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Lecture 1. Data Streams

Lecturer: S. Muthu Muthukrishnan Scribes: Anil Ada and bac®oran

We start with a puzzle.
Puzzle 1:Given an arrayA|[1..n] of log n bit integers, sort them in place ®(n) time.

1.1 Motivation

The algorithms we are going to describe act on massive dataathive rapidly and cannot be
stored. These algorithms work in few passes over the datasatmited space (less than linear
in the input size). We start with three real life scenariogivating the use of such algorithms.

Example 1: Telephone call. Every time a cell-phone makes a call to arqthone, several
calls between switches are being made until the connectioibe established. Every switch writes
a record for the call over approx. 1000 Bytes. Since a swigchreceive up to 500 million calls a
day, this adds up to something like 1 Terabyte per monthmné&ion. This is a massive amount of
information but has to be analyzed for different purposeas.efample is searching for drop calls
trying to find out under what circumstances such drop calipBa. It is clear that for dealing with
this problem we do not want to work with all the data, but jusivto filter with a few passes the
useful information.

Example 2: The Internet. The Internet is made of a network of routersiected to each other,
receiving and sending IP packets. Each IP packet contailaskeplog including its source and
destination addresses as well as other information thated by the router to decide which link to
take for sending it. The packet headers have to be procetstearate at which they flow through
the router. Each package takes about 8 nanoseconds to gglihaaouter and modern routers can
handle a few million packets per second. Keeping the whdtanmation would need more than
one Terabyte information per day and router. Statisticalyais of the traffic through the router
can be done, but this has to be performed on line at nearlyineal

Example 3: Web Search. Consider a company for placing publicity in thebWSuch a
company has to analyze different possibilities trying tocmmaze for example the number of clicks
they would get by placing an add for a certain price. For theytwould have to analyze large
amounts of data including information on web pages, numbiepsige visitors, add prices and so
on. Even if the company keeps a copy of the whole net, the sisdiyas to be done very rapidly
since this information is continuously changing.

Before we move on, here is another puzzle.
Puzzle 2: Suppose there are chairs around a circular table that are labelled fioto » — 1 in
order. So chaif is in between chairs— 1 andi + 1 modn. There are two infinitely smart players
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that play the following game. Initially Player 1 is sitting ghair 0. The game proceeds in rounds.
In each round Player 1 chooses a numbom {1,2,...,n — 1}, and then Player 2 chooses a
direction left or right. Player 1 moves in that directibsteps and sits on the corresponding chair.
Player 1's goal is to sit on as many different chairs as ptéessihile Player 2 is trying to minimize
this quantity. Letf(n) denote the maximum number of different chairs that Playearisit on.
Whatisf(n)?

Here are the solutions for some special cases.

f(2)=2
f3)=2
f4)=4
f(5) =14
f(71)=6
f(8)=38
f(p)=p—1 forpprime
f(2h) =2

1.2 Count-Min Sketch

In this section we study a concrete data streaming quessoppose there are items and let
F[1..n] be an array of size. Index: of the array will correspond to item Initially all entries of
F are 0. At each point in time, either an iterns added, in which case we increménii| by one,
or an item is deleted, in which case we decreméjit by one. ThusF'[i] equals the number of
copies ofi in the data, or in other words, the frequencyi.ofVe assumé’[i] > 0 at all times.

As items are being added and deleted, we only li2lleg n) space to work with, i.e. logarith-
mic in the space required to represénéxplicitly. Here we think of the entries df as words and
we count space in terms of number of words.

We would like to estimaté”[:] at any given time. Our algorithm will be in terms of two
parameters andd. With 1 — § probability, we want the error to be within a factoreof

The algorithm is as follows. Pickg(5) hash functions:; : [n] — [e/€] chosen uniformly at
random from a family of pair-wise independent hash funatiofe think ofk; (i) as a bucket fof
corresponding to thgth hash function. We keep a counter for each bucket, ¢gunt(7)). Initially
all buckets are empty, or all counters are set to 0. Wheneavéem: is inserted, we increment
county, h;(i)) by 1 for all j. Whenever an itemis deleted, we decrement cont:;(¢)) by 1 for
all j (see Figure 1.1). Our estimation féi:], denoted byﬁ[z‘], will be min; countj, h;(7)).

Claim 1. Let| F|| =, Fi].
1. FJi] > FJi).

2. F[i] < Fi] + €| F|| with probability at leastl — 4.
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Figure 1.1: Each item is hashed to one cell in each row.

Proof. The first part is clear. For the second part, denoteXbythe contribution of items other
thani to the(y, h;(7))th cell (bucket) of Figure 1.2. It can be easily shown that

€
E[in] = EHFH

Then by Markov’s inequality,

Pr{F > F[i] + ¢|F||} = Pr{Vj Fli] + X;; > Fli] + ¢||F||}
=Pr{Vj X;; > eE[X;]}

1 log1/8
< —
<(2)

Thus, we conclude that we can estimatg] within an error ofe|| F'|| with probability at least
1 — 0 usingO((1/€)log(1/d)) space. Observe that this method is not effective for estimpat
Fi] for small F'[i]. On the other hand, in most applications, one is interestegbsiimating the
frequency of high frequency objects.

It is possible to show that the above is tight, with respedhtospace requirements, using a
reduction from the communication complexity problem Indeéx this problem, Alice holds an
n bit stringz € {0,1}" and Bob holds dogn bit stringy € {0,1}'°¢”. We view Bob’s input
as an integef € [n]. We consider the one-way probabilistic communication nhod&erefore
only Alice is allowed to send Bob information. Given the infaation from Alice, Bob needs to
determine the value;. In this model, it is well known that Alice needs to sefith) bits in order
for Bob to determine; with constant probability greater than 1/2.

O

Lemma 1. In order to estimate”'[:] within an error ofe|| F'|| with constant probability, one needs
to usef)(1/¢) space.



Proof. Given an instance of the Index problgm y), wherez denotes Alice’s inputy denotes
Bob’s input andz| = n, chooser such that: = . Construct the array’[0...] as follows. If

x; = 1 then setF'i] = 2 and ifz; = 0 then setF'[{] = 0 and increment[0] by 2 (initially
F[0] = 0). With this construction, clearly we haJyg’|| = 1/e. Suppose we can estimaié;]
within errore||F|| = 1 with constant probability and space. This means we can determine the
value ofz;: if the estimate forF'[i] is above 1 therr; = 1 andz; = 0 otherwise. Now the
Q(n) = Q(1/¢) lower bound on the communication complexity of Index impléelower bound of
Q(1/e) for s. O

Homework: Given a data stream as an arraji..n], how can we estimatg_, A[i]*? If we are
given another data streaf#{1..n|, how can we estimatg. A[i|B|i|?

References:[CM04], [Mut09]



Lecture 2. Streaming Algorithms via Sampling

Lecturer: S. Muthu Muthukrishnan Scribes: Faith Ellen andidnn Pitassi

2.1 Estimating the number of distinct elements

This lecture presents another technique for streamingittigus, based on sampling.

Definition 1. Let ay,as, ..., a, denote a stream of items from some finite univetsen]. Let
D,, = |{ai, as, ..., a,}| be the number of distinct elements in the stream, and,Jdte the number
of unique items in the stream, i.e. the number of items thairoexactly once.

Let F' be the frequency vector, whet€[:] is the number of times that itemoccurs in the
stream, for each € [1..m|. ThenD,, is the number of nonzero entries in the frequency vegtor
andU,, is the number of entries df with value 1.

Our goal is to get good estimates 165/ D,, andD,,.

2.1.1 EstimatingU,,/D,

First we will try to estimaté/,,/D,,.

We assume that is known. We can easily choose an item uniformly at randommftbe
stream, by choosing each item with probabilityn. Doing thisk times in parallel gives us a
sample of sizé:. The problem with this approach (uniform sampling from tla¢adstream) is that
heavy items, i.e. those with high frequency, are likely tpegr many times. Since each such
item doesn't contribute t&/,, and only contributes t@,, once, such a sample is not helpful for
estimatinglU,,/ D,,.

Instead, we would like to be able to sample nearly uniformiyf the set of (distinct) items in
the stream, i.e. elementis chosen with probability close toy/ D,,.

To do this, leth be a permutation of the universe chosen uniformly at random famong all
such permutations. The idea is to remember the itemthe stream with the smallest value of
h(s) seen so far and the number of times this item has occurredifispdy, as we see each item
a; in the stream, we computga;). If h(a;) < h(s) (ori = 1), thens is set toa; andc(s) is set to
1. If h(a;) = h(s), then increment(s). If h(a;) > h(s), then do nothing. Note that, for any subset
S of the universe, each item it is equally likely to be mapped to the smallest valuehbgmong
all the elements iry. In particular, each element in the set of items in the streamprobability
1/D,, of being chosen (i.e. mapped to the smallest valué)gnd, thus, being the value efat
the end of the stream. At any point in the streaf) is the number of times has occurred so far
in the stream, since we start counting it from its first ocence.

