An Inverted Index Implementation Supporting Efficient

Querying and Incremental Indexing

Ajith Nagarajarao, Jyothir Ganesh R., Abhishek Saxena
{ajith, jyothir, asaxena}@cs.wisc.edu

May 6, 2002

Abstract

We have implemented an inverted index as a part of
a mass collaboration system. It provides the facility
to search for documents that satisfy a given query.
It also supports incremental updates whereby docu-
ments can be added without re-indexing. The index
can be queried even when updates are being done to
it. Further, querying can be done in two modes. A
normal mode that can be used when an immediate
response is required and a batched mode that can
provide better throughput at the cost of increased
response time for some requests. The batched mode
may be useful in an alert system where some of the
queries are can be scheduled. We have implemented
generators to generate large data sets that we use
as benchmarks. We have tested our inverted index
with data sets of the order of gigabytes to ensure
scalability.

1 Introduction

The inverted index is a data structure that is widely
used to support efficient querying on a large text
corpus. The index associates sets of documents
with tokens. Each document in the corpus is rep-
resented in a typical index by a postings entry.
A postings entry is an ordered pair of the form
<LRID, metadata>. The LRID contains the id of
the document that is represented by this postings
entry. The ordinate, metadata, is used to store in-
formation pertaining to this document such as the
frequency with which the token appears in the doc-
ument, the offset in the document at which the to-
ken appears, etc. Searching can then be done on
the basis of tokens by looking up the desired to-

ken in the inverted index and returning the set of
postings associated with the token.

In addition to supporting searching on the basis
of tokens, inverted indexes must also provide mech-
anisms to update the postings associated with a to-
ken. Postings, in general, may be added or deleted.
Further, the metadata for a posting may be up-
dated. All these updates will have to ultimately
be reflected in the inverted index. In a typical in-
verted index, the number of updates is very small
compared to the number of queries and can be clus-
tered and merged with the index either at periodic
intervals or when the number of updates crosses a
predefined threshold.

In the remainder of this report, we will describe
in detail our implementation of the inverted index.
We start by describing in section 2 the related work
done by others. In section 3, we describe the ar-
chitecture of our inverted index, the searching and
updating functions we have implemented and the
benchmarks we have generated and used. The ac-
tual implementation is discussed in section 4. The
results we obtained for varying sizes of data sets are
explained in section 5. In the last section, we con-
clude by talking of features that could have been
added to our inverted index given sufficient time.

2 Related Work

A lot of work has been done on inverted indexes
and various implementations of this data structure
have been suggested by many different authors. In
this section, we will describe related work done by
others and their relevance to our project.

In their work on compression and fast indexing,
Moffat et al. [1] describe certain compression tech-

niques for inverted indexes as well as data and show
that the compression performance does not degrade
with increase in the size of the data sets and that
the response time can still be bounded. However,
they make the assumption that the database is
static and use Huffman codes to compress it.

Brown et al. [2] propose an incremental index-
ing technique in which they describe the support
they provide for updates to the inverted index data
structure by building it on top of a persistent store.
They use the data management facilities of the ob-
ject store to achieve this goal. A similar proposal
[3] describes an architecture with a process dedi-
cated to applying updates to the inverted index and
making sure that all the shared data structures are
maintained in a consistent state.

File based inverted indexes typically use the
filesystem, support provided by operating systems.
Knight and Hamilton [4] describe one such imple-
mentation that uses the unix filesystem. The ad-
vantage of these systems is that they are reliable
and are optimized for rapid retrieval of stored data.
A careful use of filesystem support can lead to good
response times.

The Google search engine [5] is a very widely
used search engine for querying on hypertext data.
It uses a wide variety of data structures to sup-
port efficient querying. Each document in Google is
identified uniquely. Information about documents
is kept in a fixed width ISAM called the document
index. Google features a lexicon that is kept com-
pletely in main memory. Google also incorporates
a page rank feature to rank the search results by
order of relevance.

Tomasic et al. [6] describe a dynamic dual data-
structure used to implement inverted indexes. The
index then dynamically separates long and short
inverted lists and attempts to optimize each type
of list separately.

Inverted files and signature files are two ways to
implement indexing. Zobel and Moffat [7] compare
these two methods and conclude that inverted in-
dexing in an inherently superior method as they
take less time to evaluate typical queries and also
take less space.

