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This MPhil dissertation presents a new verification system for FPGA based designs 
described in the JHDL hardware description language. The method consists of 
performing hardware emulation of designer selected blocks in a co-simulation 
environment. Although JHDL has a Hardware execution mode it does not provide a fine 
control of which blocks have to be executed in Hardware and it is based on Xilinx 
readback technology. In this work the simulation environment is extended to control of 
the Hardware emulation system, instrument the design for debug, and automatically 
create the interface to communicate the simulator with the emulated hardware block. 
The resulting system does not offer 100% observability and controllability of hardware 
blocks. Nevertheless its interactivity provides a solid basis for incremental verification 
while offering the possibility of substantial simulation speedups. 

������

Aquest treball de recerca presenta un nou sistema de verificació per dissenys descrits 
amb el llenguatge de descripció de Hardware JHDL. El mètode consisteix en realitzar 
l’emulació del bloc de Hardware seleccionat pel dissenyador en l’entorn de simulació. 
Malgrat que el JHDL ja disposava d’un mode d’execució, aquest no proporciona un 
control fi sobre quins blocs s’executen en Hardware i es basa en la tecnologia 
readback de Xilinx. En aquest treball s’amplia l’entorn de simulació per controlar el 
sistema d’emulació, instrumentar els dissenys per a la depuració i crea 
automàticament la interfície de comunicació entre el simulador i el bloc Hardware 
emulat. El sistema resultant no ofereix ni observabilitat ni controlabilitat completa, però 
suposa una sòlida base per realitzar verificació incremental i reduir el temps de 
simulació de manera significativa. 
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Este trabajo de investigación presenta un nuevo sistema de verificación para diseños 
descritos mediante el lenguaje de descripción de Hardware JHDL. El método consiste 
en realizar la emulación del bloque de Hardware seleccionado por el diseñador dentro 
del entorno de simulación. A pesar de que JHDL ya disponía de un modo de ejecución, 
éste no proporciona un control fino sobre que bloques se ejecutan en Hardware y se 
basa en la tecnología readback de Xilinx. En este trabajo se amplía el entorno de 
simulación para controlar el sistema de emulación, instrumentar los diseños para su 
depuración y crear automáticamente la interfaz de comunicación entre el simulador i el 
bloque Hardware emulado. El sistema resultante no ofrece ni observabilidad ni 
controlabilidad completa, pero supone una sólida base para realizar verificación 
incremental i reducir el tiempo de simulación de manera significativa. 
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AMR Automatic Meter Reading 
ASIC Application Specific Integrated Circuit 
CBSE Cycle-Based Simulation Engine 
CCM Custom Computing Machine 
CDFG Control Data Flow Graph 
CLB Configurable Logic Block 
COTS Commercial of the shelf 
DCT Discrete Cosine Transform 
DE Driving Environment 
DFG Data Flow Graph 
DSP Digital Signal Processing 

Digital Signal Processor 
DUT Device Under Test 
EDA Electronic Design Automation 
EIA Electronic Industries Alliance  
ESL Electronic System Level  
FCCM FPGA-based Custom Computing Machine o Field-Programmable 

Custom Computing Machine 
FPGA Field Programmable Gate Array 
FPLD Field Programmable Logic Device 
FSM Finite State Machine 
FSMD Finite State Machine with Data-path 
GPP General Purpose Processor 
HDL Hardware Description Language 
HIL Hardware In the Loop 
HLL High Level Language 
IC Integrated Circuit 
IDCT Inverse Discrete Cosine Transform 
IP Intellectual Property 
ISA Instruction Set Architecture 
ISS Instruction Set Simulator 
LE Logic Element 
LUT Look up Table 
MAC Multiply Accumulate 
MPSoC MultiProcessor System on Chip 
NoC Network on Chip 
NRE Non Recurrent Engineering 
PCB Printed Circuit Board 
PLA Programmable Logic Array 
PLD Programmable Logic Device 
PLI Programming Language Interface 
PLL Phase Locked Loop 
RTL Register Transfer Level 
SRAM Static Random Access Memory 
SoC System on Chip 
TLM Transaction Level Modeling 
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VHDL VHSIC Hardware description Language 
VHSIC Very High Speed Integrated Circuit 
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Programmable logic devices are becoming essential platforms to prototype hardware-
software solutions for commercial electronic systems and sometimes even a good 
alternative to implement them. The reconfiguration capabilities of these devices offer 
great advantages versus ASICs as they reduce the risks of possible design errors. The 
importance of flexibility increases with every passed day. Nowadays the non-recurrent-
engineering costs in ASIC design are about one million dollars. Every unexpected 
additional iteration in the design cycle means a potentially null profit or significant loss 
of benefit. General Purpose Processors (GPP) and Digital Signal Processors (DSP) 
offer great deal of flexibility and are broadly used but they have limited hardware 
resources and are more energy inefficient. On the other hand, FPGAs allow designing 
specific hardware to maximize parallelism, offering better performance at a competitive 
price with less energy consumption. 

The roles of programmable logic devices have been increasing with time (Figure 1). 
First devices where based on AND-OR planes, that were able to implement any 
combinational function and where used to simplify the connectivity of electronic 
systems (glue logic). Before its introduction, the area of printed circuit boards (PCBs) 
was dominated by circuits to interconnect the main operational circuits. Programmable 
devices assumed simple functions, like the ones offered by TTL74 family, so that area 
for glue-logic was greatly reduced and consequently cost was reduced as well. The 
steady increase of integration capacity and the technology change to SRAM-based 
FPGA on 1985 drove their use for ASIC prototyping. 
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1970's 1980's 1990's 2000's

1972
NSC PLA

 conversion
EBCDIC - ASCII

1978
MMI PAL

300 G

1974
Signetics FPLA

50 G

1984
Altera EPLD

EPROM Based
1.2 KG

1982 AMD buys
MMI

22V10 PAL
400 G

1999
Lattice

acquires
Vantis

1985
Xilinx SRAM

FPGA
800 G

1985
Lattice E2CMOS

GAL devices
350 G

1998
Xilinx Virtex

500 KG

1996
Altera FLEX

includes
PLLs

100 KG

2001
Xilinx Virtex II
DSP blocks

10 MG

1987
Altera PLD

with Bus Interface
1.4 KG

1987
Altera MAX5000

1.4 KG

1992
Altera FLEX

8000
8 KG

1995
Altera FLEX

includes
Memory
10 KG

2001
Altera

Hardcopy

2002
Altera

Cyclone &
Stratix2000

Altera
NIOS

2005
Altera Cyclone II

820 KG

Glue Logic

ASIC prototyping

DSP

SoC

1970's 1980's 1990's 2000's Co-Processor
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In early 90s people started to see FPGA devices as computing resources rather than 
as flexible interconnection systems. This leaded to their use as custom reconfigurable 
co-processor that could help to surpass limitations of the limited resources of CPUs 
with custom computing units. The coprocessor contribution to an application speedup 
is derived from Amdahl’s law (1) [Amdahl67] in which α is the fraction of the application 
implemented in Hardware.  

4�������5������

�

4����������������� αα +−
=

$0�

0
   (1)  

So to get a significant reduction time, a large fraction of the application must be 
accelerated [Edwards97], and this is not always possible. In addition, the Coprocessor 
Speedup factor is defined by (2) and, since FPGA based co-processors usually are 
relatively far from CPUs, the overhead in communication often burdens the 
performance of the system [Benitez04]. 
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Simultaneously, and thanks to the dynamic reconfiguration ability of some SRAM-
based devices, it was feasible to think of computing machines with reconfigurable 
functional units. The concept was referred as Custom Computing Machines (CCM) or 
Field-programmable Custom Computing Machines (FCCM) [Sima00]. The difference 
between coprocessors and CCMs were that the first were addressed to a single 
function while the later were designed to exploit reconfiguration to adapt better to 
different application scenarios. As FPGA devices are reconfigurable in essence, in 
practice the difference between CCM and FPGA coprocessors has diluted overtime 
and both terms are often used to express the same concept. 
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During the 90s reconfigurable platforms were experimentally used for signal processing 
applications. In late 90s, FPGA manufacturers introduced specific signal processing 
circuitry like Phase Locked Loops (PLL) to enable multiple clock domains and Multiply-
Accumulate modules (MAC) starting a battle with ASIC and DSP manufacturers that 
were the dominant players of that arena [Tessier01].   

In early 2000s the integration capacity had increased enough to embed full 
microprocessors inside the FPGA device, either as a normal microprocessor sharing 
part of the silicon area of the FPGA (Hard-Core processor) or as an Intellectual 
Property block mapped in the device (Soft-Core processor). The new “Intellectual 
Property” (IP) concept was to Hardware what Software Components were to Software. 
They should enable the flourishing of a market of resources that would be ready to use 
for any new design. The combination of various IPs including microprocessors, 
peripherals and buses and their programming environments allowed the design of 
Systems on Chip (SoC) on an FPGA. 

To summarize, today reconfigurable systems exploit the tradeoff between flexibility and 
performance in their various roles as glue-logic, ASIC prototyping, co-processing, DSP 
and SoCs. 

'���(������

FPGA applications are designed using a combination of several tools. The design flows 
depend on the design language and the EDA tool chain. Hardware description 
languages like VHDL, Verilog and AHDL share a similar design flow as shown in Figure 
2. The designer usually receives a specification in the form of a requirement list, which 
must be transformed into a HDL source code. This first deliverable can be validated 
with functional simulation tools. This adds the need to develop additional test code, 
called test-benches, to generate stimuli to the circuit under test. After validation, the 
synthesis process translates HDL language definitions into hierarchical definitions of 
the circuit structure based on basic device primitives (ands, ors, multiplexers, flip-flops, 
...). There usually exist innumerable circuits structures that can implement the same 
function defined as HDL code. Mapping HDL into a given hardware structure is a NP 
complex problem.  

Specification Coding Program Synthesis Netlist
Place &
Route

Bitstream

Functional
Simulation

Gate level
Simulation

Configuration Execution

Validation
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The result of synthesis, a circuit netlist, can be simulated into gate level simulators, 
which can use detailed information about time and other physical properties of the 
particular device primitives, like power consumption. Although it is possible, they are 
seldom used for large designs because of the long simulation time that they take. 

The next step is to place the device primitives into the actual resources of the FPGA 
and define the interconnection between the logic elements. This function is performed 
by Place & Route tools that are usually provided by device vendors because of the 



�����0,�

amount of technology information needed by them. Finally the bit-stream produced by 
Place & Route tools is downloaded into the device for its execution. 

FPGA device manufacturers are the major providers of FPGA design flows. Since 
Place & Route is so technology dependent and synthesis algorithms are quite mature, 
there is little competition in the Synthesis Tools market. Moreover, FPGA device 
manufacturers try to offer design flows as a single tool and, although allowing it, do not 
encourage the decoupling of the process. 

EDA tools that are based on higher abstraction level languages have few reasons to 
provide an equivalent synthesis step. Instead, they usually translate high level 
descriptions into HDL descriptions that can be feed into an HDL design flow as shown 
in Figure 3. Popular examples are SystemC compilers (like Forte Cynthesizer) that 
produces RTL VHDL, and model based design tools based on MATLAB Simulink like 
Xilinx System Generator [Hwang01] and Altera DSP Builder [Altera05]. 

Specification Coding

HDL
Program Synthesis Netlist

Place &
Route Bitstream

Functional
Simulation

Gate level
Simulation

Configuration Execution

Validation

HLL
Program

Behavioural
Synthesis

Functional
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Besides working at a higher level of abstraction, which is easier for human 
understanding, HLL design flows offer benefits: as the code is more abstract it should 
also be shorter and as a consequence a simulator working at this level should take less 
time to execute than its equivalent HDL simulator. In addition, the speedup in 
simulation is greater when cycle accuracy is not needed and one can work at TLM or 
ISA levels (Figure 4). 
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Speeding up simulation is very important. Simulation is the most usual way of 
performing the verification of a digital circuit design and is usually a very time 
consuming task. In most projects, time spent on design is exceeded by the time spent 
on verification ([Hunt02],[Molina07]). 