Doing thisk times independently in parallel gives us a collection of gl@ss,, . . . , s of size
k. We will choosek = O(log(1/8)/€?). Letcy,...,c, be the number of times each of these
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items occurs in the stream. Our estimate &/ D,, will be #{i | ¢; = 1}/k. Since Probf, =
1] = U,/D,, using Chernoff bounds it can be shown that with probabditjeast(1 — §), (1 —
U, /Dy < #{i | c; = 1}k < (1 + €)U,/D,,. Thus,#{i | ¢; = 1}/k is a good estimator for
Un/D,.

It's not necessary to have chosen a random permutation fnenset of all permutations. In
fact, simply storing the chosen permutation takes too mpelees. It suffices to randomly choose
a hash function from a family of functions such that, for anpset of the universe, every element
in the subseb' has the smallest hashed value for the same fractigfi$ () of the functions in the
family. This is called minwise hashing and it was defined irapgr by Broder, et al. They proved
that any family of hash functions with the minwise propertysnbe very large.

Indyk observed that an approximate version of the minwisp@rty is sufficient. Specifically,
for any subset of the universe, each element in the subset has the smadigiseéth value for at
least a fractiorl/((1 + €)|.S|) of the functions in the family. There is a family of approxiraly
minwise hash functions of size”>¢™), so (logn)? bits are sufficient to specify a function from
this family.

An application for estimating/,,/ D,, comes from identifying distributed denial of service at-
tacks. One way these occur is when an adversary opens mangatams in a network, but only
sends a small number of packets on each. At any point in tineeetare legitimately some con-
nections on which only a small number of packets have bednfee®xample, for newly opened
connections. However, if the connections on which only alkmanber of packets have been sent
is a large fraction of all connections, it is likely a distrted denial of service attack has occurred.

2.1.2 EstimatingD,,

Now we want to estimat®,,, the number of distinct elementsdn, . . ., a, € [1..m]. Suppose we
could determine, for any numbgerwhetherD,, < t. To get an approximation to within a factor of
2, we could estimat®,, by determining whetheb,, < 2‘for alli = 1, ..., log, m. Specifically,
we estimateD,, by 2%, wherek = min{i|c; = 0}. If we do these tests in parallel, the time and
space both increase by a factoref, m.

To determine whetheb,, < ¢, randomly pick a hash functiolfrom [1..m] to [1..t]. Letc be
the number of items that hash to bucket 1. We’'ll say that< ¢ if ¢ = 0 and say thaD,, > t if
¢ > 0. To record this as we process the stream requires a singleabitells us whether is 0 or
greater than 0. Specifically, for each itemif 1(a;) = 1, then we set this bit ta.

If D, < t,then the probability that no items in the stream hash to &utkKi.e. that: = 0) is
(1—1/)P» > (1 —1/t)! = 1/e. If D,, > 2t, then the probability no items in the stream hash to
bucket 1 (i.e. that = 0) is (1 —1/t)P» < (1—1/t)* ~ 1/¢%. More precisely, using a Taylor series
approximationPric = 0|D,, > (1+¢€)t] <1/e—¢/3andPric =0|D, < (1 —¢€)t] > 1/e+¢€/3.

To improve the probability of being correct, repeat thisesal/times in parallel and take ma-
jority answer. This give the following result.

Theorem 1. It is possible to get an estimatefor D,, usingO[(1/€*)1og(1/d) logm] words of
space such that Prgfl — €)t < D,, < (1 +¢€)t] > 1 —4.
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2.2 Extensions for inserts and deletes

ExerciseExtend the algorithm for approximating the number of didtitems to allow the stream
to include item deletions as well as item insertions.

The algorithm described above for sampling nearly unifgridm the set of (distinct) items in
the stream doesn’t extend as easily to allow deletions. Tolelgm is that if all occurrences of the
item with the minimum hash value are deleted at some poirtiterstream, we need to replace that
item with another item. However, information about othenis that have appeared in the stream
and the number of times each has occurred has been thrown &aagxample, suppose in our
sampling procedure all of the samples that we obtain happba ttems that are inserted but then
later deleted. These samples will clearly be useless fonathg the quantities of interest.

We’'ll use a new trick that uses sums in addition to counts. dSkdog, m hash functions
h; : [1.m] to [1..27], for j = 1,...,log, m. For the multiset of items described by the current
prefix of the stream, we will maintain the following infornia, for eachj € [1..log, m/:

1. Dj, which is an approximation to the number of distinct itemest tire mapped to location 1
by hj!

2. S;, which is the exact sum of all items that are mapped to londtiby /;, and

3. C, which is the exact number of items that are mapped to locdtioy 7.

For each itemu; in the stream, if;(a;) = 1, thenC; is incremented or decremented ands
added to or subtracted frof}, depending on whether; is being inserted or deleted.

The number of distinct elements is dynamic: at some poirtiénstream it could be large and
then later on it could be small. Thus, we hawg, m hash functions and maintain the information
for all of them.

If there is a single distinct item in the current multisetttisanapped to location 1 by;, then
S;/C; is the identity of this item. Notice that, becauseandC; are maintained exactly, this works
even if the number of distinct items in the current multisetery large and later becomes 1.

Suppose thab’; is always bounded below and abovey- ¢) and(1 + ¢) times the number
of distinct items hashed to location 1 by, respectively, for some constank 1. Then there is
only 1 distinct item hashed to location 1 by, if and only if D’ = 1.

If D =1, thensS;/C; can be returned as the sample. If there ig sach thatD; = 1, then no
sample is output. If the hash functions are chosen randadinggn(a good set of hash functions),
then each distinct item is output with approximately equabgbility.

Instead of getting just one sample, for many applicatidns better to repeat thid /e?) log(1/6)
times in parallel, using independently chosen hash funstioNe’ll call this the sampling data
structure.

Yesterday, we had an arrady{1..m| keeping track of the number of occurrences of each of the
possible items in the universe.m|. We calculated the heavy hitters (i.e. itetwghose number of
occurrencesk'[i], is at least some constant fraction of the total number ofioeaces) " | F'[i])
and estimated™[¢], ", F[i], >.i-, F[i]>, and quantiles. Today, we estimated the number of
distinct elements, i.e#{i | F'(i) > 0}. The following definition gives a more succinct array
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for answering many of the questions that we've looked at s@.f&, distinct elements, quantiles,
number of heavy hitters.)

Definition 2. LetI[1..k] be an array, wherd|j] is the number of items that appeatimes, i.e. the
number of items with frequengyandk < n is the maximum number of times an item can occur.
For example/[1] is the number of unique items, items that appear exactly.drieavy hitters are
items that have frequency at leasy_+_, I[i], for some constant.

We'd like to apply the CM sketch directly to thearray. The problem is how to updatas we
see each successive item in the stream. If we know how mamgtinis item has previously been
seen, we could decrement that entry/adind increment the following entry. However, we don’t
know how to compute this directly from

The sampling data structure as described above, which camabgained as items are added
and deleted, allows the entries of tharray to be approximated.

2.3 Homework Problems

1. A (directed or undirected) graph withvertices andn < n? distinct edges is presented as
a stream. Each item of the stream is an edge, i.e. a pair atee(t, j). Each edge may
occur any number of times in the stream. Edge deletions doawotr. Letd; be the number
of distinct neighbors of vertek The goal is to approximaté/, = >, d?. It is called A/,
since it is analogous t6, from yesterday. The key difference is thet only counts a new
item if it is distinct, i.e. it hasn’t appeared before.

The best known algorithm for this problem uses spagg /e*)/n log n). It can be obtained
by combining two sketches, for example, the CM sketch anduisiehashing. (In general,
the mixing and matching of different data structures can &eful.) The solution to this
problem doesn’t depend on the input being a graph. The probém be viewed as an array
of values, where each input increments two array entries.

Although the space bound is sublineanirwe would like to use onlylog n)°()) space. This
is open.

2. Sliding window version of sampling
Input a sequence of items, with no deletions. Maintain a $ampiformly chosen from
among the set of distinct items in the lasitems. The space used should®@og w).

