
Merkle Signatures with Virtually Unlimited

Signature Capacity

Johannes Buchmann1, Erik Dahmen1, Elena Klintsevich1,
Katsuyuki Okeya2, and Camille Vuillaume2

1 Technische Universität Darmstadt
Department of Computer Science

Hochschulstraße 10, 64289 Darmstadt, Germany
{buchmann,dahmen,klintsev}@cdc.informatik.tu-darmstadt.de

2 Hitachi, Ltd., Systems Development Laboratory,
1099, Ohzenji, Asao-ku, Kawasaki-shi, Kanagawa-ken, 215-0013, Japan

{katsuyuki.okeya.ue,camille.vuillaume.ch}@hitachi.com

Abstract. We propose GMSS, a new variant of the Merkle signature
scheme. GMSS is the first Merkle-type signature scheme that allows a
cryptographically unlimited (280) number of documents to be signed with
one key pair. Compared to recent improvements of the Merkle signature
scheme, GMSS reduces the signature size as well as the signature gener-
ation cost.
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1 Introduction

Digital signatures are one of the most important applications of public key cryp-
tography. For example, they are an essential part of the SSL/TLS protocol for
authenticating websites. If large scale quantum computers are built, all popu-
lar digital signature schemes like RSA, DSA and ECDSA will become insecure
[12]. In addition, significant progresses have been made for solving the underly-
ing number theoretic problems for RSA or DSA, and therefore, the key lengths
required to provide sufficient security have been steadily increasing [10]. As a
consequence, it is urgent to look for alternative signature schemes, thoroughly
analyze and understand their security, and see how they behave in real-life ap-
plications.

A promising alternative to common digital signature schemes is the Merkle
signature scheme (MSS) proposed by Merkle in [11]. The security of MSS solely
relies on the existence of cryptographic hash functions. According to [7], the re-
quired properties of the hash function are one-wayness and collision resistance.
Using MSS, it is possible to remove the requirement for number theoretic as-
sumptions from digital signatures. In recent years, many improvements to the
original MSS were proposed. The inefficient key generation and the resulting
limited signature capacity of MSS is addressed in [3]. The authors proposed
CMSS, a variant of MSS that increases the signature capacity from 220 to 240



and provides competitive timings compared to common signature schemes. Other
important contributions are efficient tree traversal algorithms [8, 13, 14], which
play a crucial role for fast signature generation.

First of all, it is unclear whether a signature capacity of 240 is sufficient
for practical applications. Consider for example webservers using SSL/TLS or
electronic archives. Second, the original MSS as well as CMSS suffer from quite
large signature sizes. Further, there may be time and space requirements in
specific application environments, such as smart cards, that are not satisfied by
current constructions.

In this paper we present the generalized Merkle signature scheme (GMSS).
GMSS is a highly flexible variant of CMSS that can be adjusted to the require-
ments and constraints of a particular environment. GMSS drastically reduces the
signing time by distributing the costs for one signature generation across several
previous signatures and the key generation. This in turn makes it possible to
choose parameters that provide smaller signatures. Using GMSS, it is possible
to achieve a signature capacity of 280 with competitive timings and reasonable
signature sizes, i.e. 26.1 ms for signing, 18.1 ms for verifying, and 3,620 bytes for
the signature. In case of a signature capacity of 240 it is possible to achieve 26
ms for signing, 19.6 ms for verifying, and only 1,860 bytes for the signature. For
both signature capacities, it is also possible to achieve signing and verification
times of only 10 ms at the expense of larger signatures, i.e. 2,340 bytes for 240

and 4,240 bytes for 280. We also propose a client-server protocol for webservers
using SSL/TLS that minimizes the latency and improves resistance to denial of
service attacks.

This paper is organized as follows: Section 2 introduces GMSS. Section 3
shows how to choose appropriate parameters and how to exchange signatures in
the SSL/TLS protocol. Finally, Section 4 states our conclusion.

2 GMSS in Theory

This section at first shows the general construction of GMSS. Then the key
generation, signature generation and verification are explained in detail and the
costs and memory requirements are estimated.