In late 90s, there was the widespread idea that the productivity of design teams was 
not following the Moore’s Law and that, as a consequence, there was a gap between 
chip capacity and design productivity that was increasing. Semagroup concluded that 
the number of transistors per chip was increasing by a factor of 58% per year while the 
productivity of designers measured in transistors per month that a design team 
produces was increasing by a factor of 21%. This means that although chips with many 
more transistors are available designing a new chip with the same size takes more time 
than before. To address the problem and bridge the gap some industry and research 
groups encourage to re-use components and design from higher levels of abstraction. 
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However, some argued that this is not the case and that the gap has not been 
continuously increasing. In [Ofner04] the authors suggest that after a design 
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technology change happens (for instance a raise in level of abstraction) there are three 
phases, childhood, youth and old age, in which technology is progressively mastered to 
reach higher levels of productivity (Figure 6). The eclosion of a new mainstream 
technology causes a significant drop in productivity as tools are usually immature and 
designers lack the knowledge to take advantage of it. After this childhood phase, as 
tools mature, designers are trained, and many designs can be reused great productivity 
can be achieved to catch-up the Moore’s Law. 
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Even more shocking are the statements of [Bazeghi05] that conclude that the number 
of transistors per month produced by a design team has no correlation with the design 
time effort and suggest better productivity indicators as lines of HDL code and the sum 
of fan-ins of logic structures. As Sematech productivity gap forecast is based in the 
transistors per month indicator, it could be not valid at all. This is also backed by the 
forecast of the evolution of memory usage in SoC designs (Figure 7). As memory is a 
so simple design, its area occupancy expansion adds little design effort in the 
development process, and productivity measured in transistors per month is very easily 
boosted. Furthermore, having more memory on-chip instead of having it off-chip 
provides some additional benefits because it is usually faster and more energy 
efficient.  
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Nevertheless, there is little discussion about the fact that the complexity of future chips 
will increase drastically. While techniques like code reuse can reduce a lot the coding 
effort, they cannot eliminate the testing effort. In fact, the ratio between testing and 
coding effort keeps increasing steadily and by now testing is the major contribution to 
the overall development time (Figure 8).  
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This situation is even worse when various levels of abstraction are mixed. As explained 
in [Hemani04] this would happen when a HLL based design is reusing HDL blocks 
following the platform-based design hype. A full HLL design can be quickly verified at 
HLL level and synthesized assuming a correct-by-construction approach. But including 
a low level block, forces to include HDL verification tools in the development process, 
that slows it down while adding complexity in the synthesis step because of the 
interconnection of systems at various levels.  

Hemani encourages fully adopting more abstract levels of design and improving 
synthesis capabilities to avoid getting stuck in the current transient productivity gap. 
However, to my knowledge, this is happening very slowly and HDL design flows are 
still in very good shape. 

In this context, functional or logic simulation is still the main method to verify system 
correctness. As shown in Figure 4, RTL logic simulation offers cycle accuracy but its 
low speed slows-down the development process. Although hardware emulation based 
on FPGAs has been commercially available for about a decade and would provide a 
significant speedup in verification, it is seldom integrated in HDL design flows provided 
by FPGA vendors. Model based design tools such as Matlab/Simulink, Xilinx System 
GeneratorTM [Xilinx00] and Altera DSP BuilderTM [Altera05] have successfully revamped 
hardware emulation for the DSP domain with the concept of hardware-in-the-loop (HIL) 
simulation and proved that it can be a convenient and easy technology. 
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The motivation of this work is to show that emulation can also be integrated easily in 
classic HDL design flows so that verification time can be greatly reduced and so 
productivity increased. 

)�*����(���

I propose a method based on a developed tool, named Jumble, based on JHDL that 
integrates hardware emulation into the design flow following a simple approach. The 
principal idea is to allow designers to work in an interactive simulation environment 
from which they can select any block of the circuit hierarchy and instruct the tool to 
transparently download it into a supported hardware platform for real hardware 
execution. Synthesis of the custom hardware, and all the necessary communication 
between the simulator and the hardware implementation, is hidden to the user, greatly 
reducing the complexity of the process. 

In the Model Design world, the concept, known as Hardware-in-the-loop simulation, 
usually suffers from the need of a migration phase from high-level abstraction models 
to hardware implementation. This process is often done manually.  

It makes sense to use the same concept in HDL tools, and in fact, there exists some 
commercial offerings that contain some of the desired features. However, most of them 
are bound to a particular hardware, dependent of FPGA device or are loosely coupled 
with the simulation environment. 

The method I propose will integrate the following capabilities: 

• Integration of Hardware-in-the-loop simulation in the JHDL environment. 

• Automation of synthesis, place & route and device configuration tools and operative 
system identification of the reconfigured system. 

• Independence of the used FPGA device 

• Independence of the used hardware platform. 

Neither full observability nor full controllability are mandatory requirements, these 
would be important issues for a Hardware Debugger but are not central for a HIL 
simulation system. In our case, a user design is viewed as a black box that is 
downloaded to hardware in order to speedup the whole simulation and possibly to 
verify that its hardware version behaves equivalently. 
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The integration of hardware emulation in system simulators has been a recurrent topic 
in EDA research and industry. An initial clean-room attempt was implemented in the 
JHDL project with its execution model [Bellows98]. Other attempts focused in 
integrating reconfigurable hardware platforms into MATLAB/Simulink [Alpha],[Lyr]. 
Simulink extensions have evolved much since then and become popular among the 
data signal processing community as they allow accelerating long and complex 
simulations without leaving a familiar development environment. There are many 
examples of integrating Hardware in the Loop for System Simulation of various 
applications, like Bit Error Rate calculation [Singh03][Shirazi03], Software Defined 
Radio [Dick01][Ramon05], Sonar Beamforming [George99], etc. 

Probably because of EDA tools manufacturers and their marketing strategies, the 
integration of emulation in simulation has been presented under different terms. 
Sometimes these different flavors are caused by stressing the benefits of some of the 
techniques in front of others, for instance performance vs. design productivity. 
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Hardware simulation [Wisniewski01] is a technology that allows speed up simulation 
time, turning weeks or months of simulation into days or even hours. Designer can 
“push” whole or a part of the design into hardware. Because it is rather a new 
technology every solution is different and has different features. Some vendors 
produce only hardware simulators, others manufacture hardware and also software 
simulators. 

.�����+///�0	"����������1�!��23�

Xcite-2000 [Axis] offers a simulation performance up to 100K cycles/second. Their 
product is based on a PCI board containing an Altera FPGA that communicates with 
the simulator (Figure 9). Design description can be separated into three components: 
behavioral, RTL and gates. The Xcite compiler automatically maps sections, which can 
be RCC accelerated (RTL and gate level components), and builds a native compiled 
simulation image for behavioral sections, which need to stay within the Axis software 
simulator, Xsim. Using "Hierarchy Extracted" mapping technique, the Xcite compiler 
automatically maps the design onto arrays of FPGAs. 

One of the unique capabilities of Xcite-2000 is its ability to swap software and RCC 
state in real time. Thus during simulation, the user may choose to swap all RCC state 
into Xsim in order to debug the design and continue software simulation. Once the 
circuit is fully diagnosed, simulation state value can be swapped back into RCC for 
maximum performance acceleration. 

Within Xcite RCC simulation, simulation history for all nodes is compressed within RCC 
and stored onto the workstation. Either during or after simulation, the Xcite VCD-on-
Demand capability can extract all node history values without re-simulation. Thus 
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design debugging has become highly efficient without the high cost of disk storage or 
simulation slowdown. 
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Hardware Embedded Simulation (HES) [Aldec] is the technology that facilitates the 
incremental design verification of FPGA and ASIC devices while speeding up design 
verification. HES technology allows you to download selected modules of your design 
into an FPGA and perform hardware-software co-simulation. After a design block has 
been verified at the behavioral level, it is synthesized, implemented and downloaded 
into an FPGA residing on an accelerator board. HES technology supports up to four 
acceleration boards residing in one computer. The boards are the PCI cards inserted 
into the slots of the computer. 

The entire design is simulated in the HES environment, which consists of an HDL 
software simulator and PCI boards. This environment assures correct communication 
between modules located in silicon and modules simulated in software. 

Using the HES technology, verified modules of the design can be put into silicon after 
the synthesis of even a small part of the design. User needs to synthesize the modules 
that should be pushed into silicon, and the HES Design Verification Manager (DVM) 
will help to configure HES environment. 

Aldec’s simulator is based on the Incremental Prototyping. Figure 10 shows the idea of 
Incremental Prototyping. When module A is finished, it is synthesized and implemented 
and finally downloaded to the HES board. Since module A resides in the hardware 
simulator, the designer can prototype module B in software. When module B is verified 
successfully at the software level, it goes thru incremental synthesis and incremental 
place and route processes. Note that since module A now resides in the hardware, it is 
not synthesized and implemented again. 
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Co-emulation is a verification technique that maps portions of the design under 
verification into hardware while the rest is simulated in a software environment on a 
host computer.  

The first traces of this technology are found in [Bauer98] that migrate portions of the 
circuit under simulation into a commercial emulation system from Quickturn. In this 
work the synchronization between a cycle accurate simulator and the emulation system 
is done at every clock cycle. This causes a bottleneck in the system performance. The 
maximum frequency reported in this work is 200KHz for a 35KG design and no 
speedup is reported. 

In order to increase the overall system performance, other synchronization approaches 
are possible. [Fritsch99] reports poor speedups unless an enable triggered approach is 
used, and in this case the co-emulation system is only 3 times faster than functional 
simulation. [Kudlugi01] proposes a transaction-based approach to synchronize the 
simulation kernel with an Ikos commercial emulation system (see Figure 11). 
Synchronization points between the driving environment (DE) and the device under test 
(DUT) are more abstract than clock cycles. They involve several of them, reducing the 
number of total synchronization events needed. As a result this approach is faster, and 
authors actually report clock speeds of 700KHz and speedups of 320 for a 152KG 
design. 
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[Kim04] proposes to split the testbench by the parts that shown a dependence on the 
outputs of the DUT. The dependent part is moved into Hardware so that the 
communication between HW and SW parts can be buffered, allowing the use of burst 
transfers. This approach allows achieving a simulation speed up to 649KHz. 

As the transmission of data between the simulator is main bottleneck of co-emulation 
systems, reducing the amount of transmitted data gives a direct frequency increase. 
[Nakamura04] studies various scenarios of interaction of C++ based simulators with a 
FPGA-based emulator via a register interface. The results of this work shows that 
simulation frequency is about 100KHz for some designs but it can reach to 1.1Mhz 
when a processor is emulated and only clock and Program Counter (PC) is transferred. 

The main drawback of most of these systems is that custom code at both sides has to 
be developed for each device under test. [Kudlugi01] uses the Programming Language 
Interface (PLI), which allows a Verilog simulator to interface with external code, to 
provide some communication primitives based on Unix sockets to interconnect the DE 
with the DUT. But designers have to manually develop black boxes that use these 
primitives to redirect signals to the emulation system. 

This problem is addressed by [Sarmadi02], that defines how to systematically write 
HDL code that uses PLI code to interact with the emulation part of the design. 
Nevertheless its approach is still manual and they report a maximum speedup of 56. 

In [Çakir03] a semi automatic process to generate the communication layers between 
simulator and emulator is presented. A tool called ProtoEnvGen [Çakır01] is used for 
the generation. No speedup is reported. 

Another usual drawback of co-emulation systems is that they are usually limited to the 
emulation of a single DUT. But complex designs would benefit from the possibility to 
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have several designs to test at the same time from a complex testbench. 
[Schumacher05] address this problem by defining Virtual Sockets to access multiple 
emulated circuits. 
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Finally relatively recent works [Siripokarpirom04] have addressed the use of runtime 
reconfiguration to efficiently reuse the FPGA recourses to speedup large designs that 
would not fit in a single device. 

4�������-���������

The term Virtual Emulation was first used in [Borgatti96] and later [Borgatti97] and 
[Dozza98]. This short-life term was used to define a very similar concept to Co-
Emulation. 

A virtual emulation system can be seen as a digital system made up of a prototype 
system implemented using available and off-the-shelf components and a virtual system 
implemented by a behavioral model running on a simulator. 

These two systems communicate through a special purpose HW/SW layer 
implementing the Emulation Interface Border (see Figure 13). The virtual system is 
typically under development and its specification is not so detailed to make it 
synthesizable. The specialized HW/SW interface (the so-called Emulation POD) is 
implemented in an FPGA that converts electric signals from the prototype system in 
logic signals for simulator and vice-versa. 
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Bogartti also stresses the benefits of the incremental verification of the system. Starting 
from a completely behavioral description one can smoothly go to a complete hardware 
implementation while maintaining the same benchmarks and tools (Figure 14). 

 

�������� �����������#���������������������������$���#�=�������70*�

�
����"����������
��

As initially conceived in [Bellows98], in a JHDL design there is always a HWSystem 
object that, as its name implies, represents the whole Hardware System. It implements 
the simulation kernel that invokes behavioral descriptions during software simulation. In 
some systems it is also responsible to talk with the FPGA through calls to the 
necessary APIs and device drivers. The purpose of this communication could be the 
configuration of the device or the transmission of data, most of often to interface with a 
given functional unit programmed in the device. Using this transmission link, input and 
output ports of any JHDL circuit can be redirected to the FPGA device to interact with 
its real hardware implementation, allowing its execution in real Hardware (Figure 15 a).   
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However to be able to perform this redirection the circuit has to be synthesized before 
and downloaded into the platform. This is done programmatically by instructing the 
HWSystem to download a given bitstream into the device. Figure 15 b shows the steps 
involved in advancing a clock cycle in a hardware circuit. 

1. The inputs of the circuit are passed to the hardware implementation through the 
necessary calls to device drivers. 

2. The HWSystem issues a clock step to the whole system that eventually calls 
the device to advance its clock. 

3. The device advances a clock and buffers circuit outputs. 

4. The outputs of the circuit are passed up to software and placed on the output 
ports software buffers.  

Running the above algorithm to be able to interact with the synthesized circuit version 
has some price to be paid. The hardware platform must include some instrumentation 
so it is possible to copy input and output values and control the advance of the circuit 
clock. 

