2007 JavaOne Conference

R e

|._\._____h_..

A"'-,ILoc -Free Hash Table

Dr. Cliff Click
Chief JVM Architect & Distinguished Engineer

blogs.azulsystems.com/cliff
Azul Systems
May 8, 2007

Hash Tables “

* Constant-Time Key-Value Mapping
e Fast arbitrary function
* Extendable, defined at runtime

* Used for symbol tables, DB caching, network
access, url caching, web content, etc

e Crucial for Large Business Applications
> 1MLOC

* Used in Very heavily multi-threaded apps
> 1000 threads

Popular Java Implementations “

e Java's HashTable
Single threaded; scaling bottleneck

 HashMap
Faster but NOT multi-thread safe

e java.util.concurrent.HashMap
Striped internal locks; 16-way the default

e Azul, IBM, Sun sell machines >100cpus
* Azul has customers using all cpus in same app
 Becomes a scaling bottleneck!

A Lock-Free Hash Table A

* No locks, even during table resize
No spin-locks
No blocking while holding locks
All CAS spin-loops bounded
Make progress even if other threads die....
* Requires atomic update instruction:
CAS (Compare-And-Swap),

LL/SC (Load-Linked/Store-Conditional, PPC only)
or similar

e Uses sun.misc.Unsafe for CAS

A Faster Hash Table A

» Slightly faster than j.u.c for 99% reads < 32 cpus

* Faster with more cpus (2x faster)
Even with 4096-way striping
10x faster with default striping

» 3x Faster for 95% reads (30x vs default)

e 8x Faster for 75% reads (100x vs default)

» Scales well up to 768 cpus, 75% reads
Approaches hardware bandwidth limits

Agenda “

e Motivation

* “Uninteresting” Hash Table Details
» State-Based Reasoning

* Resize

* Performance

 Q&A

Some “Uninteresting” Details

Hashtable: A collection of Key/Value Pairs

* Works with any collection

Scaling, locking, bottlenecks of the collection
management responsibility of that collection

Must be fast or O(1) effects kill you
Must be cache-aware

I'll present a sample Java solution
But other solutions can work, make sense

“Uninteresting” Detalls “

e Closed Power-of-2 Hash Table
Reprobe on collision
Stride-1 reprobe: better cache behavior

 Key & Value on same cache line

e Hash memoized
Should be same cache lineas K +V
But hard to do in pure Java

* No allocation on get() or put()
* Auto-Resize

Example get() code A

idx = hash = key.hashCode() ;

while(true) { // reprobing loop
idx &= (size-1); // limit idx to table size
k = get key(idx); // start cache miss early
h = get hash(idx); // memoized hash
if(k == key || (h == hash && key.equals(k)))

return get val(idx);// return matching value
if(k == null) return null;

idx++; // reprobe

“Uninteresting” Detalls A

 Could use prime table + MOD
Better hash spread, fewer reprobes
But MOD is 30x slower than AND

* Could use open table
put() requires allocation
Follow 'next' pointer instead of reprobe
Each 'next' is a cache miss
Lousy hash -> linked-list traversal

* Could put Key/Value/Hash on same cache line
» Other variants possible, interesting

Agenda “

e Motivation

* “Uninteresting” Hash Table Details
» State-Based Reasoning

* Resize

* Performance

 Q&A

Ordering and Correctness A

 How to show table mods correct?
put, putlfAbsent, change, delete, etc.

* Prove via: fencing, memory model, load/store
ordering, “happens-before™?

* |Instead prove” via state machine

* Define all possible {Key,Value} states
* Define Transitions, State Machine

* Show all states “legal”

*Warning: hand-wavy proof follows

State-Based Reasoning A

* Define all {Key,Value} states and transitions

* Don't Care about memory ordering:
get() can read Key, Value in any order
put() can change Key, Value in any order
put() must use CAS to change Key or Value
But not double-CAS

* No fencing required for correctness!

(sometimes stronger guarantees are wanted
and will need fencing)

* Proof is simple!

Valid States “

A Key slot is:

null — empty

K — some Key; can never change again
* A Value slot is:

null — empty

T — tombstone

V — some Values

* A state is a {Key,Value} pair
* A transition is a successful CAS

State Machine ﬁ

Partially inserted K/V pair

. chang

Partially inserted K/V pair - Standard K/V pair
Reader-only state

| 182003 Azul Systems, Inc.