2.1 General Construction

The basic construction of GMSS consists of a tree with T layers. The nodes of
this tree are in turn Merkle trees [11]. A brief description of Merkle trees can
be found in Appendix A. The height of all Merkle trees in a certain layer i is
denoted by hi. Trees in different layers may have different heights. Each Merkle
tree in layer i = 1, . . . , T −1 is parent to 2hi Merkle trees. T1,0 denotes the single
Merkle tree in layer 1. The 2h1+...+hi−1 Merkle trees in layers i = 2, . . . , T are
denoted by Ti,j , j = 0, . . . , 2h1+...+hi−1 − 1 according to their position from left
to right.



Parents and children Merkle trees have the following relationship: the root
of a child tree is signed with the one-time signature key corresponding to a
certain leaf of his parent tree. In the following, when talking about leaves in the
context of signing, we mean the corresponding one-time signature key. RootT

denotes the root of tree T . SigT denotes the one-time signature of RootT ,
which is generated using leaf l of T ’s parent. Message digests d are signed using
the leaves of the Merkle trees on the deepest layer T and we call their one-time
signature Sigd. Thanks to the layer hierarchy, the number of message digests
that can be signed using one GMSS key pair is S = 2h1+...+hT . The general
construction of GMSS is depicted in Figure 1.
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Fig. 1. General construction of GMSS

For any given signature s ∈ {0, . . . , 2h1+...+hT − 1}, there is a unique path p
from the Merkle tree on the lowest layer T , which is used to sign the digest, to
the single Merkle tree on the top layer 1 (T1,0). This path involves one Merkle
tree at each layer i = 1, . . . , T . A GMSS signature of a message digest d contains
the one-time signature Sigd of d and the one-time signatures SigT of the roots
of all Merkle trees on path p, except for T1,0. For all trees T on path p, a GMSS
signature also contains the authentication path AuthT ,l of the leaf l that is used
to sign either the child of T , or the digest d. An authentication path is defined as
the sequence of the siblings of all nodes on the path from leaf l to the root of T .
GMSS uses the Winternitz one-time signature scheme [4, 11] for signing digests
d and RootT (see Appendix B for for a brief introduction to the Winternitz
one-time signature scheme). wi denotes the Winternitz parameter used in layer
i = 1, . . . , T . Different layers are allowed to use different Winternitz parameters.
GMSS is specified by a GMSS parameter set

P =
(

T, (h1, . . . , hT ), (w1, . . . , wT )
)

.



Remark 1. The Merkle variant CMSS proposed in [3] is a special case of GMSS.
CMSS uses only two layers, where both layers use the same Winternitz parameter
and all trees in both layers have the same height, i.e. P =

(

2, (h, h), (w, w)
)

.

During the key generation, GMSS computes SigT and AuthT ,l for the
Merkle trees on the path p used by the first signature (Section 2.3). SigT and
AuthT ,l required by succeeding signatures are precomputed (Section 2.4). Since
those values change less frequently for upper layers, the precomputation can be
distributed over many steps. On the one hand, this results in a significant im-
provement of the signing speed. On the other hand, this enables us to choose
large Winternitz parameters wi, which results in smaller signatures. In Section
3.1, we formulate this trade-off as an optimization problem to find an optimal
parameter set.

2.2 Winternitz One-Time Signature Key Generation

First of all, we describe our strategy for generating random data required by one-
time signature keys. Let H : {0, 1}∗ → {0, 1}n be a cryptographic hash function
with output length n bits. We adopt the approach for the generation of the
Winternitz OTS signature keys proposed in [3] and use a pseudo random number
generator (PRNG) f : {0, 1}n → {0, 1}n × {0, 1}n, Seedin 7→ (Seedout,Rand)
for generating secrets. In the following, we call cHash the cost evaluating one
hash (in our case, the input size is small and fixed) and cPrng the cost for calling
the PRNG. To assure interoperability we selected the PRNG described in [6],
Appendix 3.1, which requires one single call to the hash function H .

Rand← H(Seedin),Seedout ← (1 + Seedin + Rand) mod 2n

We use an initial seed SeedTi,j ,l to generate the seed for the lth Winternitz OTS
signature key of Merkle tree Ti,j , i.e.