Unfortunately [Bellows98] does not specify the details of how this is done in the 
Hotworks platform. Later [Hutchings99], while presenting how the support for the 
Annapolis Microsystems Wildforce platform is implemented, gives some clues about 
how the instrumentation is performed. Is not that any circuit can be downloaded into 
the hardware platform but just the ones that derive from a specified pelca class which 
represents a programmable element from the platform. The pelca class adds some 
instrumentation to communicate with the host system but the transmission of circuit 
output values after a clock cycle (step 4 of previous algorithm) is performed by using 
readback technology from Xilinx FPGAs. The configuration of the device is no longer 
programmed in the source code but a configuration utility (Figure 16) is provided to do 
it interactively. 
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Later work on JHDL [Hutchings00b], [Hutchings01], [Graham01], [Wheeler01], 
[Bellows04] keep on the same approach, more addressing Hardware Debugging rather 
than Hardware in the Loop Simulation. 
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Simulink is a graphical system modeling tool that provides a simulation environment 
addressed to continuous and discrete time systems modeling. Simulink was especially 
used for process control system modeling but with the years it has broaden its scope 
towards DSP and hardware systems design. 

Simulink lets to graphically describe system components with interconnected modules, 
which can be composed of other basic modules or can be described behaviorally with 
Matlab S language or other languages like C and Fortran. To integrate Hardware in the 
loop simulation in Simulink there were to major problems to be solved.  

1. How to generate Hardware from Matlab models ? 

2. How to integrate generated hardware modules in the Simulation chain ? 

There has been some research in creating HDL code from S code, 
[Banarjee99],[Banarjee00]. In fact this is a problem of behavioral synthesis from a high 
level language. However S language has some properties that make this task 
challenging. It is a dynamically typed language and programs usually rely on working 
on dynamically allocated multidimensional arrays and calls to a large preexisting library 
of functions. This approach has not been much successful. On the other hand in year 
2000 Xilinx presented an alliance with MathWorks that yield to the launch of Xilinx 
System Generator [Xilinx00]. Its approach is not based on behavioral synthesis but on 
structural design and IP reuse, which is similar to a previous proposal found in 
[Krukowski99]. In System Generator a library of hardware blocks are provided by Xilinx. 
Hardware blocks are described twice: as S functions, which can be integrated in 
Simulink, and VHDL code, which can be synthesized to a Hardware platform.  The 
blocks can be simple, as primitive logic cells, or complex IP cores, like an FFT circuit. 
By combining blocks the designer can implement and test a Hardware design from 
Simulink and create its Hardware implementation.  
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Several IP blocks are provided: FFT, FIR filters, Multipliers, etc. Users can also 
integrate their own existing VHDL code with a black-box model. The reported speedups 
(Table 1) depend on several factors like complexity of the design and the 
synchronization scheme. 
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Application Software 
Simulation 

Hardware 
Execution Speedup Factor 

5 x 5 Image Filter 170 s 4 s 43 

Cordic Arc Tangent 187 s 27 s 7 
Additive White Gaussian 
Noise Channel (AWGN) 600 s 80 s 7.5 

�
It is relevant to know that Hardware in the loop simulation is provided in conjunction 
with platform manufacturers, because they have to provide all the middleware that 
allows the communication between the simulation kernel and the circuit under test. In 
2000 only few hardware platforms had support for Simulink ([Alpha], [Lyr]) but 
nowadays there are a large number of them from different manufactures (Annanapolis, 
Nallatech, Lyrtech, etc.). 
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The Ptolemy project [Lee01],[Lee01b] is focused in modeling, simulation and design of 
concurrent embedded systems. Ptolemy is aimed to model various technologies, like 
mechanical systems, analog electronics, digital systems and software. Several 
computing domains are defined so that the models can accommodate the different 
properties of the different technologies, especially regarding their notion of time. 

Ptolemy is an actor-oriented design framework [Lee03], meaning that it is centered in 
modeling the actors that interact in a system and not constraining their models of 
computation. Moreover Ptolemy II allows domain-polymorphic definitions and the 
integration of hierarchical heterogeneous domains (Figure 17). 
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Ptolemy can describe actors in a variety of languages as programming languages tend 
to be designed for a certain computing domain. Although there is no included support 
for Hardware in the loop simulation in Ptolemy there is some interest by Ptolemy 
community in having this feature. In fact, the group of Indrusiak is working on this topic. 
[Indrusiak03] describes a method to integrate remote actors into a Ptolemy system. 
Since remote actors execute in different process contexts, their implementation can be 
anything that communicates successfully with their proxies, including a Hardware 
circuit running on an FPGA platform. This is a good approach to share a limited 
resource like an expensive FPGA board for educational purposes [Jimenez05] and can 
be also useful to design complex systems like a WCDMA receiver [Indrusiak05]. The 
development process is similar to the process imposed by Simulink based tools (Figure 
18). A model in Ptolemy is created and  it is refined in several iterations first to convert 
from floating point to fixed point, then to create its equivalent JHDL model and finally to 
netlist the resulting circuit.  
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However, this kind of integration heavily relies on manual processes, especially in the 
interface between Ptolemy and JHDL. Figure 19 gives an idea of the coding that must 
be developed to intercommunicate both worlds. 
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Despite the availability of the “Hardware Mode” of JHDL that would allow the execution 
of JHDL based actors on FPGA platforms, so eventually achieving the goal of 
executing Hardware in the simulation loop, to my knowledge this has not been done.  

To sum up Ptolemy provides a very powerful environment to design in various 
computing domains but, by now, it has an excessive manual approach to integrate 
Hardware in the loop. 
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DSP designers can aggressively shorten simulation time of complex systems with HIL 
simulation. However, HIL simulation it is not the only application of hardware emulation. 
Some ASIC prototyping systems, like the products from Quickturn [Butts92],[Quickturn] 
and Mentor Graphics [Mentor] (originally IKOS), emulate large ASIC designs on 
FPGAs. Since a single FPGA does not have enough capacity to embed a typical ASIC 
design, these systems use multiple interconnected FPGAs enclosed in a big case and 
controlled by a host computer via a high bandwidth link. The drawbacks of these 
systems are that they are very expensive and need some expertise to be used. 
Additionally the communication between hardware and simulation kernel is often based 
on transactions and usually not transparent to designers. 

Another related topic is the Hardware Debug concept [Tombs04],[Graham01] which 
pursues to offer the equivalent features of Software Debuggers for Hardware design. 
The main goal of a Hardware Debugging system is to allow detecting and removing 
bugs from a design, so speed is not the central point, although an important one. 
Software designers debug by running step-by-step, setting breakpoints, adding traces, 
watching variables, and modifying values while debugging. These features can be 
formalized as interactivity, controllability and observability. Hardware debuggers, for 
instance, should allow controlling the clock (or clocks) execution, to watch any part of 
the circuit, to add breakpoints (triggers), to add traces, and to modify register or 
memory contents. Simple versions of some of these functions are being integrated in 
EDA design flows. Embedded logic analyzers like Altera Signal Tap [Altera01] and 
Xilinx Chip Scope [Xilinx00b] follow a simple approach to enable the acquisition of 
signal values over some time after a triggering event has been reached. 
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JHDL is a design environment that provides a Java API for describing FPGA circuits in 
a constructive way (mostly bottom-up) as well as a collection of tools and utilities for 
their simulation and hardware execution. 
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In JHDL circuits are described as Java classes that follow a given design style. The 
typical different levels of abstraction used by HDLs are specified by deriving classes 
from specific base classes and interfaces. The basic class hierarchy is shown in Figure 
20. Cell class is the main class that represents a hardware block with an I/O 
interface. There are two different Java interfaces: Clockable and Propagateable, 
which denote sequential and combinational logic respectively. Cell class has a 
number of subclasses that map more specifically the nature of the circuits. CL class is 
a Cell derived class that represents a completely combinational circuit, so it 
implements the Propagateable interface. Synchronous class is a Cell derived 
class that represents a completely synchronous circuit, so it implements the 
Clockable interface. It is mandatory that CL and Synchronous derived classes 
provide a behavioral model and they are often used internally in JHDL to represent 
primitive logic from the hardware devices. 

Structural

Cell

+waitUntilClock()

HWProcessCL

+propagate()

«interface»
Propagateable

+clock()
+reset()

«interface»
Clockable

Synchronous

+run()

«interface»
Runnable
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User defined designs consist on the instantiation of existing cells following a 
constructional method. Moreover, their behavior can be inferred from their components. 
For this reason, there is an additional Cell derived class named Structural. As 
building blocks can be either combinational or synchronous Structural class 
implements both Clockable and Propagateable interfaces but it is not mandatory 
to provide a behavioral model since it can be inferred from containing cells.  
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The additional HWProcess class allows to describe circuits by only providing a 
behavioral model based on a sequential description in which timing is specified by 
calling the waitUntilClock function. Since there is only a behavioral model, and 
they never map to primitive logic from the hardware device, HWProcess derived 
classes are not synthesizable. 

Whatever is the base class of a circuit, a behavioral model consists in having a 
programmatically way of driving the circuit outputs, i.e. assigning values to the output of 
the system depending on the values of the inputs and an internal state. Inputs and 
outputs in JHDL are represented by a unique class named Wire. Wires also connect 
different circuits. One can examine the value of an input wire by calling a get method 
and can assign a value to an output wire by calling a put method. There are a number 
of variants of get and put methods depending on the width of the wires. 
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Once a circuit is compiled it can be simulated by two methods. First, a custom 
testbench can be developed by implementing the TestBench Java interface. 
Simulation kernel is exposed as an object and can be easily controlled from 
testbenches to feed stimuli to the circuit under test, extract and display outputs and 
control execution by explicit invocation of clock advance functions. 

In the following example code a testbench is build to verify a median filter design. In the 
execute method HWSystem clock method is called to advance the system clock 
after the data for the inputs of the system have been updated. 

package org.cephis.MedianFilter; 
 
... 
 
public class tb_MedianFilter extends Logic implements TestBench 
{ 
  static HWSystem hw; 
 

Wire in[] = new Wire[9]; 
int v[] = new int[9]; 
 
... 
 

 
  public static void main(String argv[]) 
  { 
   hw = new HWSystem();  
 
  tb_MedianFilter tb = new tb_MedianFilter(hw); 
  tb.execute(); 
 } 
 
  public tb_MedianFilter(Node parent) 
  { 
   super(parent); 
 
  for (int i=0; i < 9 ; i++) in[i] = wire(8, "in"+1); 
   median = wire(8, "median"); 
 
   design = new MedianValue(this, in[0], in[1], in[2], in[3], in[4], in[5], in[6], in[7], in[8], median); 
  } 
 
 public void execute() 
  { 
   FileInputStream fis = new FileInputStream("c:\\test.jpg"); 
   JPEGImageDecoder decoder = JPEGCodec.createJPEGDecoder(fis); 
   BufferedImage img = decoder.decodeAsBufferedImage(); 
   BufferedImage dst = new BufferedImage(img.getWidth(), img.getHeight(), BufferedImage.TYPE_INT_RGB);  
 
  int shift = 0; 
 
  addSaltAndPepperNoise(img, 0.2); 
  
  for (int i=0; i < 9 ; i++) 
    v[i] = 0; 
 
   getSystem().cycle(1); 
 
   for (int mask = 0xFF; shift <= 16; mask <<=8, shift +=8) 
    for (int y=1; y < img.getHeight()-1; y++) 
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     for (int x=1; x < img.getWidth()-1; x++); 
      { 
      fillKernelValues(v, img, x, y); 
 

    getSystem().cycle(1); 
 
      int rgb = dst.getRGB(x, y); 
      
      rgb &= ~mask; 
      rgb |= (median.get(this) << shift) & mask; 
 
     dst.setRGB(x,y,rgb); 
     }    

} 
 
public void reset() 

  { 
 for (int i=0; i < 9; i++) 
  in[i].put(this, 0);  
} 
 
public void clock() 

  { 
 for (int i=0; i < 9; i++) 
  in[i].put(this, v[i]);  
} 
 
... 

} 

 

Second, a circuit can be loaded into the interactive simulation environment 
(DynamicTestBench, DTB), which provides several facilities for exercising and 
viewing the state of the circuit during simulation. DTB includes a hierarchical circuit 
browser with a tabular view of signals, a schematic viewer that include values of 
signals, a waveform viewer, a memory viewer and a command line interpreter (see 
Figure 21). 
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Since all tools are public and available from the designer perspective, more complex 
hybrid testbenches can be developed. For instance, a TestBench derived class could 
instantiate the schematic viewer and waveform viewer for easy visual inspection of 
results while programmatically feeding stimuli. On the other hand, DTB based 
simulations could include some behavioral modules that generate complex stimuli or 
display results in a custom way.  
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Most HDL simulators are based on an event-driven approach. In fact, as stated in 
[Kulmala], VHDL and Verilog languages semantics assume there is an underlying 
event driven simulator. An event driven simulator is based on the existence of a queue 
of pending events, called Time Wheel. An event has two components: value of a signal 
and time. At each simulation iteration the simulator takes the head of the Time Wheel 
and evaluates all the dependant circuits that the event could trigger. Circuits that 
depend on a signal are obtained from the sensitivity list that is always defined in VHDL 
and Verilog designs. The evaluation process can probably cause the insertion of new 
events in the Time Wheel. Events are always inserted in the Time Wheel in time order. 
Simulation ends when the Time Wheel contains no pending events. 