Example put(key,newval) code: A

idx = hash = key.hashCode() ;

while(true) ({ // Key-Claim stanza

idx &= (size-1);

k = get key (idx) ; // State: {k,?}

if(k == null && // {null,?} -> {key,?}

CAS key(idx,null, key))

break; // State: {key,?}

h = get hash(idx); // get memoized hash

if(k == key || (h == hash && key.equals(k)))
break; // State: {key,?}

idx++; // reprobe
}

| 182003 Azul Systems, Inc.

Example put(key,newval) code A

// State: {key,?}
oldval = get val(idx); // State: {key,oldval}
// Transition: {key,oldval} -> {key,newval}
if(CAS val(idx,oldval,newval)) {
// Transition worked
// Adjust size
} else {
// Transition failed; oldval has changed
// We can act “as if” our put() worked but
// was immediately stomped over
}

return oldval;

| 1@2003 Azul Systems, Inc.

Some Things to Notice A

* Once a Key is set, it never changes
No chance of returning Value for wrong Key
Means Keys leak; table fills up with dead Keys
Fix in a few slides...

* No ordering guarantees provided!
Bring Your Own Ordering/Synchronization

* Weird {null,V} state meaningful but uninteresting
Means reader got an empty key and so missed
But possibly prefetched wrong Value

Some Things to Notice “

* There is no machine-wide coherent State!

 Nobody guaranteed to read the same State
Except on the same CPU with no other writers

* No need for it either
* Consider degenerate case of a single Key

 Same guarantees as:
single shared global variable
many readers & writers, no synchronization
l.e., darned little

A Slightly Stronger Guarantee “

* Probably want “happens-before” on Values
java.util.concurrent provides this

* Similar to declaring that shared global 'volatile'

* Things written into a Value before put()
Are guaranteed to be seen after a get()

* Requires st/st fence before CAS'ing Value
“free” on Sparc, X86

* Requires |d/Id fence after loading Value
“free” on Azul

Agenda “

e Motivation

* “Uninteresting” Hash Table Details
« State-Based Reasoning

* Resize

* Performance

 Q&A

Resizing The Table A

* Need to resize if table gets full
* Or just re-probing too often

* Resize copies live K/V pairs
Doubles as cleanup of dead Keys
Resize (“cleanse”) after any delete
Throttled, once per GC cycle is plenty often

* Alas, need fencing, 'happens before'

* Hard bit for concurrent resize & put():
Must not drop the last update to old table

Resizing Q’

 Expand State Machine
e Side-effect: mid-resize is a valid State

 Means resize is:
Concurrent — readers can help, or just read&go
Parallel — all can help
Incremental — partial copy is OK

 Pay an extra indirection while resize in progress
So want to finish the job eventually

» Stacked partial resizes OK, expected

get/put during Resize “

» get() works on the old table
Unless see a sentinel

* put() or other mod must use new table

* Must check for new table every time
Late writes to old table 'happens before' resize
e Copying K/V pairs is independent of get/put

* Copy has many heuristics to choose from:

All touching threads, only writers, unrelated
background thread(s), etc

New State: 'use new table' Sentinel “

e X: sentinel used during table-copy
Means: not in old table, check new

* A Key slot is:
null, K
X —'use new table’, not any valid Key
null - K OR null - X

* A Value slot is:
null, T, V
X —'use new table’, not any valid Value
null - {T,V}* - X

State Machine — old table ﬁ

capy {K,V} into newer table

Partially inserted
K/V pair

Standard K/V pair
States {X,T/V/X} not possible

| 262003 Azul Systems, Inc.

State Machine: Copy One Pair A

empty

| 282003 Azul Systems, Inc.

State Machine: Copy One Pair ﬁ

empty

dead or partially inserted

| 282003 Azul Systems, Inc.

State Machine: Copy One Pair ﬁ

emity

dead or partially inserted

alive, but old

old table

new table

| 202003 Azul Systems, Inc.

Copying Old To New A

 New States V', T' — primed versions of V,T
Prime'd values in new table copied from old
Non-prime in new table is recent put()

“happens after” any prime'd value
Prime allows 2-phase commit
Engineering: wrapper class (Java), steal bit (C)

* Must be sure to copy late-arriving old-table write

* Attempt to copy atomically
May fail & copy does not make progress
But old, new tables not damaged

New States: Prime'd A

* A Key slot is:
null, K, X

* A Value slot is:
null, T, V, X
T, V'—primed versions of T & V
Old things copied into the new table
“2-phase commit”
null - {T"'"V}* - {T,V}* - X

» State Machine again...