(SeedTi,j ,l+1,SeedOTS)← f(SeedTi,j ,l)

(SeedOTS, xk)← f(SeedOTS), k = 1, . . . , twi

and twi
= dn/wie + d(blog2(dn/wie)c+ 1 + wi) /wie. The lth one-time signa-

ture key and the lth leaf of Merkle tree Ti,j are given as X = (x1, . . . , xtwi
)

and Y = H
(

H2wi−1(x1)‖ . . . ‖H2wi−1(xtw
)
)

, respectively. Note that Y is also
the Winternitz one-time verification key that corresponds to X . Hk(x) denotes
the hash function applied k times and ‖ the concatenation of two strings. The
updated seed SeedTi,j ,l+1 is stored and used to generate the (l + 1)th signature
key. If the current signature key is associated with the last leaf of tree Ti,j , i.e.
l = 2hi − 1, the updated seed is used as initial seed for the next Merkle tree
Ti,j+1, i.e. (SeedTi,j+1,0,SeedOTS)← f(SeedTi,j ,2hi−1).

2.3 GMSS Key Generation

Next, we explain how to generate a GMSS keypair, establish the size of the public
and private keys and the cost for computing them. From the parameter set P



and initial seeds SeedT1,0,0, . . . ,SeedTT,0,0, the key generation step computes
the GMSS public key RootT1,0 and the GMSS private key which consists of the
following entries.







SeedTi,0,0 , i = 1, . . . , T , SeedTi,2,0 , i = 2, . . . , T
SigTi,0 , i = 2, . . . , T , RootTi,1 , i = 2, . . . , T

AuthTi,0,0 , i = 1, . . . , T , AuthTi,1,0 , i = 2, . . . , T

At first, the key generation computes the root of the first tree in each layer
RootTi,0 , i = 1, . . . , T . This can be done efficiently using a classical algorithm
also referred to as treehash [13], shown in Algorithm 1. This algorithm uses a
stack S of nodes, where each node knows its height in the tree. In this paper, we
use a slightly modified version of treehash, which allows us to easily distribute
costs by incrementally computing the root. In Algorithm 1, the leaf l is the
lth verification key, computed using SeedTi,j ,l as described above. For a tree
of height hi, Algorithm 1 must be called 2hi times, where the 2hi leaves are
supplied in sequential order, from left to right. For each call of Algorithm 1, the
inner while loop might compute from 0 to hi iterations, but in total, the 2hi calls
will result in exactly 2hi − 1 iterations. After the 2hi calls, the stack S contains
a single node, the root of the tree. Note that during the computation of the root
RootTi,0 , the authentication path for the 0th leaf of tree Ti,0, i.e. AuthTi,0,0 is
generated for free, since all nodes of the tree are parsed by the algorithm.

Algorithm 1 Treehash

Input: Leaf l, stack S
Output: updated stack S

1. push l to S
2. while top two nodes of S have the same height do

2.1. pop n1 from S; pop n2 from S
2.2. push H(n2||n1) to S

3. return S

Next, the roots RootTi,1 and authentication paths AuthTi,1,0 of of the suc-
ceeding trees Ti,1, i = 2, . . . , T are computed with Algorithm 1. As explained
above, the initial seeds SeedTi,1,0 related to the trees Ti,1 are now available.
Finally, after generating the second tree in each layer, the seeds SeedTi,2,0 are
available, which are stored as part of the private key to allow an efficient gen-
eration of trees Ti,2 during the signing process. Note that SigTi,0 , i = 2, . . . , T
does not have to be computed explicitly. It is an intermediate value during the
computation of the 0th leaf of tree Ti−1,0, i = 2, . . . , T .

Lemma 1 (Key Generation). The total cost for the key generation is

ckeygen =
T
∑

i=1

ctree(i) +
T
∑

i=2

ctree(i) (1)



where ctree(i) =
(

2hi (twi
(2wi−1)+1) + 2hi−1

)

cHash + 2hi (twi
+1) cPrng. The

memory requirements for the keys are

mpubkey = n bits

mprivkey =

(

T
∑

i=1

(hi + 1) +
T
∑

i=2

(hi + twi−1 + 2)

)

n bits.
(2)

Proof. A tree on layer i requires the computation of 2hi leaves. Each leaf compu-
tation requires (2wi−1) ·twi

+1 hash function evaluations and twi
+1 calls to the

PRNG: one PRNG to obtain the seed and twi
to obtain the signature key. The

2hi applications of treehash require 2hi−1cHash. Therefore, the total cost for one
tree on layer i is given as ctree(i) =