A simple example of the simulation dynamics is depicted in Figure 22. In this example 
the Time Wheel is initialized with the test vectors for signals a, b, c. The first event in 
the Time Wheel indicates that signal b is changed at time t1. When the simulator takes 
this event it must look for all circuits that depend of signal b. The sensitivity list of the 
behavioral model of the NAND2 gate includes the signal b, so it is processed and a 
new event, associated to the output, is inserted in the Time Wheel. The same algorithm 
is repeated until no events are pending in the Time Wheel. 
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Several events can happen at the same time, so the order of evaluation of events is 
critical for the accuracy of the results. If behavioral models of the circuit to test include 
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time semantics the system can be verified with some time precision. On other 
occasions a zero delay is assumed.  

On the other hand JHDL has a cycle-based simulation engine (CBSE). In cycle based 
simulators time advances at discrete intervals, i.e. clock cycles. Combinational logic is 
assumed to be zero delay and synchronous logic has a delay of one clock cycle. 

The JHDL simulator has to differentiate between synchronous and asynchronous 
circuits, and as a consequence between synchronous and asynchronous wires. This 
allows the simulator to perform the correct method of value propagation to each circuit 
wire. The model that allows the simulation of a JHDL circuit is build at the same time 
that the circuit is build. In fact the simulation system is tightly coupled with the circuit 
modeling and simulation structures are created and maintained even though there is no 
intention of simulation. This approach is totally different to other simulators like 
ModelSim that are totally uncoupled to circuit modeling. 

A fundamental class in the JHDL framework is the ValuePropagater class that 
models a channel that can propagate a value between two endpoints. A 
ValuePropagater is associated to each line of each wire. During circuit building the 
BuildListManager class is responsible for keeping track of all propagators of the 
system that are stored in the all_value_propagaters member variable. This array 
is populated progressively as wires are connected to Cells (Figure 23). 

Cell Wire

linkSinkCell()

connect()

ValuePropagater

addSinkCell()

HWSystem

addValuePropagater()

BuildListManager

addValuePropagater()

initCell()

addCell()

addCell()

all_clockable_cells : ClockableList

insert()

all_value_propagaters : ValuePropagaterList

insert()
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When simulation is initialized all the ValuePropagaters are classified depending on 
the nature of the cells that drive them. This process is performed by 
PropagateManager.topologicalSort (Figure 24).  
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build_list_manager : BuildListManager PropagateManager : PropagateManager

initialize()

initializePropagateManagerWithDefaults()

MCSimulator : MCSimulatorSimulator : Simulator

run()

initialize()

initializePropagateManager()

Using all_value_propagaters

topologicalSort()

reset()

resetSimulator()

global_simulation_schedule : GlobalSchedule

global_propagate_schedule : PropagateSchedule

reset()

propagateAll()

initializeSimulator()

all_clock_drivers : ClockDriver

reset()

getAllClockDrivers()

getGlobalPropagateSchedule()
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This classification is important to handle in different ways the different types of sources. 
For instance, constant cells do not vary and there is no reason to evaluate their value 
at every clock cycle, so they are handled different from the rest of the elements of the 
circuit. Besides classification, the topologicalSort function also builds a directed 
graph with the dependency of the different ValuePropagaters. This is useful for 
propagating the results of combinational logic since all cells are evaluated in the order 
of the list. This is also the major reason why asynchronous loops are not allowed in 
JHDL. 

The following example illustrates how the topological sort is performed and how this 
affects the simulation. Let’s consider we have a very simple code in a JHDL circuit that 
creates a couple of registers and some simple logic gates. We assume that signals 
in0, and nor are the input and output signals of the circuit respectively.  The 
schematic view of this very simple circuit is shown in Figure 25. 

        ... 
        Wire in0 = wire("in0"); 
        new Stimulator(this, new Wire[]{in0}); 
 
        Wire xor0 = wire(); 
        Wire nor = wire(); 
         
        Wire reg1 = reg(in0); 
        Wire reg2 = reg(nor); 
         
        xor_o(reg1, reg2, xor0); 
         
        Wire or0 = or(reg1, reg2); 
        Wire and0 = and(in0, or0); 
         
        nor_o(reg1, and0, nor); 
        ... 
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As mentioned before, the topological sort during simulation initialization would classify 
the different elements of the circuit, including Wires and Cells. The resulting graph is 
shown in Figure 26, Cells are yellow colored while Wires are white colored. Three main 
groups would be created for this circuit: constant cells, clockable cells, and 
propagatable elements. Constant cells would contain all the constants of this circuit, 
just power (VCC) and ground (GND) connections. Since there are only two flip-flops in 
this circuit, clockable elements would contain only references to lpm_ff and lpm_ff-1. 
Finally, we would have the list of the propagatable elements of the circuit. As the list 
has been build taking dependencies into account the simulator can evaluate each 
element in order and be sure that no inconsistency occurs. 

Constant
elements

vcc

vcc-1

vcc-2

vcc-3

gnd

gnd-1

gnd-2

gnd-3

Clockable
elements

lpm_ff

lpm-ff-1

Propagatable
elements

req1_q

req2_q

in0

lpm_xor

or2

or_out

and2

and_out

nor2

nor_out  
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The simulator evaluates all synchronous blocks before propagating the asynchronous 
elements (see Figure 27). The order of evaluation of the synchronous blocks is 
irrelevant since the values they compute is not made public to the rest of the circuits 
until Wire propagation occurs as part of the propagation of asynchronous elements. 
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MCSimulator : MCSimulatorSimulator : Simulator global_simulation_schedule : GlobalSchedule

run

simulate()

step()

ClockDriverList : ClockDriverList

risingEdgeClock()

ClockSchedule : ClockSchedule

clockAll()

SettlePropagate()
settle_propagate_schedule : GatedPropScheduleList

propagateAll()

tmp_schedule : PropagateSchedule

propagateAll()
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JHDL allows synthesizing circuits created by the user. The synthesis method is based 
on generating an EDIF [Edif] netlist from the circuit model to be used by FPGA provider 
for final Place & Route. 

The EDIF (Electronic Design Interchange Format) format is a data interchange format 
defined by the Electronic Industries Alliance (EIA) and US based industry association 
to make CAD tools interoperable. 

As previously described, the internal circuit model consists of a hierarchical tree of cells 
connected by wires. The EDIF format completely matches this model, so the 
generation of EDIF files from the model is straightforward. 

 

 

The EDIF system describes interconnections in text format by using reserved keywords 
(or tags) that are organized hierarchically. Being a text based hierarchical format, it has 
similarities with XML and HTML. 
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The following example code shows the netlist of a simple cell in EDIF 2 0 0. As seen 
below the andX_g_1 cell defines two input ports and one output port and instantiates a 
primitive cell and_2, which is part of the primitive elements of the FPGA library. 

(cell (rename andX_g_1 "andX_g_1") 
   (cellType GENERIC) 
      (view view_1 
         (viewType NETLIST) 
         (interface 
         (port in1  (direction INPUT)) 
         (port in0  (direction INPUT)) 
         (port out  (direction OUTPUT)) 
      ) 
      (contents 
         (instance andX 
            (viewRef view_1 (cellRef and_2)) 
         ) 
         (net (rename in1 "in1") 
            (joined 
               (portRef (member i 1) (instanceRef andX)) 
               (portRef in1) 
            ) 
         ) 
         (net (rename in0 "in0") 
            (joined 
               (portRef (member i 0) (instanceRef andX)) 
               (portRef in0) 
            ) 
         ) 
         (net (rename out "out") 
            (joined 
               (portRef o (instanceRef andX)) 
               (portRef out) 
            ) 
         ) 
      ) 
   ) 
) 

 

JHDL cannot create the final bit-stream to program the FPGA, it is mandatory to use 
the tools provided by the manufacturer of the device, e.g. ISE for Xilinx devices. This is 
not a problem of JHDL but the result from the industry tactics who is very reluctant to 
make the bit-stream format publicly available. 
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JHDL offers an integrated simulation/execution environment [Hutchings01] meaning 
that designer can use the same facilities when working in simulation mode and when 
working in hardware mode. For instance, clock control and schematic viewer, whose 
signal value annotation should be available on both modes. These features are based 
on the following facts:  

1) Xilinx devices allow retrieving the state of the complete configuration memory, 
including flip-flop states, through readback.  

2) JHDL classes that represent stateful device primitives, like flip-flops, implement 
the ExternallyUpdateable interface, so when the simulator kernel is 
running in hardware mode only updates their value after retrieving readback 
data. 

A drawback of this approach is that is limited to devices that support readback or an 
equivalent technology, so at the end is limited to few Xilinx devices. A more general 
approach consists in instrumenting the designs with scan chains [Wheeler01b] to be 
able to access all circuit flip-flops independently from the kind of used device. 
Unfortunately, the cost in area overhead can be very high, from 30% to 100%, and 
speed is degraded by 20% in average. 
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JHDL hardware execution model provides a method to transparently update state of 
the model from the executing hardware but lacks a method to update the state in the 
other direction, which might be based on JBits [Ballagh01], [Poetter04]. This drawback 
is solved by providing a transaction-based model for each current supported hardware 
platform, i.e. testbenches communicate with circuits through register read/write 
operations. This makes difficult to incrementally test parts of the design on its hardware 
implementation because the interface should be redesigned in each iteration.  

Additionally JHDL hardware execution model requires having a bitstream of the design 
to be downloaded into the hardware platform but the invocation of Place & Route tools 
to produce this bitstream is not included in the design flow. 
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JHDL has support for few hardware boards. Some info of supported platforms can be 
obtained from http://splish.ee.byu.edu/lab/ but most of the detailed info is spread in 
several research papers that describe applications implemented on them. 
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The initial paper from JHDL [Bellows98] has references of support for the HotWorks 
platform, a PCI board from Virtual Computer Corp.  

Unfortunately, there is very little information about the details of how this platform was 
supported in JHDL. 
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The Systems Level Applications of Adaptive Computing project was leaded by 
Information Sciences Institute of the University of Southern California. As stated in their 
website, the mission of the project was to create an open, standards-based, scalable, 
COTS based reference-platform that could be used for high performance demanding 
defense applications. 
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The SLAAC1 platform (Figure 29, Figure 30) was build as part of the project. It consists 
of an FPGA-based accelerator on a full-sized 64-bit PCI board containing a user-
programmable Xilinx 4085 device, two user-programmable Xilinx 40150 devices, and 
ten 256Kx18 100MHz ZBT synchronous SRAMs 
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To implement a hardware design using in the SLAAC platform, and be able to simulate 
and netlist it, the design class must extend the super class pelca and define the 
input/output port of the circuit first. 

Simulations and executions can be controlled automatically from programmatic 
testbenches or manually through a graphical user interface (Figure 31). 
Communication with the host is possible through the IF FPGA. 

�
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Annapolis Micro Systems Inc. manufactures various FPGA based boards for rapid 
prototyping and educational purposes. The Wildcard board (Figure 32) is a CardBus 
board for which there is a JHDL execution model. However the available model does 
not support readback. 
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As shown in the logic block diagram (Figure 33) the board contains a processing 
element (Virtex FPGA) connected to two memory chips, and has two I/O banks and a 
bus (LAD, Local Address Data Bus) connected to the CardBus interface. 

�
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The JHDL platform model contains the WCBoard class describing the board as a 
whole. The application specific circuits contained inside the board (like memories and 
bus controller) are exposed to the JHDL user as behavioral modeled circuits. In fact the 
user designs can only implemented into the processing element (PE). 

To do so, the user must implement a Java class extending the LogicCore class. The 
elements external to the PE can be accessed through the PE interface, i.e. their 
input/output pins. Some helper interfaces are made available to ease the design. 

The communication with the external world is achieved by going through the LAD bus, 
which is transaction based. Since all the fixed functionality hardware circuits (all but the 
PE) have alternative behavioral models, the user can simulate a host/board system. 
When execution mode is used the real hardware is used obtaining a significant 
speedup. Since the Wildcard platform does not support readback when executing in 
hardware mode the visibility of the total circuit state is lost.  
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The Osiris platform (Figure 34) is another internal platform developed by USC/ISI and 
later commercialized by CoreTech, a division of Atlantic Coast Telesys. 
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The Osiris platform uses a large FPGA that connects with large SDRAM memory and 
some ZBT RAM modules. It also integrates a current and thermal monitoring system.  
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The platform is supported by JHDL [Osiris] by providing the typical behavioral models 
of the non-programmable blocks of the board. The user is not forced to extend a 
particular class to implement a circuit, but only to conform to a given interface, i.e. a list 
of the defined input and output pins. The readback support is missing so the state of 
the system can be obtained indirectly through the transactional interface. 

Summing up, several platforms are available that support the execution mode of the 
JHDL framework. They provide a smooth method to go from circuit simulation to real 
system execution while offering a good level of observability when using the readback 
technology. JHDL execution mode aim is to offer a final execution environment for 
hardware designs. However, the JHDL execution mode is unacceptably dependent on 
technologies non-universal to different FPGA manufacturers (like readback). Another 
great problem is that it usually forces to identify the elements that where produced by 
the final Place & Route process and reference each one to their original design entities. 
Place & Route processes are often tightly integrated with the Synthesis process, and 
they are doing a better and better job to get rid of unused logic or refactor circuits to 
more efficient ones. So at the end you can download a bitstream that implements a 
functionally equivalent circuit but use different resources that you initially planned. In 
this situation the tools have trouble to offer valuable information. 

