
Continuations and Transducer Composition

Olin Shivers
Georgia Institute of Technology

shivers@cc.gatech.edu

Matthew Might
Georgia Institute of Technology

mattm@cc.gatech.edu

Abstract
On-line transducers are an important class of computational agent;
we construct and compose together many software systems using
them, such as stream processors, layered network protocols, DSP
networks and graphics pipelines. We show an interesting use of
continuations, that, when taken in a CPS setting, exposes the con-
trol flow of these systems. This enables a CPS-based compiler to
optimise systems composed of these transducers, using only stan-
dard, known analyses and optimisations. Critically, the analysis
permits optimisation across the composition of these transducers,
allowing efficient construction of systems in a hierarchical way.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors—Optimization; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures,
coroutines

General Terms Languages, performance, design

Keywords program analysis, flow analysis, language design,
coroutines, fusion, stream processing, functional languages, lambda
calculus, continuation-passing style (CPS), continuations

1. Optimising across composition
Abstraction is fundamental to any engineering discipline as a tool
for managing complexity during synthesis; this is as true for bridge
builders as it is for those who construct software. One of the most
important tasks software researchers can do to support engineers is
to help support use of abstraction.

When a software engineer composes two smaller computational
entities to create a larger one, it is important that he know that
his system-construction tools, such as his compiler and linker, will
be able to optimiseacrossthis composition, so that he does not
pay a performance penalty for composing his system together in a
hierarchical, structured way.

As a simple example of this effect, consider procedural abstrac-
tion and composition. If we wish to make a new functionh by hook-
ing the output of functiong up to the input of functionf , we can do
this very easily with the “little circle” function—that is, we simply
write h = f ◦ g. The important point is that if an engineer does
this, he has reason to believe that the compiler, if it can statically
determine the definitions off andg, will be able to “melt” his ab-
straction barriers, and optimise across his composition. So if, for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’06 June 11–14, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-320-4/06/0006. . . $5.00.

Input Output

Compute

Input Output

Compute

Figure 1. Online transducers can be composed into pipelines.

example,g adds three to its argument, andf adds five, then the
body of h won’t consist of two nested function calls tof andg,
but rather will directly add eight to its argument. The technology
for this kind of optimisation is straightforward. A simple technique
that works well is just code inlining (if you come from the tradi-
tional compiler community), orβ-reduction (if you come from the
functional-programming community).

Providing this kind of optimisation across composition is an ex-
tremely important thing to do, as it enables engineers to build sys-
tems in modular, maintainable ways. If an engineercan’t assume
his compositions will be optimised, then performance considera-
tions may prevent him from composing his system together hierar-
chically. Instead, he must “hand inline” all the intermediate com-
positions, working at the lowest level.

2. Online transducers
However, not all systems are composed together from procedures.
An important class of systems are constructed by composingonline
transducers. An online transducer is a computational agent that
is not written as a procedure or invoked in a call/return pattern.
Rather, it is written as little chunk of code and state that performs
the following infinite loop: (1) get some input; (2) compute; (3) do
some output; (4) loop. An engineer can compose two transducers
together, making a new one, with the Unix “pipe” operator:g|f .
Figure 1 shows two transducers hooked together to produce a
new, composite one. Many important systems are composed from
primitive elements realised as online transducers, such as:

• Stream processors
• Network-protocol stacks
• DSP and other media-processing systems
• Unix pipelines
• graphics-rendering pipelines

Unfortunately, when the computational agents that we are compos-
ing are online transducers, compilers do not fare nearly so well.
If we take a transducer that adds three to its incoming stream, and
compose it with one that adds five, it is quite difficult for a compiler
to optimise across the two loops, reducing the composite transducer
to a simple add-eight loop.

295

So the bad news is that, while designers of network proto-
col stacks can use elegant, layered architectures to explicate their
designs, implementors who care about efficiency—and network-
protocol implementors always do—have to throw out the modular,
layered approach, and write a system that is tightly integrated by
hand, producing a complex, arduously maintained mess.

3. CPS
Fortunately, the functional-programming community has a power-
ful representational tool at its disposal: continuation-passing style.
CPS is a low-level,λ-calculus intermediate representation in which
function calls never return, and, hence, are never nested. That is, in
CPS, we never writef (g(x)), since theg(x) call will never return
to the waitingf . Instead, one always passes to every function an
extra argument, thecontinuation, which is itself a function repre-
senting the entire computation to be performed after the original
function has computed its value. The original function applies its
continuation to the value it computes. So we can view calling a
continuation as a goto that passes values. For example, while in
Scheme we might write

(- a (* b c))

in CPS, we write

(* b c (λ (temp) (- a temp k)))

The λ expression is*’s continuation;k is the continuation repre-
senting the entire context in which the expression sits. In brief, a
continuation is a functional representation of an expression’s con-
text, and we may view it as “the rest of the computation.”

The use of CPS as a compiler representation has a long his-
tory in the design of compilers for functional programming lan-
guages [Rabbit, Orbit, TC, CwC]. For our purposes, let’s note for
now a very important property of the CPS representation:in CPS,
all transfers of control are represented as function calls.Func-
tion call, function return, loops, conditionals, sequencing, excep-
tion invocation and other non-local control transfers—these are all
represented as function call. So program analyses that answer the
question “which call sites call whichλ-expressions” give usall the
control-flow information about the program [0CFA, k-CFA].

4. Pipelines and 3CPS
Let’s consider a world of online transducers that get arranged into
pipelines of data-flow networks. We’d like to write these transduc-
ers in a general-purpose programming language, such as Scheme,
as infinite loops that employ special “get” and “put” operators to
synchronously pass data (and transfer control) up and down the
pipeline. So a simple transducer that does nothing but repeatedly
send five downstream is

(λ () (letrec ((lp (λ () (put 5) (lp))))
(lp)))

and an only slightly less trivial transducer that doubles its input and
passes the result downstream is

(λ () (letrec ((lp (λ () (put (* 2 (get)))
(lp))))

(lp)))

Transducers may have state, which we represent in the standard
manner employed in functional programming languages, as param-
eters in our tail-recursive loops. A simple integrator or summing
transducer is written

(λ () (letrec ((lp (λ (sum)
(let ((sum (+ sum (get))))

(put sum)
(lp sum)))))

(lp 0)))

Now, a CPS-based compiler, when fed code like these examples,
will first convert this “direct-style” code into a CPS representation.
However, let’s use a non-standard representation, which we’ll call
“3CPS.” Instead of passing to a procedureonecontinuation repre-
senting the “rest of the computation,” we’ll pass inthree:
• k will represent the rest of this pipeline stage’s computation;
• u will represent all the pending computationupstreamfrom this

pipeline stage; and
• d will represent all the pending computationdownstreamfrom

this pipeline stage.
We augment the denotational semantics of our CPS representation
by adding new “UpCont” and “DownCont” domains. Here are the
functionalities:

c ∈ CmdCont = UpCont→ DownCont→ Ans
k ∈ ExpCont = Value→ UpCont→ DownCont→ Ans
u ∈ UpCont = DownCont→ Ans
d ∈ DownCont= Value→ UpCont→ Ans
x ∈ Value

A “command continuation”c simply represents the state of a single,
suspended stage in a pipeline. In order to invoke it, we must pass
it its “connections,” that is, its upstream and downstream continu-
ations, by callingc u d. Once passed these values, it executes the
pipeline stage, running the program forwards to completion, which
is signified by the “→ Ans” function range.

