
Functional Programming of Behavior-Based Systems 

Ian Douglas Horswill 
 

Computer Science Department and The Institute for the Learning Sciences 
Northwestern University 

Evanston, IL 60201 
ian@cs.nwu.edu 

 
 

Abstract 
In this paper, I describe a simple functional programming 
language, GRL, in which most of the characteristic 
features of the popular behavior-based robot architectures 
can be concisely written as reusable software 
abstractions.  This makes it easier to write clear, modular 
code, to “mix and match” arbitration mechanisms, and to 
experiment with variations on existing mechanisms. I 
describe the compilation process for the language, our 
experiences with it, and issues of efficiency, 
expressiveness, and code size relative to other 
languages.1 

Introduction    

In this paper I describe a simple language, GRL (Generic 
Robot Language, formerly “GiRL”, and still pronounced 
“girl”), that extends traditional functional programming 
techniques to behavior-based systems.2  GRL is an 
architecture-neutral language embedded within Scheme.  
It provides a wide range of constructs for defining data 
flow within communicating parallel control loops and 
manipulating them at compile time using functional 
programming techniques. A simple compiler (about 3000 
lines of code) then distills the code into a single while-
loop containing straight-line code, and emits it as 
Scheme, C, C++, BASIC, or Unrealscript3 code.  The 
language allows programmers to write in a much more 
modular and compositional manner, but generates C 
code that is typically faster than hand-written C code.4  
We have implemented the language and used it as the 
basis for our behavior-based systems at NWU for 
approximately two years.  We have run it on a half-
                                                
1 Support for this work was provided in part by the National Science 
Foundation under award #IRI-9625041 and in part by the Defense 
Advanced Research Projects Agency Mobile Autonomous Robot Software 
Program under award N66001-99-1-8919 and by the DARPA Distributed 
Robotics Program and the U.S. Army Soldier Systems Command under 
award #DAAN02-98-C-4023/MOD P3. 
 
2 The name is, of course, a gross exaggeration.  It was contrived to allow 
the name. 
3 Unrealscript is the extension language for a popular computer game. 
4 This is achieved in part because the GRL compiler is maniacal about 
inlining, so its object code, while very fast, is typically somewhat bloated.  
This could be changed, but so far, it hasn’t been a problem.  

dozen robot configurations ranging from a sonar-based 
system with an 8-bit microcontroller to a vision-based 
quadruped.  It has also been used to teach an 
undergraduate seminar. 
 
Although evaluation of programming languages is 
always difficult, students who have used both raw LISP 
and GRL report that GRL code is much easier to write 
and debug.  As an anecdotal example, the NWU entry in 
the 1998 AAAI robotics exhibition was a program that 
stalked people in the crowd and followed them around 
while spinning paranoid fantasies about the government 
turning people into robots.  It was constructed in three 
weeks by one of our undergraduates.  It was his first 
robot program.  

Programming languages and behavior-based 
systems 

In spite of its name, GRL is really only intended for 
implementing behavior-based systems (it’s called GRL 
because “GBBL” would be hard to pronounce).   
Although many different behavior-based architectures 
exist (see Arkin 98 for a survey), all consist of a set of 
independent control loops running in parallel, usually 
with some sort of arbitration mechanism to combine 
their outputs.  Many of the distinctions between 
behavior-based architectures amount to disagreements 
about what a behavior is and how a system should 
arbitrate between behaviors.  In subsumption (Brooks 
86), a behavior is a finite-state machine and arbitration is 
performed with suppression.  In the motor-schema 
architecture (Arkin 98), behaviors are mappings from 
sensor vectors to motor vectors, and arbitration is a 
performed using linear combination.  In behavior 
networks (Maes 90), behaviors (competence modules) 
are unrestricted black boxes, but are arbitrated using a 
spreading activation mechanism that forms an 
approximation to STRIPS planning (Fikes, Hart, Nilsson 
72). 
 
Many behavior-based architectures are implemented as 
application-specific programming languages and 
compilers.  For example, the MIT mobot lab has 
developed a series of languages for writting subsumption 



code (Brooks 86, Brooks 90, Brooks and Rosenberg 95).  
Maes’ paper describes her architecture, in part, in terms 
of a macrology and interpreter embedded in LISP.  
Thrun (98) describes a C-like language that supports 
probability distributions and gradient descent function 
approximators as primitive data types.  Several 
researchers have also written architectures as C++ class 
libraries (Vel�squez 98, Schaad 98).  Unfortunately, 
since most robotics researchers don’t have time to be 
professional compiler writers, these systems are often 
quite primitive as programming languages. In particular, 
their abstraction capabilities, if any, are typically limited 
to macro expansion. They also tend to make it painful or 
impossible to implement the other architectures as user 
code. Thus one can’t easily compare the subsumption 
architecture with  behavior-networks because they have 
completely separate languages.  It is possible of course, 
but it typically involves hand-compiling one architecture 
into the primitives of another. 
 
The goal of GRL is to have a language with the 
abstraction facilities of LISP and the run-time efficiency 
of the subsumption compiler.  Although it is limited to 
the kinds of real-time finite state computations used in 
behavior-based systems (and therefore cannot implement 
full symbolic programming systems like theorem 
provers), it does provide the programmer with an 
architecture-neutral language for experimenting with 
different kinds of arbitration mechanisms. 