Note that if minwise hashing is used and the last copy of threeatiitem with minimum
hashed value is about to leave the window, a new item will iedx chosen.
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Lecture 3. Some Applications of CM-Sketch

Lecturer: S. Muthu Muthukrishnan ~ Scribes: Arkadev Chattlipyay and Michal Koucky

3.1 Count-Min Sketch

Prelude: Muthu is a big fan of movies. What we will see today is like tloien“The Usual
Suspects” with Kevin Spacey: 12 years of research fit into skegch. It will also take some
characteristics of another great movie “Fireworks” by Talta Beat Kitano. That movie has three
threads which in the end meet. This lecture will have threesttis.

Problem 1 (from yesterday): Sort an arrayA[l, ..., n| of log, n-bit integers in place in linear
time.

Solution idea: With a bit of extra space, sa¥(/n), one could run,/n-way radix sort to sort
the array inO(n) time. Where do we get this extra space? Sort/re-arrangddireeats according

to the highest order bit. Now, we can save a bit per elemenépsesenting the highest order bit
implicitly. This yieldsO(n/logn) space to run the radix sort. The details are left to the reader
There are also other solutions.

Problem 2: We have a stream of items from the univefde. .., n} and we want to keep a count
F[z] of every single itenx. We relax the problem so that we do not have to provide a precient
but only some approximatioA|[z]:

Flz] < Flz] < Fla] + €Y _ Fli.

1=1

Solution: Fort that will be picked later, let, ..., g, are the first primes. Hencegq, ~ tInt.
We will keept arrays of counter$j[1,...,q;], = 1,....,t. All the counters will be set to zero
at beginning and whenever an itenarrives we will increment all counterS; [z mod g;| by one.
Define Flz] = min;—; _; F;[z mod g;].

.....

Claim 2. Foranyz € {1,...,n},

Flz] < Fla] < Fla] + log;” ; Fli].

Proof. The first inequality is trivial. For the second one note tloatenyz’ € {1,... n}, 2’ # z,

' mod g; = z mod g; for at mostlog, n differentj's. This is implied by Chinese Reminder
Theorem. Hence, at malsig, n counters corresponding tomay get incremented as a result of an
arrival of /. Since this is true for all’ # z, the counters correspondingitanay get over-counted
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.....

logon
t  Lux’e{l,..,
gets over-counted by no more than this number. O

We choose = log%" This implies that we will use spad@(t*logt) = O(l"fj" loglogn),
where we measure the space in counters. This data strustgedléd Count-Min Sketch (CM
sketch) and was introduced@ Cormode, S. Muthukrishnan: An improved data stream sugima
the count-min sketch and its applications. J. Algorithm@}58-75 (2005) It is actually used in
Sprinter routers.

Intermezzo: Al Pacino’s second movie: Godfather (depending on how youtyo

Problem 3: We have two independent streams of elements ffam..,n}. Call the frequency
(count) of items in one of theml[1,...,n| and B[1,...,n] in the other one. Estimat¥ =
>, Ali] - Bld] with additive errore - || A]|; - || B]]:.

Solution: Again we use CM sketch for each of the strearfts® = (T/'[1,...,q;]);—1
TP = (TP[1,...,qj])j=1... and we output estimate

.....

.....

Claim 3.
log, n

X<X<X+ ;

A2 - 11Bl]1.

Proof. The first inequality is trivial. For the second one note aghat for anyz, 2’ € {1,...,n},
¥ # x, ¢ mod ¢; = = mod ¢; for at mostlog, n different j’s. This means that the term
Alz] - B[2'] contributes only to at mosbg, n of the sumsy~, _, T:[k] - T'/P[k]. Hence again, the
total over-estimate is bounded by, n - || A||; - || B||; and the average one Eﬁ,ﬁ‘f—"HAHl || Blls.
Clearly, there must be somjdor which the over-estimate is at most the average. O

Choosing = k’g%” gives the required accuracy of the estimate and requirméﬁé‘f# loglogn).

Intermezzo: Mario is not happy: for vectorst = B = (1/n,1/n,...,1/n) the error is really
large compare to the actual value. Well, the sketch works feelvectors concentrated on few
elements.

Problem 4: A single stream![1, . .., n] of elements fron{1, ..., n}. Estimater;, = > " (A[4])?.
Solution: The previous problem provides a solution with an additiveret||A||. We can do
better. So far, our CM sketch was deterministic, based dhragtic modulo primes. In general
one can take hash functioss, ..., h, : {1,...,n} — {1,...,w} and keep a set of counters
T;(1,...,w],5 = 1,...,t. On arrival of itemz one increments counte®§h;(z)], j = 1,...,t.
The hash functions; are picked at random from some suitable family of hash fansti In such
a case one wants to guarantee that for a given stream of tiatastimates derived from this
CM sketch are good with high probability over the random chaf the hash functions. For the

problem of estimating?; we will use a family of four-wise independent hash functio@sir sketch
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will consists of counterd;[1,...,w|, j = 1,...,t, for evenw. To estimatel;, we calculate for

eachy
w/2

Y; =) (T312k — 1] = T3[2kK])%,

k=1

and we output the mediak of Y;'s.
Claim4. Fort = O(In§) andw = %,

X — | < ey
with probability at leastl — §.

Proof. Fix j € {1,...,t}. First observe that

To see this let us look at the contribution of terris] - A[y| for z,y € {1,...,n} to the expected
value ofYj. Let us define a random variabfg, so that forz # vy, f,, = 2if h;(z) = h;(y),
foy = —210f hj(x) = 2k = h;(y) + 1 or hj(y) = 2k = h;(x) + 1 for somek, and f,, = 0
otherwise. For = y, f,, = 1 always. Notice forx # vy, f,, = 2 with probability 1/w and
alsof,,, = —2 with probability1/w. Itis straightforward to verify that; = > f.,Alz] - Alyl.
Clearly, ifz # y thenE|[f, ] = 0. By linearity of expectation,

E[Y;] =) Elfu,]- Ala]- Aly] = F.

Now we show that
VarlY;] < —F;.

2| oo

Varly;]] = E (Zfz,yA[:c]A[y]ZA[J:]-A[:C]”

= LK (fovyA[x]-A[yO]

zAy

= E| Y fey: fuy - Al]- Al Al] - Al
LeFy,x' #y’

For(z,y) # («",y),x #y, 2" #

Efay - fory - Ale] - Aly] - Al2'] - Aly']] = 0
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because of the four-wise independenceé pfFor (z,y) = (', y'),z # y, 2’ # '

Blfuy oo+ Al Al AT AW] = (545 1 4) Al - A
= AR app

Hence,

Varly) < 2 ( ZA[xP) - R

Applying Chebyshev’s inequality, and the fact that= }Q we get,
Pr UY} — FQ‘ Z EFQ] S é

Since each hash function is chosen independently, we cdp @pprnoff bound to conclude
that takingO(log(1/6)) hash functions is enough to guarantee that the median of;thgives an
approximation off; with additive error less tha#F, with probability at least — §.

0]

Definition: Let A[1,...,n] be the count of items in a stream. For a constasat 1, item: is called
a¢-heavy hitterif Ali] > ¢ > 7, A[j].
Problem 5: Find all p-heavy hitters of a stream.

Solution: First we describe a procedure that findsgalieavy hitters given access to any sketching
method. In this method, we foring n streamsB,, . . . Biog»—1 in the following way:

j2°

B; []] = Z A[k]

k=(j—1)2i+1

This means thaB; [j] = B;_1(2j — 1] + B;_1[2j]. When a new element arrives in streain
we update simultaneously the sketch of eaghFinally, in order to findp-heavy hitters ofd, we
do a binary search by making hierarchical point queries erdgn streams that we created, in
the following way: we start a3,z ,,—1. We queryBig,—1[1] and Biogn—1[2]. If Biogn-1[1] >
¢> n_, Alk] = T (say), then we recursively check the two next level noées,_»[1] and
Biogn—2[2] and so on.

In other words, the recursive procedure is simply the foihmy if B;[j] > T, then descend
into B;[2j — 1] and B;[2j]. If B;[j] < T, then this path of recursion is terminated: K= 0, and
B;[7] > T, then we have found a heavy hitter.

Clearly, this procedure finds all heavy hitters if the poiméges worked correctly. The number
of queries it makes can be calculated in the following way:efachi, B; can have at mosit/¢
heavy hitters and the algorithm queries at most twice thebmunof heavy-hitters of a stream.
Thus, at most2 logn/¢) point queries are made.
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If we implement the probabilistic version of CM-sketch, ascdribed in the solution to Problem
4 above, it is not hard to see that each point-query can be toa@¢éurn an answer with positive
additive error bounded by with probabilityl — §, by using roughlytog(1/§) pairwisé indepen-
dent hash functions, where each hash function has abguft) hash values. Such a sketch uses
O(%1og(1/6)) space.