An “expression continuation”k represents the evaluation con-
text for some expression. It is invoked by callingk x ud, passing to
k the valuex produced by the expression, together with the current
pipeline stage’s upstream and downstream continuations,u andd.
Thenk runs the current pipeline stage forwards to completion.

A “downstream continuation”d represents the computation of
the downstream pipeline stages. To transfer control downstream,
we calldx u, passing tod the data valuex we wish to send down-
stream and an upstream continuationu. Thisu value represents the
suspended state of the entire computation that is upstream fromd—
that is, it represents our current pipeline stage, plus everything that
is upstream from us. Since, fromd’s point of view, we are its up-
stream computation, we must wrap ourselves up as an UpCont in
order to pass our state off to d.

Now, most primitive computations don’t shift up or down the
pipeline at all, so most of the time, theu andd values are simply
passed around unused and unaltered. In fact, the CPS-conversion
equations for our triple-continuation target language are exactly the
same as the classic single-continuation conversion! This is because
we placed the up and down continuations at the end of the func-
tionalities, where they getη-converted away, being unreferenced.

If abstractions, applications, variable references, and constant
evaluations don’t touch the extra continuations, then who does? It’s
the specialget andput functions, which cause shifts up and down
the pipeline. These are the primitives that actually use the extra
continuations, and, as such, we can’t define them in direct style,
where the continuations are “hidden,” but must define them directly
in our CPS language. The semantics of these two functions are:

getx k u d = u (λ x u′ . k x u′ d)

putx k u d = d x (λ d′ . k unit u d′)

Theget function takes an (ignored) argumentx, and the standard
three continuations,k, u, andd. We must transfer control to the up-
stream continuation and run there so that it may pass us a value, so
get callsu. Now, the functionality of au is DownCont→ Ans, so

296

C1

Input Output

Compute

C2

Input Output

Compute

U D

C

Figure 2. The compose/pull operator initially transfers control
to C2, “pulling” values downstream on demand.

we must passu a DownCont. DownCont’s, in turn, have function-
ality Value → UpCont → Ans, so the value we passu is written
(λ x u′). Remember that this down continuation represents
the state of our own pipeline stage, plus everything downstream
from us—that is, everything downstream fromu. When u has a
value ready to send us, it will call this down continuation, pass-
ing it the valuex, and a new up continuationu′ for us to use the
next time we wish to perform aget. When this happens, our cur-
rentget is complete—it should return valuex. So we go back to
running our current pipeline stage by callingk, passing itx, the
new up continuationu′, and the same down continuation we had
before theget call, d. Thus, the down continuation we pass tou is
(λ x u′ . k x u′ d).

We can walk through a definition ofput in the same way,
guided by the functionalities or types of the different values we
manipulate. Toput a valuex, we must pass it to the downstream
pipeline stage, which we do by applyingd to x. However, when
we transfer control downstream, we must also passd an upstream
continuation that packages up all the computation upstream from
d—that is, the state of our own pipeline stage, and everything
upstream from us. An UpCont has functionality DownCont→ Ans,
so it is written (λ d′). When d wishes to transfer control
back to us, it will call this up continuation, passing it a new down
continuationd′ for us to use the next time we wish to perform aput.
That is,d′ will package up the state of the downstream continuation
when it suspends itself and transfers control back up to us. At this
point, our currentput is complete, and we are ready to continue
running our current pipeline stage. So we should transfer control to
our current pipeline stage’s continuationk, passing it the unit value
produced by aput, our original, unchanged up continuationu, and
the new down continuationd′. Hence, the up continuation we pass
to d is (λd′ . k unit u d′).

5. Composing transducers in 3CPS
Now that we can write down transducers in our 3CPS representa-
tion, let’s consider how we can compose them together. Let’s define
a new primitive function,(compose/pull c1 c2), that takes two
transducers, represented as command continuations, and composes
them together to produce a new transducerc, with the output ofc1

hooked up to the input ofc2. More precisely, when we invokec,
passing it its connectionsu andd, we wish to transfer control to
the downstream half of the composition,c2, running it connected
downstream tod. If it transfers control upstream, we wish to jump
into c1, and run it connected upstream tou, and downstream back
to c2 (see Figure 2). Thus this operator creates a “lazy” composed
transducer, that “pulls” values downstream as needed.

Now, let’s write down the semantics ofcompose/pull—
which, as should be obvious from our definitions ofget andput,
should also serve to give us a direct definition of the operator in our

3CPS representation:

compose/pull c1 c2 = λ u d . c2 (λ d′ . c1 u d
′) d

The result of composingc1 and c2 is a command continuation,
which must be invoked by passing to it the upstream and down-
stream connectionsu andd. So the composed continuation is writ-
ten (λ u d). When this transducer runs, it simply transfers con-
trol to c2. When we callc2, we must pass it its connections. The
downstream connection forc2 is simply d, the downstream con-
tinuation for the whole transducer. But what should we pass toc2

as its upstream continuation? An upstream continuation has func-
tionality DownCont→ Ans, so it should be something of the form
(λd′). Whenc2 performs aget call, and attempts to transfer
control upstream, it will invoke this continuation, passing itd′, a
down continuation that will representc2’s suspended state. At this
point, we should start executing transducerc1. Whenc1 wishes to
go upstream, it should callu; when it wishes to go back downstream
to c1, it should calld′.

Here are the three equations forput, get, andcompose/pull,
all grouped together:

getxk u d = u (λ x u′ . k x u′ d)

putxk u d = d x (λd′ . k unit u d′)

compose/pull c1 c2 = λ u d . c2 (λ d′ . c1 u d
′) d

With three small equations we have completely specified our trans-
ducer primitives and the composition operator. Note what using
CPS has done for us: it has made all the “plumbing,” that is, all
the interconnection structure, explicit, in terms of thed’s andu’s.
Even better, it has done soin terms of theλ-calculus, a representa-
tional framework for which we have decades of experience design-
ing analyses, transforms, and optimisations.

Before we proceed, note that we could also define a related oper-
ator,compose/push, that initially transfered control toc1, eagerly
“pushing” values downstream. The definition ofcompose/push
is interesting; it has been moved to an endnote, so that you may
have the fun of working out its definition for yourself{Note
compose/push}.

6. Working through a simple example
Let’s work through a simple example by hand. Consider the two
transducers

(λ () (letrec ((lp1 (λ () (put 5) (lp1))))
(lp1)))

(λ () (letrec ((lp2 (λ () (put (* 2 (get)))
(lp2))))

(lp2)))

We would like it to be the case that if we compose them together
with compose/pull, compiler analysis could reduce the pair of
loops to a single “put ten” loop.

First, we CPS-convert our two loops, and inline theput andget
operators, giving us

(λ (k1 u1 d1) ; Put-5 transducer
(letrec ((lp1 (λ (k1a u1a d1a)

(d1a 5 (λ (d1b)
(lp1 k1a u1a

d1b))))))
(lp1 k1 u1 d1)))

297

(λ (k2 u2 d2) ; Doubler
(letrec ((lp2 (λ (k2a u2a d2a)

(u2a (λ (x u2b)
(d2a (* 2 x)

(λ (d2b)
(lp2 k2a

u2b
d2b))))))))

(lp2 k2 u2 d2)))

We’ve cheated on CPS-converting the(* 2 x) operation for com-
pactness’ sake. Everywhere we sawput appear in our transducer
loops, we just dropped in its equivalent CPS combinator

(λ (x k u d) (d x (λ (d’) (k u d’))))

This is precisely what we wrote forput’s semantics, transliterated
into our Lisp-syntax CPS language, decurried, and with the con-
vention that unit arguments are eliminated from calls and parameter
lists, so thatput’s continuationk is not explicitly passed the trivial
unit value thatput returns. We likewise replaced occurrences of
get with its defining combinator.