GRL primitives 

GRL supports circuit semantics (Nilsson 1994).  
Ultimately, GRL programs consist of networks of signals 
which are thought of as being computed in parallel and 
updated continuously.  In reality, of course, GRL code 
runs on serial uniprocessors or loosely coupled networks 
of uniprocessors, so the parallelism and continous update 
are only approximate.  Any signal that exists at run time 
must be a primitive signal, meaning more or less that it 
must be easily computed in C.  A primitive signal may 
be: 
 

• A constant 

• A signal source, for which raw Scheme code has been 
provided by the programmer.  They are used for 
sensor and effector interface code. 

• An application of a primitve procedure (+, -, log, …) 
to a set of signals.  Note that if , and , and or , are 
normal procedures in GRL, not special forms.1 

                                                
1 This is for technical reasons.  Conditionals are usually special-forms in 
languages with applicative-order evaluation because programmers 
typically don’t want conditionals to pre-evaluate all their subexpressions.  
Since GRL signals have quasi-parallel semantics, conditionals always 
evaluate all their arguments.  Care must be taken, therefore to ensure that 

• An application of a finite-state transducer to a set of 
signals.  Again, the programmer must provide 
Scheme source code for computing the value of the 
transducer from the instantaneous values of the input 
signals. Transducers are finite state in that they may 
not dynamically allocate storage. 

 
Primitive procedures are mappings from instantaneous 
signal values to values.  Values may be scalars (integers, 
floats, Booleans, …) or vectors.  Transducers, since they 
contain history information, are mappings from signal 
time histories to time histories.  However, they are 
restricted to be finite state.  Sources and transducers are 
the only constructs in which programmers are allowed to 
escape to Scheme and write Scheme code that will be 
executed at run time.  This Scheme code is restricted, 
however, to be statically typeable and to be non-consing, 
at least if the compiler is to generate C or BASIC code 
for the final output.  Assuming the code provided for 
sources and transducers runs in O(1) time, then the 
network as a whole runs in O(1) space and can compute 
updates in O(1) time. 
 
Primitive signals make up a straightforward language for 
writing real-time control loops.  Although most of the 
advantages of GRL come from more sophisticated 
constructs, the primitive signal sub-language does have 
the advantage that allows functions over time histories 
(transducers) to be composed more naturally than is 
possible in most programming languages.  For example, 
consider the problem of detecting a doorway using a 
directional proximity sensor, such as a sonar or IR, while 
driving down a hallway.  A simple approach is to look 
for a long reading from one of the sideways-facing 
sensors: 
 
(define-signal door? 
  (> (max left-reading 
          right-reading) 
     thresh)) 

 
However, this might generate spurious readings because 
of sensor errors.  Programmers often post-process the 
sensor output by requiring that the long reading be seen 
for at least a certain amount of time: 
 
(define-signal door? 
   (> (true-time 
       (> (max left-reading 
               right-reading) 
          dist-thresh)) 
      time-thresh)) 

  
                                                                            
unintentional range errors do not occur, such as in the expression (if 
(zero? a) 0 (/ 1 a)) . 



where true-time  is a finite-state transducer that returns 
the number of milliseconds for which its input has been 
true.  It is a standard part of the GRL library and is 
defined by the code: 
 
(define-transducer ( true-time input) 
  (state-variables (onset 0)) 
  (when (not input) 
    (set! onset ms-clock)) 
  (- ms-clock onset)) 
 
Unfortunately, you can’t write true-time  conveniently 
in LISP or C because it doesn’t behave like a normal 
function – it requires an internal state variable, onset .  
Although both LISP and C allow functions to have 
internal state (for example with C static variables), they 
only provide a single set of those variables.  If true-
time  were called anywhere else in the program, the 
single onset  variable would be forced to do double-duty 
with disastrous results.  While there are workarounds for 
this (lexical closures or C++ class objects), they require 
explicit instantiation and binding of separate instances of 
true-time  for each use, which is ugly and hard to 
maintain.  In practice, programmers tend to inline the 
code manually.  This leads to a proliferation of explicit 
side effects and variables with names like door-onset , 
stuck-onset , door-other-onset , etc.  The resulting 
code is error-prone and hard to read.  GRL allows true-
time , and similar transforms such as one-shot , 
integral , derivative , and hysteresis , to applied 
and composed in a natural, functional style. 

Procedural abstraction 
GRL supports compile-time procedural abstractions 
called signal procedures.   Signal procedures are 
mappings from signal networks to  signal networks.  
Since they run at compile time, they are allowed to use 
the full power of Scheme.  In this sense, they’re very 
similar to LISP macros.  We distinguish them from 
macros because (1) signal procedures are evaluated in 
applicative order (arguments first, then procedure body), 
rather than normal order, as with macros and lazy 
evaluation, and (2) signal procedures are not applied to 
source text, but to the actual signal networks.  Signal 
procedures therefore cannot quote their own arguments, 
return non-syntactic results, or shadow variable bindings.  
GRL does support the underlying Scheme macro system, 
however, so macros can be used in cases where implicit 
quoting or argument destructuring is desired. 