For the application to our recursive scheme here for findegvi hitters, we want that with
probability at least1 — §), none of the at mos logn/¢) queries fa#t. Thus, using probabilistic
CM-sketch with space (< lognlog (21(‘;%)) and probability(1 — §), we identify all p-heavy
hitters and not return any element whose count is less(thane)-fraction of the total count.

Reference:[CM04]

Note for making point queries we just need pairwise independ as opposed to 4-wise independence used for
estimating the second moment in the solution to Problem drbef

2A query fails if it returns a value with additive error morethane-fraction of the total count.

15



Lecture 4. Graph and Geometry Problems in the Stream Model

Lecturer: Andrew McGregor Scribes: Matei David and Fras¢@mieux

In the lectures so far, we considered numerical data strelarttss lecture, we consider streams
describing graphs and metric spacesgraph streamis a stream of edges = {ej,es,..., e}
describing a graptr onn vertices. Ageometric strears a stream of point&” = {py,p2, ..., Pm}
from some metric spacey, d). We're now interested in estimating properties(ofor X, e.g.,
diameter, shortest paths, maximal matchings, convex.hulls

This study is motivated by practical questions, e.g., edgdise graph can be pairs of IP ad-
dresses or phone numbers that communicate. In gemeiialthe number of edges. Unless stated
otherwise, we’ll assume each edge appears only once in ithanst We're interested in both
directed and undirected graphs. We're usiin our bounds, hiding dependence on polylogarith-
mic terms inm andn. Further, we assume single points can be stored (i) space and that the
distanceli(p;, p2) can be computed easily if both andp, are stored in memory.

The specific problems we consider areunting the number of triangles in a grafgBec-
tion 4.1), computing a matching in a grap{Bection 4.2)clustering points(Section 4.3), and
computing graph distancéSection 4.4).

4.1 Counting Triangles

The Problem. Let 75 denote the number of triangles in a gragh When(G is presented as a
stream of edges, we’re interested in estimafiha@ip to a factor of 1 + ¢) with probability1 — 4,
given the promise that; > ¢ for somet.

Warmup. We start with a simple algorithm usir@(e2(n?/t)log6~!) space. Note, this only
improves on keeping all edgesdn(n?) space whemn = w(n).

1. pick1/e? triples (uy, vy, wy), (uz, vo, wa), . . .

2. as edges stream by, check that all 3 edges in every triplprasent

3. estimateél’; by the number of triples for which we found all 3 edges

4. repeat steps 1-3 fasg 6~ times (in parallel), output the average of the estimates

Note that the probabilityu,, v;, w;) is a triangle inG is preciselyTs/(}). Standard Chernoff
bounds yield the desired correctness bounds.

Theorem 2. To determine whetheF; > 0, Q(n?) space is required, even for randomized algo-
rithms.
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Proof. We give a reduction from 2-player Set-Disjointness: Aliogl 8ob have a x n matrices
A, B, and they are trying to determinedi, j such thatA(i, j) = B(i,j) = 1. By [Raz92], this
requires2(n?) bits even for protocols that are correct with probabitifyt.

Suppose there is a spacalgorithm for determining i3 > 0. LetG be a graph oBn vertices,
with V' = {uy, ..., up,v1,. .., 00, w1, ..., w,}, and initial edged’ = {(u;,v;) : i € [n]}. Alice
adds edges$(u;, w;) : A(i,j) = 1}, and Bob adds edg€gsv;, w;) : B(i,j) = 1}. Alice starts
simulating the algorithm until it processes the initial edgnd her own, then communicates the
memory of the algorithm to Bob, usingpits. He continues the simulation, eventually obtains the
output of the algorithm, and announces it using one more bit.

For correctness, observe th@tcontains a triangle (i.eZ3 > 0) iff the inputs to the protocol
intersect. O

Observe that the lower bound works even for algorithms thealowed several passes over
the input stream.

Theorem 3(Sivakumar et. al) There is an algorithm using spac®(e=2(nm/t)?log 6 1).

Proof. The algorithm reduces this problem to that of computingdesgy moments of a related
stream. Given the graph stream construct a new streant as follows: for every edgéu, v),
generate all triplegu, v, w) forw € V' \ {u,v}.

Denote byT; the number of triples i for which exactly; edges are present (d. Observe
that thek-th frequency moment aof’ is

Fi(o') = Y (#(u,v,w)f =1-Ty +2°- T, + 3 T,

(u,v,w)

and that 5 )
TgIFO—i‘Fl—Fi'FQ.
Hence, good approximations féy, F1, F5 suffice to give an approximation far;. O

Theorem 4 (Buriol et. al) There is an algorithm using spa®e—2(nm,/t) log 6").
Proof. We can obtain a better algorithm using the following idea.

1. pick an edge; = (u, v) uniformly at random from the stream
2. pickw uniformly at random from/ \ {u, v}
3.ife; = (u,w) ande, = (v, w) for j, k > i exist, return 1, else return 0

To obtain an algorithm, we run this basic test many times nalfg, and we output the average of
these runs, scaled by a certain amount. O
4.2 Maximum Weight Matching

The Problem. We now consider the Maximum Weight Matching problem: Givestraam of
weighted edgege, w,), find M C E that maximizes) __,, w. such that no two edes i share
an endpoint.

17



Warmup. Let’s us first find a 2-approximation for the unweighted casiaq onIyO(n) space.
Given each edgée, w,.) from the stream, we must decide if we add it to our current hiate For
, we consider all previously choosen edges that share an@ntwath (e, w.) and we compute
the sumw of their weights. Ifw. > v then we remove these edges framand replace them with
(e,w,). Itis a simple exercice to show that the weight OPT of therpptisolution is at most twice
the weight of any maximal matching.

We will sketch the proof of the following result from [McGQ5]

Theorem 5. There is a8+ +/2-approximation algorithm for the Maximal Weight Matchingplem
that uses)(n) space .

Before giving the algorithm, we mention that result has biegproved by a series of recent
results: 5.59... [Zel08] and 5.24... [Sar09] and that itisoaen question to prove a lower bound
or a much better result. Letbe some parameter. The algorithm is the following:

e At all time, we maintain a matching/

e On seeing an edge, w.), suppose that' € M and (maybe}” € M have a common end
point with e

o If w, > (14 v)(we + wer) then replace’ ande” by e in M.

For the analysis, we use the following (macabre) definitimndescribe the execution of the
algorithm:

e An edgee kills and edge’ if ¢/ was removed from current matching whearrived.

e We say an edge issurvivorif it is in the final matching.

e For survivore, thetrail of the deadss 7T'(e) = C; U Cy U - - -, whereCy, = e and

Ci= |J {edges killed by-'}

e'eC;_1

For any set of edges we definew(S) = > ..o w., Wwherew, is the weight of the edge
Lemma 2. Let .S be the set of survivors and(S) be the weight of the final matching.

L w(T(5)) <w(S)/v

2. OPT< (1 +9)(w(T(S)) 4+ 2w(S))
Put together this give OPE (1/v + 3 4+ 2v)w(S) and~y = 1/+/2 gives Theorem 5.

Proof. 1. Observe first that th&'(e) are disjoints. Hence, it suffices to observe that for each
e € S we have:

(1 +7)w(T(e) =D _(1+7Nw(C) = w(T(e) +w,)

i>1
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2. We can charge the weights of edges in OPFt0 7'(S) such that each edgee T'(S) is
charged at modtl + v)w(e) and each edge € S is charged at most(1 + v)w(e). More
details are given in [FKMO5].

0]

4.3 K-Center Clustering

Due to the lack of time, the topics discussed in this sectiwh the next one have only been
sketched.

The Problem. We are given an integér, and a stream af distinct pointsX = (py, pa, ..., pn)
from a metric spacgy, d). We need to find a set éfpointsY” C X that minimizesnax; minyey d(p;, y).
Since we need to outpiétpoints, we consider the case where we Have) memory to store them.

Warmup. The standard Greedy algorithm for this problem works in $g@dce, and it obtains
a 2-approximation if given the optimal valu@,PT": set radius t@ - O PT, then pick as a centre
any node which is not covered by the previous centres.

If only given boundsa < OPT < b on the optimal radius, one can obtaina+ ¢) ap-
proximation algorithm by running the original algorithmparallel with several values f@p PT"
a,(1+€)a, (1 + ¢€)?a,...,b. This requires spadé(klog(lJrE)(b/a)), which is not good when/a
is large.

Theorem 6.[MKO08a, Guh09] There exists@+¢)-approximation algorithm using spac@( ke~ loge ™).

4.4 Distance Estimation in a Graph

The Problem. We are given a stream with the (unweighted) edges from a graghis defines
the shortest path metri; : V x V' (whereds(u, v) is the shortest path betweerandv in G.) The
problem is to estimaté (u, v) for some vertices, v. We can consider the problem wherg are
known in advance of seeing the graph stream, and also whgmiteeot known in advance.