We can simplify this code a bit. First, notice thatk1, k2, u1,
and u1a are never called. It’s not surprising thatk1 and k2 are
never called, since both of our loops are infinite ones that never
return. Similarly, the put-five loop never goes upstream, sou1 and
u1a never get used. There is a standard analysis for spotting these
situations, “useless-variable analysis” [UVE], and it will remove
these variables from the calls and parameter lists in the code,
leaving us with

(λ (k1 u1 d1) ; Put-5 transducer
(letrec ((lp1 (λ (d1a)

(d1a 5
(λ (d1b) (lp1 d1b))))))

(lp1 d1)))

(λ (k1 u2 d2) ; Doubler
(letrec ((lp2 (λ (u2a d2a)

(u2a (λ (x u2b)
(d2a (* 2 x)

(λ (d2b)
(lp2 u2b

d2b))))))))
(lp2 u2 d2)))

We can “promote”lp1 from a user-procedure to an UpCont by
simply η-reducing(λ (d1b) (lp1 d1b)) to lp1. This leaves us
with

(λ (k1 u1 d1) ; Put-5 transducer
(letrec ((lp1 (λ (d1a) (d1a 5 lp1))))

(lp1 d1)))

(λ (k1 u2 d2) ; Doubler
(letrec ((lp2 (λ (u2a d2a)

(u2a (λ (x u2b)
(d2a (* 2 x)

(λ (d2b)
(lp2 u2b

d2b))))))))
(lp2 u2 d2)))

Now let’s compose these two transducers together. This is easily
done: we take the code forcompose/pull

(λ (c1 c2)
(λ (k u d) (c2 k

(λ (d’) (c1 k u d’))
d)))

and apply it to our two transducer loops—that is, we drop the code
for the put-five loop wherec1 appears, and the code for the doubler
loop wherec2 appears. The resulting expression is

(λ (k u d)
(letrec ((lp2 (λ (u2a d2a)

(u2a (λ (x u2b)
(d2a (* 2 x)

(λ (d2b)
(lp2 u2b

d2b))))))))
(lp2 (λ (d’)

(letrec ((lp1 (λ (d1a) (d1a 5 lp1))))
(lp1 d’)))

d)))

Compilers usually hoist letrec’s out; let’s do that to thelp1 binding,
giving us

(λ (k u d)
(letrec ((lp2 (λ (u2a d2a)

(u2a (λ (x u2b)
(d2a (* 2 x)

(λ (d2b)
(lp2 u2b

d2b)))))))
(lp1 (λ (d1a) (d1a 5 lp1))))

(lp2 (λ (d’) (lp1 d’)) d)))

Now we canη-reduce(λ (d’) (lp1 d’)) to lp1, reducing the
code for our original pair of loops to just

(λ (k u d)
(letrec ((lp2 (λ (u2a d2a)

(u2a (λ (x u2b)
(d2a (* 2 x)

(λ (d2b)
(lp2 u2b

d2b)))))))
(lp1 (λ (d1a) (d1a 5 lp1))))

(lp2 lp1 d)))

This is already pretty good, but CPS-based control- and data-flow
analysis can take us the rest of the way to collapsing our double
loop to a single loop. Tracing through the flow of control reveals
thatu2a andu2b are always bound tolp1; the automatic analysis
that reveals this is “super-β” [k-CFA, DCFA]. We can eliminate
these two variables, and replace the call tou2a with lp1.

(λ (k u d)
(letrec ((lp2 (λ (d2a)

(lp1 (λ (x)
(d2a (* 2 x)

(λ (d2b)
(lp2 d2b)))))))

(lp1 (λ (d1a) (d1a 5))))
(lp2 d)))

Now we canη-reduce(λ (d2b) (lp2 d2b)) to lp2, and in-line
the call tolp1, which triggers off two more rounds ofβ-reduction,
settling out with

(λ (k u d)
(letrec ((lp2 (λ (d2a) (d2a (* 2 5) lp2))))

(lp2 d)))

This is the put-ten loop we wanted. Note that every step was a
standard transformation, either an application of theλ-calculus’s
simpleη andβ reductions, or a more sophisticated transform based
on known data-flow analyses.

298

The moral is that while many of these CPS-based control- and
data-flow analyses were originally designed to operate on the kind
of control-flow we see in traditional intra-procedural settings—
loops and conditionals—in CPS,all transfers of controlare repre-
sented with the same control mechanism: tail-recursive procedure
call. So an analysis that works in a CPS framework captures every-
thing, including the more exotic control transfers being used in our
transducer constructs.

7. Some problems
As pretty as this CPS-based explication of transducer structure
may be, it is not without limitations. The biggest issue is that
the linear topology of the data-flow pipeline is baked into our
triple-continuation CPS transform, which is a fixed part of the
compiler. If we’d like to have, say, a branching topology, we are
out of luck. For example, while the Sutherland-Hodgman polygon-
clipping algorithm has a data flow that perfectly fits the linear
pipeline model we’ve developed, the slight variant of this algorithm
that splits a polygon by a plane into two resulting polygons has a
natural tree structure to its data flow. (We’ll return to this example,
later.)

Note that when we consider non-linear communication topolo-
gies, we are still restricting ourselves to a serial computational
model, with a single locus of control that moves between trans-
ducers when values are sent or requested. We are not tackling true
concurrency, or attempting to provide CSP-like features with our
get andput operators.

In a related issue, the CPS transform is a global transform that
rewrites the entire program. So we can’t have a modular way of
defining some kind of communications resource or topology that is
restricted to some limited subset of the code.

From one perspective, what we’ve done is taken loop state—
control and otherwise—and packaged it up insideλ expressions,
whereλ-calculus reasoning engines can trace out where different
pieces of state go. Pushing the transducer state down into theu
andd continuations puts it below the level at which the user code
can access it: these continuations are only manipulated by theget
andput primitives, who do so in a linear fashion. This also helps
out our analysers, since the critical bits of state are separated out,
instead of dropped into the formless sea of the runtime store, where
it is very difficult to keep items distinct.

It turns out that thereis a technology that does provide this kind
of mechanism in a modular fashion: monads [Moggi, Essence].
Monads have exactly the same property as CPS of “pushing” cer-
tain structures below the surface of most of the code, only allow-
ing certain related primitives to “dip down” and access them in re-
stricted ways (and this is not a surprise, since continuation-passing
and monads are related). Hudak and others [MADT] have shown
how to use monads to provide monadic, linear data types—which
certainly describes theu’s andd’s we’ve been passing around. For
all these reasons, monads are popular in the pure-functional, lazy-
language community, receiving quite a bit of use in Haskell to
model things like I/O. Unfortunately, monads have problems for
general use in less-exotic, applicative-order languages such as SML
or Scheme. The principal issue is that they do not, in general, com-
pose; as a result, we have been unable to figure out a way to use
them as a general tool for providing transducer mechanisms. Even
in the Haskell community, monads require programmers to write in
a particular style which would prove onerous to programmers who
work in applicative-order languages.