(

2hi ((2wi − 1) · twi
+ 1) + 2hi − 1

)

cHash +
2hi (twi

+ 1) cPrng. Since we construct two trees on layers i = 2, . . . T and one on
layer i = 1, the total cost for the key generation is given by Equation (1). The
memory requirements of the keys depend on the output size of the hash function
n. A root RootTi,j

is a single hash value and requires n bits, which explains
mpubkey = n bits. A seed SeedTi,j ,l requires n bits. A one-time signature SigTi,j

requires n · twi−1 bits. An authentication path requires hi · n bits. For each layer
i = 2, . . . , T , we store two seeds, two authentication paths, one root and one
one-time signature. For layer i = 1, we store one seed and one authentication
path. Hence, the size of the pivate key is mprivkey as in Equation (2).

2.4 Signature Generation

In the following, we discuss the signature generation stage. We introduce the
components of a GMSS signature and estimate formulas for the signature size
and costs. We also explain how the signature generation costs are distributed.
For the sth GMSS signature (s ∈ {0, . . . , 2h1+...+hT − 1}), let

{

jT = bs/2hT c, lT = s mod 2hT

ji = bji+1/2hic, li = ji+1 mod 2hi , i = 1, . . . , T − 1.

The path from the lowest tree TT,jT
to the top tree T1,0 used by the sth signature

is given as (TT,jT
, TT−1,jT−1 , . . . , T2,j2 , T1,0). The one-time signature Sigd of the

message digest d is generated using the lT th leaf of tree TT,jT
. The one-time

signature SigTi,ji
of the root of tree Ti,ji

is generated using the li−1th leaf of
tree Ti−1,ji−1 , i = 2, . . . , T . The sth GMSS signature consists of

1. The index s
2. The one-time signature Sigd

3. The one-time signatures SigTi,ji
, i = 2, . . . , T

4. The authentication paths AuthTi,ji
,li , i = 1, . . . , T

Lemma 2 (Signature Size). The size of a signature is

msignature =
T
∑

i=1

(hi + twi
) · n bits. (3)



Proof. A signature consists of T authentication paths (hi · n bits) and T one-
time signatures (twi

· n bits), one for each layer i = 1, . . . , T . Adding up yields
msignature as shown by Equation (3) as the size of a signature.

Following the framework of [5], we split the signature generation into two
parts. The first part is the online part which computes Sigd and outputs the sig-
nature. The second part is the offline part that precomputes the authentication
paths and one-time signatures of the roots required for upcoming signatures. In
fact, the offline part performs an update of the private key and GMSS is there-
fore a key-evolving signature scheme [2]. Note that for the first signature s = 0
the offline part was done during the key generation.

Lemma 3 (Online Signature Cost). The average cost for the online signing
part is

conline = (2wT − 1)twT
/2 · cHash + (twT

+ 1)cPrng. (4)

Proof. The generation of the one-time signature key requires one call to the
PRNG to obtain the seed and twT

are necessary to obtain the secrets. The
average signing costs of the Winternitz one-time signature scheme are

(

(2wT −

1)twT

)

/2 · cHash. This leads to Equation (4).

Next, we explain how to efficiently compute the offline signature part by
distributing its cost. Our idea is based on the observation that trees in upper
layers do not change frequently from one signature to the other. In the following,
the values li, ji correspond to the current signature s.

We begin with the precomputation of SigTi,ji+1 , i = 2, . . . , T , which must be
ready when the next signature uses tree Ti,ji+1. SigTi,ji+1 is generated using the
one-time signature key that corresponds to either the (li−1 + 1)th leaf of tree
Ti−1,ji−1 or the 0th leaf of tree Ti−1,ji−1+1. The latter case appears if (li−1 +1) =
0 mod 2hi−1 , i.e. we have to use the next tree in the next upper layer i− 1. For
now we assume that RootTi,ji+1 is known when tree Ti,ji

is used for the first
time, i.e. li = 0. This certainly holds if ji = 0, since RootTi,1 was computed
during the key generation. We distribute the computation of SigTi,ji+1 over the

2hi leaves (or steps) of tree Ti,ji
. If li = 0 we use RootTi,ji+1 and perform

the initialization steps of the Winternitz one-time signature scheme. Then we
compute SigTi,ji+1 step-by-step each time we advance one leaf in tree Ti,ji

. The

generation of SigTi,ji+1 is completed if li = 2hi − 1.