Lucene [8] is an on going, open source search en-
gine project implemented in the Java programming
language. It is designed to support incremental in-
dexing and aims to support applications that can
search mail, online documentation and websites.

Various optimizations for inverted index main-
tenance are discussed by Cutting and Pederson
[9]. In particular, they introduce two optimization
techniques: the merge update which they show to
be better than straight forward block updates and
pulsing which reduces the amount of space required
without reducing performance.

In their work on searching large lexicons, Zobel
et al. [10] describe how to use an in-memory lexi-
con to search a compressed inverted index for par-
tially specified terms. They show that it is possi-
ble to get an effective compromise between speed
and space. Using their approach, they show that
these types of queries are much faster than brute
force searches and require less memory compared
to other pattern-matching data structures.

Compressing inverted indexes typically leads to
an increase in CPU time required to respond to a
query. However, Zobel and Moffat [11] describe a
technique of storing an internal index in each com-
pressed inverted list that can be used to reduce the
processing time required.

Berry et al.[12] explore the use of underlying as-
sociation between words in their work on latent se-
mantic indexing.

The use of a relational database system to hold
an inverted index is described by Putz [13].

Use of large data generators for benchmarking
xml is described in [14].

3 Inverted Index

3.1 Architecture

Our token index can be depicted schematically as
shown in Figure 1. At the topmost level, the token
index is responsible for handing search queries as
well as updates.

For search queries, this module sends the token
to the Searcher/Postings Manager. Updates, in
turn, are passed on to the update manager. The
main functionality of the searcher/postings man-
ager is to handle search queries. The lexicon mod-
ule is located in main memory and maintains as-
sociations between tokens and their corresponding
postings. The lexicon can be queried to obtain the
postings corresponding to a token.

For update queries, the Tokenindex module sends
the update to the Update Manager. This module is

SEARCH TOKEN

SEARCHER/POSTINGS
MANAGER

LEXICON
(IN MEMORY)

HITLIST

POSTINGS FILE
(ON DISK)

REPLACES

TOKENINDEX

INSERT/DELETE

UPDATE MANAGER

LEXDIFF
(IN MEMORY)
UPDATEDIFF
(ON DISK)

LEXENTRIES
(ON DISK)

OUTPUT MANAGER

NEWLEXENTRIES }

(ON DISK)

NEWPOSTINGFILE
(ON DISK)

Figure 1: Architecture of the Token Index

responsible for maintaining all the updates and en-
suring that information does not get stale by merg-
ing the updates with the token index. It does this
by maintaining three data structures viz., the lex
diff, the update diff, and the lex entries. It then dis-
patches these data structures to the merger module
whenever the updates need to be merged.

The merger module is responsible for perform-
ing the actual merging. This module uses the
data structures provided by the update manager to
merge the various files that hold the update infor-
mation into the token index. This module is also
responsible for resolving conflicts and eliminating
duplicates.

The Output Manager module is responsible for
ensuring that the new lexicon and postings file are
written in the correct format. This module ab-
stracts the internal format of these files and pro-
vides a uniform interface for reading from and writ-
ing to these files.

3.2 Searching

Retrieving the documents for a token involves the
use of the lexicon and the postings file. The lexicon
is essentially a hash table mapping tokens to the
offsets in postings file where the postings list for
the token begins. The searcher looks up the lexicon
to find the appropriate offset in the postings file,
seeks to that offset, and returns an iterator to the
postings list which begins at that offset.

3.2.1 Lexicon

Having the lexicon fit in memory can lead to more
efficient searches, but this consumes a lot of main
memory. As observed in [5], this is a price worth
paying considering that, today, machines with gi-
gabytes of memory are easily available.

Fitting a large lexicon in memory needs special-
ized data structures to save space. Generic data
structures provided by libraries are too space inef-
ficient for this purpose. For example, the hash table
provided by the java class libraries takes about 2GB
of memory to fit ten million tokens assuming that
the average length of token to be six characters.

la]bfe] alelf] [gln]i]

HEEEEEEEEEEEEEEEEEN

Lexicon
(in memory)
/ Postings File
L1 L2 L3
L1 L2 L3
Figure 2: Lexicon

The data structure we used is a variant of the one
used in [5], and can fit up to twelve million words
of an average length of eight characters in 256 MB.