A final issue to consider is: can we type our transducers and
their primitives? If so, can we do it in standard type systems,e.g.,
SML’s?

Our task in the next section is to address all of these issues.

8. Removing constraints, adding types
We can remove the linear-pipeline constraint on the connection
topology by the simple expedient of bringing the hiddenu and
d cross-connecting resources out into the open, where they can
be directly manipulated by the programmer. This is a little more
verbose than the neat, clean manner in which these continuations
were invisibly passed around behind the scenes, but it allows us to
name and use multiple communications resources.

We can also take this opportunity to start introducing types into
our model. Let’s introduce a new type constructor, using an ML
syntax:

(α, β) Channel

A value c of type (α, β) Channel is a coroutine communications
resource. We can send anα value over it, and receive aβ value
back. The primitive operator for doing so isswitch:

switch : α × (α, β) Channel → β × (α, β) Channel

Note thatswitch returns not only theβ value returned from the
coroutine at the other end of the channel, but also a new channel for
us to use the next time we wish to communicate with that coroutine.
Channel values are “affine,” that is, they may not be used more than
once.

Now we can write some simple examples in an ML syntax that
parallel our previous, linear pipeline examples. We can defineput
andget in terms ofswitch:

type γ DownChannel = (γ, unit) Channel
type γ UpChannel = (unit, γ) Channel

fun put(x,c) = #2(switch(x,c))
fun get c = switch((),c)

Our put-five example is just the simple loop

fun put_five c = put_five(put(5,c))

and our integrator is

fun integ(u,d) =
let fun lp(s,u,d) =

let val (x,u’) = get u
val s = s + x

in lp(s, u’, put(s,d))
end

in lp(0,u,d)

However, we could instead define a general-purpose coroutine gen-
erator that folds anα × β → β function across anα stream:

fun streamfold f zero (u,d) =
let fun lp(s,u,d) =

let val (x,u’) = get u
val s = f(x,s)

in lp(s, u’, put(s,d))
end

in lp(zero,u,d)
end

We can then define our integrator as:

fun integ(u,d) = streamfold op+ 0 (u,d)

The surprising thing about our channels is that, if we have a
callcc primitive to give us access to continuations, we can define
and type theswitch primitive with no further extensions to SML’s
type system or primitives! The key observation is that if we have an
(α, β) Channel, then some other coroutine must be suspended in a
switch call; when we switch off to this coroutine by sending some
α value over our channel, this suspended coroutine will resume.

299

signature FUNCTIONAL_COROUTINES = sig

infix 4 ‘>| >|‘ (* Can now write pipelines *)
infix 4 ‘|> |>‘ (* src |>‘ t1 >>‘ t3 >|‘ sink *)
infix 5 ‘>> >>‘

type α cont (* Continuations. *)

datatype (α,β) Channel =
Chan of (α * (β,α) Channel) cont

type α DownChannel = (α,unit) Channel
type α UpChannel = (unit,α) Channel

val switch : α * (α,β) Channel ->
β * (α,β) Channel

val get : α UpChannel -> (α * α UpChannel)
val put : α * α DownChannel -> α DownChannel

(* Transducers, sources and sinks. *)
type (α,β,γ) Transducer =
(α UpChannel * β DownChannel) -> γ

type (α,γ) Source = α DownChannel -> γ
type (α,γ) Sink = α UpChannel -> γ

(* Infix transducer+transducer, push & pull *)
val ‘>> : (α,β,γ) Transducer * (β,δ,γ) Transducer

-> (α,δ,γ) Transducer

val >>‘ : (α,β,γ) Transducer * (β,δ,γ) Transducer
-> (α,δ,γ) Transducer

(* Infix source+sink, push & pull. *)
val ‘>| : (α,γ) Source * (α,γ) Sink -> γ
val >|‘ : (α,γ) Source * (α,γ) Sink -> γ

(* Infix source+transducer, push & pull. *)
val ‘|> : (α,γ) Source *

(α,β,γ) Transducer -> (β,γ) Source
val |>‘ : (α,γ) Source *

(α,β,γ) Transducer -> (β,γ) Source

(* Generic source creation. *)
val listsource : α list -> (α option,γ) Source
val put_n_xs : int -> α -> (α option,γ) Source

(* Generic sinks. *)
val firstsink : (α option, α) Sink
val listsink : (α option, α list) Sink

(* Generic transducer creation. *)
val stream_fold : (α * β -> β) -> β ->

(α,β,γ) Transducer
val stream_app : (α -> β) -> (α,β,γ) Transducer
end

Figure 3. The signature of a simple “functional coroutine” SML module.

So a channel must be the continuation for the other coroutine’s sus-
pendedswitch call. But that suspended call is expecting eventually
to return a pair of values: anα value and a (β, α) Channel value, be-
cause, while we are using an (α, β) Channel to communicate with
it, it is using a mirror-image (β, α) Channel channel to communi-
cate with us. Putting this all together gives us the following circular
definition:

datatype (α,β) Channel =
Chan of (α * (β,α) Channel) cont

Encasing the circular definition in a datatype constructor allows
us to push the declaration through the SML type system.{Note
ThanksDana} The definition ofswitch follows from the type of
Channel:

fun switch(x, Chan k) =
callcc (fn k’ => throw k (x, Chan k’))

With this definition for channels andswitch, we can proceed
to build a whole algebra of sources, sinks, transducers and their
combinators, this time in our more general, typed setting. Figure 3
shows the types of an example module we have defined. The def-
initions are straightforward. For the infix transducer combinators,
we use the convention of placing a‘ tick on the side that drives
the composite transducer: on the left for a “push” operator, and on
the right for a “pull” operator. For example, here is our old friend
compose/pull:

fun op >>‘(t1,t2) (u,d) =
callcc

(fn k =>
t1(u, #2(callcc

(fn k’ =>
throw k (t2(Chan k’, d))))))

Here is the definition ofstream_app, which creates a stateless
transducer applyingf to each item in the incoming stream:

fun stream_app f =
let fun lp(u, d) = let val (x,u’) = get u

val d’ = put(f x, d)
in lp(u’,d’)
end

in lp
end

We can, for example, usestream_app to define a function that
produces an “add-n” transducer given some integern:

fun addn n = stream_app (fn m => n + m)

Note that we have defined our coroutine-composition combinators
as infix operators; this means we can simply construct pipelines
with expressions such as

lex |>‘ parse >>‘ translate ‘>| assemble

Writing functions to act as transducers, sources or sinks is straight-
forward. The definition of the combinators involves direct use
of the channel continuations, and so is a bit more subtle. Be-
sides the transducer/transducer composition operator we’ve al-

300

ready seen, here are the definitions of the pull combinators that
do source/transducer and source/sink composition:

(* source/sink composition, driven by sink. *)
fun op >|‘(source,sink) =
callcc

(fn k =>
source(#2(callcc

(fn u =>
throw k

(sink (Chan u))))))

(* S is an α source; T an α-to-β transducer.
** Return a β source.
*)
fun op |>‘(s,t) d =
callcc

(fn k =>
s(#2(callcc

(fn k’ =>
throw k

(t(Chan k’, d))))))

As a final observation before leaving these operators, note
that several of the transducer functions (e.g., stream_app) never
return—that is, they never make use of theirimplicit continua-
tion. With this in mind, we could go back through the library and
change the types and definitions so that such operators were passed
one of their channel parameters encoded as the implicit continua-
tion. This seems a bit more parsimonious of mechanism, though it
complicates things to the degree of having two distinct encodings
of channels (implicit continuations and explicit channels).