In the following section I propose a different approach to provide hardware execution in 
a broader range of platforms. However the aim is not to offer the final execution 
platform but one that you can use to speedup simulations during your design process. 
It comes for free that you can eventually use it as the final execution platform. 
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The execution model proposed by JHDL has an important drawback: it is tightly 
coupled to the underlying hardware platform. The user has to design specific 
testbenches for the given platform, in which the platform is explicitly referenced. The 
user often knows the FPGA pin-out and uses it to access external resources or 
communicate with the Host. Moreover, often the circuit to execute in hardware must 
extend a particular class, e.g. pelca or LogicCore.  

This approach can be examined from the following point of view: the platform 
manufacturer provides good simulation models of the board, and simulation 
environment is augmented so it can switch from board simulation to board execution in 
a very easy way as depicted in Figure 36. In this model the user is designing a board 
application, and since all the examined platforms are connected to a PC host through a 
particular flavor of PCI, probably a PC accelerator. 

This kind of board application uses an HWSystem object, which can be executed in 
either hardware mode or simulation mode. This causes to switch between behavioral 
circuit models or the interfaces to the real hardware. In most JHDL supported platforms 
the necessary synthesis, bitstream generation and configuration steps are not fully 
automated and user intervention is also needed in this step. 
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Jumble proposal is more radical in the sense that it tries to hide as much as possible 
the existence of a Hardware platform to the designer. Instead of developing a hardware 
accelerator bound to the platform, the user implements a hardware design totally 
unrelated with the platform. The user is not forced to conform to a given interface and 
creates the exact same design that would create without having the Jumble simulation 
feature. When a certain block (target) of the design is desired to run in hardware the 
Jumble tool automatically creates the logic to implement the selected block in the 
programmable element of the available platform. The target circuit is synthesized and 
downloaded to the platform, but some logic is added to make the communication with 
the simulation possible. On the software side, the target simulation block is substituted 
by a redirector that performs the communication with the hardware implementation of 
the target. 
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The added logic to communicate with the simulator has to be able to put inputs and get 
outputs the circuit under test and control its clock advance. To do so the target design 
is wrapped around a boundary scan chain (Figure 38), which is build as a circular 
register that has a window accessible from the Host. This window is a 32 bits wide 
register called Scan Chain Data (SC). A Scan Chain Control (SCC) register is used to 
control how to shift the scan chain. The SCC controls the two important signals: 
DoScan and EnabScan. EnabScan indicates that the scan chain should shift one bit. 
The less significant bits of SCC contain a counter value to instruct how many bits 
should be shifted in the scan chain. The DoScan flag indicates that a scan operation is 
being performed. It keeps activated during several transactions of the PCI bus until all 
the data has been correctly shifted on the scan chain. While DoScan is active the 
circuit under test does not see any change on its inputs. Only when DoScan gets down 
the inputs reflect the values that have been feed to the system through the scan chain. 

After all data has been shifted in the inputs a clock cycle can be scheduled. Clock 
control register (CC) accepts a number of clocks to be run in the hardware system. A 
gated clock circuit is controlled by a countdown counter that stops running when zero is 
reached. Its design is shown in Figure 39. 
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When the clock cycles are complete all output registers are shifted out through the 
scan chain. 

Full scan chain registers uses the ScanOut value for chain connection and for regular 
Q. However the dangling of register output during shift operations could change the 
state of possible asynchronous designs. So an asynchronous safe boundary scan 
chain node is used as shown in Figure 40. 
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The simulation time reduction, or speedup, that I expect is mainly determined by the 
percentage of circuit design that is implemented in hardware. This is quite an evident 
conclusion if we recall Amdahl’s law. The more circuit is implemented in hardware the 
faster the simulation. However in our design we have to take into account the width of 
the interface as well, since we spend quite a lot of “slow” cycles to place the correct 
values into the inputs and outputs of the hardware version of the target circuit. 
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From here after we can consider only a simulation of a single clock run, multiple clock 
runs can be generalized from the values that we get by a simple multiplication. 
Speedup is determined by the factor between the standard simulation time and the 
time used by Hardware in the loop simulation. Of course, in the later case we have to 
consider that there is a part that is implemented in Hardware and another part that 
remains unmodified. Their contributions to simulation time are TJumble and TRest 
respectively.  
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The part of the circuit implemented in hardware needs to get input data from the 
simulator, run a clock cycle, and send the output data again to the simulator. This time 
can be grouped by transfer time (TI/O Transfer) and clock run (THWTarget). 
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Input/Ouput data transfer is performed by reading and writing the SC and SCC 
registers. We do several PCI bus operations to complete a complete clock cycle but the 
TI/O Transfer is related with the width of the circuit interface. As the slowest part of the 
process is the shift of the SC register and runs at PCI clock speed we can do the 
simplification to make TI/O Transfer  linear to the width of the circuit interface.  
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Since we only run a clock cycle we can totally ignore the contribution of THWTarget to 
TJumble. 
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The last simplification that we can make is to consider that the clock period of the host 
computer is a fraction of the period of the PCI clock. And then, express the time of the 
Software parts of the simulation in CPU operations. 
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Obviously to get significant speedup TJumble should be smaller than TSWTarget , but also 
greater than TRest  to avoid the effects of an small α in the Amdahl’s law. 

Let’s consider some situations to see how the numbers affect to the expected speedup. 
In all the cases we will consider a target circuit with a 1000 wires interface. 

If we had a big part of the circuit as Hardware we would expect TRest << TJumble. The 
unaccelerated software model of the circuit should use less than 60K operations per 
cycle of the host processor    (13). 
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In this case the Speedup would be given by 
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For instance, if we are looking for a speedup factor of 100 we should have a target that 
uses more than 6M host operations to simulate each clock cycle. 
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Comparing this value with the rest of the circuit it is clear that moving a large part of the 
circuit to the target gives an opportunity to achieve some important speedup. If rest part 
is small enough (much less than 60K operations) the factor of operations used by the 
rest part versus the target part is approximately equal to the obtained speedup. 

Consider now opposed case, having TJumble << TRest. This does not necessary mean 
that target is small compared with the rest of the circuit. As TJumble is constant for a 
given interface size this means that the rest of the circuit model is much more complex 
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than 60K operations per cycle (18), but gives to information about the complexity of the 
target. 
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Again, in this case the speedup is determined by the complexity of the target software 
model. 
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For instance, if we are looking for a speedup factor of 100 we should have a target that 
uses much more than 6M host operations to simulate each clock cycle (21). 
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Until now we have considered two extreme cases, and in both cases we need a 
complex target to achieve a significant speedup. But what speedups can we get in 
more balanced cases? By balanced I mean having a similar complexity of the software 
models of the target part and the rest part. 

Let’s consider such a case. In this case we have a circuit in which the target part needs 
100K operations and the rest part needs 100K operations as well. As previous 
examples the interface has 1000 wires. 
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This math troughs a rather moderate value for the obtained speedup, but we should be 
expecting this kind of results after looking at Amdahl’s law. In this case we could 
improve the speedup if we had a smaller interface, but even with an interface of a 
single wire the speedup would be just almost 2. The only way of having significant 
speedups is to have a good percentage of circuit implemented in the target, or in 
Amdahl’s terminology, to have a value of α very close to 1. 
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The JHDL framework had several drawbacks that limited its potential for circuit design. 
One of the drawbacks of JHDL was its limited support for FPGA devices; this was a 
serious drawback as our research group has traditionally been working with Altera 
devices. Another important drawback was the lack of behavioral synthesis. Complex 
control schemes are better implemented with behavioral code (at the RTL level) and 
behavioral synthesis is required to transform this code into hardware blocks. Finally, 
another detected drawback was the faulty support of sequential behavioral model. This 
feature was present in initial versions of JHDL through the HWProcess class but 
somehow was unsupported by newer versions. 

The following subsections describe the work undergone to solve these problems and 
overcome these limitations. Parts of this works were done with Jordi Farré and Alexis 
Morugó as part of their respective final year projects and were later published in 
[Castells04b] and [Castells06b]. 
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Most of current FPGA and CPLDs are based on the use of simple called computational 
blocks (CLBs) or logic elements (LEs). These blocks are often built up from LUTs, 
registers and multiplexers. Any logic circuit, either combinational or sequential, can be 
build by the combination of several of these blocks. Every FPGA has a different CLB 
design. The goal of any design tool is to make the best use of the available CLB 
resources. This process is known as technology mapping [Cong94]. 

JHDL includes specific TechMappers for every supported FPGA device. Their function 
is to translate logic functions in their equivalent optimal structures for every FPGA 
device. Figure 41 is a clear example illustrating the objective of this process. To the left 
side, there is the structure of a CLB of the Virtex family devices from Xilinx. To the 
right, the result of mapping a 9-input and gate, performed by the VirtexTechMapper 
class, is shown. To make a good use of resources the VirtexTechMapper has 
divided the and9 function in two and4 that can be implemented by two LUT4 present 
in the CLB and has completed the function by using two multiplexers also present in 
the CLB structure. 
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To add support for Altera devices in JHDL, we need to know the structure of the LE 
(equivalent to CLB in Altera technology) for all of their devices and then implement a 
TechMapper that performs an optimal adaptation of the logic functions to the LE 
structure. Instead of this, we took a simpler approach: use the LPM standard. The LPM 
standard [Altera96] allows including high level elements in the netlist file, like EDIF 
format [Edif]. The LPM elements can include parameters and need a logic synthesis 
step before the Place & Route. The previous logic synthesis process ensures an 
optimal mapping to the LE structure for Altera devices but causes a lose of control 
about the number of used FPGA resources from JHDL viewpoint. 

The first step consists in implementing the classes of primitive logic elements based on 
LPMs. The primitive logic elements are not decomposable in other simpler elements, 
they are the leaves in the circuit hierarchy. They also need a behavioral model for 
simulation. Either propagate, or clock and reset functions must be defined for 
combinational or sequential logic respectively. 

We have implemented LPM_AND, LPM_OR, LPM_XOR, LPM_INV, LPM_MUX, 
LPM_FF, LPM_ADD, LPM_ADD_SUB and LPM_CONSTANT in a new 
com.Altera.lpm package. These primitives are similar to primitives from Xilinx 
devices but, as they have a higher level of abstraction, they make more use of generic 
parameters. 

Once the primitives are implemented, the next step is to develop some technology 
mapping classes (ApexTechMapper, CycloneTechMapper, StratixTechMapper) 
that make use of the new available LPM primitives. Thanks to the parametric nature of 
LPM primitives the mapping process is much simpler than the equivalent process for 
other technologies like Xilinx. 

Finally, it is necessary to develop a custom Netlister due to the differences in the 
interpretation of EDIF files between Altera and Xilinx tools. The main problem is how 
GND and VCC signals are handled. Xilinx tools define two primitive logic elements for 
this purpose. They are like logic gates that have no inputs and drive a constant value. 
Each VCC or GND connection in a JHDL circuit ends up in an instantiation of one of 
these custom gates connected each target. Altera tools do not define such primitives 
and assume VCC and GND as being global networks of the circuit. In addition LPMs 
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make heavy use of bidimensional signal arrays, which are not directly supported by the 
EDIF standard. 

For these reasons, a custom Netlister called CephisNetlister has been developed 
to address the particularities of Altera Place & Route tools. 
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Behavioral JHDL code has to main advantages over structural code: it is much more 
human readable when describing reactive systems and is faster to simulate. 

Behavioral synthesis from Java code was proposed in previous works such 
GALADRIEL  [Cardoso98], NENYA [Cardoso99], Wirthlin’s work [Wirthlin01] and Sea 
Cucumber [Tripp02]. 

Most of these approaches are based on the analysis of sequential code and do not 
match the usual RTL like descriptions used in JHDL behavioral models. All methods 
are based on the analysis of the CFG and DFG derived from the java code to build 
either EDIF or VHDL code.  

The VHDL language [VHDL98] offers a great flexibility to model digital electronic 
circuits. Designs can be described in various levels of abstraction (sequential behavior, 
RTL and structural) and even mix them in the same source code. Since not all 
descriptions are synthesizable, designers have to know which subset to use in order to 
avoid rewriting. 

LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_unsigned.all; 
 
ENTITY count_a IS 
 PORT(clk, rst, updn : in std_logic; 
 q : out std_logic_vector(15 downto 0)); 
END count_a; 
ARCHITECTURE logic OF count_a IS 
BEGIN 
 PROCESS(rst, clk) 
  VARIABLE tmp_q : std_logic_vector(15 downto 
0); 
 BEGIN 
  IF rst = '0' THEN 
   q <= 0; 
  ELSIF rising_edge(clk) THEN 
   IF updn = '1' THEN 
    tmp_q := tmp_q + 1; 
   ELSE 
    tmp_q := tmp_q - 1; 
   END IF; 
   q <= tmp_q; 
  END IF; 
 END PROCESS; 
END logic;�

import byucc.jhdl.base.* 
import byucc.jhdl.Logic.* 
 
public class Count extends Logic { 
  public static CellInterface[] 
cell_interface={ 
    clk("clk"), in("rst",1), 
    in("updn",1),out("q",16)}; 
  Wire out, updn; 
  int tmp; 
  public Count(Wire clk, Wire rst, Wire updn, 
    Wire out){ 
    connect("clk", clk); 
    connect("rst",rst); 
    this.updn = connect("updn", updn); 
    this.out = connect("out", out); 
  } 
  public void reset() { 
    q.put(this, 0); 
  } 
  public void clock() { 
    if (updn.getB(this)) { 
      tmp = tmp+1; 
    } else { 
      tmp = tmp-1; 
    } 
    out.put(this, tmp); 
  } 
};�

 

The following code shows (left column) a fragment of VHDL code mixing RTL and 
behavioral coding styles. The same circuit coded in behavioral JHDL (right column) has 
many similarities. Both programs contain a section where the interface, i.e. the inputs 
and outputs of the circuit, is defined. Since this is a synchronous circuit, the VHDL 
process sensitivity list only contains the clock and reset signals. This definition is 
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implicit in JHDL synchronous circuits. The reaction of the circuit to reset and clock 
signals is clearly separated in both descriptions and is very similar with minor syntax 
differences. 