Compile-time data abstraction 
GRL supports data abstraction through compile-time list 
and record structures.  Record structures are typically 
defined using the define-group-type macro which defines 
constructor and accessor functions for the data type: 
 

(define-group-type xy-vector 
  (xy-vector x y) 
  (x x-of) 
  (y y-of))  

 
This example declares that the xy-vector data type1 
consists of x  and y  elements, which are accessed with 
the x-of  and y-of  procedures, respectively.  New xy-
vectors are created with the xy-vector  procedure, 
which takes the x and y components as arguments. 
 
Groups are explicitly represented at compile-time so that 
they can be manipulated and simplified.  The compiler 
can thereby avoid generating run-time code for 
accessors, i.e. the compiler reduces the expression (x-
of (xy-vector c d))  to the expression c .  It can 
also avoid generating any code whatsoever for group 
components that are never accessed. 
 
GRL also supports compile-time lists.  These are used 
principally to allow signal procedures to accept variable 
numbers of arguments.  Again, as with groups, all calls 
to list-related functions are resolved at compile time, so 
that no list structures are ever created or manipulated at 
run time.  

Implicit mapping 
To reiterate, primitive procedures map values to values, 
transducers map time histories to time histories, and 
signal procedures map circuits to circuits. Primitive 
procedures and transducers, as such, are not defined over 
lists and groups.  However, a natural extension of their 
semantics is to define them to map themselves over the 
elements of the list or group.  This has the effect of 
automatically extending arithmetic operators to vectors 
in the standard manner, so that: 
 
(+ (* 2 (xy-vector a b)) 
   (* 4.5 (xy-vector c d))) 
 
is reduced by the compiler to the expression: 
 
(xy-vector (+ (* 2 a) 
              (* 4.5 c)) 
           (+ (* 2 b) 
              (* 4.5 d))) 

Vector and array operations 
GRL supports vectors and arrays as run-time data types.  
Like groups, most primitives are implicitly mapped over 
the elements of vectors (there are a few exceptions, like 
                                                
1 GRL also supports real arrays, which also support implicit mapping. 
However, vectors are often defined as groups so that their elements can be 
given meaningful names.  Otherwise, it can be hard to distinguish between, 
e.g. polar vectors and Cartesian vectors. 



vector-length , that would make no sense to map), 
although transducers are not mapped over vectors in the 
current version.  This often allows relatively complex 
looping operations to be expressed very concisely.  For 
example, discrete sampling of a continuous function can 
be written compactly as the following signal procedure: 
 
(define-signal (sample f sampling) 

  (f (sampling-index->value 

        sampling 

        (index-generator 

          (sampling-samples sampling))))) 

 

Here, a sampling  is a group type that represents how a 
function is to be sampled – the interval and the number 
of samples.  Index-generator is the equivalent of the APL 
� operator.  (index-generator  3) returns the vector (0 1 
2), (index-generator 5) returns the vector (0 1 2 3 4), etc.  
Sampling-index->value  then maps these integer 
values to the values at which the function f  is to be 
sampled, and then f  is then mapped along the resulting 
vector to obtain the vector of sampled values. 
 
Given sample , we can then write a potential field 
obstacle avoidance algorithm for sonar-based robots as: 
 
(define-signal (avoid sonar-dists) 

  (vector-sum 

    (* (sample (xy-vector sin cos) 

               (sampling 0 (* 2 pi) 16)) 

       (/ 1 sonar-dists)))) 

 
The call to sample  computes a vector of unit xy-
vectors in the directions of the different sonars (we 
assume sonar ring with 16 sensors).  These vectors are 
then multiplied by the forces generated by the sonar 
readings to create a vector of force vectors.  Finally, this 
vector is summed to compute an aggregate force vector. 
 
While this algorithm may appear inefficient, the 
compiler is actually quite aggressive about inlining and 
constant folding.  The resulting code, after cleaning up to 
be more readable, will look approximately like: 
 
float sumx; 

float sumy; 

float costable[16] = { 1.0, … }; 

float sintable[16] = { 0.0, … }; 

 

sumx = 0; 

sumy = 0; 

for (i = 0;  i<16; i++) { 

  sumx = sumx+costable[i]/sonardists[i]; 

  sumy = sumy+sintable[i]/sonardists[i]; 

} 

 

Notice that the sampled unit vector has been constant 
folded to a pair of lookup tables. 

Other features 
Although space precludes a full discussion, the GRL 
language also includes other useful such as: 
• Accumulators.  These are signals whose inputs are 

left unspecified at the time they are defined.  The 
programmer can then explicitly declare other signals 
to drive those accumulators.  The compiler will then 
fill in the inputs of the accumulator at compile time 
with the set of signals within the current compilation 
that have been declared to drive the accumulator.  

• Macros.  For extending the syntax of the language. 
• Modalities.  These are signal procedures whose 

values are only default values.  They can be 
overridden on a signal-by-signal basis by the 
programmer. 

• Operator overloading.  At present, this only has 
limited support, but we intend to extend it. 

• Support for symbolic algebra.  Signal procedures 
can examine the operator, inputs, and type of each 
input they receive.  This makes it possible to write 
signal procedures that perform symbolic 
differentiation, integration etc. 

• Compile-time property lists.  These have turned out 
to be less useful than expected. 