In the lexicon, tokens are represented as null ter-
minated character sequences. The tokens are con-
catenated together to fit in a character array called
the token array. The lexicon maintains a pointer
array, an array of pointers to tokens in the C++
version and offsets of tokens in the token array in
the Java version. There is also an offset array of
same capacity as pointer array, an array of offsets
in the postings file. The pointer array, together
with the offset array gives a mapping from tokens
to offsets.

Given a <token, offset> pair to be inserted into
the lexicon, we compute the hashcode of the to-
ken. We then compute the hash value based on
the hashcode and the capacity of the pointer array.
Starting with the hash value as the index in the
pointer array, a quadratic probing scheme probes
for an empty slot in the pointer array. The token
is just concatenated to the current list of tokens in
the token array. A pointer to the token or the in-
dex of the token in the token array is added to the
empty slot found. In the corresponding slot in the
offset array, the given offset is added.

Given token to be searched in the lexicon, the

hashcode and the hash value of the token is com-
puted as done in for insert. Starting with this
hash value as the index in the pointer array, the
quadratic probing scheme probes for a slot in the
pointer array where the token pointer points to a
token matching with the search token. The off-
set in the corresponding slot in the offset array is
returned. If an empty slot is encountered during
probing, search immediately returns as unsuccess-

ful.

3.2.2 Retrieving Results

Once the offset for a given token is found, the
searcher seeks to that offset in the postings file.
The size of the postings list corresponding to the
token is stored at that offset, followed by the list
itself. The searcher returns an iterator, in the form
of an input stream that reads postings, at most as
many as given by the size.

The lexicon lookup, being an in memory task, re-
turning an iterator to the postings list for a token
requires just one disk read. Retrieving the post-
ings may require more disk reads. Usually, only the
top few results are actually retrieved. By keeping
the postings sorted based on their rank, all the top
postings that fit into a disk block can be retrieved
with just one read. While this is the best scheme

for single token queries, multiple token conjunctive
boolean queries which are very common, require
merging the postings lists of two different tokens to
retain only the postings found in both. If the do-
cld range is small and the postings lists is expected
to be dense with respect to docld’s, this can be
done efficiently using a bit vector. But, if the do-
cld range is very large, the best strategy is to keep
the postings list sorted based on docld and merge
them. Since our goal is to scale to tens of millions of
documents, we keep the postings list sorted based
on docld. A combination of the two schemes can
be beneficial. We can store a few top ranked results
in the beginning, and the rest sorted based on do-
cld. Merging of the top unsorted results need to be
handled specially. This has the dual advantage of
getting top results quickly for single token queries
and also provides a fast way to merge all the results
for conjunctive queries.

3.2.3 Effect of Concurrency and Scheduling

We investigated the effect of concurrent requests on
throughput. We expected an increase in through-
put even on a uniprocessor. Concurrent search re-
quests from multiple threads will eventually queue
up as disk read requests. With many requests
queued up at once, the disk scheduler will be able
to schedule them in a nearly optimal way. But ex-
periments showed no gain in throughput, possibly
because, at a small number of threads, there is not
much gain due to scheduling, and at a large number
of threads, the gain is offset by context switches.

We also investigated scheduling the searches at a
higher level. In an alert system, unlike in a typical
search engine, not all queries may need immediate
responses. Alert based queries that are known long
before we need to generate a response allow us to
schedule the processing of a search request. This
lets us gain throughput possibly at the cost of re-
sponse time. We queued many requests, grouped
them based on the postings file that contains the
results, and further sorted each group based on the
offsets in the files, and then processed the reordered
requests. A good disk space allocator allocates
close pages in a file closely on the disk, so ordering
the requests in the way mentioned above leads to
better scheduled set of disk reads. This increased
the throughput considerably.

3.3 Merging

Updates occur at a much lesser frequency when
compared to searching. They are expensive and
so are batched and merged with the token index.
Merging may take place periodically or whenever
the number of updates exceeds a certain predefined
value.