A common method for approximating graph distance is via tirestruction of a spanner.

Definition 3. Given a graphG = (V, E), at-spanner of+ is a graphH = (V, E’) such that for
all U, U, dG<u7 U) < dH(U, U) <t- dG<u7 U)'

Theorem 7. [EIkO7, Bas08] There is an algorithm that accept as inputr@atn of edges from a
graph and that computes2t — 1 spanner using)(n'*'/*) space.
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Lecture 5. Functional Approximation

Lecturer: S. Muthu Muthukrishnan Scribes: Laszlo Egri ahddhg Nguyen

5.1 Setting

Let D be a subset dk”, called adictionary. Given an input vectod € R" and an natural number
b > 1, we wish to findb vectorsD;, D, ..., D, from D so that

AL,02,.y

b
min  {|A=) aDill : a; € Rfor1 <i<b} (5.1)
e i=1

is minimal. For each subsétD;, Ds, ..., D,} of D, the quantity (5.1) always exists (it is the
distance from the vectot to the subspace generatedfy,, D, ..., D,}) and is also called the
error of the subsetD,, D,, ..., D,}. So here we are asking for the subset of sipéth smallest
error.

For example, ih = N andD contains a basi®,, D,, ..., Dy for RY, then we can take this
basis as our output. The minimal value for (5.1) for this otifp O and is achieved by taking so
thata; D; is the projection ofA along the corresponding basis vecior.

For another example, suppose tiatconsists of an orthonormal basis f&f¥, andb < N.
Then the error (5.1) is minimal when we takg, D-, . .., D, to be theb unit vectors with largest
projections ofA, anda; = A - D;.

In the second example, computing a projectiomidbkes timeD (). So the naive algorithm
that computes all projections &f and then chooséslargest among them takes tird N2). The
basic question is whether we can improve on this running.tikive will show later that ifD is
some special basis (e.g., the Haar wavelet) then we needioady time.

In practice, for an application (e.g., audio, video, ettiys important to find the “right” basis
that is suitable to the common kind of queries (i4andb).

5.2 Arbitrary Dictionary

We show that the general setting, where the dictionary igrarig, it is NP-hard even to estimate
whether the minimal error (5.1) is 0. We do this by reducirgektimation problem to thexact set
coverproblem. LetU = {1,2,...,n}, U is called the set offround elementsGiven a collection
St,5,,...,5, of subsets o/ and a numbed < n, the exact set cover problem is to findexact
coverof size< d, i.e., a collection ofl pairwise disjoint subsetsS;, , S,, . .., Sk, such that



(Theset coveproblem is defined in the same way but the subSgtare not required to be pairwise
disjoint.) The problem is NP-hard to approximate, in thesgetiat for any given constant< 1,
there is a reduction from SAT to exact set cover so that

e a YES instance of SAT results in an instance of exact set aeitera cover of size< nd,
e a NO instance of SAT produces an instance of exact set cotemwicover of size> d.

We represent the inpufs, Ss, . . ., .S,, to the exact set cover problem by ank m matrix M,
where
Mi,j == 1 |ﬁ Z c Sj

(Thus thej-th column of M is the characteristic vector 6f;.)

For the reduction, consider the dictionary consisting ef¢haracteristic vectors (also denoted
by S;)of S (for1 <j <m), A= 1 (the all-1 vector of length) andb = nd. Itis easy to see that
an exact cover of size < b = nd gives rise to a subset

{D1, D>, ..., Dy}

such that

(Here we take
L =Qg =...=qaz =1, Qsp1=...=0p =0

The vectorsD; are precisely thosg,, that belong to the exact cover.) Consequently, if there is an
exact cover of sized, then the minimal value of (5.1) is 0. Otherwise, if there @oeexact cover

of size> d, then the error (5.1) of each subge?,, D-, ..., D,} is always at least the distance
from A to the subspace generated{y,, Ds, ..., D,}. Let h be the smallest distance fromto

any subspace generated byectors inS, thenh > 0. The error (5.1) is at least, and hence is
strictly greater than 0.

5.3 An orthogonal basis: Haar wavelet

Suppose thalv = 2*. An orthogonal basis faR" based on the Haar wavelet can be described as
follows. Consider a fully balanced binary tréeof depthk with N = 2* leaves andV — 1 inner
nodes. Each inner node is labeled with an integet, 1 < n < N in the following way: the
root is labeled with 1, and fdr < n < NN with binary notation

nN="ni_1MNt_—2...MNo

(where2 < t < k) the node labeled by is the other endpoint of the path that starts at the root and
follows the direction specified by the bits_, ..., ng. (Here ifn,_5 is 0 then we follow the left
child of the root, otherwise ifi;_» is 1 then we follow the right child of the root, etc.)
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Number the leaves df from left to right with1,2, ..., N. For eachn (1 < n < N) the basic
vectorw,,:
Wyp = (Ul, Ug, . . . UN)

is defined so that for all index

0 if 7 is not a descendant af
w; =<1 if 7 is a descendant of the left child of
—1 if 7is a descendant of the right child of

More precisely, For anode, 1 < n < N, let{(n) (resp.r(n)) be the left-most (resp. right-most)
leaf descendant of, andt(n) be the number of the right-most leaf descendant of the |l cff
n. (Note that/(n) < t(n) < r(n).) Now define the basic vector

w, = (0,0,...,0,1,1,...,1,-1,—1,...,—1,0,0,...,0) (5.2)

where the 1's are from positiofin) to ¢(n), and the—1's are from positiort(n) + 1 to »(n). For
example, for the root:
wy = (1,1,...,1,-1,—1,...,—1)

where the first half of the coordinates are 1 and the otheranalf1l. For another example,
wye-1 = (1,—1,0,0,...,0), wy_1 = (0,0,...,0,1,—1)

Finally, define
WN = (1,1,,1)

It is easy to verify thatw,,,, w,,) = 0 for all n; # n,. So we have a set df vectors that are
orthogonal, and hence they form a basisidr. We also assume that each veatgris normalized
SO we get an orthonormal basis.

5.4 An efficient way of finding the b Haar wavelets with the
largest projections

Now, given a quenA andb < N, we need to find a subset of basis vectbrs Ds, . . ., D, so that
(5.1) is minimal. This is equivalent to finding such a subSetD,, ..., D, that the projection of
A on the subspace generatedDy, D, . .., D, is maximum. We will show that this can be done
intime O(N log N) (better than the obvious algorithm that takes tit{év?)). Indeed, the running
time can be improved to linear iN, but we will not prove it here.

The inner nodes in the tré above consist of layers. For example, the root alone makes up
the first layer, and all nodeswheren > 2*~! make up the-th layer.

Because the Haar basis is an orthogonal basis, we can se\@dblem stated in the Sec-
tion 5.1 by finding the largest projections. We can do this by calculating the ipreduct with
each of theseV vectors. This would tak€(N?) time. The question is whether we can do it
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faster. So far we have been looking at items that have beleeraitserted or deleted. We can now
look at a simpler streaming model where there is a vector andhye looking at the vector left to
right, just reading one character at a time. In other wordsave inserting théth component, the
i + 1-th component, and so on. So we are going to take a sigmath NV components, read it left
to right, keep computing something which in the end will ginetheb largest wavelet coefficients.
More precisely, the idea comes from the following obseoratiForl < i < N let A; be
the vectorA at time¢, i.e. the vector whose firgtcoordinates are the same as thatdpofand the
remaining coordinates are 0. In other wordsdif= (A[1], A[2], ..., A[N]), then

A = (A1],..., A[i],0,0,...)

Consider the pathp; from the root to leaf in the tree described above. Observe thatis to the
left of this path (i.er(n) < i), then the projection oft onw,, is determined already hy;:

<Avwn> = <Aivwn>

Thus, the high level idea of the algorithm is to compute reiety for: = 1,2,..., N the
b basis vectorsv,, wheren is to the left of the patlp;, that give the largest value d#4;, w,,).
For this, we will also have to maintain the dot products, w,,) for every noden that lie on the
current pathp;. Observe that to keep track of this information we nékd + log(N)) space.
Consider now inserting the + 1)-th elementA[i + 1] (i.e. the(i + 1)-st step in the algorithm).
Let p;,1 be the path from the root to ttiée+ 1)-th leaf node. We want to compute the inner product
of the partial input vector (i.e. when only the fiist- 1 components have been inserted) with each
vectorw corresponding to a node on the path,. For simplicity, we assume that the entries of
the Haar basis vectors abe—1, 1, but note that actually, the Haar wavelets are normalizéerd
are three things to observe:

1. Observe that by the definition of the Haar wavelet basis, iff on the pathp;,; then the
(7 + 1)-th component ofv,, is eitherl or —1. Assume thatv is a node of bothp; andp; ;.
In this case, if the¢i + 1)-th element ofw, is al (—1), then

(Aipr, wp) = (Ay, w,) £ Afi + 1]

So to updaté A;, w,,) we simply need to add (subtract]i + 1] to (from) the current value.
If wis a“new” node, i.e. it does not appearinthen(A;,,w,) = Ali + 1].