State Machine — new table ﬁ

Empty insert

opy {K,V} into newer table

Partially inserted
K/V pair

Standard K/V pair
States {X,T/T'/V/\V'/X} not possible

| 322003 Azul Systems, Inc.

State Machine — new table ﬁ

Empty insert check newer table

o

7
copy in fro

older tab

opy {K,V} into newer table

Partially inserted ~ Standard K/V pair

I
K/V pair ~

. - §ta.tes/{X,T/T'NN'/X} not possible

| 382003 Azul Systems, Inc.

State Machine — new table ﬁ

Empty insert check newer table

J— N\
7
copy in fro \
older tab |
\ opy {K,V} into newef table
\ /
{nX}) N s g
Partially inserted ~ Standard K/V pair | _ /
K/V pair S~ N

-~
S~ n _ _StatesZX,T/TVVIUX} not possible

| 382003 Azul Systems, Inc.

State Machine: Copy One Pair ﬁ

K,V'in new table
X in old table

pread V
od L.
new ;’,«
read: V'

® ®

o o

® partial copy ® copy

complete

| 382003 Azul Systems, Inc.

Some Things to Notice “

e Old value could be Vor T
or V' or T' (if nested resize in progress)

e Skip copy if new Value is not prime'd
Means recent put() overwrote any old Value

 |[f CAS into new fails
Means either put() or other copy in progress
So this copy can quit

* Any thread can see any state at any time
And CAS to the next state

Agenda “

* Motivation

* “Uninteresting” Hash Table Details
» State-Based Reasoning

* Resize

* Performance

* Q&A

Microbenchmark A

 Measure insert/lookup/remove of Strings

* Tight loop: no work beyond HashTable itself and
test harness (mostly RNG)

e “Guaranteed not to exceed” numbers

* All fences; full ConcurrentHashMap semantics
* Variables:

99% get, 1% put (typical cache) vs 75/ 25
Dual Athalon, Niagara, Azul Vega1, VegaZ2
Threads from 1 to 800

NonBlocking vs 4096-way ConcurrentHashMap
1K entry table vs 1M entry table

AMD 2.4GHz — 2 (ht) cpus &

1K Table 1M Table
30 30
25 \/NB-99 25
CHM-99

20 20
Q 5
@ NB-75 k7
§ 15 _ — § 15
= =

" CHM-75 "

5 5 NB

~CHM

o
o

RN
NA
w

[[[[[[|
1 2 3 4 5 6 7 8 4 5 6 7 8
Threads Threads

Niagara — 8x4 cpus “

Z
SYSTEMS
1K Table 1M Table
80 80
70 70
60 60
o CHM-99, NB-99
@ 20 » 50
F; 3
é’_ 40 A — B 40
i Q NB
= 30 / = 30 - - —
/ CHM-75, NB-75
20 V 20 . CHM
10 / 10 -
0 : : : : : : : ‘ 0 T I I I I I I \
0 8 16 24 32 40 48 56 64 0O 8 16 24 32 40 48 56 64

Threads Threads

Azul Vegal — 384 cpus

Z
SYSTEMS
1K Table 1M Table
500 500
NB-99
400 /’ 400
® 300 S 300
@ / CHM-99 &
Q o
o o
S 200 ' S 200
NB-75 NB
100 - / 100 -
CHM-75 CHM
° 0 100 200 300 400 Ob 100 200 300 400
Threads Threads

Azul Vega2 — 768 cpus “

1K Table 1M Table

1200 1200
1000 N B-/gf 1000

800 / 800
. // CHM-99

3
O
% % 600
= Q.
a / o
Q / =
= 400 L —7/ 400 NB
NB-75
200 - - 200
CHM-75
CHM
0 j ' , ‘ : : : ‘ 0 T T T T T T T \
0O 100 200 300 400 500 600 700 800 0O 100 200 300 400 500 600 700 800

Threads Threads

Summary A

A faster lock-free HashTable
* Faster for more CPUs
 Much faster for higher table modification rate

» State-Based Reasoning:
No ordering, no JMM, no fencing

Any thread can see any state at any time
 Must assume values change at each step

State graphs really helped coding & debugging
Resulting code is small & fast

Summary “

 Obvious future work:
 Tools to check states
 Tools to write code

« Seems applicable to other data structures as well
» Concurrent append j.u.Vector
« Scalable near-FIFO work queues

e Code & Video available at:

http://blogs.azulsystems.com/cliff/

#1 Platform for
Business Critical Java™

WWW.AZULSYSTEMS.COM

E ERA OF UNBOUND'EOMPUTE IS NOW &t

Thank You