Not all VHDL and JHDL circuits are suitable for such comparison. However it is 
applicable to a large number of designs like FSMDs and reactive systems. 

In this case, a new netlister that produces VHDL has been build to substitute the 
default EDIF netlister. The EDIF format only allows describing the circuit structure, but 
the VHDL language allows descriptions of both structure and behavior in a single 
language. 
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The runtime model of designed circuits can be manipulated, by the implemented VHDL 
netlister, to generate the desired output. The netlist generation for structural circuits is 
straightforward and mimics the approach followed by the EDIF netlister. Behavioral 
circuits are decompiled to extract the original Java code and translate it into its 
equivalent VHDL. Advantages of decompiling over parsing source code are: 
decompilation is simpler than parsing and can assume there are not syntax errors in 
the input, moreover source code localization is not needed. 

The selected decompilation framework is the open source project JODE [Hoenicke01]. 

The translation to VHDL has three main blocks: the interface declaration, the variable 
declaration and the description of the behavioral process. The interface declaration 
contains the ENTITY clause and can be easily created from the runtime model. JHDL 
offers methods like getPortRecords that enable a full exploration of any circuit 
interface. 

The variable declaration section cannot be neither directly derived from runtime 
information nor from the member variables of the decompiled class, because some 
member variables could not be used by the behavioral model. So, a deeper analysis of 
the member variables usage in the behavioral model is needed to determine them and 
create the final VHDL section.  

VHDL behavioral circuits contain the PROCESS keyword with a sensitivity list 
containing a list of the signals that trigger a change of state in the circuit. In 
synchronous circuits, the sensitivity list always contains the clock and reset signal and 
its body contains the functional description derived from the translation of clock and 
reset methods. 
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if (reset = '1') then 
 <reset method translation> 
elseif  clk'event and clk = '1' then 
 <clock method translation> 
end if; 

 

On the other hand combinational circuits can be expressed as a process with all the 
input signals as part of the sensitivity list. The body of the process is translated from 
the propagate method.  

<propagate method translation > 

 

The structure of the control instructions in VHDL and Java are quite similar so the 
translation process consists in adapting the final rendering process of Jode to generate 
VHDL instead of Java. 

Besides expressions and blocks, there are significant differences in how both 
languages handle variables and signals. In VHDL, signals are assigned by using the <= 
operator and variables are assigned with :=. VHDL is a strong typed language so 
variables and signals have to have the same type and width to interoperate. To bypass 
these rules, conversion functions can be used. JHDL uses get and put to obtain and 
assign values of signals. The behavioral models can use few primitive types like 
boolean, int, long and the bit-vector (BV) class. There are multiple versions of get 
and put methods that accept these primitive types. 

It is necessary to keep track of the variables and signals that are used in the behavioral 
model and their type and size. This information is used to know the conversion function 
that has to be applied in each situation during translation process.  

Signal width information is very important in VHDL. For instance, when assigning a 
constant to a signal, the constant must have the same exact     length as the signal it is 
assigned to, i.e. the same number of binary digits. Obtaining the width of design 
elements is crucial for a correct conversion. Design wires can be handled easily since 
wire width is a fundamental property of JHDL designs and can be easily obtained. 
Design variables are a little bit trickier. Variables are part of the behavioral description 
and have often Java types like int, long or boolean. We need to define an VHDL 
equivalent data type for each possible variable type so we can propose a width for 
design variables.  
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JHDL data type VHDL data type 

boolean std_logic 

int integer 

long std_logic_vector(63 downto 0) 

BV(n) std_logic_vector(n-1 downto 0) 
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The behavioral models can use expressions that contain operation involving variables 
and signals. Both languages have little common operators and an equivalence table 
definition is needed to perform the translation. 
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Java operator VHDL operator 

= := 

== = 

!= /= 

& and 

| or 

^ xor 

! not 

 

as an example the following code has been created with the translator. 

package org.cephis; 
import byucc.jhdl.base.*; 
import byucc.jhdl.Logic.*; 
public class SAdd extends Logic 
implements 
com.Altera.BehaviourallyModeled { 
 public static CellInterface[] 
cell_interface={ 
  in("start",1), in("ops",8), out("sum", 
8) }; 
 Wire start,ops,sum;  // Wires 
 int a,b, state = 0;  // FSM state 
 public SAdd(Node parent, Wire start,  
   Wire ops, Wire sum) { 
   super(parent); 
   this.start = connect("start", start); 
   this.ops = connect("ops", ops); 
   this.sum = connect("sum", sum); 
  } 
  public void reset(){ 
   state = 0; 
   sum.put(this, 0); 
  } 
  public void clock(){ 
   switch (state) { 
    case 0: // idle 
     if (start.getB(this)) state = 1; 
break; 
    case 1: // fetch A 
     a = ops.get(this); state = 2; 
break; 
    case 2: // fetch B 
     b = ops.get(this); state = 3; 
break; 
    case 3: // output 
     sum.put(this, a + b); state = 0; 
break; 
   } 
   setDefaultValues(); 
 } 
 public void setDefaultValues() { 
  if (!sum.hasBeenPut())  
   sum.put(this, sum.get(this)); 
 }    
} 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
entity SAdd is port ( c :  in std_logic ; 
    start :  in std_logic ; 
    ops :  in std_logic_vector(7 downto 0) ; 
    sum :  out std_logic_vector(7 downto 0) 
; 
    reset :  in std_logic ); 
end SAdd; 
architecture JHDL of SAdd is begin 
 SAdd:process(reset, c) 
 variable b :integer; 
 variable a :integer; 
 variable state :integer; 
begin 
if (reset = '1') then 
 state := 0; 
 sum <= conv_std_logic_vector(0,sum'length); 
elsif c'event and c ='1' then  
 case state is 
  WHEN 0=> 
    if (conv_integer(start) /= 0) then 
 state := 1; 
    end if; 
 WHEN 1=> 
    a := 
ieee.std_logic_unsigned.conv_integer(ops); 
    state := 2; 
 WHEN 2=> 
    b := 
ieee.std_logic_unsigned.conv_integer(ops); 
    state := 3; 
 WHEN 3=> 
    sum <= conv_std_logic_vector(a + 
b,sum'length); 
    state := 0; 
 WHEN OTHERS => 
    end case; 
end if; 
end process; 
end JHDL;�

�
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Behavioral JHDL descriptions are intuitive and convenient but were limited to the model 
known as RTL in most hardware design languages.  To effectively follow a refinement 
process from a Software specification, it is much more convenient to describe behavior 
in a sequential way with some extensions to incorporate the notion of time and parallel 
execution of statements. 

Most high level languages, as HandleC, SystemC, VHDL and Verilog, allow using a 
programmer friendly sequential description model which adds time semantics by using 
wait statements. This level of abstraction is called “behavioral model” in most HDL 
languages, a bad choice from my point of view since RTL is also behavioral. It would 
be less ambiguous to use the term “sequential model”. Original JHDL implementations 
include this design style with the HWProcess class, but its support was bound to the 
Single Clock Simulator and was lost when the Multi Clock Simulator was introduced. 

SystemC SC_CTHREAD constructs forces to describe processes in a sequential way, 
which is more programmer-friendly. Since regular sequential descriptions have no time 
semantics, they must be incorporated by a language extension. The special instruction 
wait is used for this purpose. Any code between two consecutive wait statements must 
be executed in the same clock cycle. A SystemC SC_CTHREAD usually involves the 
creation of a real Thread of the Simulator process. During system execution, when wait 
function is called the Thread passes to a suspended state. All the SC_THREADs of the 
system have the same behavior. The SystemC simulator has to wait until all 
SC_THREADs are suspended to advance the clock value and propagate signals. After 
this step SC_THREADs return to execution state. 
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To revive sequential design style, I have created a new class ThreadedLogic that 
supports the wait statement. All classes derived from ThreadedLogic must 
implement the functions thread_clock, thread_reset and thread_run.  

When an object of a ThreadedLogic derived class is instantiated, the 
ThreadedLogic constructor automatically creates a worker thread that will call to the 
thread_run method. The thread_run method should use the different flavors of 
sc_wait function to advance the clock run. 

All operations between two consecutive calls to the sc_wait function should occur in 
the same clock cycle as it happens in SystemC or HandleC. To achieve this goal, we 
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will use the synchronization primitives of Java. The sc_wait function will place a wait 
operation on the current object that will cause the thread to be blocked. A sc_notify 
will be called when the JHDL simulator call the clock method of the ThreadedLogic 
class, after calling thread_clock. 

Special care must be taken with the synchronization of the worker thread with the rest 
of the system. Different conditions depending on the order of the calls to sc_wait and 
thread_clock can produce unexpected results. A formal approach is followed to 
avoid this kind of undeterminism. We define a global invariant as described in 
[Mueller01] in the following way, being bW an indication that there are pending clocks 
to run, 

clock method 
�await bW = true� 
assign output values 
�bW = false��
�

worker thread sc_wait 
�await bW = false →�bW = true��
�await bW = false� 

�
The resulting ThreadedLogic class ensures the no race conditions will occur and 
reopens the richness of design style to allow sequential descriptions. 

#����������������

JHDL allows defining platform models [Bellows04]. There are several supported 
platforms models: Wildcard [Wildcard], SLAAC [Slaac], and Osiris [Osiris]. A platform 
model includes the description of the details of a hardware board that can host a 
design. These details include characteristics of the resources mounted on the PCB, like 
memories and oscillators; characteristics of the programming element (FPGA) like pin 
details; and possible optional IP cores like external interfaces. A hardware model also 
includes some API to be able to communicate with the instantiated hardware from Java 
applications. 
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A hardware model for the PLD Applications PCI-X board (Figure 44) has been created. 
The board contains an Altera Stratix S30 FPGA device, four LEDs, a 100Mhz oscillator 
and two DDR memory banks. The model (Figure 45) includes the description of the 
external devices (related to the FPGA) and some IP cores that implement interfaces to 
them (PCI controller, DDR controller, Led Interface and Clock interface).  

PCI Interface

Led
Interface

LogicCore Clock
Interface

ext_osc

pci_clk

U_clk

S_clk

Memory
Interface

DDR SDRAM
Memory

100Mhz
Oscillator

�
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One of the nice features of JHDL is that the circuit object model can be manipulated in 
real time. In fact, one of the original goals of JHDL was to support Runtime 
Reconfiguration [Bellows98], which had to be addressed by using Java object 
construction/destruction as a method to dynamically program and release circuits on 
the FPGA. We manipulate the circuit design by replacing a designer selected circuit by 
an implementation that redirects its input/output wires to its real hardware 
implementation. 
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Although designer is hidden from the underlying details a number of systems are 
involved in this process: 

�
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The JHDL simulator is the application that hosts the circuit blocks that are being 
simulated. It presents a GUI that includes some buttons to control clock advance, and 
command line interface. The command line is used by the user to instruct which block 
has to be executed by the hardware platform. 
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When the user orders to execute a block into hardware, the original block is removed 
and replaced by a redirector. The feature of dynamically modify the hierarchy of the 
circuit by adding, removing or substituting design entities during a simulation session is 
unique to JHDL and becomes crucial for this work. 

The redirector copies the interface of the substitute class to keep an accounting of the 
input and output pins and their widths. This block contains a behavioral model that 
redirects inputs and outputs and controls the real hardware clock advance using a 
general redirector. 
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The general redirector has a low level control the hardware platform interface by 
reading and writing its memory mapped registers. On the one hand controls the 
transfer of inputs and outputs by commanding the scan chain. On the other hand, it 
controls the clock advance. In our case, we always advance the clock with one step, 
but future applications could use a different approach. 
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The developed PLD board platform model include a Java Native Interface (JNI) class to 
access to OS dependent communication primitive operations such as hardware 
detection, and read and write to memory mapped registers. 

The PCIXNative class main functions are open, close, writeMem and readMem. 
In addition, another class (RenablePLDA) has been developed to control the execution 
of a utility application that forces PCI reenumeration. 
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The final software interaction with the hardware platform is performed by a kernel 
driver. The development of a kernel device driver is a complex task and error prone. 
The bugs in this kind of software are catastrophic since their cause the reboot of the 
machine. So, for this kind of work, it is better to use a commercial driver as WinDriver. 
The basic low-level functions are encapsulated into a Windows DLL to mitigate the 
hassles of kernel mode programming. 