2. Intuitively, the path we consider in the binary tree atheatep is “moving” left to right.
Consider a wavelet vectar’ that corresponds to a node of the binary tree that is to the lef
of p;+1. More formally, assume that for some< i 4 1, w’ corresponds to a nodeof p,,
butn is notinp, ;. Then the(i + 1)-th component ofv’ is 0 by the definition of the Haar
wavelet basis and therefore the inner produabofvith A is not affected byA[i + 1].

3. Theinner product ofl at time: with wavelet vectors that correspond to nodes which did not
yet appear in any path is
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To keep track of thé largest coefficients, we need spacé). We can use a heap to store
this information. Observe that the time requiredigV log N) sinceN elements are inserted and
whenever an element is inserted, we need to updaley(V)) inner products along the path from
the root to the-th leaf. We note that there are other ways to do this in litieae.

We consider now a slightly different problem. We want to pldlee previous problem into a
real streaming context. In other words, we consider thetimpctor A and we allow insertions and
deletions at any point. We are looking at the frequency of#ei.e. A[i] represents the frequency
of itemi. The query is to find the bestterm representation using the Haar wavelet basis.

We discuss some informal ideas Muthu gave about this prabBdearly, if we get information
about A from left to right, we can just do what we did before. But th&nt very useful. So
observe that any time we update a particular element, iespaonds to updating the coefficients
of log(N') wavelet vectors. We hau¥ wavelet basis vectors, so consider the vettothat stores
the coefficients of the basis vectors when the sighi expressed in the Haar wavelet basis. Now
you can think of updating an elementihas updatindog(/N) elements ifV. In a sense, now we
are facing the heavy hitter problem, i.e. we needittergest elements dfi”. Using techniques
we have seen before, it is possible to findavelet vectors whose linear combination (where the
coefficients are the inner products of the wavelet vectoth W) is 2, such that the following
holds:|| A — R ||<|| A — ROPT || +€ || A |2, whereROTT is the best-term representation of.

There is also another algorithm that guarantees|thait- R ||< (1 +¢) | A — ROPT |. This
algorithm is more complicated and Muthu gave only the higlel intuition. The difficulty with
directly getting the togk elements as! gets updated is the following. We can get the large ones
using a CM sketch. But if there are a lot of “medium” ones, w# mot be able to get them in a
small space. But you can get them if you estimate the large,subtract it out from the signal
(use linearity of CM sketch), look at the remaining signafoy are not estimating the large ones
exactly, so the rest of the signal has some error.) Try to fiednieavy hitters again. You repeat
and the residual error keeps on going down. With a reasoraabtrint of iteration, you will get
the estimation. At a high level, it is a greedy algorithm.

5.5 A variation on the previous problem

Let D be a dictionary consisting of Haar wavelets. 4ebe a signal withV components. Léei be
the number of vectors we want to combine:

In the previous sections, we wanted to minimize the error

N

1A= Ry [P=) (All] - Ryli])*.

i=1

The following problem is open (in 2009 March). As before, basis is the Haar wavelet basis.
There is another vector with positive entries that is also part of the input. The veet has the
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same numbel of entries as the signal vectdrand it is normalized ta, i.e. -~ | 7[i] = 1. The
problem is tominimizethe “weighted error”:

> w(@)(Ali] — Ra[i])*.

i=1

(Note that if all the entries of are equal, then this is just the previous problem.) The prolk
well-motivated: these representations are used to appaigisignals. The question is that when
you approximate a signal what do you do with it? In the datalwastext, for example, people
often look at queries for individual items. So usually datsds keep record which items are asked
more often than others, and this is what the vegtoorresponds to.

Some informal aspects of the problem: Recall that in theimaigoroblem, the coefficients
were the inner products of the Haar wavelets with the sighallt is no longer the case when
we have weighted norms. When we do sparse approximation wejdst have to come up with
which vectors to choose but also we have to come up with th# digoice of coefficients. It is
harder to work with this, but we could make the problem easseiollows. We could assume that
once we picked the vectors we use the coefficients only aloaigdirection, i.e. we assume that
the coefficients are inner products with the signal vectord do this then there is an interesting
O(N?v?) dynamic programming algorithm. (This algorithm uses theabyj tree we used before
and benefits from the fact that each node in the binary tre@aha®stiog(/N) ancestors. This
makes it possible to take a look at all possible subsets dibifiéV) ancestors of a node in linear
time.)

Sparse approximation people use Haar wavelets becausevdaelets work well for the sig-
nals they work with. But if you put arbitrary weights as we d@bove, then the Haar basis might
not be the best basis. One question is: if we know the classafhis, which dictionary should
we use? Another question would be: what weights would be fmratiose signals for which Haar
wavelets give a good basis? Muthu mentioned that they cagaget approximations when they
use piecewise linear weights. You can also ask the sameigueabout a Fourier-dictionary.
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Lecture 6. Compressed Sensing

Lecturer: S. Muthu Muthukrishnan Scribes: Nicole Schwadkand Luc Segoufin

6.1 The problem

Assume asignal A € R™, for n large. We want to reconstrudtfrom linearmeasurements4, ;),
where each); is a vector inR", and(A, v;) denotes the inner product d@f and;. For suitably
choseny;, n measurements suffice to fully reconstruct(if the set of ally; forms a basis of
R™). However, we would like to do onl} measurements fot << n. The question is which
measurements should be done in order to minimize the ertarelk@ what we measure and the
actual value ofA.

We fix some notation necessary for describing the problerigely: We assume that an or-
thonormal basis), ..., 1, of R" is given. Thedictionary V¥ is then x n matrix thei-th row
of which consists of the vectat;. The measurementsi, ¢;), fori = 1,...,n, form the vector
0(A) := VA, the vector of coordinates of with respect to the basis, . . ., ¢,,. Note that by the
orthonormality of& one obtains thatl = """ | 6;(A)v;, wheref,;(A) denotes theé-th component
of 6(A).

In the area oEparse approximation theonne seeks for a representationdthat is sparse in
the sense that it uses few coefficients. Formally, one looka setK’ C {1,...,n} of coefficients
such that: = | K| << n such that for the vector

R%M:ZMM%

the error||A — R(A, K)||3 = Y i (A; — Ri(4, K))* is as small as possible. Singeis orthonor-
mal,
1A = R(A KI5 = Y 0:(A)*.

igK
Thus, the error is minimized il consists of the: coordinates of highest absolute value in the
vectord(A). In the following, we writed;, . 6;,, . ... 6, to denote the components of the vector

6(A), ordered in descending absolute value, i.e., ordered $wathét,| > |6,,| > --- > 16;.].
Furthermore, we writéz;,(A) to denote the vectaR(A, K) whereK is a set of sizé: for which
the error is minimized, i.e.,

k
Re(A) = > 051, (6.3)
=1

Of course, the optimal choice &f depends on the signal which is not known in advance.
The ultimate goal icompressed sensimmgn be described as follows: Identify a large class of
signalsA and a dictionaryl’, described by & x n matrix, such that instead of performing the
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measurementd A, already the: measurement®’ A suffice for reconstructing a vect@&(A) such
that the errot| A — R(A)||3 is provably small on all signald in the considered class.

A patrticluar class of signals for which results have beenexeld in that direction is the class
of p-compressible signaldescribed in the next section.

6.2 p-compressible signals

We assume that a dictionaryis given. Furthermore, let us fixto be a real number with < p <
1.

Definition 4. A signal A is called p-compressible (with respect tb) iff for each: € {1,...,n},
10, = O(=7).

Obviously, if A is p-compressible, then

A= Re(A)ll; = > 6 < O™ < Gy k2
i=k+1 kt1
for a suitable numbef),. Thus, if we assumgto be fixed, the optimal errdfA — R,(A)||3 is of
size at mosCh, = O(k'~7) (for Ch == C,, - K*=%/7).
The following result shows that for reconstructing a vedtasuch that the errot A — R||3 is
of sizeO(Cy,), alreadyk log n measurements suffice.

Theorem 8 (Donoho 2006; Candes and Tao 2008here exists dklogn) x n matrix ¥’ such
that the following is true for alp-compressible signald: when given the vectob’A ¢ RFloen,
one can reconstruct (in time polynomialif a vector? € R™ such that|A — R||2 = O(C{™).