Lemma 4. On average, we require

csig(i) =
⌈

(2wi−1−1)twi−1

2hi+1

⌉

cHash +
⌈

twi−1
+1

2hi

⌉

cPrng (5)

operations each time we advance one leaf in Ti,ji
to compute SigTi,ji+1 .

Proof. The one-time signature SigTi,ji+1 is generated using the Winternitz pa-
rameter of layer i − 1 (wi−1), and on average requires (2wi−1 − 1)twi−1/2 hash
evaluations and twi−1 + 1 calls to the PRNG, see Lemma 3. Since there are 2hi

leaves in the tree on layer i, the computation of SigTi,ji+1 can be distributed

over 2hi steps which yields Equation (5) as costs per step.
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Fig. 2. SigTi,ji+1 is precomputed from RootTi,ji+1 while using tree Ti,ji

Above, we assumed that RootTi,ji+1 is known when we first use tree Ti,ji
.

Hence we must precompute RootTi,ji+2 while using tree Ti,ji
, such that it is

ready when we switch to tree Ti,ji+1 and want to start generating SigTi,ji+2 .
This is done by successively computing the leaves of tree Ti,ji+2 and passing
them to Algorithm 1. While using the lith leaf of Ti,ji

we compute the lith leaf of
Ti,ji+2. Its computation is distributed over the 2hi+1 leaves (or steps) of Ti+1,ji+1 ,
the current tree on the next lower layer i + 1. Once the leaf is generated, it is
passed to treehash which partially constructs RootTi,ji+2 . Since treehash must

be called 2hi times to construct the root of a tree of height hi, the construction
of RootTi,ji+2 is completed once we switch from tree Ti,ji

to tree Ti,ji+1. Note
that SeedTi,ji+2,0, the seed required to compute the 0th leaf Ti,ji+2 was obtained
during the generation of RootTi,ji+1 and is part of the private key. If ji = 0 the
seed was computed during the key generation. For the lowest layer i = T the
computation of the leaves has to be done at once. We also store AuthTi,ji+2,0

during the preparation of RootTi,ji+2 .
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Lemma 5. We require

{

c1
leaf(i) =

⌈

(2wi−1)twi
+1

2hi+1

⌉

cHash +
⌈

twi
+1

2hi+1

⌉

cPrng

c2
leaf(i) = hi · cHash (at most)

(6)

operations each time we advance one leaf in Ti+1,ji+1 and Ti,ji
, respectively, to

compute RootTi,ji+2 .

Proof. The generation of the lith leaf of tree Ti,ji+2 requires ((2wi−1)twi
+1)cHash

and (twi
+ 1)cPrng. Since there are 2hi+1 leaves in the tree on layer i + 1, the

computation of the lith leaf can be distributed over 2hi+1 steps which yields
c1
leaf(i). The while-loop of treehash requires at most hi hash function evaluations

which yields c2
leaf(i).

Next, we describe the precomputation of AuthTi,ji
,li+1, the authentication

path of the next leaf of tree Ti,ji
. We use an algorithm proposed by Szydlo in

[13]. This algorithm uses hi − 1 instances of treehash to compute the upcoming
authentication nodes. Given a leaf index li, Szydlo’s algorithm firstly checks
if a new instance of treehash must be generated. Then it spends at most hi

computational units, which are either hash function evaluations for the while-
loop of treehash or leaf calculations. Again, the computation of the required
leaves is distributed over the 2hi+1 leaves of Ti+1,ji+1 . When using the leaf li+1 =
0 of tree Ti+1,ji+1 , we perform the initialization steps of Szyldo’s algorithm and
decide (1) if a new instance of treehash must be generated and (2) how many new
leaves are required by the active treehash instances. Those leaves are computed
step-by-step as explained above. If li+1 = 2hi+1−1 the calculation of the required
leaves is completed and we pass them to Szydlo’s algorithm which updates the
treehash instances and outputs AuthTi,ji

,li+1. Note that AuthTi,ji
,0 is stored

during the construction of RootTi,ji
and therefore already available if li = 0.