9. Linearity
Recall that we require programmers to use a channel no more than
once. Unfortunately, SML won’t give the programmer any help at
all in checking to see that his program doesn’t accidentally violate
this rule. However, there is a whole body of type systems, based
on linear logic, that provide this kind of service [Type1, LT]. So it
might be a useful extension to the machinery we’ve described so
far to add a linear-logic type system to the language to help the
programmer with checking this requirement.

10. Experience
We walked through a detailed example in the 3CPS, linear-pipeline
framework, working through a plausible scenario showing that
standard CPS-based compiler technology is capable of “fusing”
coroutines together, giving us the critical ability to optimise across
composition that we want.

The question remains: can we make this work in practice?
Preliminary results indicate that we can. We have constructed a
simple CPS-based compiler front end in Haskell for processing
programs written in a simple Scheme language. The compiler CPS-
converts the source terms, then applies the kind of transformations
we employed in Section 6:

• Super-β flow-based inlining of variables andλ terms
• Localβ/η reductions
• Useless-variable elimination
• Dead-code elimination

Not all transforms revealed by the data-flow analyses as legal
are desireable; some inlining transforms might lead to excessive
code expansion. The policy used by our test-bed compiler is:

• Replace aλ-bound variable with its bound term when

the variable has zero or one reference,
the bound term is a variable or constant, or
the bound term is itself aλ term with no free variables.

• Inline a letrec-boundλ term inside other letrec-boundλ terms
whenever it flows to only one reference.

• Inline a letrec-boundλ term in the body of the letrec term if it
flows to only one reference or if it has no free variables.

We can define our general-topology channel mechanism in the
source language handled by our compiler. The compiler has suc-
cessfully fused simple transducer compositions, such as our plus-
five/doubler example, into single loops. As another example, if the
compiler is given a program that composes (1) a source that sends
the elements of a list downstream, with (2) a transducer that dou-
bles its values and (3) a sink that prints out every value it receives,
it is able to fuse these three coroutines into a single, tight loop that
iterates over the list and prints out each element doubled.

It’s worth noting that our compiler hasno special knowledge
of coroutines. It simply performsgenerally usefuloptimisations on
λ-expressions represented in CPS form. The leverage we have on
the problem comes from our choice of representation—which is
the main message of this paper. (We should also note one other
important “lever:”∆CFA. A critical optimisation for fusing trans-
ducer loops, super-β, depends on∆CFA analysis, which has only
recently been given a solid foundation [DCFA]. However,∆CFA
and super-β are also generally useful tools, not particularly targeted
at coroutines or continuations.)

For a third example, we turn to a more exotic possibility. Con-
sider aput-fringe generator that walks a binary tree, pausing at
each leaf node to send it downstream. What happens if we com-
pose this source with a transducer that doubles the elements that
flow through it, and a sink that prints the values it receives? We
have now left the domain of simple iteration: our fringe generator
uses the run-time procedure stack as it recursively explores into the
tree. Each time the fringe generator pauses to send a leaf element
downstream, the resumption continuation packages up the entire
stack. However, the downstream computationdoesn’t require an
entire stack as part of its suspension state. So the compiler is able
to fuse these two computations together, reducing them to the sim-
ple recursive summation function one would write by hand.

The source code for this composition is shown in Figure 4.
Our experimental compiler only provides one-variableλ expres-
sions; multiple arguments are packaged up as cons cells. The com-
piler has no special knowledge of cons cells, or option types; these
are all Church-encoded asλ terms. (The compiler is good enough
with λ terms to sort all this out.) For reasons of space, the fig-
ure elides all the s-expression definitions of the standard corou-
tine elements we’ve defined in earlier sections. Thess-pull and
st-pull operators are the “pull” versions of the source/sink and
source/transformer combinators.

Once again, it’s worth repeating that the compiler has no spe-
cial knowledge about fusing different kinds of control structure. It
simply reasons at the underlying, universal layer of the CPS form.
When the computation can be reduced to a purely iterative one, that
has no dependency on the stack, this is done. If, however, the com-
posite computation fundamentally requires a call stack, then this
residual continuation structure becomes the central control struc-
ture of the fused computation, and the rest of the computation coa-
lesces around this core. This all simply falls out of our CPS repre-
sentation.

A CPS-based representation can’t solve all problems, however.
If we compose two computations that both require stacks, then even
after optimisation, the coroutine management will necessarily em-

301

(letrec (...
(doubler (λ (u:d)

(let ((get-u (get (car u:d))))
(match-option (car get-u)
(λ (n) (doubler (cons (cdr get-u)

(put (cons (SOME (* 2 n))
(cdr u:d))))))

(λ () (doubler (cons (cdr get-u)
(put (cons (NONE) (cdr u:d))))))))))

(display-sink (λ (u)
(let ((get-u (get u)))
(match-option (car get-u)

(λ (elt) (begin (display elt)
(display-sink (cdr get-u))))

(λ () #f)))))
(put-fringe (λ (tree)

(λ (d) (put (cons (NONE)
((put-fringe/aux tree) d))))))

(put-fringe/aux (λ (tree)
(λ (d) (match-tree tree

(λ (l r) ((put-fringe/aux l)
((put-fringe/aux r) d)))

(λ (elt) (put (cons (SOME elt) d)))))))

...)

(let ((tree (NODE (LEAF 3) (LEAF 2))))
(ss-pull (st-pull (put-fringe tree)

doubler)
display-sink)))

Figure 4. Composing a tree-fringe generator with a doubling transducer and a printing consumer. A CPS-based compiler is capable of fusing
the three continuation-capturing coroutines into a single recursive tree walk.

ploy “heavyweight” stack-capturing continuations at the coroutine
transfer points. This is unavoidable. All we are offering is the possi-
bility of avoiding this cost when it is possible to use cheaper control
structures.

11. Related work
11.1 Deforestation, fold/build and other catamorphisms

There is a wealth of work related to transducer fusion, in both the
systems and programming-language communities. Because pure
functional, lazy languages such as Haskell provide the ability to
directly manipulate unbounded sequences of data, there has been
a fair amount of work on optimising compositions of sequence
operators, such as “deforestation,” “foldr/build” pairs, and various
forms of intimidatingly-named morphisms (hylo, cata, ana, apo,
etc.) [Deforest, Cata].

The core idea behind this approach is to find places where a list
is constructed as an intermediate carrier between the producer and
consumer of some sequence, and to somehow rearrange or reduce
the code to connect the producer directly to the consumer. Roughly
speaking, this is usually managed by using some sort of Church
encoding to represent sequences. For example, we can view the
foldr and build functions [Fold] as converters between actual
lists and Church-encoded “abstract lists,” where an abstract list is a
function from a “cons” and “nil” pair of abstract constructors to the
result of assembling the elements of the list with these constructors:

α abslist= ∀β.((α × β → β) × β) → β.

To see this, we just need to permute the arguments tofoldr a bit,
getting the variant

(* α list → α abslist *)
fun foldr’ [] (kons,knil) = knil
| foldr’ (x::xs) (kons,knil) =

kons(x, foldr’ xs (kons,knil))

(* α abslist → α list *)
fun build abslis = abslis (op ::, [])

The key property of these converters, then, is that (in the absence
of effects)

(foldr’ ◦ build) abslis= abslis.