The proof details are beyond the scope of this lecture; tleeadivstructure of the proof is by
showing the existence df’ by proving the following: if¥’ is chosen to be the matrik¥, where
T is arandonk log n) x n matrix with entries in{—1, 1}, then the probability tha?’ satisfies the
theorem will be nonzero. A crucial step in the proof is to ugeL; trick”, i.e., to consider the
Li-norm|| - ||; instead of the.,-norm|| - ||» and solve a suitable linear program.

Note that in lecture #5 we already considered the partictdae wherel is a Haar wavelet
basis, and solved similar questions as that of Donoho and&3asnd Tao for that particular case.

6.3 An explicit construction of U’

Theorem 8 states that a matiix exists, and the proof of Theorem 8 shows tfiatan be chosen
asTV, for a suitable(klogn) x n matrix . The goal in this section is to give an explicit,
deterministic construction df.

Recall from Section 6.1 tha{A) = ¥ A. Our goal is to approximate the vectBf,(A) from
equation (6.3) by a vectdk that can be found using only the measuremdrit$ instead of using
all the measurementB A. Clearly, if U/ = TV, thenUW’'A = TVA = T(A). Since we want to
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usel’A = T0(A) to find kg, (A), we clearly should choosE in such a way that it picks up the
largest components (w.r.t. the absolute valu€)(of).

Note the striking similarity between this problem and thH&leing combinatorial group testing
problem: We have a sét = {1,...,n} of items and a seb of distinguished items,D| < k.
We identify the items inD by performing “group tests” on subsefs C U. The output of each
group test i) or 1, revealing whether the subsgt contains at least one distinguished item, i.e.,
|S; N D| > 1. Collections ofO(k log n)?) nonadaptive tests are known which identify each of the
distinguished items precisely.

For the special case where orlysupport signalare considered (i.e., signafswhere at most
k of the components ifi(A) are nonzero), a solution of the combinatorial group tegirgplem
almost immediately gives us a matfikwith the desired properties.

For the more general case@tompressible signals, the following is known.

Theorem 9(Cormode and Muthukrishnan, 2008)/e can construct a pal¥, ¢, logn) x n matrix
T in time polynomial ink andn such that the following is true for the matniX := 7"V and for all
p-compressible signald: when given the vectob’ A, one can reconstruct a vectdét € R™ such
that||A — R[5 < ||A = Rgu(A)|[3 + "

The construction of" in the proof of Theorem 9 is based on the following two facteéve|n| :=
{1,...,n}).

Fact 1 (k-separative strong set).Givenn andk, for | = k%log® n, one can find setsS;, - - - , S
included inn| such that for alLX C [n] with | X| < k we have

Vo € X,3i such thatS; N X = {z}.

Fact 2 (k-separative set).Givenn andk, for m = klog”n, one can findn setsS;,--- .S,
included in[r] such that for allX C [n] with | X| < k£ we have

Ji such thatS; N X| = 1.
Furthermore, we need the following notations for descgtilre matrix7:

1. Given au x n matrix M and av x n matrix N, M & N denotes théu + v) x n matrix
consisting of the rows ai/ followed by the rows ofV.

2. Given a vectolB € R™ and au x n matrix M, B ® M denotes the: x n matrix whose
element(s, j) is B; = M[i, j|. If N is av x n matrix thenN @ M is auv x n matrix obtained
by applying the vector operation on each row\dfusing® to merge the results.

3. TheHamming matrixH is thelogn x n matrix such that columnis the binary coding of.
We add an extra row té&/ with 1 everywhere. Wit = 8 this yields :

11110000

11001100
10101010
11111111

This basically corresponds to a binary search strategy et af sizen.
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Now setk’ as a suitable function df andp and letm be the number correspondingriaandk’ as
given by Fact 2 and let’ be the correspondinif-separating sets. Skt as a(k’logn)? and let/
be the number correspondingit@ndk” as given by Fact 1 and I&t’ be the corresponding strong
k"-separative sets. Frosf form the characteristic matrix/’ and fromS” form the characteristic
matrix M"”. Let T be the matrix(M’ ® H) & M”. This matrix has a number of rows that is:

m x logn + [ which is poly-log inn by construction.
The fact that this matrix has the desired properties can lnedfin [Cormode and Muthukrish-

nan, SIROCCO 2006].

6.4 Literature

A bibliography on compressed sensing can be founttgd://dsp.rice.edu/cs
In particular the following references were mentioned githe lecture:

e David Donoho: Compressed sensing. IEEE Trans. on Infoandtheory, 52(4), pp. 1289—
1306, April 2006.

e Emmanuel Candes and Terence Tao: Near optimal signaleectrom random projections:
Universal encoding strategies? IEEE Trans. on Informafioeory, 52(12), pp. 5406-5425,

December 2006.

e Graham Cormode and S. Muthukrishnan: Combinatorial Atgars for Compressed Sens-
ing. SIROCCO 2006, LNCS volume 4056, pp. 280-294, Springelag, 2006.

e S. Muthukrishnan: Some Algorithmic Problems and Resul@ampressed Sensing. Forty-
Fourth Annual Allerton Conference. (The article is avaigatn Muthu’s webpage &ittp:
[lwww.cs.rutgers.edu/ ~muthu/resrch_chrono.html )
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Lecture 7. The Matador’s Fate and the Mad Sofa Taster: Random
Order and Multiple Passes

Lecturer: Andrew McGregor Scribes: Pierre McKenzie anccBlaBesson

7.1 Introduction

The previous lectures have focused on algorithms that gagéedook at the input stream of data.
This is the correct model in many applications but in othantegts a (typically small) number
of passes through input may be allowed. For example, it cam feasonable model for massive
distributed data. We want to understand the inherent todidehbetween the number of passes and
the space complexity of algorithms for problems considangaevious lectures.

We have also considered the space complexity of algoritimas“doubly-worst-case” sense.
We are of course assuming worst-case data but, implicigyhave also assumed that threler of
presentatiorof the data is chosen adversarially. This simplifies theyanmabnd provides guaran-
tees on the space required for the computation but avergganalysis is often more appropriate:
in many real-world applications, such as space-efficiesélnpling salaries from a database of
employees for example, data streams are relatively ungtect We thus consider the complex-
ity of algorithms on random-order streams and again seeldntify cases where this point of
view provides significant gains in space-complexity. Thgs@s sometimes come simply from a
sharper analysis of algorithms discussed earlier but, mteeestingly, we can also tweak existing
algorithms to take full advantage of the random order modlelwer bounds for this model are
obviously trickier but more meaningful from a practical poof view.

7.2 Basic Examples

Smallest value not in the stream

Consider first the task of identifying the smallest valuaat isnotoccurring in a stream of length
m consisting of values ifn|. Let us look at variants of the problem where some promiséien t
input is provided.

Version 1. Promised thain = n — 1 and that all elements but occur (i.e. all elements but
occur exactly once)

In this case, the obvious solution is to keep a running suaf the elements of the stream
and getr = m(m + 1/2) — S. The space required (1)

Version 2: Promised that all elements less thaaccur exactly once.
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In this case, the complexity é(ml/f’) wherep is the number of passes.

Version 3: No promise.

In this case, the complexity é(m/p) wherep is the number of passes.

Increasing subsequence

As a second example, consider the problem of finding an isocrgaubsequence of lengthn the
stream, given that such a subsequence exists. Liben-Netwall[LNVZ06] gave an upper bound
of space complexity) (k'+1/2"~1) which was later shown to be tight [GMO09].

Medians and approximate medians

Obviously, the assumption that the data arrives in a randai@ros often of little help. But there
are classical examples for which the gains are significamns@er the problem of finding the
median ofm elements irn| using onlypolylog(m, n) space. We also consider the easier problem
of finding at-approximate median.e. an element whose rank in then elements isn/2 + ¢.

If we assume that the stream is given in an adversarial caiddrif we impose @olylog(m, n)

space bound, we can find-@pproximate median if = (m/polylog(m) and that bound is tight.
However, if we assume that the stream is random-order, wgegrdown toQ2(y/m). This bound
is not known to be optimal butapproximate medians cannot be computed ferw(/m).

Suppose instead that we want to compute the exact medianbdmels above show that this
is not possible in spageolylog(m,n) even assuming random order. However the bounds are for
1-pass algorithms and given sufficiently many passes, wedeantify the exact median without
exceeding our space bound. Specifically, the number of passeded/sufficient for this task it

(:)(log m/ loglogm) in the adversarial model and or@(log logm) in the random-order model.