Also, AuthTT,jT
,lT +1 must be computed at once.
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Lemma 6. We require at most

{

c1
auth(i) = hi · c

1
leaf(i) +

⌈

2hi−2

2hi+1

⌉

cPrng

c2
auth(i) = hi · cHash

(7)

operations each time we advance one leaf in Ti+1,ji+1 and Ti,ji
, respectively, to

compute AuthTi,ji
,li+1.

Proof. Szydlo’s algorithm initializes at most one instance of treehash in each
iteration. We need at most 2hi−2 calls to the PRNG to obtain the initial seed for
the leaf required by this instance from the current seed. In the worst case, the
active treehash instances require the computation of hi leaves. The computation
of those hi leaves and the 2hi−2 calls to the PRNG are distributed over the
2hi+1 steps in the tree on layer i + 1. This yields c1

auth(i). At most hi − 1 hash
evaluations are spend on the while-loops of the active treehash instances. One
hash evaluation is required by the initialization steps of Szydlo’s algorithm. This
yields c2

auth(i).

The following lemma considers the worst case costs of the offline part. It
assumes that for the next signature, we have to advance one leaf in each tree
Ti,ji

, i = 1, . . . , T − 1. Note that this is equivalent to advancing from tree Ti,ji

to Ti,ji+1 in all layers i = 2, . . . , T .

Lemma 7 (Offline Signature Cost and Memory). The worst case costs
and the memory for the offline part are

coffline =
T
∑

i=2

(

csig(i)+c1
leaf(i)+c2

leaf(i)
)

+
T
∑

i=1

(

c1
auth(i)+c2

auth(i)
)

moffline =

(

T
∑

i=2

(twi−1 + 4hi) + 3h1

)

· n bits.

(8)

Proof. In the worst case, we have to advance one leaf in the current tree on all
layers i = 1, . . . , T − 1. The cost for this case are obtained by adding the costs
for the precomputation of SigTi,ji+1 and RootTi,ji+2 for all layers i = 2, . . . , T
and AuthTi,ji

,li+1 for all layers i = 1, . . . , T . This yields coffline. During the
offline part, we have to store SigTi,ji+1 which requires twi−1 · n bits and the
stack required by treehash to construct RootTi,ji+2 which requires hi · n bits,
i = 2, . . . , T . Further, we have to store AuthTi,ji

,li+1 and some temporary nodes
required by Szydlo’s algorithm which require 3hi ·n bits, i = 1, . . . , T . This yields
moffline.

2.5 Verification

The verification process of GMSS is essentially the same as for MSS and CMSS.
The verifier knows the public key RootT1,0 and the parameter set P used by the
signer. At first, he verifies the one-time signature Sigd of the digest d using the



Winternitz parameter wT . Doing so, he obtains the verification key for this sig-
nature, i.e. leaf lT of tree TT,jT

. Then, the verifier repeats the following steps for
i = T, . . . , 2. (1) use li and AuthTi,ji

,li to compute RootTi,ji
. (2) use RootTi,ji

and verify SigTi,ji
and obtain li−1. Finally, the verifier uses l1 and AuthT1,j1 ,l1

to obtain RootT1,0 . If RootT1,0 matches the signers public key, the signature is
accepted.

Lemma 8 (Verification Cost). The average cost for the verification is

cverify =
T
∑

i=1

((2wi − 1)twi
/2 + hi) cHash. (9)

Proof. On average,
(

(2wi − 1)twi

)

/2 hash evaluations are required to verify an
one-time signature. Using a leaf and an authentication path to construct a root
requires hi hash evaluations. Since there is a one-time signature and an authen-
tication path for each layer the average costs for the verification are cverify.

3 GMSS in Practice

In this section, we give practical GMSS parameters that simultaneously allow for
a large signature capacity, good efficiency and small bandwidth, and describe how
to integrate GMSS in a protocol such as SSL with a client/server architecture.

3.1 Choosing P

To find an optimal parameter set, we consider following optimization problem:
given certain bounds on the signature capacity as well as the key generation, sig-
nature generation and verification time, find the parameter set which provides
the smallest signatures. We formulated this optimization problem as mixed inte-
ger program (MIP) using Zimpl [9]. The constraints of this MIP are the equations
for the key generation (1), signature generation (4),(8) and verification (9) time
and the signature size (3). Note that the worst cast cost of Szydlo’s algorithm
for the authentication path computation shown in Equation (7) occurs only once
per tree. To compute the parameter sets, we use the average costs of Szydlo’s
algorithm, which are

(

hi/2 ·
(

(2wi − 1)twi
+ 1

)

+ hi/2− 1
)

cHash +
(

hi + twi

)

cPrng

for a tree on layer i. To solve the MIP, we used the free solver SCIP [1]. Using
different bounds for the signature generation and verification time, we obtained
the following parameter sets Pk =

(

T, (h1, . . . , hT ), (w1, . . . , wT )
)

that allow up
to 2k signatures.