The update manager is primarily responsible for
ensuring that all the updates are reflected correctly
in the token index. The update manager receives
update messages from the token index and creates
three new data structures. Each update message
contains the token, the posting and a flag that
specifies whether the action to be performed on the
posting. If the flag is set, the posting is to be added
to the token index. If the flag bit is not set, the
posting is to be deleted from the token index.The
lex diff data structure is contained in memory and
ensures that duplicates are not added to the lex-
icon on the disk. The update diff data structure
which is stored on the disk specifies all the posting
updates corresponding to a particular token. This
data structure also serves as a write ahead log as
all updates are stored persistent on disk before the
actual updates are performed. Upon receiving up-
date messages, the update manager also writes this
information to the lexicon that is stored on the disk
with a null pointer for the offset field of the lexicon
entry to indicate that the postings for this partic-
ular token haven’t yet been updated.

During the merging phase, the merger uses the
data structures created by the update manager.
For each token in the lexicon on disk, the merger
scans the update diff data structure to see if there
are any update entries corresponding to this token.
It also retrieves all the postings corresponding to
this token from the postings file. If there are no
entries, all the postings corresponding to this to-
ken are sent to the output manager to be written
without any modifications. If there are postings
corresponding to this token, the corresponding ac-
tions are performed. If the action specifies the ad-
dition of the posting, the posting is inserted into
the postings stream sent to the output manager. If
the action specifies the deletion of the posting, the
corresponding posting is removed from the stream
of postings sent to the output manager. To ensure
efficiency, the update diff data structure and the
postings file are kept sorted so that merging can be

done by simply comparing the corresponding front
entries as in a merge sort. The sorting algorithm
is a stable one to ensure that updates are applied
in the same order in which they took place. To en-
sure that the changes are reflected in the lexicon,
the merger computes the pointer to the first post-
ing for each token and writes out a lex entry for the
token using this pointer.

The output manager is responsible for writing
the new lexicon and postings files. Its primary func-
tion is to abstract the internal formats of each of
these files and to provide a uniform interface for
reading and writing to the lexicon and the postings
file.

After the merging is done, the new lexicon and
the new postings file replace the old ones so that
the updates are subsequently reflected.

3.4 Benchmarks

We obtained the search performance numbers by
running search queries against a word list and post-
ings files generated by specially built random data
generators. A word list generator generates word
list of a specified size. Given this word list, a post-
ings file generator generates single or multiple post-
ings file(s) in the format we use for postings files.
Parameters that can be specified include number
of documents and their distribution with respect to
word categories. In order to obtain a distribution
similar to that of a real corpus as well as to keep
the generation simple and fast, we tuned the gener-
ator to follow a bucketwise zipf distribution. That
is, we classified all the tokens into a few groups.
As we go from the first group to the last one, the
size of the group increases exponentially, while the
number of documents each word occurs in decreases
exponentially.

The number of groups classified into depended
on the word list size. For the word list of size ten
million, for instance, we divided the words into six
groups. The first group containing just a hundred
words as a whole occurs in around 99% of the docu-
ments. The second group contains nearly ten times
as many words, but each with frequency a tenth of
that of a word in the first group. The sixth group
contained nearly 90% of the words in the word list,
but were very rare.

Though a real corpus is the best one to use to ob-
tain a very good distribution of word occurrences,

generated data has many advantages over a real
corpus. If we use a real corpus, we will have to build
the inverted index before testing searching. As the
development of the searching and index building
modules had to go on in parallel, the generators let
us incrementally test the performance of searching
even before the index building part was completely
developed. This let us come up with optimizations
and incorporate them as we developed. Moreover,
index building is a slow process. Even if we had
the index building modules ready, it would take
very long to build an index measuring a few giga-
bytes. This was unacceptable since we were forced
to build the index often because of frequent changes
in postings file format to accommodate for addi-
tion of new features and optimizations as a part of
incremental development process. The generators
have advantages when we have to study the effect
of word occurrence distribution on performance, as
the size and distribution are just parameters to the
generators.

4 Implementation

The implementation of the token index was done
in both the C++ and the Java programming lan-
guages. We’ll describe both the implementations in
detail in this section.

The linear hash based lexicon depends on mini-
base for the storage and buffer management layers.
This was written purely for evaluation and compar-
ison purposes and is not integrated with the rest of
the system. The driver takes tokens from a tokens
file, and offsets from an offsets file and loads the
linear hash table inserting <token, offset> pairs.
Keywords to be searched are randomly chosen from
the tokens file and searched for. Searching finds the
offset from the linear hash table, seeks to that offset
in the postings file, and reads the first few results.