Compilation 
In large part, the compiler looks like a partial evaluator 
and type inference system that operates as a front-end to 
a system like Rex (Kaelbling 87) or the Subsumption 
compiler (Brooks, unpublished).  Roughly, the compiler 
runs by computing the signal graph and simplifying it as 
much as possible.  Then it performs standard 
optimizations, such as inlining, algebraic simplification, 
constant folding, and hoisting of loop invariants. 
  
The compiler is called with a list of signals to compile.  
It runs in several passes: 
1. Signal expansion.  The compiler recursively evaluates 

signal procedure applications, group constructors 
and selectors, and applications of primitive 
procedures to lists or groups, until it has reduced the 
program to a graph of primitive signals.  Note that 
this guarantees that signal procedures are always 
called with networks of primitive signals as their 
inputs, provided the network is acyclic. 

2. Topology determination.  The compiler computes the 
set of input signals for each accumulator. 

3. Topological sort.  The compiler performs a postorder 
traversal of the primitive signal network.  The result 
is a total ordering of the primitive signals that drive 
the original signals passed to the compiler.  This 
ordering is used to determine the order of evaluation 



in the object code. 
 
It is possible to specify recurrence relations by 
creating cyclic signal graphs, e.g. using letrec , 
the recursive version of let .  Cycles in the graph of 
primitive signals are “broken” by inserting a unit 
delay before one of the signals in the cycle, called 
the “cycle breaker.”  The value computed in the last 
time-step for the cycle breaker is always used during 
the current time-step to compute the values of other 
signals.  If one of the signals is declared to have an 
initial value, then it will always be chosen as the 
cycle breaker.  If no signal is declared with an initial 
value, the compiler will issue a warning message, 
make an arbitrary choice, and assume a default 
initial value for the signal (0 in the case of numeric 
signals). 
 
Note that the set of top-level signals passed to the 
compiler are used as roots for the topological sort, 
so group elements that are never used are discarded 
in this step.  No object code is generated for them. 

4. Analysis.  This consists of a series of optimization 
passes on the ordered signals: 

1. Type inference.  The data types of the values of 
the signals are determined based on their 
operators, inputs, and optional declarations. 

2. Loop-invariant detection.  Signals that are either 
constant or the result of applying primitives to 
other invariant signals are flagged.  These signals 
are computed once at boot time. 

3. Dependency analysis.  For each signal, the 
compiler determines the set of signals for which it 
is an input. 

4. Control structure grouping.  The compiler scans 
the set of signals for conditionals and loops that 
share the same test or iteration count.  It groups  
these signals so that each set will generate a 
single conditional or loop in the object code.  This 
saves a considerable amount of conditional 
branching at run-time.  

5. Inline selection.  The compiler tags signals that 
are either constants, loop invariants, or complex 
expressions that are referenced exactly once. 
Uninlined signals are stored in global variables at 
run time.  Inlined signals are incorporated directly 
into the intermediate code of their dependents 
during reification (see below).  References to 
individual elements of inlined vector-valued 
signals  are also inlined. 

6. Reification.  The compiler generates Scheme code 
equivalent to each primitive signal. These 
expressions are guaranteed to be statically typeable, 
have no functional arguments, and perform no 
dynamic storage allocation. 

7. Intermediate code generation.  The compiler 
constructs a set of variable declarations, and a while 

loop containing the reified forms of all uninlined 
signals. 

8.  Partial evaluation.  The compiler then performs a 
number of symbolic simplifications of the 
intermediate code, such as algebraic simplification 
of sums and products, inline expansion of min, max, 
arg-min, and arg-max, and reductions in strength 
(e.g. replacing a modulus operation with a bitwise-
and operation).  When necessary, it also massages 
the code to be more palatable to C and BASIC 
compilers. 

9. Final code generation.  The compiler then pretty-
prints the intermediate code in the desired target 
language.  

Arbitration schemes as higher-order 
functions 

We now present several examples of GRL code that 
show how common popular behavior-based 
programming mechanisms can be written as normal user-
level abstractions in GRL.  This allows programmers to 
adopt a mix-and-match approach to robot programming, 
rather than having to commit to a specific arbitration 
mechanism.  It also makes it very convenient to 
experiment with variant and hybrid arbitration 
mechanisms.   Please note that space precludes the 
inclusion of sufficient code to express a real robot 
program.  As a result, the examples are extremely 
compressed and extremely contrived. 

Motor Schema combination 
 
In motor schema systems (Arkin 98), behaviors generate 
motor vectors that are combined through weighted 
summation.  To model motor schemas, we first represent 
behaviors as data abstractions: 
 
(define-group-type behavior 
  (behavior activation-level motor-vector) 
  (activation-level activation-level) 
  (motor-vector motor-vector)) 
 
Next, we define the weighted sum operator, using the 
activation levels as weights: 
 
(define-signal ( weighted-sum . behaviors) 
  (apply + 
        (weighted-motor-vector 
behaviors))) 
 
(define-signal ( weighted-motor-vector beh) 
  (* (activation-level beh) 
     (motor-vector beh))) 
 



This fragment requires some explanation.  First, the dot 
notation in weighted-sum ’s argument list means that 
behaviors  is a rest arg – it gets bound to a list whose 
elements are the actual parameters of the call to 
weighted-sum .  When weighted-motor-vector  is 
called on this list, it expands to the *  expression in its 
body.  Activation-level  and motor-vector  are 
both signal procedures that expand to select  calls.  
These are automatically mapped over the list, so their 
results are a list of signals, and a list of groups, 
respectively.  The compiler then maps the *  call over the 
lists.  However, since the elements of the second (motor-
vector) list are themselves groups, it again maps over the 
group elements.  The result is then a list of groups, each 
of which is the product of a vector and a scalar.  When 
the + procedure is then apply ’ed to the list of groups, it 
is again mapped over the group elements to produce as a 
result a single group which is a linear combination of the 
original behaviors’ motor-vectors. 
 