Thus if a list is produced by passing an abstract list tobuild, and
this list is then consumed by afoldr’, we can eliminate the list
itself, along with the redundant conversions.

We can view “unfoldr/destroy” fusion in a similar way [Unfold].
Suppose we represent a sequence ofα elements by a (next, s)
“generator” pair:

α generator = ∃β . (β → (α × β) Option) × β.

Applying nextto the generator states produces either the next ele-
ment of the sequence and the next state value, or theNONE option,
meaning the end of the sequence. Then we can viewunfoldr as
a function that converts a generator into a list; anddestroy as a
function that converts a generator consumer into a list consumer,
that is, from something of typeα generator → γ into something
of typeα list → γ:

302

(* α generator → α list *)
fun unfoldr (next,s) =

case (next s) of
NONE => []

| SOME(elt,s’) => elt :: unfoldr(next,s’)

(* (α generator → γ) → (α list → γ) *)
fun destroy gconsumer =
fn xs => let fun next [] = NONE

| next (x::xs) = SOME(x,xs)
in gconsumer (next, xs)
end

Again, the key optimisation is that (ignoring effects)

List consumer
︷ ︸︸ ︷

(destroy gconsumer)

List
︷ ︸︸ ︷

(unfoldr (next,s)) =

gconsumer
︸ ︷︷ ︸

generator consumer

(next,s)
︸ ︷︷ ︸

generator

.

Thus, we can again eliminate the intermediate list passed from
unfoldr to destroy, and instead pass the(next,s) generator
directly to the consumer, where it can likely then be inlined into a
loop.

In both cases, the idea is that if the programmer is willing
to write his list producers and consumers by applying these con-
verters toabstractsequence producers and consumers, then pro-
ducer/consumer compositions can be directly connected.

This is a very different approach, exploiting a high-level view
of stream computation. This is appealingly elegant, and works
especially well in a pure-functional setting that permits unbounded
lists and enables equational reasoning about the operators. In a
call-by-value language that permits effects, the transformation is
no longer generally safe. For example, the transforms alter the
order of effects: in the original code, the elements are all produced
and assembled into a list, before the consumer executes; the fused
code, in contrast, interleaves producing and consuming elements.
Control, I/O and memory effects all can alter the meaning of the
program under such shuffling.

In contrast, our approach, based on analysis of the CPS repre-
sentation, is very low level—the compiler maps the program over
to a low-level representation and then examines it, looking for op-
portunities revealed by static analysis for optimisation. We have no
problem with effects, since, in essence, we focus purely on control,
just optimising the control flow that is encoded by the higher-order
language.

As one example, it’s not clear how we could use high-level
fusion techniques to encode an example such as the Sutherland-
Hodgman polygon clipping algorithm, which has a “push” con-
trol paradigm, and permits a clipping stage to send 0, 1 or 2
points downstream in response to receiving a single point of input.
Even more problematic is the variant of this algorithm that splits a
polygon—in this version, each transducer has two distinct down-
stream connections, producing a tree-like topology of transducers.
We can represent these algorithms quite naturally using the model
we’ve developed here; SML code rendering them as transducers is
shown in an appendix.

It’s hard to say much about the relative power of these two
approaches, one, high level, the other, low level, until we’ve gained
more experience with the system.

11.2 Filter fusion

In the systems community, we can find similar efforts, usually mo-
tivated by the performance demands of network-protocol stacks,
typically going under names like “filter fusion,” “protocol integra-
tion,” or “integrated layer processing.” For example, Proebsting has

reported on a method for fusing together what he terms “micropro-
tocols” in a data-flow network [Fusion]. His fundamental technol-
ogy is essentially a constrained partial evaluation. In order to make
this work, he restricts the programmer to a simplified language for
writing the microprotocol components. This is necessary, as partial
evaluation is such an aggressive optimisation technology that it has
potential to “run away” and blow up on some programs. Constrain-
ing the language helps to constrain the analysis and transform.

The ESP language for writing embedded controllers [ESP] is
another example of exploiting a restricted framework, this time
CSP-like processes that communicate over synchronous channels,
where the processes, channels and memory allocation are all stat-
ically fixed. What is particularly of note about ESP is its use of a
SAT solver to check the system for errors, a powerful debugging
aid.

In contrast to these restricted systems, our approach can be
applied to a full-strength, general-purpose programming language,
such as SML. For non-functional programmers, the important thing
to note here is that these are just simple loops, written the way
functional programmers naturally write them. A Scheme or ML
programmer will write the integrator example we gave as quickly
and easily as a C programmer would write

s = 0;
while(1) {

s += get();
put(s);
}

That is, we’ve made no concessions to the pipeline or data-flow
framework. It’s just simple, straightforward code, using the full
features of the language.

Also, note that we have not bounded the set of analyses and
optimisations that could be applied to our compositions; our cen-
tral message is that CPS and continuations provide a useful repre-
sentational framework for compiler analyses and transformations
to reason about transducers and their compositions. While we’ve
restricted ourselves to the conservative optimisations enabled by
data-flow analysis, the lessons of Proebsting’s work can be ap-
plied in our framework, as well. The compiler is certainly allowed
to choose from a range of optimisation strategies, of varying de-
grees of aggressiveness, depending upon programmer hints or other
sources of information.

11.3 CLU generators

The programming language CLU provides a limited form of corou-
tine mechanism intended solely for the purpose of defining genera-
tors to be used in iteration [CLU]. Thus, to specify an iterator over
an array or hash table, the module exporting the array or hash table
type provides a generator coroutine. These generators are invoked
from the CLUfor loop, and the iterator mechanism is carefully
limited to ensure that the entire CLU program can run with a single
call stack—for example, one cannot sequence across two iterators
in parallel in a singlefor loop. A recent loop package designed by
one of the authors provides a framework for expressing a similar
facility [Loop].

The coroutine mechanism we discuss here generalises this ca-
pability. We allow the programmer to use continuations as a con-
venient and extremely general-purpose abstraction for packaging
up generator state. The programmer doesn’t even need to set down
what the generator state is, nor does he need to explicitly “marshal”
or collect this state together across element generations; this is all
managed implicitly by the rules ofλ calculus, lexical scope and the
context captured bycall/cc. This use of aλ term (in this case,
one encoding a continuation) as a “carrier” of state is precisely one
of the uses ofλ terms that the super-β transform is intended to

303

make efficient. Thus theλ-calculus representation and the compiler
analysis dovetail neatly.

11.4 Run-time mechanisms

Much effort has been expended in the Scheme community on op-
timising the dynamic cost of allocating first-class continuations
[RepCtl]. By sharing saved stack segments or incrementally per-
forming the stack-copy operation associated with creating general
first-class continuations, the price of an allocation can be reduced
to a constant cost on the order of a general procedure call or heap-
allocation operation.

These dynamic mechanisms can mitigate the cost of using
heavyweight, general continuations in cases where compiler anal-
ysis is unable to statically optimise them away.

12. Final thoughts and conclusion
The contributions of this work are several. First, we have structured
coroutines or data transducers in a fashion that allowsλ-based anal-
yses to optimise their use. This is a fundamentally enabling step;
if these computational structures cannot be adequately optimised,
then they cannot be exploited by engineers in performance-critical
applications.