The C++ implementation of the inverted index
consists of generators for benchmarking and the ac-
tual implementation itself. One of the generators
generates tokens, and the other generates postings
file and offsets. The lexicon loads from tokens file
and the offsets file. It also provides interfaces for
inserting a <token, offset> pair, and for searching
for a token returning the corresponding offset. A
module to search the results provides the interface
for the inverted index to the user. This module uses

the lexicon to find the offset, seeks into the post-
ings file and fetches the first few results. This also
provides an interface to queue requests and process
them. These methods can be used in batch pro-
cessing of queries. The search tester is the driver
program which selects keywords to be searched for
from the tokens file, loads the lexicon, searches re-
sults.

The Java implementation has modules for search-
ing and updating. The modified modules for
searching are also separately provided so that they
can be run with the data sets generated and used by
the C++ implementation. The problem using the
same data set for C++ and Java implementations
is that on Intel machines the C++ implementation
uses little endian format, while Java universally
uses big endian format. These modules, provided
separately, have classes to read the offsets file and
the postings file in little endian format. A lexicon
that can handle only ASCII characters is provided.
Restricting to ASCII characters has the advantage
of requiring much less memory than its wide charac-
ter counterpart. However, a lexicon (I18nLexicon)
which can deal with international characters is also
provided. The search tester drives the search tests,
and has the functionality very similar to that of the
C++ implementation.

The main Java implementation, has a module
that is responsible for fetching the postings list for
a given token using the lexicon, a module to merge
the current postings list with updates, a module to
write the output to a new postings file in a pre-
determined format, and a module to maintain the
list of updates to be merged. All these modules use
iterators in the form of input and output streams
to read and write entities they are concerned with.
The token index is the main class with provides the
interface to the user.

5 Results

The following results for our token index were ob-
tained on a machine with 512 MB RAM and a Pen-
tium III processor with a clock speed of 1 GHz.
The operating system used was the Linux Operat-
ing System with kernel version 2.4.18. The version
of Java used was 1.3.1.

Searching involves an in-memory lexicon lookup
which takes a few us and a seek and read at the

Description Scale

Large | Medium Small
Distinct Tokens | 10,000,000 | 1,000,000 | 100,000
Documents 20,000,000 | 2,000,000 | 200,000
Lexicon Size 223 MB 22 MB 2 MB
Postings File 5.25 GB | 440 MB | 35.3 MB
C++ 8.9 ms 1.6 ms 120 ps
Java 8.9 ms 1.9 ms 250 ps

Table 1: Search Response Times

offset found by the lookup. As we fetch only the
top results in out experiments, this can be done in
one read. So we can expect the search response
time to be approximately equal to the time taken
for a read. The response time for our test with
the large scale data set indeed corresponds to disk
read time. However, response times for the medium
and small scale tests were much lower than that.
This is because, the postings file being small, is
largely cached in memory. We also observed dur-
ing the test runs that a few initial runs showed
larger response times finally stabilizing at the num-
ber shown. This evidence confirms the explanation
that the small response times were due to caching.
Further, since the disk is the bottleneck, there is
negligible difference between the C++ and the Java
version in the large scale test. However, in the
medium and small scale tests, the response time
is not totally dependent on the disk seek time, so
Java version is slower than the C++ version.

Description Scale

Large | Medium Small
W /o Scheduling | 104/s 625/s | 8333/s
With Scheduling | 178/s | 1176/s | 14184/s

Table 2: Effect of Scheduling on Throughput

As explained earlier, sorting based on file off-
sets can give significant improvement in through-
put. We did expect a considerable improvement
for the large scale test. For the medium and small
scale tests, we did not expect an improvement as
large as we saw. The reason is still unclear.

The linear hash based lexicon used the mini-
base storage and buffer management layers. This
scheme used pages to store the lexicon entries. Un-

is all that is required.