As a simple example, we will combine a behavior that 
homes in on a target with another behavior that avoids 
the nearest obstacle.  To simplify the exposition, we will 
assume that the perceptual system delivers Cartesian 
coordinates for the robot, its goal, and the nearest 
obstacle via the signals my-position , goal-
position , and obstacle-position , respectively. 
We can then define the behaviors themselves: 
 
(define-signal move-toward-goal  
  (behavior 1.0 
            (- goal-position my-
position))) 
 
(define-signal avoid-obstacles  
  (let ((force (- my-position 
                  obstacle-position))) 
    (behavior (/ 10 
                 (magnitude-squared 
force)) 
              force)))  
 
using the ancillary definitions: 
 
(define-signal ( square  x) 
  (* x x)) 
 
(define-signal ( magnitude-squared  v) 
  (+ (square (select x v)) 
     (square (select y v))))  
 
Finally, we combine them: 
 
(define-signal motor-output  
  (weighted-sum move-toward-goal 
                avoid-obstacles))  
 

and compile the signal motor-output .  The compiler 
procedures the intermediate code: 
 
(set! force-x (- my-position-x 
                 obstacle—position-x)) 
(set! force-y (- my-position-y 
                 obstacle-position-y)) 
(set! avoid-obstacles-activation-level 
      (/ 10 (+ (* force-x force-x) 
               (* force-y force-y)))) 
(set! motor-output-x 
      (+ (- goal-position-x my-position-x) 
         (* avoid-obstacles-activation-level 
            force-x))) 
(set! motor-output-y 
      (+ (- goal-position-y my-position-y) 
         (* avoid-obstacles-activation-level 
            force-y)))  
 
This code can be executed efficiently in Scheme without 
cons’ing.  However, the compiler can also emit the code 
as C, C++, BASIC, or Unrealscript code.  
 
Now suppose we decide that rather than using a 
weighted sum, we would prefer a weighted average.  We 
simply add the definitions: 
 
(define-signal ( weighted-average 
                  . behaviors) 
  (/ (apply weighted-sum behaviors) 
     (apply + (activation-level  
                behaviors)))) 
 
(define-signal motor-output  
  (weighted-average move-toward-goal 
                    avoid-obstacles)) 
 
and recompile. 

Sequencing 
Behavior-based systems typically consist of a collection 
of simple computations running in parallel.  These 
computations are usually cheap compared to a CPU 
context switch.  As a result, compilers such as Brooks’ 
subsumption compiler (Brooks 86) produce a round-
robin schedule for the tasks at compile time and inline 
them inside a single large loop.  When a task requires 
sequential control, a state variable is added to record 
which step of the sequence the task is executing.  The 
compiler then wraps all steps of the task in a large case 
statement.  While this seems inefficient and inelegant at 
first blush, it is between one and three orders of 
magnitude more efficient than the full context switch 
required to implement the sequence as a separate thread, 
depending on the underlying CPU architecture and 
operating system.  It also means the compiler can easily 
generate code for low-end microcontrollers whose 
operating systems (if any) do not support multithreading. 
 



Although GRL provides no direct support for sequencing, 
it is simple to write it as a user-level extension.  Suppose 
we want to write a sequencing construct that, given a 
series of output signals and a series of  condition signals, 
relays the first output signal until the first condition 
signal becomes true, then moves on to the second output 
signal, etc.  We also probably want to include an input 
that resets it to the beginning of the sequence.  We could 
write this in GRL as a signal procedure: 
 
(define-signal ( sequence-proc  reset? 
                         output-signals 
                         conditions) 
  (letrec 
    ((step (counter done-w/step? reset?)) 
     (done-w/step? 
       (list-ref conditions step)) 
     (output 
       (list-ref output-signals step))) 
    output))  
 
Here letrec  is the standard recursive form of let, which 
is extended in GRL to allow the definition of mutually 
recursive signals.  Counter  is a transducer that counts 
from zero, incrementing each time its first input is true.  
It resets to zero when its second input is true.  List-ref  
is used here to build a multiplexer: it takes as arguments 
an list of signals and an index step into the list returns as 
a result the value of the step’th signal.  It compiles into a 
case statement. 
 
Unfortunately, the sequencing construct above requires 
that the programmer provide the lists of outputs and 
termination conditions separately, which is inelegant, to 
say the least.   We would prefer to group 
output/condition pairs into clauses, as in cond  
statements.  This requires writing sequence as a macro, 
however: 
 
(define-signal-syntax sequence  
  (syntax-rules () 
    ((sequence (reset? first-output) 
               (condition output) ...) 
     (signal-expression 
      (sequence-proc reset? 
                    (list first-output 
                          output …) 
                    (list condition 
…))))))  
 
Space precludes a discussion of the pattern matcher for 
the Scheme macro system (see (Rees et al.) for a 
discussion).  However, an example should make the idea 
clear: 
 
(define-signal motor-output  
  (sequence 
    (start?     follow-freespace) 

    (left-turn? follow-freespace) 
    (left-turn? stop))) 
      
This generates a state machine that drives forward (or 
more properly, outputs the output of the follow-freespace 
behavior) until it reaches the second left-hand turn, at 
which point it stops. 
 