Nevertheless, there is an issue that is not covered by the DLL, which is the resource 
negotiation with the OS. PCI devices are Plug & Play. This means that their OS needed 
resources (memory ranges, I/O ranges, and interrupts) are flexible and are determined 
by a central resource manager, which is part of the OS. This avoids conflicting address 
spaces or interrupts like we had in the old ISA days. There is a special PCI 
configuration mode that allows the resource manager to resolve the resource needs for 
each plugged device during a process that is known as PCI enumeration.  However, 
enumeration is only done at boot up or after device insertion for hot swappable 
devices. The user can force this process for new devices from Windows Device 
Manager (as seen in Figure 47). But to rerun the negotiation for an already connected 
device, you need to manually disable and enable the device. 
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When the FPGA device of the PLD is configured through JTAG, the host computer 
does not receive any event that causes a reenumeration of the PCI. A reenumeration is 
needed to reassign the resources needed by the device. Since the previously 
described way of forcing the reenumeration is not practical for an automated 
framework, an utility application has been developed to programmatically perform the 
disabling and enabling of the device, and resolving its resource needs. 
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A Windows kernel driver exposes very simple functions via IOCTLs to user mode 
applications. These functions are basically read/write operations to memory. 

$#:	��������0, ������3�

The FPGA design is based on the developed Hardware Platform. It combines a set of 
predefined blocks, like the PCI-X interface and clock interface, with the user block 
wrapped by the scan chain and all the register based control interface. 

# !�.�!���������

PLDApplications provides a PCI-X core together with the PCI-X platform. The core is 
highly configurable via a Core Configuration Wizard (see Figure 48) supporting various 
advanced PCI features.  A specific set of parameters have been used and a VHDL 
implementation of the version of the core has been included as part of the platform 
model. 
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The host interface consists of three registers accessible from the PCI-X bus: Scan 
Chain Control (SCC) register, Scan Chain Data (SC) register and Clock Control (CC) 
register. 
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The original block, selected by the user for hardware execution, is the central part of 
the FPGA. The design inputs and outputs are wrapped around by boundary scan 
registers controlled by the register interface. 

The target block runs in a different clock domain. 
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The process of hardware substitution is not implemented in a single push button but is 
separated into four processes as shown in Figure 49. 
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The makewrapper command writes the Java Source code of the JHDL circuit that will 
go into the FPGA and compiles it. This circuit contains the target block wrapped around 
a scan chain with a clock control unit and the commercial PCI interface. 

The makeexe command loads the compiled class into the PLD applications platform 
environment produces the netlist, and call the Quartus tools to end up with a binary file. 

The download command uses Quartus programmer tool to download the created 
.SOF file into the board. It also calls a custom application that enable and disable the 
driver so that PCI reenumeration is done. 

Finally, replace command substitutes the selected block by a redirector to its 
implementation into the hardware platform. 
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In order to experiment the expected benefits from Jumble simulation I have developed 
three different designs having increasing complexity. In each example design I have 
selected different parts of the circuit for Jumble replacement (hardware execution) and 
measured the simulation speedups achieved by this way.  
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The first test is performed with a simple system: A Median Filter application based on 
[Maheshwari97]. In this example the powerful testbench facilities can be clearly shown. 

We have developed two custom modules to integrate picture viewing on the schematic 
viewer. SchematicImageSource takes the path of a JPEG image in the host file 
system, decompresses and renders the image, in the schematic viewer. The behavioral 
model outputs a pixel of the image in RGB every clock following a row scan basis. 
SchematicImageSink receives the RGB value and coordinates of a pixel each clock 
and renders them into an image viewable from the schematic view. 

This allows a straightforward environment for the verification of the system. A 
comparable testbench with VHDL or Verilog would be extremely complex, in case it is 
possible. Figure 50 shows the schematic view of the system. The original image with 
added noise generates the signals that are sent to the median filter, which in turn send 
the results to the image sink. Simulation is completed by instructing to run 90000 clock 
cycles using the interpreter command line. The simulation is run twice, the first time 
with the default behavior and the second one replacing the median filter with its 
hardware version.  
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The speedup factor is between one and more orders of magnitude depending on the 
complexity of the circuit being replaced and the capacity of the host computer. Table 4 
shows some example circuits and the speedup factor achieved when Jumble HIL 
simulation is used instead of a regular simulation. The host system consist of a PC with 
a hyperthreaded Pentium IV CPU running at 2.80Ghz with 512MB of RAM. The first 
design is the example shown above consisting of a simple median filter circuit applied 
to a noisy input image. The standard simulation uses 150 seconds to simulate 90000 
cycles, enough cycles to produce the final filtered image.  The jumble simulation takes 
only 3 seconds, what produces a speedup factor of 50. Second and third examples 
consist on a different design that chains a number of median filter units. In the first case 
the number of chained filters is 4 and in the second case the number is 10. Jumble 
simulation time keeps constant, as the interface to the hardware implementation is 
equivalent in all cases. The hardware implementation complexity increases with each 
design but anyhow it runs at the same speed because the clock frequency remains the 
same and hardware is inherently parallel. 

�
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Design Std. 
Simulation 

Jumble 
Simulation Speedup Factor 

1 Median Filter 150 s 3 s 50 

4 Median Filter Datapath 754 s 3 s 251.3 

10 Median Filter Datapath 1902 s 3 s 634 

�
The system is limited by the capacity of the FPGA. Obviously designs that do not fit in 
a single FPGA cannot be completely simulated with Jumble. As an alternative, not the 
whole system but a subset can often be downloaded to achieve some speedup. 

Table 5 depicts the details of the resource usage of the second design example. The 
design uses a small fraction of the FPGA resources. The most important contribution to 
resource usage comes from the circuit under test followed by the PCI-X core instance. 
Clock control and LED interface have a very low contribution in resource usage.  The 
third larger contribution comes from the scan and control system, which anyway 
supposes an acceptable overhead. 
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Block of the design LEs Memory bits 

PCI-X interface 2253 (39%) 1152 (2%) 

Clock interface 57 (1%) 0 (0%) 

LED interface 76 (1%) 0 (0%) 

4 Median Filter Data Path 3127 (54%) 61156 (98%) 

Scan & Control 309 (5%) 0 (0%) 

TOTAL 5826  
(17% of device total) 

62308 
(1% of device total) 

�
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The second set of tests is performed with an OCR system based on 
[Castells05],[Castells06]. The aim of the design is to include it into a commercial 
system (Figure 51) that will allow the remote reading of water meters by attaching a 
device on top of conventional mechanical meters, which will periodically take a picture, 
extract the counter reading and transmit it to a remote system through a wireless 
connection. The system has been patented [Ayuso06] and is currently commercialized 
by the company Mirakonta. 
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In a first version, the automated meter reading (AMR) device was only taking the 
picture and transmitting it to the remote system. But in order to extend battery life by 
reducing transmission time it was necessary to perform optical digit recognition inside 
the device. 

The challenge was to use the unused resources of the existing low cost FPGA, which 
was mainly used for the control of the radio link and ultra low power management. This 
is a tough goal since good OCR algorithms rely on performing several complex 
analysis steps on the images and need a non-negligible amount of memory and a 
microprocessor indeed. 
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The result was a novel optical digit algorithm very well suited for our specific problem 
that takes ideas from cross-crossing OCR algorithms to produce a symbol string and 
use sequence alignment algorithms, often used in genomics, to identify the best 
matching sequence with a given set of predefined digit patterns. 

The idea is quite simple. An image sensor produces pixels in a row-scan fashion. 
Segmentation and binarization can be performed by some simple data flow processing 
circuits. Once we have segmented and binarized a character, we process each row of 
the character and produce a symbol. The symbol basically classifies the row into a set 
of observed row patterns (Figure 53 a). The symbol generation does not require 
intermediate memory since a simple FSM that analyzes the occurrence of white pixels 
depending on the pixel position can be used (Figure 53 b). 
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As a result, four sequences of symbols are created, one for each counter digit. When 
the sequence generation is complete a custom algorithmic machine is used to compute 
the maximum alignment of the sequences with a set of test patterns that describe the 
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ideal sequence of each digit. The alignment is computed using the Smith-Watterman 
algorithm (24). 
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The digit reference pattern that obtains the higher score is chosen as the recognized 
digit. This process is repeated for each digit of the AMR. 

The overall system’s block diagram is depicted in Figure 54. 
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Most of the design units are easily implemented using an structural design style with 
only an exception: the EditDistanceProcessor which is implemented following a 
RTL design style since it has greater behavioral complexity. Figure 55 shows an 
schematic view of the implemented system. The module RowColDeriver processes 
the synchronicity signals from the image sensor to create row and column coordinates 
for each pixel. Downsampler module takes the red pixels from the Bayer pattern 
produced by the sensor, resulting in a downsampled monochrome (red channel) 
image. Since the digit positions are fixed in relation with a configurable point, 
LocationGenerator module takes this point to derive all the digit positions, which is 
then used by LocationMatch module to determine when the sensor is producing a 
pixel which is part of a digit. Since the image sensor produces a noisy image the 
MedianFilter module filters the image that is later binarized by the Threshold 
module, which uses the max and min values obtained by the WindowMean module in 
the previous frame. The binary pixels identified as part of a digit are processed by the 
SymbolEncoder, and the resulting symbol is stored in a sequence memory by the 
SymbolWriter. Finally, the EditDistanceProcessor computes the local 
alignment algorithm producing the recognized digit values. 
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The testbench for such a system is not straightforward, first we need an accurate 
model of the sensor, and then we need to view the results of the most sensible parts of 
the process in order to easily identify the possible errors. Two issues have special 
interest: the resulting binary digits and the sequence patterns produced by the symbol 
encoder. By looking at the image of the binary digits we can immediately identify if an 
error occurred in the segmentation or the binarization phase. Errors at the sequence 
production phase are also evident if you can see the produced sequences in text form. 
Some custom schematic modules have been developed to allow such a rich interactive 
test environment (see Figure 56). 
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Additionally, unit tests for each module have been developed and simulated. Table 6 
shows the simulation time for each unit test with and without using Jumble for the 
circuit under test. The maximum achieved speedup is 29.39, much lower than what 
was achieved with the previous Median Filter design. On one hand, as the complexity 
of the design are relatively low, the standard simulations run not so slowly. On the 
other hand, the redirected blocks have a relatively large interface to synchronize at 
each clock cycle of the simulation (e.g. 130 bits for the complete system) slowing down 
the Jumble simulation. 

��"���-;��6��
����
�#������������������������
���
��

Design Std. 
Simulation 

Jumble 
Simulation Speedup Factor 

RowColDeriver unit test 107 s 92 s 1.16 

Downsampler unit test 190 s 87 s 2.18 

LocationGenerator unit test 553 s 155 s 3.56 

LocationMatch unit test 715 s 226 s 3.16 

MedianFilter unit test 2,292 s 159 s 14.41 

WindowMean unit test 3,318 s 286 s 11.60 

Threshold unit test 3,662 s 244 s 15.00 

SymbolWriter unit test 3,951 s 266 s 14.85 

EditDistanceProcessor unit test 3,939 s 134 s 29.39 

OCR System 3,426 s 227 s 15,09 
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The resource usage of the design, which can be seen in Table 7, is quite low as was 
intended due to the project requirements. 

��"���0�8�
�������
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Design Entity LEs Memory bits 

RowColDeriver 34 0 

Downsampler 9 0 

LocationGenerator 111 0 

LocationMatch 35 0 

MedianFilter 263 3120 

WindowMean 200 0 

Threshold 9 0 

SymbolWriter 40 0 

SymbolWriter 20 0 

EditDistanceProcessor 871 0 
Complete System 

(includes instrumentation and memories) 
4,321 

(13% of device total) 
139,440 

(4% of device total) 
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The third set of tests is performed on several IDCT designs. The different IDCT designs 
are tested from complex testbench consisting on a full Mpeg 1 [Mpeg1] decoder based 
on Java. The original code was using multithreading and synchronization between 
threads to perform the various tasks of the decoder. The code has been refactored to 
allow its integration into the JHDL simulation framework. 

To perform this refactoring, first, a software implementation of the IDCT process was 
implemented and wrapped into a new JHDL circuit. This IDCT implementation was 
used to identify the circuit interface but had no time notion, which means that a valid 
result was produced immediately in a one clock cycle. Nevertheless, the circuit 
activation is based in the usage of the two signals start and busy (inspired in BlueSpec 
methodology� [Arvind04]) to make the circuit independent of the number of cycles 
needed to complete the processing.  

Next, the rest of the MPEG decoder code was wrapped in a new JHDL circuit, which 
includes all the necessary ports to communicate with the external IDCT modules. 

While the IDCT block is designed in a RTL way, which in JHDL terminology is called 
behavioral model, this design style is not convenient for the rest of the circuit as we 
already have a sequential implementation of the circuit that we would like to reuse with 
minor modifications.  
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So, finally the Mpeg1Decoder uses a sequential behavioral design style and consists in 
ThreadedLogic derived class with a simple interface in which the original code main 
loop has been moved inside the thread_run method that calls the sc_wait function 
as needed when interfacing the external IDCT circuit. The sequential code does not 
directly access the wires values through get and put methods but modifies the values 
of interposed variables. A call to sc_wait, lead to an invocation of the thread_clock 
function that in turn uses the interposed variables to drive the wires. 

public class Mpeg1Decoder extends ThreadedLogic 
{ 
    public static CellInterface[] cell_interface= 
    { 
        in("reset", 1), 
        out("x", 8), 
        out("y", 8), 
        out("rgb", 24), 
        out("set", 1), 
        out("dct_start", 1), 
        in("dct_busy", 1), 
    }; 
 
    ... 
 