Description Scale

Large | Medium | Small
In Memory Lexicon | 9.6 ms 1.6 ms | 120 us
Linear Hash Lexicon - | 11.5ms | 150 us

Table 3: Comparison: in memory lexicon vs. linear
hash based one

like the in-memory lexicon, the linear hash based
lexicon did not have any specialized data struc-
tures. This led to considerable space inefficiency.
Inefficient space utilization, compounded by vari-
ous limitations of minibase, was responsible for this
scheme not scaling to our large scale test. However,
the effects of a generic database style design can be
observed in the response time for the medium scale
test.

Documents 100,000 | 200,000
Postings file 61MB | 122MB
1000 docs/cycle | 29 mins | 78 mins
10000 docs/cycle | 9 mins | 20 mins

Table 4: Time taken for building index

We built the index from scratch varying the fre-
quency of merging. As the results show, merging on
adding 1000 documents can be considerably slower
than merging every 10000 documents.

6 Future Directions

Our implementation can handle queries concur-
rently with updates, but the implementation of
handling queries when merging is not yet complete.
One of the features our design addressed from its
conception was that of writing to a new update file
when the update file written is being used for merg-
ing. This allows the inverted index to be queried
even when merging.

Optimizing the hit lists for space requires the
knowledge of the range of LRIDs, and how sparse or
dense they are. Using this knowledge, the standard
schemes for optimization for space such as storing
differences, or other compression techniques can be
incorporated. A flexible design makes this easy be-
cause changing the read/write methods of postings

Acknowledgments

We wish to thank Prof. Raghu Ramakrishnan for
guiding us through the project and Vuk Ercegovac
for his time and valuable tips.

References

[1] Moffat,A. and Zobel,J., Compression and
Fast Indexing for Multi-Gigabit Text
Databases, Australian Comput. J., 26(1):19,
February 1994.

Brown,E.W., Callan,J.P. and Croft,W.B.,
Fast Incremental Indexing for Full-Text In-
formation Retrieval, Proceedings of the 20th

International Conference on Very Large
Databases, Sept.,1994.

Clarke,C.L.A., Cormack,G.V. and
Burkowski,F.J., Fast Inverted Indexes
with On-Line Update, Technical Report
CS-94-40, University of Waterloo Computer
Science Department, Nov. 1994.

Knight,J.P. and Hamilton,M.,
File System Based Inverted
dex, citeseer.nj.nec.com/57570.html

A

In-

Brin,S. and Page,l.., The Anatomy of a
Large-Scale Hypertextual Web Search En-
gine, Computer Networks and ISDN Sys-
tems, vol. 30, 107-117, 1998.

Tomasic,A., Garcia-Molina,H. and
Shoens,K., Incremental Updates of In-
verted Lists for Text Document Retrieval,
Proceedings of the 1994 ACM SIGMOD
International Conference on Management
of Data, 289-300, 1994.

Zobel,J., Moffat,A. and Rao,K.R., Inverted
Files Versus Signature Files for Text In-
dexing, ACM Transactions on Database Sys-
tems, Vol. 28, 458-490, 1998.

Goetz,B., The Lucene search en-
gine: Powerful, flexible, and free,
http: //www.javaworld.com /javaworld /jw-
09-2000/jw-0915-lucene. html.

[9]

Cutting,D. and Pedersen,J., Optimiza-
tions for Dynamic Inverted Index Mainte-
nance, Proceedings of the 13th International
ACM SIGIR Conference on Research and
Development in Information Retrieval, 405-

411, 1990.

Zobel,J., Moffat,A. and Sacks-Davis,R.,
Searching Large Lexicons for partially Speci-
fied Terms using Compressed Inverted Files,
Proceedings of the 19th Conference on Very
Large Databases, 1993.

Moffat,A. and Zobel,J., Self-Indexing In-
verted Files for Fast Text Retrieval, ACM
Transactions on Information Systems 14, 4,
349-879, 1996.

Berry, M.W., Dumais,S.T. and Shippy,A.T.,
A case study for latent semantic analysis,
citeseer.nj.nec.com/berry95case.hitml.

Putz,S., Using a Relational Database for an
Inverted Text Index, Technical Report SSL-
91-20, Xerox PARC, Jan. 1991.

A.R. Schmidt, F. Waas, M.L. Kersten, D.
Florescu, I. Manolescu, M.J. Carey, R.
Busse, The XML Benchmark Project, Tech-
nical Report INS-R0103, CWI, Amsterdam,
April 2001.