While state machines are often good sequencers for 
navigation, it is often desirable to allow the sequencer to 
move backward, should one of the previously achieved 
conditions suddenly become false. Such a sequencer is 
called a teleo-reactive tree (Nilsson 94).  A TRT always 
executes the leftmost action whose termination condition 
is unsatisfied.  TRTs are implemented using nested if-
then-else structures and can also be generated with a 
simple macro: 
 
(define-signal-syntax trt-sequence  
  (syntax-rules () 
    ((trt-sequence ?val) 
     ?val) 
    ((trt-sequence  ?val1 (?term ?val2)      
                    ?stuff ...) 
     (signal-expression 
      (if ?term 
          (trt-sequence ?val2 ?stuff ...) 
          ?val1)))))  

Behavior competition 
Another common arbitration mechanism is competition, 
in which the most strongly activated behavior is chosen.  
We can write this as a higher order procedure: 
 
(define-signal ( behavior-max  . behaviors) 
  (list-ref behaviors 
            (apply arg-max 
                   (activation-level  
                     behaviors)))) 
 
Remember that behaviors  is bound to a list of 
behaviors passed in as arguments.  The activation-
level  call then computes the list of their activation 
levels (since groups and lists are resolved at compile 
time, this doesn’t actually involve any computation at 
run-time).  The call to arg-max  then finds the position 
in the list of the highest activation behavior, and, finally, 
the call to list-ref  returns that. 

Spreading activation 
Another popular type of behavioral competition is 
spreading activation, in which the activation levels of 
the different behaviors are computed as differential 
equations of one another (e.g. Maes 89, Vel�squez 98).  
In GRL, this is can be written as an application of 
letrec  and some kind of temporal filter, typically a 
low-pass filter: 



 
(letrec ((a (low-pass-filter (- a-input b) 
                             a-decay)) 
         (b (low-pass-filter (- b-input a) 
                             b-decay)) 
   (behavior-max (behavior a a-output) 
                 (behavior b b-output))) 
 
This will dynamically choose between a-output and 
b-output  based on the activation levels a and b, which 
are mutually inhibitory and stimulated by inputs 
a-input  and b-input , respectively.  However, we 
might prefer to be able to write: 
 
(spread-activation 
  (a :output a-output 
     :input a-input 
     :inhibitors (b) 
     :halflife a-halflife) 
  (b :output b-output 
     :input b-input 
     :inhibitors (a) 
     :halflife b-halflife)) 
 
This is easily done with another macro, however space 
precludes its inclusion here.  A control structure such as 
Maes’ behavior networks (1991), while not trivial, is a 
straightforward extension. 

Implementation and Evaluation 

The GRL language has been in use at NWU for 
approximately two years.  It has been used on a number 
of platforms ranging from a differential-drive sonar-
based machine controlled by an 8-bit microcontroller to 
prototypes of the Sony Aibo pet robots.  Among other 
things, it was used to implement a person-follower 
demonstrated at AAAI-98.  The user community of GRL 
presently includes approximately 10 researchers, a few 
undergraduates using it for outside projects, and a two 
interns from a local high school.  It is also used to teach 
the autonomous robot courses at NWU. 
 
Evaluation of programming languages is always 
difficult. Since programming languages are algorithm-
neutral, the choice of language doesn’t affect robot 
performance.  However, the choice of programming 
language does affect programmer productivity and code 
maintainability.  Often, the choice of programming 
language comes down to aesthetic issues, which are 
necessarily subjective. 
 
The main advantage of GRL is that it allows the 
programmer to write implementations of higher level 
operators such as subsume, TRTs, and spreading 
activation, and then call them in a clean, compositional 

style.  While we believe this makes the code cleaner and 
easier to maintain, there is no way to quantify this. 
Students in an undergraduate course on behavior-based 
robotics reported that GRL code was easier to write and 
debug than raw LISP code, but we have not performed 
any controlled studies of this. 
 
What we can quantify is that GRL code is very concise.  
We have implemented a number of popular behavior-
based programming features and measured their code 
sizes.  The results are given in the following table:  
 
Feature Lines of code 
Motor schemas 18 
Brooks subsume operator 7 
Tinbergen lateral inhibition 11 
Spreading activation 8 
Modal Horn clause inference (compiles 
limited first-order Horn clauses with 
modalities into a TMS-like network) 

144 

Propositional production system 48 
Society-of-Mind-like frame system 88 
Teleo-reactive trees 9 
FSM-based sequencing 9 
First-order low-pass filter 8 
Hysteresis thresholding 9 
 
By comparison, the raw LISP implementation of the 
frame system was 151 lines of code. The modal Horn-
clause inference system (Horswill 98) was 583 lines of 
LISP code with another 337 lines written in C for speed.  
Both systems had fewer features than their GRL-based 
counterparts and ran two orders of magnitude slower, 
since they were interpreters rather than compilers. In 
fairness to LISP, one should note however that since 
GRL only supports symbolic manipulations at compile 
time, it would be impossible to implement an interpreter 
in it even if one wanted to.  It should also be noted that 
the LISP system in question was quite primitive. 