P40 =
(

2, (20, 20), (10, 5)
)

P80 =
(

4, (20, 20, 20, 20), (8, 8, 8, 5)
)

P ′
40 =

(

2, (20, 20), (9, 3)
)

P ′
80 =

(

4, (20, 20, 20, 20), (7, 7, 7, 3)
)



Table 1 shows timings (t) and memory requirements (m) for the parameter sets
when using a 160 bit hash function. The size of the public key is mpubkey = 20
bytes for all parameter sets. To get timings, we use the ratio cHash = cPrng =
0.002 ms, which we obtained using a Java implementation of SHA1 on a Pentium
dualcore 1.8GHz.

Table 1. Timings and memory requirements

moffline mprivkey msignature tkeygen tsign tverify

P40 3160 bytes 1640 bytes 1860 bytes 723 min 26.0 ms 19.6 ms
P ′

40 3200 bytes 1680 bytes 2340 bytes 390 min 10.7 ms 10.7 ms
P80 7320 bytes 4320 bytes 3620 bytes 1063 min 26.1 ms 18.1 ms
P ′

80 7500 bytes 4500 bytes 4240 bytes 592 min 10.1 ms 10.1 ms

This table clarifies the flexibility of GMSS. P40 and P80 provide the shortest
possible signatures. In case of P40, the signature size is reduced more that 26%
compared to what was stated in [3]. P ′

40 and P ′
80 provide very fast signature

generation and verification times, at the expense of larger signatures.
Note that a large portion of the signature cost is required for the precompu-

tation of the upcoming authentication paths. One possibility to circumvent this
is to use a tree of small height (≤ 5) in the lowest layer and to store it completely
in memory. Then the authentication paths can be obtained for free. In case of a
160 bit hash function, storing a tree of height five requires 1,260 bytes.

3.2 Message Flow and Application to SSL/TLS

Finally, we describe how signatures should be transmitted when the signer and
the verifier are connected during the signing process as in case of the SSL/TLS
protocol. Thanks to the online/offline strategy [5], the server has all signature
parts ready from the beginning of the transaction, except for the one-time sig-
nature of the message digest Sigd. The server delays the generation of the on-
line signature Sigd and sends only the first offline signature part SigTT,jT

and
RootTT,jT

to the client. Then, the client demonstrates his honesty by sending
leaf lT−1 (the verification key of SigTT,jT

) back to the server. The client has
to spend some computational effort to obtain lT−1, namely he has to verify
SigTT,jT

, while the server does not have to do anything. While the server is
waiting for the client to send lT−1, he can also start with next the offline part of
the signing process. When the server receives the correct leaf lT−1, he sends the
remaining parts of the signature and starts to compute Sigd. In the same time,
the client can verify the remaining one-time signatures SigTi,ji

, i = 2, . . . , T − 1
that he receives from the server, and compares the root of the top tree to the
server’s public key. In the final step, the server sends Sigd to the client who
verifies its correctness.
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Fig. 5. Message Flow for SSL/TLS

The overhead of our protocol for the server is just 2n bits memory to store
RootTT,jT

and lT−1. The benefits are as follows: it minimizes bandwidth and
server-side calculations in case of DoS attacks, and optimizes the latency of the
transaction. Indeed, the protocol can be stopped early in case of DoS. In addi-
tion, the signature generation, transmission and verification stages are performed
concurrently.