    Mpeg1Decoder(Node parent, Wire reset, Wire x, Wire y, Wire rgb, Wire set,  
        Wire dct_start, Wire dct_busy,  
        Wire[] dct_ins, Wire[] dct_outs, File file) 
    { 
        super(parent); 
 
        // basic initialization 
        ...  
   } 
 
  
    public void reset() 
    { 
        x.put(this, 0); 
        y.put(this, 0); 
        rgb.put(this, 0); 
        set.put(this, 0); 
        dct_start.putB(this, vdct_start = false); 
    } 
 
    public void thread_clock()  
    { 
        x.put(this, vx); 
        y.put(this, vy); 
        rgb.put(this, vrgb); 
        set.putB(this, vset); 
        dct_start.putB(this, vdct_start); 
         
        for (int i=0; i<64;i++) 
        { 
            dct_ins[i].put(this, vdct_ins[i]); 
        } 
    } 
 
    public void thread_run()  
    { 
        // Original code main loop 
        ... 
    } 
} 

 

To enhance the verification experience, a schematic image viewer is used to get an 
immediate feedback about the correctness of the system. So, instead of diving into 
huge waveforms or analyzing endless traces we can just look if the image resulting 
from the decoding process is the expected one in the circuit schematic view (Figure 
57). Note again that this is interactively shown during simulation time, so that we can 
still use all the other standard features, like waveforms to detect a flaw in the design. 
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The DCT consists on a transformation of an image block of NxN from space to 
frequency domain. This transformation of data gives no compression by itself. 

MPEG standard uses a value of 8 for N. In this way, simple implementations can be 
designed, both in Hardware and in Software, with reasonable requirements of memory 
and computational load. 

The mathematical expression of the DCT is (25) 
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If we define the matrix T as the DCT transform of the identity matrix, we can rewrite the 
DCT expression in matricial format as  

��F�H =                    (27) 

Using the orthogonal property, the inverse transform (iDCT) can be written as  

H��F �=                   (28) 

A typical approach to simplify the computation of the iDCT transform (and the DCT as 
well) is to separate it using a row column decomposition method. Using the matrix 
expression, this can be done by using a new Z variable. Finally, we end up with an 
expression of X consisting of two multiplications by the same constant matrix T (29). 
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��HF �� $�=                         (29) 
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There are lots of possible designs to implement the iDCT operation. The designs can 
be classified by the method they used. There are some that use the Row Column 
decomposition Method (RCM) and others that are Not based on the Row Column 
decomposition Method (NRCM). 

The designs can also be classified by the input/output interface that can be either serial 
or parallel. 

���"���4;��2����
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Property Cho[] Chang[] Gong[] 

No. of multipliers 
�

����

� **  �*  *  
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No. of adders �
�

����	 �

�

+− ***  ** �� +  *�  

Latency not reported 0� +*  0 

Cycles/block 0 *  �*  

Speed (pixels/cycle) �*  *  0 
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If we look at the resulting form of the T matrix after computing (25), we get a matrix as 
shown below 
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It is interesting to note that all the coefficients are constant values. The cost of a 
constant multiplier in hardware is much lower than the cost of a generic multiplier, so 
my proposal is to use constant multipliers instead of generic ones to compute the iDCT 
transform using a large combinational circuit when possible. 

However some variations can be made in order to decrement the number of used 
functional units (multipliers, adders, or subtractors) while introducing some sequencing. 

The following subsections analyze some of these design variations. 

&��������������������

We can simply implement all the operations of the matrix multiplication. For each cell, 
we have N multiplications and N-1 adders. As we compute N2 cells, the number of 
multipliers is N3 and number of adders is N3-N2. As we are working with N=8, this gives 
512 multipliers and 348 adders.  
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If we look at the formulas that produce each result matrix cell, we realize that some 
product terms appear in multiple occasions. For instance if we take Ri,3 (30) and Ri,4 
(31) we can see that all product terms in  Ri,3 appear in Ri,4, the only difference is how 
the product terms are added or subtracted. 

+?�?�?"?�?G?�?"?9 ���������� �"
""�"�"�"0"�"�" −−++−−+=         (30) 

+?�?�?"?�?G?�?"?9 ���������� �"
""�"�"�"0"�"�" +−−++−−=         (31) 

If we reuse the terms we end up using 176 terms. 
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In the previous solutions, we compute all product terms in parallel using a big 
combinational circuit. Each R row is computed using a single I row. As seen in (30) and 
(31) each R row is computed using the same formulas. 
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We can see that for each row the constant coefficients are only multiplied by a few 
input matrix values: 
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               (32) 

This gives 22 multipliers per row. And considering all rows (8) gives 176, which is the 
previous result. 

If we multiplex the rows in 8 cycles we can produce all the product terms in 8 cycles 
using only 22 multipliers. 
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We do the same for the adders’ network. We have 56 adders for each matrix row. If we 
compute the whole matrix at once this means 56*8 adders. 

Using only 56 can reduce the area usage. 
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From (32) we can see that each multiplier takes 4 different columns at most. So we can 
share the constant multipliers among the different terms by serializing the inputs and 
deserializing the outputs. 

As a result we use 7 constant multipliers, which is the minimum possible number of 
constant multipliers. 
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A constant multiplier can be implemented as a sequence of add and shift operations. I 
denote this type of constant multiplier as AS (add shift) multiplier. 

For instance Y = X·15, is expressed as Y = X·1111 in binary notation and can be 
decomposed as follows as Y = X·23+X·22+X·21+X·20 

As the shift operation comes for free in digital logic, in this example we only need 3 
adders to compute the product. In fact, the number of used adders depends on the 
active bits in the constant multiplier. The more “ones” in the constant value, the more 
adders we use. 
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However, this can be further optimized if we notice that 15 = 16-1. So we can rewrite 
the previous example as Y=X·(16-1), which in binary notation becomes Y= X·(10000 -
1) = X·10000 – X. Finally we get Y=X·24-X·20.  

In essence, we introduced the subtract operation to obtain a much more compact 
expression that allows to save computing resources. In this case we only need 1 
subtractor to compute the product, compared with the previous 3 adders. I denote this 
type of constant multiplier as ASS (add subtract shift) multiplier. 
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The design variations have been tested in the complex Mpeg1Decoder testbench. The 
brute force approach has been ignored, as it does not fit into the available FPGA. The 
first test consists on implementing the product term reuse with AS type constant 
multipliers and replace the whole ConstantMatrixMultiplier module for FPGA 
execution. As it is a pure combinational circuit, it is possible to reuse its hardware 
implementation when using jumble simulation. As simulator will evaluate the propagate 
function in different times, we can redirect the two different constant matrix multipliers 
towards the single hardware implementation. The second test follows this approach to 
execute the two ConstantMatrixMultiplier modules present on the iDCT design. 
The third test introduces the use of ASS type of constant matrix multipliers. About an 
11% of the area of the original module is saved in this step (see first and second row of 
Table 10). The fourth test repeats the trick of reusing the hardware implementation but 
now with the ASS based constant matrix multiplier. The fifth test uses the design with 
22 multipliers and 56 adders, but as the design is smaller, we replace the entire 
HwIdct block for FPGA execution. Finally, the sixth test uses the design with 7 
multipliers and 56 adders. 
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Design Std. 
Simulation 

Jumble 
Simulation Speedup Factor 

ConstantMatrixMultiplier  183,186 s 100,489 s 1.82 

2 ConstantMatrixMultiplier 183,186 s 11,619 s 15.76 
ConstantMatrixMultiplier 

using ASS multipliers 143,957 s 76,654 s 1.87 

2 ASS ConstantMatrixMultiplier  143,957 s 11,384 s 12.64 
HwIdct 

(IDCT64_22cm_56ad) 36,133 s 3,569 s 10.12 

HwIdct 
(IDCT64_7cm_56ad) 27,372 s 3,558 s 7.69 

 

As shown in Table 9, simulation speedups go from 2 to 12 approx. It is very interesting 
to observe that reusing combinational blocks have a great impact in the simulation 
speedup (goes from 1.82 to 15.76). Also noticeable is that the speedup achieved when 
replacing the whole HwIdct is lower than the previous one (achieved when replacing 
some of its parts). This is due to the width of the interface that must be synchronized in 
both cases; the interface of the HwIdct has 4097 bits while the 
ConstantMatrixMultiplier has an interface of 2049 bits. The greater the 
interface, the more time must the simulator dedicate to transfer data to the real 
hardware.  
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Block of the design LEs 
Complete Design 

LEs 
Constant Matrix 

Multiplier 
Computing Elements Memory bits 

Complete Design 

ConstantMatrixMultiplier 26,800 
(82% of device total) 

20,576 
(63% of device total) 

176 M 
448 A/S 

1,152 
(<1% of device total) 

ConstantMatrixMultiplier 
using ASS multipliers 

24,592 
(75% of device total) 

18,304 
(56% of device total) 

176 M 
448 A/S 

1,152 
(<1% of device total) 

CMatrixMultiplier22 20,879 
(64% of device total) 

14,716 
(45% of device total) 

22 M 
448 A/S 

1,152 
(<1% of device total) 

CMatrixMultiplier56 9,546 
(29% of device total) 

3,906 
(12% of device total) 

22 M 
56 A/S 

1,152 
(<1% of device total) 

HwIdct 
(IDCT64_22cm_56ad) 

14,150 
(43% of device total) 

3,616 & 3,906 
(12% of device total) 

22 M 
56 A/S 

2,097 
(<1% of device total) 

HwIdct 
(IDCT64_7cm_56ad) 

13,680 
(42% of device total) 

3,330 & 3,733 
(11% of device total) 

7 M 
56 A/S 

2,097 
(<1% of device total) 
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I have presented a method to interactively select a part of a design during a simulation 
session and download it into a supported hardware platform for hardware execution. 
The system could reduce simulation time by some orders of magnitude providing a 
convenient system for HIL verification, but this would be achieved only if Amdahl’s α is 
very close to 1. However, in more realistic experiments, I have got a speedup factor of 
10 to 30. This could be optimized by implementing faster methods to transfer the data 
to the interface. 

In future work, I will try to improve the obtained speedups through the use of larger 
blocks instead of bit-by-bit scan chain. Another interesting idea is to directly map the 
input and output interface to the host memory and avoid the use of the shift registers. 
The actual TJumble is proportional to the width of the interface as formulated in (8). This 
approach would significantly reduce by a factor of 32 (33) the time spent in inputs and 
outputs transfers as would benefit from burst PCI transfers, since each PCI bus 
read/write operation would be enough to place inputs and outputs.  
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The current system is limited to download a single block at a time. Future work will 
address the need to download multiple independent blocks. 

Another pitfall of the system is that it does not provide a method to verify that the 
replaced block corresponds to the block that is currently programmed into the hardware 
platform. This problem will be addressed by adding some metadata information into the 
synthesized design so it can be compared with the object instructed to be replaced. 

The four-command process could be merged into a single command that offers a 
simple single push button solution for hardware emulation of selected blocks. 

Jumble is practical for design verification but could also be useful in the deployment of 
the final designs, especially if the designs that we are verifying are though to be PCI 
coprocessors. With some more work, and following a similar process that have been 
used, we could create an automated way of wrapping the design and create an API so 
that hardware functions are directly usable from end user applications. This API could 
be a Windows DLL, a COM object or a Java class. 

As has been stressed through this work, JHDL has the ability to manipulate the circuit 
hierarchy during simulation sessions. Here this is used to substitute a circuit and 
redirect its interface to its hardware implementation. By doing this, we can compare 
different simulation sessions and verify that the system is equivalent. However, it can 
be difficult to ensure the equivalence if we do not keep track of all the signals that get in 
an out of the circuit, and this is obviously prohibitive for most designs. As a possible 
improvement, we could avoid removing the software model of the hardware circuit and 
maintain both: the software implementation and its hardware implementation through 
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the redirector together with an additional module aimed to verify its equivalence at each 
clock cycle. This would eliminate any speedup buy could offer a safe intermediate step 
before going to the pure hardware implementation.  

Finally, Jumble can be very useful for complex designs in which simulation costs are 
considerable. In our research group, we are currently working on projects where this is 
the case, like NoC and Soft Core simulations. 
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In order to clarify the extension of this work we detail the various contributions.  
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Module Language Authors Source Code 
Files 

Source Code 
Lines  

Altera support JHDL Jordi Farré, 
David Castells 125 29,491 

Median Filter Test Case JHDL David Castells 21 1,679 

Mpeg Test Case JHDL/Java David Castells 126 39,236 

OCR Test Case JHDL David Castells 108 19,154 

PCI renenumerator C++ David Castells 20 4,339 

VHDL netlister VHDL/JHDL/
Java 

Alexis Morugó, 
David Castells 3 2,116 

PLD Platform Model JHDL David Castells 49 5,808 
JNI native interface to PLD 

board C++/Java David Castells 4 1,961 

Wrapping infrastrucure JHDL/Java David Castells 20 3,159 

Quartus Automation Java David Castells 5 528 

Threaded Logic JHDL/Java David Castells 1 287 

Common utility logic JHDL David Castells 62 7,567 

TOTAL   544 115,325 
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