Related work 

Behavior-based robotics researchers have traditionally 
avoided complex control and data structures, in part 
because of the need for efficiency.  There have been 
notable exceptions however.  Kaelbling’s REX system 
(1986) was also a language that allowed programmers to 
lay out synchronous circuits using LISP programs.  REX 
allowed programmers to generate representations of 
circuits using LISP programs, then compile those 
representations to 68000 assembly code.  The compile-
time language for building circuits did not attempt to 
mimic functional programming semantics, although it 
was Turing complete, so programmers could in principle 
write higher-order functions in it.  Nilsson’s TRT system 



(1994) used a LISP interpreter that incrementally grew a 
circuit at run-time, much the way a rule-based inference 
engine might cache its results in a TMS.  This gave the 
programmer LISP-like control structures, including full 
unbounded recursion, at the cost of additional run-time 
overhead.  Brooks and Rosenberg’s L system (1995) 
provides a reasonably full version of Common LISP 
that’s suitable for use in embedded systems, together 
with a macrology for writing subsumption-style control 
systems. 
 
More recently, a number of C-like languages for robot 
programming have been developed.  Schaad  (1998) 
developed a uniform architecture called parallel 
functional decision trees that was able to emulate many 
of the popular behavior-based programming constructs, 
including both parallel and serial control structures. 
Although his system was implemented as a C++ class 
library, he also provided an interpreter that built the 
PFDT network at run time from a LISP program.  
Thrun’s CES language (1998) extends C with 
probabilistic data types and support for gradient descent 
function approximators.  A particularly appealing 
property of Thrun’s language is that training information 
need not be specified at the output of the function 
approximator.  Instead, desired values can be provided 
for other variables that are computed from the output of 
the approximator.  The compiler does the appropriate 
symbolic manipulations to compute the gradient of the 
derived quantity with respect to the weights of the 
approximator.  Simmons and Apfelbaum (1998) describe 
an extension to C++ called TDL that provides support 
for subgoal decomposition, coroutining, and 
synchronization.  They have also implemented a 
graphical front-end for the language that allows a form 
of visual programming.  MacKenzie and Arkin (1997) 
describe another visual programming tool, MissionLab, 
however it is intended to allow novice programmers to 
efficiently task robots, not to program new low-level 
behaviors.  Konolige’s COLBERT (1997) is another C-
like language for low-level reactive systems, that is 
designed to interface with the Sapphira architecture 
(Konolige et al. 97). 
 
There have also been a number attempts to apply modern 
programming language technology to robot 
programming.  Rees and Donald (1992) describe a 
minimalist multithreaded Scheme interpreter that ran in 
100K on a 68008 microprocessor.  They used the system 
to control sonar-based mobile robots.  The system was 
very successful, however speed issues made it more 
useful for sequencing than for implementing high-
frequency control loops. 
 
Recently, Peterson et al. (1999) have described an 
embedded language in Haskell called Frob, which can be 
used for reactive control loops and is very similar in 

spirit to our work.  The most important functional 
difference between Frob and GRL is that Frob is 
considerably more expressive than GRL (since it 
includes all of Haskell, even at run time).  The downside 
of this is that it requires the overhead of a full Haskell 
interpreter, whereas our work has focused on building 
the compiler technology necessary to generate code for 
low-end microcontrollers that is competitive with hand-
written C code.  Frob has been used for a number of real-
time robot control applications, including visual 
tracking. 
 
Finally, Levesque et al. (1997) have developed a logic 
programming language called GOLOG that combines the 
automatic inference capabilities of logic programming 
with the explicit control operations of imperative 
languages.  Like Frob, it provides considerably more 
expressiveness than GRL at the cost of increased 
execution time.  GOLOG is intended more for planning 
and problem solving than for implementing low-level 
control, however, so this is hardly surprising. 

Conclusion 

Many aspects of behavior-based architecture, 
particularly arbitration mechanisms, are best thought of 
as higher order operators that map behaviors to more 
complicated behaviors.  A good behavior-based 
programming language should be powerful enough to 
allow the programmer to experiment with different kinds 
of operators.  They should be able to mix and match the 
popular ones, as well as experiment with new ones. 
 
Traditional functional programming techniques provide 
an elegant substrate for constructing and manipulating 
behavior-based control systems.  The GRL language is 
an example of a language allowing full-use of mapping, 
reduction, and higher-order functions at compile-time, 
while still generating code that is competitive with, or 
better than, hand-written C code.  The compiler is simple 
(about 3100 lines of Scheme code) and is highly 
retargetable, allowing the same code to be run on 
everything from high-end research robots to low-end 
microcontrollers.  
 
Most importantly, GRL is largely architecture neutral.  It 
imposes minimal commitments on the programmer, 
requiring only that object code consist of a network of 
signals and communicating finite-state machines 
(although out-calls to other programming models, such 
as planners are supported). 
 