Second, we have shown that we have not yet fully exploited the
power of CPS-based representations. It was this framework that ex-
posed the control structure in a fashion that our analytic tools could
manipulate. It is common to view both continuations and corou-
tines as expensive control structures. We’d like to put forth the view
that this does not have to be the case. The commonplace notion of
a continuation is that “continuations are just stacks.” This is like
saying thatλ expressions produce heap-allocated data structures. A
more accurate statement would be that a continuation is an abstrac-
tion of processor state [ContThreads]. All sophisticated functional-
language compilers employ a range of techniques to renderλ ex-
pressions into machine code, depending on what is statically known
about each particular expression’s use and context: someλ’s turn
into loops; some turn into branches; some become heap-allocated
closures; some just vanish completely. CPS-based compilers take
the same approach to continuations, which are pervasive through-
out the code. The lesson is that when we have static information
about continuations, they can be implemented with little or no cost
at all.

This leads us to our final remark: coroutines are the neglected
control structure. Because coroutines have traditionally not been
amenable to analysis and optimisation, they have been regarded as
expensive, heavyweight program elements. The Computer Science
community has developed a “blind spot” with respect to them. We
find that once one has taken the step of viewing them as cheap,
lightweight control structures that one can apply as pervasively as
a λ expression, they turn out to be a surprisingly useful tool for
structuring programs. They allow one to construct modular itera-
tion mechanisms, after the fashion of CLU’sfor construct. They
allow one to finely partition the design and implementation of a
large, pipelined task. Once implemented, one can then easily divide
the entire pipeline into a few large segments by inserting buffer-
ing and concurrency elements [CML] at a few of the divisions,
and know that the intra-segment elements will be tightly composed
together into a serial loop. Later performance measurements can
be fed back to this larger structuring to balance out the compu-
tation/communication costs. We’d like to put coroutines back into
the toolbox of the systems programmer. Thus our current agenda of
developing the technology to render coroutines and their composi-
tions efficient.

13. Acknowledgements
A very early version of this work was presented at the IFIP WG2.8
workshop on functional programming; we are grateful for the in-
vitation to present these ideas and the useful feedback we received
from the working group members. Greg Morrisett and Franklyn
Turbak were particularly vocal in encouraging us to generalise the
early, linear-pipeline model, which led to the general channel struc-
ture. Anonymous reviewers provided valuable comments that im-
proved the final version of this paper.

References
[0CFA] Olin Shivers. Control-flow analysis in Scheme. In

Proceedings of the SIGPLAN ’88 Conference on
Programming Language Design and Implementation, June
1988.

[Cata] John Launchbury and Tim Sheard. Warm fusion: Deriving
build-catas from recursive definitions. InProceedings of
the ACM Functional Programming and Computer
Architecture, 1995.

[CFASem] Olin Shivers. The semantics of Scheme control-flow
analysis. InProceedings of the First ACM SIGPLAN and
IFIP Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, June 1991.
Published asSIGPLAN Notices26(9):190–198,
Association for Computing Machinery, September 1991.

[CLU] Barbara Liskov. A History of CLU. Technical Report 561,
MIT Laboratory for Computer Science, April 1992.

[CML] John Reppy. CML: A higher-order concurrent language.
In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
ACM (June 1991).

[ContThreads] Olin Shivers. Continuations and threads: Expressing
machine concurrency directly in advanced languages. In
Proceedings of the Second ACM SIGPLAN Workshop on
Continuations,January 1997, Paris. Also available as
BRICS Notes Series NS-96-13, University of Aarhus,
Denmark.

[CwC] Andrew W. Appel.Compiling with Continuations.
Cambridge University Press, 1992.

[DCFA] Matthew Might and Olin Shivers. Environmental analysis
via∆CFA. In Proceedings of the 33rd Annual ACM
Symposium on Principles of Programming Languages
(POPL 2006), Charleston, South Carolina, January 2006.

[Deforest] Philip Wadler. Deforestation: transforming programs to
eliminate trees.Theoretical Computer Science,pages
231–248.

[ESP] Sanjeev Kumar,et al.. ESP: A language for
programmable devices. InProceedings of the 2001 ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 309–320, Snowbird,
Utah, June 2001.

[Essence] Philip Wadler. The essence of functional programming. In
Proceedings of the 19th Symposium on Principles of
Programming Languages, pages 1–14, ACM, Jan 1992.

[Fold] A short cut to deforestation. Andrew Gill, John
Launchbury and Simon L. Peyton Jones. InProceedings
of the FPCA ’93 Conference on Functional Programming
Languages and Computer Architecture, pages 223–232,
Copenhagen, Denmark, June 1993.

304

[FPMonads] Philip Wadler. Monads for functional programming.
Advanced Functional Programming, Ed. J. Jeuring and E.
Meijer, Springer Verlag, LNCS.

[Fusion] Todd A. Proebsting and Scott A. Watterson. Filter Fusion.
In Proceedings of the 23rd symposium on Principles of
Programming Languages(POPL’96), ACM, 1996.

[k-CFA] Control-Flow Analysis of Higher-Order Languages.Ph.D.
dissertation, Carnegie Mellon University, May 1991.
Technical Report CMU-CS-91-145, School of Computer
Science. (Also available via anonymous ftp as URL
ftp://cs.cmu.edu/afs%2Fcs.cmu.edu%2Fuser%
2Fshivers%2Flib%2Fpapers/diss.ps.Z.)

[Loop] Olin Shivers. The anatomy of a loop: a story of scope and
control. InProceedings of the 10th ACM SIGPLAN
International Conference on Functional Programming
(ICFP 2005), pages 2–14, Tallinn, Estonia, September
2005.

[LT] Philip Wadler. Linear types can change the world.
Programming Concepts and Methods,Ed. M. Broy and
C. Jones, North Holland.

[MADT] Chih-ping Chen and Paul Hudak. Rolling your own
mutable ADT—a connection between linear types and
monads. InProceeding of the 24th ACM Symposium on
Principles of Programming Languages, January 1997,
Paris, France.

[Moggi] Eugenio Moggi. Computational lambda-calculus and
monads. InSymposium on Logic in Computer Science,
Asilomar,California, IEEE, June 1989.

[Orbit] David Kranz.Orbit: An Optimizing Compiler for Scheme.
Ph.D. dissertation, Yale University, February 1988.
Research Report 632, Department of Computer Science.
A conference-length version of this dissertation appears in
SIGPLAN 86.

[Perlis] Alan J. Perlis. Epigrams on programming.Sigplan17 #9,
September 1980.

[PolyClip] I. E. Sutherland and G. W. Hodgman. Reentrant polygon
clipping. Communications of the ACM17(1), pages
32–42, January 1974.

[Rabbit] Guy L. Steele Jr.RABBIT: A Compiler for SCHEME.
Technical Report 474, MIT AI Lab, May 1978.

[RepCtl] Robert Hieb, R. Kent Dybvig and Carl Bruggeman.
Representing control in the presence of first-class
continuations. InProceedings of the ACM SIGPLAN’90
Conference on Programming Language Design and
Implementation (PLDI), pages 66–77, White Plains, New
York, June 1990.

[TC] Richard Kelsey and Paul Hudak.Realistic compilation by
program transformation. InProceedings of the 16th
Annual ACM Symposium on Principles of Programming
Languages,January 1989.

[Type1] David N. Turner, Philip Wadler, Christian Mossin. Once
upon a type. InProceedings of the 7th International
Conference on Functional Programming and Computer
Architecture, San Diego, California, June 1995.

