn?) time. He presentet} — ¢)-approximation algorithms for
MaxTSP and the maximum spanning tree problems that ra»(ity<) time [37]. He also gave a
(2+¢)-approximation algorithm for the minimum routing cost speug tree problem and@ +¢)
approximation algorithm for the average distance probleuth algorithms run i) (n/°™)) time.
There is also a number of sublinear-time algorithms forowsiclustering problems in either
Euclidean spaces or metric spaces, when the number of rdustemall. For radiusitcente)
and diameter clusteringn Euclidean spaces, sublinear-time property testingrdlgos [1, 21]
and tolerant testing algorithms [48] have been developée. fifst sublinear algorithm for the-
medianproblem was a bicriteria approximation algorithm [37]. Fhlgorithm computes i@ (n k)
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Figure 3: Two instance of the metric matching which are indistinguishable(ir?) time and whose cost
differ by a factor greater than\. The perfect matching connectiigwith R is selected at random and the
edgee is selected as a random edge from the matching. WB setn (A — 1) 4 2. The distances not shown
are all equal ton> \.

time a set ofO(k) centers that are a constant factor approximation toktimeedian objective
function. Later, standard constant factor approximatilgorithms were given that run in time
O(nk) (see, e.g., [44, 50]). These sublinear-time results haea leatended in many different
ways, e.g., to efficient data streaming algorithms and vasydlgorithms for Euclideakmedian
and also tdk-meanssee, e.g., [9, 12, 16, 27, 35, 36, 41, 42, 45]. For anothsteiling problem,
the min-sumék-clustering problem(which is complement to the Mak-Cut), for the basic case
of £ = 2, Indyk [39] (see also [38]) gave @ + ¢)-approximation algorithm that runs in time
0(2Y<°" n, (log n)°M), which is sublinear in the full input description size. Nabkuesults are
known fork > 3, but recently, [22] gave a constant-factor approximatilgo@thm for min-sum
k-clustering that runs in im&(n k (k log n)°®)) and a polylogarithmic approximation algorithm

running in timeO(n k°W),

45 Limitations; What Cannot bedonein Sublinear-Time

The algorithms discussed in the previous sections may stigiggt many optimization problems
in metric spaces have sublinear-time algorithms. Howev&irns out that the problems listed in
the previous sections are more like exceptions than a nardeeld, most of the problems have a
trivial lower bound that exclude sublinear-time algorithriiVe have already mentioned in Section
4 that the problem of approximating the cost of the lightelgesin a finite metric spacgP, d)
requires((n?), even if randomization is allowed. The other problems foiclvmo sublinear-
time algorithms are possible include estimation of the cbstinimum-cost matching, the cost of
minimum-cost bi-chromatic matching, the cost of minimanam-uniformfacility location, the cost
of k-median fork = n/2; all these problems requite(n?) (randomized) time to estimate the cost
of their optimal solution to within any constant factor [10]

To illustrate the lower bounds, we give two instances of tlegrim spaces which are indistin-
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guishable by any(n?)-time algorithm for which the cost of the minimum-cost manchin one
instance is greater thantimes the one in the other instance (see Figure 3). Consideztacm
space( P, d) with 2n points,n points in L andn points in R. Take a random perfect matching
M between the points i and R, and then choose an edge= M at random. Next, define the
distance in P, d) as follows:

e d(e)is eitherl or B, wherewe seB =n (A — 1) + 2,
o foranye*M \ {e} setd(e*) = 1, and
o for any other pair of pointg, ¢ € P not connected by an edge frdw, d(p, ¢) = n3 .

It is easy to see that both instances define properly a metaices P, d). For such problem
instances, the cost of the minimum-cost matching problelihdepend on the choice afie): if
d(e) = B then the cost willber — 1+ B > n A, and ifd(e) = 1, then the cost will bex. Hence,
any \-factor approximation algorithm for the matching problemsandistinguish between these
two problem instances. However, this requires to find if éheran edge of lengtl®, and this is
known to require timé&)(n?), even if a randomized algorithm is used.

5 Conclusions

It would be impossible to present a complete picture of tihgeldody of research known in the
area of sublinear-time algorithms in such a short paperiggurvey, our main goal was to give
some flavor of the area and of the types of the results acheveédhe techniques used. For more
details, we refer to the original works listed in the referes

We did not discuss two important areas that are closelyaeltd sublinear-time algorithms:
property testing and data streaming algorithms. For istecereaders, we recommend the surveys
in[7, 26, 30, 31, 40, 49] and [47], respectively.
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