The major design consideration in GRL was to make it as 
easy as possible for programmers to implement other 
people’s architectures.  The examples given in this 
paper, while contrived from a robotics standpoint, are 



intended to demonstrate how the prevailing 
programming models can be concisely written as short 
macros or higher-order procedures.  This allows 
programmers to mix-and-match different architectural 
primitives and to experiment with new ones.  
 
The GRL system can be obtained on the web from 
http://www.cs.nwu.edu/groups/amrg/distributions/grl. 
 

Acknowledgements 

I would like to thank Mark DePristo, Robin Hunicke, 
Aaron Khoo, Dac Le, Olin Shivers, Pinku Surana, Robert 
Zubek, and the anonymous reviewers of this paper for 
their generous comments.  I would also like to thank 
Richard Kelsey and Jonathan Rees for building the 
Scheme48 system, NEC Research for supporting it, and 
Lars Bergstrom for keeping our Windows port of it 
running.  Finally, I would especially like to thank Aaron 
Khoo for sending me lots of bug reports, and my wife 
Louise for being tolerant when I fixed those bugs while 
we were watching T.V. together. 

References 

Arkin, A. 1998.  Behavior-Based Robotics.  MIT Press, 
Cambridge, MA. 
 
Brooks, R. 1986.  “A Robust Layered Control System for 
a Mobile Robot,” IEEE Journal of Robotics and 
Automation, Vol. RA-2, No. 1, pp. 14-23. 
 
Brooks, R. 1990. “The Behavior Language,” A.I. Memo 
No. 1227, MIT AI Laboratory, April. 
 
Brooks, R. and Rosenberg, C. 1995.  “L – A Common 
LISP for Embedded Systems,” LISP Users and Vendors 
Conference, sec 2.4a. 
 
Fikes, R, Hart, P., and Nilsson, N.  1972.  “Learning and 
Executing Generalized Robot Plans,” Artificial 
Intelligence Vol. 3, No. 4, pp. 251-288.  
 
Horswill, I. 1998.  “Grounding Mundane Inference in 
Perception,” Autonomous Robots, Vol. 5, pp. 63-77. 
 
Kaelbling, L. 1987.  “Rex: A Symbolic Language for the 
Design and Parallel Implementation of Embedded 
Systems,” Proceedings of the AIAA Conference on 
Computers in Aeorospace VI, Wakefield, MA, pp. 255-
60. 
 
Kaelbling, L. and Rosenschein, S. 1991.  “Action and 
Planning in Embedded Agents,” in Designing 

Autonomous Agents, ed. P. Maes, MIT Press, Cambridge, 
MA, pp. 35-48. 
 
Konolige, K. 1997.  “COLBERT: A Language for 
Reactive Control in Sapphira”  In Proceedings of the 
German Conference on Artificial Intelligence, Freiberg. 
 
Konolige, K., K. Meyers, A. Saffiotti, and E. Ruspini, 
1997.  The Saphira architecture: a design for autonomy, 
Journal of Experimental and Theoretical Artificial 
Intelligence, 9 (1997) pp. 215-235. 
 
Levesque, H., R. Reiter, Y. Lespérance, F. Lin, and R. 
Scherl 1997.  “GOLOG: A logic programming language 
for dynamic domains”.  Journal of Logic Programming, 
31, 59-84, 1997. 
 
MacKenzie, D. and R. Arkin 1997.  Evaluating the 
Usability of Robot Programming Toolsets.  Technical 
Report, Georgia Institute of Technology.  Atlanta, GA, 
October 1997. 
 
Maes, P. 1989.  “The Dynamics of Action Selection,” 
Proceedings of the Eleventh International Joint 
Conference on Artificial Intelligence, Detroit, MI, pp. 
991-997. 
 
Maes, P. 1990.  “Situated Agents Can Have Goals,” 
Robotics and Autonomous Systems, Vol. 6, pp. 49-70. 
 
Nilsson, N.  1994.  “Teleo-Reactive Programs for Agent 
Control,” Journal of Artificial Intelligence Research, 
Vol. 1, pp. 139-158. 
 
Peterson, J. and G. Hager and P. Hudak 1999.  “A 
Language for Declarative Robot Programming”  In 
Proceedings of the 1999 International Conference on 
Robotics and Automation, Detroit, MI, May 1999.  IEEE 
Press. 
 
Rees, J. and B. Donald 1992.  “Program Mobile Robots 
in Scheme.”  In Proceedings of the IEEE International 
Conference on Robotics and Automation.  Nice, France 
(May 1992), pp. 2681-2688. 
 
Schaad, R. 1998.  Representation and Execution of 
Situated Action Sequences.  Dissertation Der 
Wirtschaftswissenschaftlichen, Universit�t ZÕrich. 
 
Simmons, R. and D. Apfelbaum 1998.  “A Task 
Description Language for Robot Control.”  In 
Proceedings of the Conference on Intelligent Robots and 
Systems.  IEEE Press, October, 1998. 
 
Thrun, S. 1998.  A Framework for Programming 
Embedded Systems: Initial Design and Results.  



Technical Report CMU-CS-98-142, Carnegie Mellon 
University, Pittsburgh, PA. 
 
Vel�squez, J.  1998.  “When Robots Weep: Emotional 
Memories and Decision-Making,” Proceedings of the 
Fifteenth National Conference on Artificial Intelligence, 
Madison, WI, pp. 70-75. 