4 Conclusion

We presented the generalized Merkle signature scheme (GMSS). GMSS is pa-
rameterized by the parameter set P , that allows a great degree of freedom in
choosing the signature capacity, the signature generation and verification tim-
ings, and the signature size. GMSS uses a scheduling strategy to precompute
upcoming signatures. This drastically reduces the signature generation time and
in turn allows to choose parameters that provide smaller signatures. For a sig-
nature capacity of 240, the signature size is 1,860 bytes, where signature genera-
tion and verification requires 26 ms and 19.6 ms, respectively. GMSS is the first
Merkle-type signature scheme that maintains its efficiency even if the signature
capacity cryptographically unlimited, i.e. 280. In that case, the signature size is
3,620 bytes, where signature generation and verification requires 26.1 ms and
18.1 ms, respectively. For both signature capacities (240, 280), it is also possible
to find parameter sets such that the signature generation and verification time
is only 10 ms. This makes GMSS a serious competitor to commonly used sig-
nature schemes such as RSA or ECDSA. Furthermore, GMSS does not rely on
number theoretic problems and is not vulnerable to quantum computer attacks.
Finally, we proposed a DoS-resilient protocol for SSL/TTL that minimizes the
total latency of a signature exchange.
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A Merkle’s Tree Authentication Scheme

The tree authentication scheme was proposed by Merkle in [11] for using mul-
tiple one-time signature instances with a single “master” public key. Merkle’s
tree authentication scheme in conjunction with a one-time signature scheme is
referred to as the Merkle signature scheme (MSS).



Keypair Generation: The signer first generates 2h one-time key pairs. The
one-time verification keys form the leaves of a binary hash tree of height h, a
so-called Merkle tree. The value of an inner node is obtained by hashing the
concatenation of the values of its two children. Iterating yields the root of the
tree which is the MSS public key, and the private key consists of the 2h one-time
signature keys.

Signature Generation: To authenticate the s-th leaf, i.e. the s-th verification
key, the s-th authentication path is required. This authentication path consists of
the h−1 siblings of the h−1 nodes on the path from the sth leaf to the root. The s-
th Merkle signature consists of four parts: first the index s ∈ {0, . . . , 2h−1} of the
selected one-time signature; second, the one-time signature of data d generated
with the s-th signature key; third, the s-th verification key; and fourth, the
authentication path for the s-th verification key.

Verification: After verifying the one-time signature of d, the verifier has to
validate the authenticity of the supplied verification key. Using the index s and
the authentication path of the s-th leaf, he re-computes the path from the sth
leaf to the root. To do so, he hashes the concatenation of the s-th leaf and first
node in the authentication path to obtain the first node on the path to the root
(the order for concatenating is decided according to the index s). By succes-
sively concatenating the hashed nodes and authentication nodes, the verifier can
eventually recover the root itself. If the root matches the signer’s public key, the
signature is valid.

B The Winternitz one-time Signature Scheme

The Winternitz OTS [11], described in detail in [4], is parameterized by w, which
allows a trade-off between the signature cost and size.

Keypair Generation: The keypair generation produces tw random values x1,
x2, . . . , xtw

, where tw = dn/we + d(blog2(dn/we)c + 1 + w)/we. Then, the
one-time signature key is X = (x1, . . . , xtw

), and the one-time verification key
Y = H

(

H2w−1(x1)‖ . . . ‖H2w−1(xtw
)
)

, where Hk(x) denotes the hash function
applied k times and ‖ the concatenation of two strings. The cost for the key pair
generation is cOTSkeygen =

(

(2w − 1)tw + 1
)

cHash + tw · cPrng.
Signature Generation: For an n-bit message digest d, the OTS is computed as

follows. The binary representation of d (possibly padded) is divided into dn/we

blocks of length w: b1, . . . ,bdn/we. Next, the checksum C =
∑dn/we

k=1 2w − bk is
calculated. The binary representation of C (possibly padded) is again divided
into blocks of length w: bdn/we+1, . . . , btw

. Finally, the signature of d is Sig =

(σ1, . . . , σtw
), where σk = Hbk(xk), k = 1, . . . , tw. The signature size is tw · n

bits and the average cost for signing is cOTSsign = (2w − 1)tw/2 · cHash.
Verification: Given the digest d, the signature Sig = (σ1, . . . , σtw

), and the
verification key Y , the verifier computes b1, . . . , btw

just like the signer and
then calculates yk = H2w−1−bk(σk), k = 1, . . . , tw. The signature is accepted if
H(y1‖ . . . ‖ytw

) equals the verification key Y . The average verification cost is ex-
actly the same as the signature cost. cOTverify =

(

(2w−1)tw+1
)

cHash+tw ·cPrng.