[Unfold] Shortcut fusion for accumulating parameters & zip-like
functions. Josef Svenningsson. InProceedings of the
Seventh ACM SIGPLAN International Conference on
Functional Programming (ICFP 2002), Pittsburgh,
Pennsylvania, October 2002.

[UVE] Olin Shivers. Useless-variable elimination. In proceedings
of Workshop on Static Analysis of Equational, Functional
and Logic Programs, Université Bordeaux I, LaBRI,
Bordeaux, France, October, 1991.

Notes
{Note compose/push}
The definition ofcompose/push is

compose/pushc1 c2 = λ u d . c1 u (λx u′ . c2 (λd′ . d′ x u′) d).

Note the one-shot, “pump-priming” up-continuationλ d′ . d′ x u′

which is used to hold ontoc1’s first generated valuex until c2 has
run forward far enough to enter its firstget call.

{Note ThanksDana}
Dana Scott is the Church of the Lattice-Way Saints.

— A. J. Perlis

The type of an (α, β) Channel,

datatype (α,β) Channel =
Chan of (α * (β,α) Channel) cont;

has a slightly unsettling and exotic appearance. Typically, recursive
datatype definitions, such asα list, have multiple arms:

datatype α list = cons of α × α list | nil

One arm is recursive (cons of α × α list), and one serves as
the “base case” (nil). But with channels, we have no base case,
just the single recursive constructorChan! One might wonder how
it would be possible to construct such a value. Things work out, of
course, in the same fashion that limits are well-defined when we
define the denotational semantics of loops recursively: continuous
lattices come to the rescue.

305

if first point?
then pt0 := pt
else if<prev,pt> crosses plane
then put(<prev,pt> intersect plane)

if <pt,pt0> crosses plane

Done

get pt

if pt on+ side of plane
then put(pt)

prev := pt

then put(<pt,pt0> intersect plane)
no more

4 5

6 7

81

32

Figure 5. The Sutherland-Hodgman polygon-clipping transducer

A. Polygon clipping and splitting
The Sutherland-Hodgman clipping algorithm [PolyClip] is shown
in Figure 5. We trace around the periphery of the polygon, pumping
its vertices through the clipper. When the first vertex arrives, the
clipper saves it away aspt0. On subsequent arrivals, the clipper
considers the edge<prev,pt>, whereprev is the previous point. If
this edge crosses the plane, then the intersection of the edge and the
plane is computed and sent downstream. The clipper then checks to
see if the current point is on the proper (or visible) side of the plane;
if so, it is sent downstream, as well. That completes one iteration;
we update the previous-pointprev variable to be the current point
and loop back to get the next point. When we run out of points, the
clipper closes the polygon by processing the edge<pt,pt0>. The
picture in the figure shows an eight-vertex polygon being clipped
to a plane; the dotted lines show the resulting clipped polygon.

Note that this algorithm doesn’t have a simple one-point-in/one-
point-out structure. When we send a vertex downstream into the
clipper, it, in turn, may send zero, one or two vertices downstream.

Structuring a polygon clipper as a transducer works well be-
cause we sometimes wish to clip a polygon to more than one plane.
In the classic 3D rendering pipeline, before the perspective trans-
formation is performed, we clip each polygon to six planes, which
define the volume of space which is visible to the viewer, the so-
called top, bottom, left, right, hither and yon planes, which, to-
gether, bound a truncated pyramid called the “viewing cone.”

The top half of Figure 6 shows the clipping algorithm ren-
dered as a transducer, in SML. It uses primitivescrosses_plane
and plane_intersect to determine if a line segment crosses a
plane and, if so, to compute the intersection point. The function
plane_sign produces a number which is positive, if the point ar-
gument is on one side of the plane; negative, if on the other side;
and zero, if directly on the plane. The code is essentially a direct
translation of the flow-chart algorithm given in the previous fig-
ure. Vertices are sent to the clipper embedded in an option type;
we close the polygon by sending a NONE value. After the clipper
has closed the polygon (and passed the NONE token downstream
itself), it resets and prepares to clip a new polygon.

We can assemble a six-plane viewing-space polygon clipper
very easily, with the pipeline constructors from Figure 3. If we wish
to clip a polygon stored as a list of verticesverts, we can do so
with
val c = clipper
(listsource verts) ‘|> (c top) ‘>> (c bottom)

‘>> (c left) ‘>> (c right)
‘>> (c hither) ‘>> (c yon)
‘>| listsink

To show that we are not limited to linear pipelines, the bottom
half of Figure 6 presents an SML transducer that uses a plane to
split a polygon, sending the vertices of the polygon on the positive
side of the plane to down-channelpos, and the vertices of the
polygon on the negative side of the plane to the down-channelneg.
It is a simple variation of the polygon clipper.

306

fun clipper plane =
let fun sendcross(pt1,pt2,outc) = (* If (pt1,p2) intersects plane, *)

if crosses_plane plane (pt1, pt2) (* send intersection downstream. *)
then put(SOME(plane_intersect plane (pt1,pt2)), outc)
else outc

(* Send pt downstream if it’s "visible" -- on non-neg side of plane. *)
fun sendvispt(pt,outc) = if plane_sign plane pt >= 0.0

then put(SOME pt, outc)
else outc

fun start(inc,outc) =
case (get inc) of

(NONE, inc) => close(inc,outc) (* Zero vertices! *)
| (SOME pt0, inc) => let fun lp(prev,inc,outc) = let val outc = sendvispt(prev,outc)

in case (get inc) of (* Go upstream. *)
(NONE,inc) => let val outc = sendcross(prev,pt0,outc)

in close(inc, outc)
end

| (SOME pt, inc) =>
let val outc = sendcross(prev,pt,outc)
in lp(pt, inc, outc)
end

end
in lp(pt0,inc,outc)
end

and close(inc, outc) = start(inc, put(NONE, outc))
in start
end

fun splitter plane =
let fun sendpt(pt,chan) = put(SOME pt, chan)

fun sendcross(pt1,pt2,pos,neg) =
if crosses_plane plane (pt1, pt2)
then let val pt = plane_intersect plane (pt1,pt2)

in (sendpt(pt,pos), sendpt(pt,neg))
end

else (pos,neg)

(* Steer pt to pos or neg consumer, depending on which side of the
* plane it occurs. If is lies exactly on the plane, send it to both. *)
fun steerpt(pt,pos,neg) = let val s = plane_sign plane pt

val neg = if s <= 0.0 then sendpt(pt,neg)
else neg

val pos = if s >= 0.0 then sendpt(pt,pos)
else pos

in (pos,neg)
end

fun start(inc,pos,neg) =
case (get inc) of

(NONE, inc) => close(inc,pos,neg) (* Zero vertices! *)
| (SOME pt0, inc) => let fun lp(prev,inc,pos,neg) =

let val (pos,neg) = steerpt(prev,pos,neg)
in case (get inc) of

(NONE,inc) => let val (pos,neg) = sendcross(prev,pt0,pos,neg)
in close(inc,pos,neg)
end

| (SOME pt, inc) => let val (pos,neg) = sendcross(prev,pt,pos,neg)
in lp(pt, inc, pos, neg)
end

end
in lp(pt0, inc, pos, neg)
end

and close(inc,pos,neg) = start(inc, put(NONE, pos), put(NONE,neg))
in start
end

Figure 6. The Sutherland-Hodgman polygon clipper and splitter as online transducers, in SML. Note that the transducer takes two output
channels.

307