Theorem 10.In the adversarial order model, one can find an element of rayiR+em in a single
pass and using)(1/¢) space. Moreover, one can find the exact media® {fog m/ loglogm)
passes usin@(1) space.

Proof. We have already discussed the one-pass result. In fact, evestwowed that it is possible
to find quantiles, i.e. find for anye [¢~!] an element of rankem + em

The multi-pass algorithm is built through repeated apfpilieces of this idea. In a first pass, we
sete = 1/logm and finda andb with

rank(a) =m/2 —2/logm £ m/logm and rank(b) =m/2+ 2/logm + m/logm

Now in pass 2, we can find the precise rankscdndb and from there recurse on elements
within the rang€la, b]. Note that this range is of size at mos{ logm and every pair of passes
similarly shrinks the range by a factor bfgm. HenceO(log m/ loglogm) passes are sufficient
to find the median. O
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Let us now focus on lower bound arguments for this same pmable
Theorem 11. Finding an element of rank: /2 4- m? in a single pass requireQ(m'~?) space.

Proof. Once again the proof relies on a reduction from communinat@mplexity. Specifically
we look at the communication complexity of thedex function: Alice is givenz € {0, 1}, Bob
is givenj € [t] and the function is defined asibEX(x,j) = z;. Note that the communication
complexity of this problem is obviouslg(logn) if Bob is allowed to speak first. However, if
we consider one-way protocols in which Alice speaks firgntfi(¢) bits of communication are
necessary (this is easy to show using a simple informahen+etic argument).

We want to show that Alice and Bob can transform a single plgssithm for the approximate
median into a protocol forNDEX. Givenz, Alice creates the stream elemefs + z; : i € [t]}
while Bob appends to the stream- j copies of) and;j — 1 copies of2t + 2. Clearly, the median
element in the resulting streamig + x; and Alice can send to Bob the state of the computation
after passing through her half of the stream. Hence, findirgeixact median required(m)
space. To get the more precise result about approximateamgdt suffices to generaten® + 1
copies of each of the elements: amy-approximate median still has to B¢ + z; and since the
resulting stream is of lengtf(¢m?), the communication complexity lower bound translates into
anQ(m/m?’) lower bound on the space complexity of the streaming algarit O

If we hope to obtain lower bounds in the multi-pass modelgifiire same approach, we cannot
simply rely on the lower bound foNIDEX. Intuitively, each pass through the stream forces Bob to
send to Alice the state of the computation after the congatedf the first pass and forces Alice to
send to Bob the state of the computation after the completidhe first half of the second pass.
Instead, we consider a three-p&rpmmunication game in the “pointer-jumping” family. Alice
given at x ¢t matrix X, Bob is giveny € [t]' and Charlie is given € [t]. Letj € [t] be defined
asj = y;: the players’ goal is to comput¥;; withanA — B — C — A — B — ( protocol.
(Alice speaks first, followed by Bob, .) Any ABCABC protocol for this function requireQ(t)
communication [NW93].

Theorem 12. Finding the exact median in two passes requires spaGgm).

Proof. The reduction from the pointer-jumping problem works adoles. Again, we think of
Alice, Bob and Charlie as creators of, respectively, the,fgecond and last third of a stream.
Therefore, a space-efficient 2-pass algorithm can be @atsinto a cheap ABCABC communi-
cation protocol.

Let 7 > 2t + 2 and leto, = T'(k — 1). Alice creates for each € [t], the elementsi, =
{20+ Xy, : £ € [t]} + or. Bob creates for each < [t], the element$3;, = {t — y, copies of
0 andy, — 1 copies of B} + o,. In other words, Alice and Bob’s stream elements farmon-
overlapping blocks. Each such block His— 1 elements and follows the pattern of the 1-pass
reduction. Charlie on the other hand ad¢s— i) copies of0 andt(: — 1) copies ofBo,. Itis
convenient to also think of these @Blocks of(t — i) copies ofds andt blocks of(i — 1) copies of

3Note that the multi-party model considered here is the “nemib hand model” and not the “number on the
forehead” model.
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Bo,. The total number of blocks in our constructior2is- 1 and the median element in the stream
is the median element of the median block.

The elements generated by Charlie guarantee that the migldighis the;th one and by con-
struction of thed,, and B, the median of this block is; + 2j + X;; wherej = y;.

A 2-pass algorithm using spaceyields an ABCABC protocol of cosiS for the pointer-
chasing problem and since the stream above is of le@ijth), the communication complexity
lower bound translates into &¥,/m) space lower bound for two-pass algorithms. O

Throughout our discussion on medians, we assumed thatrigthle. of the stream is known
in advance. This is crucial for the upper bounds: one canandlaow that whemn is not known
a priori, an algorithm for the exact median requif®sn) space even if the data is presented in
sorted order. (Left as an exercise)

7.3 Taking advantage of random streams

Theorem 13. In the random order model, one can find an element of rafR + (N)(\/%) ina
stream of elements from] in a single pass usin@(1) space.
Proof. We split the stream int®(logm) segments of lengtlh(m/logm). We seta; = —oo,

by = +o00. At theith step we process thith segment. We enter thith step thinking that we have
a; andb; fulfilling rank(a;) < m/2 < rank@;), and then

e we pick in theith segment the firstfulfilling a; < ¢ < b;

e we use the rest of théh segment to compute an estimat®f rank(), by settings to
O(logm) x the rank ofc within theith segment

e if 7 is within (N)(\/ﬁ) of m/2 then we output, otherwise we proceed to stép- 1 after
setting

(a1, bisn) = (a;,c) if 7 >m/2 (i.e. the median is likely below)
Gt D) = (e, by) i F < m)2.

This algorithm finds an approximation to the median with hpgbbability. The probability analy-
sis uses a variant of Chernoff-Hoeffding bounds applieétoing without replacement [GMO09].

The algorithm manipulates a constant numbefi@f mn)-bit numbers so use3(1) space. [
The above algorithm is more accurate than the CM sketch leulatter yields all the quan-
tiles. By increasing the number of passes, yet a better appadion to the median can be ob-
tained. A second pass can improve the approximation fta@if./m) to £0(m'/*), a third pass
to +0(m'/%), and so on. One needs care to account for the fact that theigwpat rerandomized

at each pass [GKO1]. The exact median can be found in stﬁé]:)susing()(log logm) passes
[GMO09)].
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Turning to lower bounds to match the above theorem, the difficn extending the commu-
nication complexity technique to the random order modebiadcount for randomisation when

partitioning the player inputs. It can be shown that apprating the median te-O(m?) in one
pass require$)( %) space. This is known to be tight whén= 0 but an open problem is to
proveQ(m%‘5). See [GMOQ9] for a refined statement that takes the numberssigsanto account.
The bearing of the communication complexity of the Hammirgjashce problem (in which
Alice and Bob want to estimate the Hamming distance betwieein tespective:-bit strings) on
the data stream complexity of computing frequency momeatsivwt treated in these lectures. The

2-line story here is:
e see [GMO09],
e see [CCMO08].
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Lecture 8. Random order, one pass. Linear algebraic prablem

Lecturer: Andrew McGregor and S. Muthu Muthukrishnan  Sesibvalentine Kabanets and
Antonina Kolokolova

8.1 Random order
Theorem 14. Finding the exact median requiréy/m) space.

Theorem 15. To findm’-approximation of the median in one pass, in random ordetirsgtre-
quires spacé)(m' =" ).

The lower bound is tight fof = 0, but not known to be tight fof = 1/2.
Problem 1. Improve this ta2(mz9).

Proof of theorem 14 The proof is by reduction from communication problem INDESuppose
Alice hasz € {0,1}" and Bob hag € [t].

Claim 5. Even whenr € {0, 1} (that is, picked uniformly at random frofi), 1}), any one-pass
one way (Alice to Bob) protocol requiré¥t) communication.

Let Alice haveA = {2i + z; | ¢ € [t]}, and let Bob have — j copies of0 (setB;) andj — 1
copies of2t + 2 (setBy). Then, finding a median requires Alice to kngw

This is the case of adversarial stream. For the random stcaae how can Alice and Bob
simulate an algorithm on a random permutatiomof3;, B,? They cannot do such a simulation,
but they do an “almost random” stream.

Start by adding to4, B;, B, t* copies of B; and B, items. So the size of the set of @%
becomes? +t — j, and of newB,, | By| = t* + j — 1. Using public randomness, decide ahead of
time where elements of appear. To Alice’s elements on Bob’s side, add random valueSice
guesseg = t/2, and randomly fills Bob’s places in her part of the stream wétues0 (small)
and2t + 2 (large) so that it is balanced by the end of her part of thestreBob knows the balance
by the start of his stream, and fills in the resbafnd2t + 2 to make the balance exact. Sinées
large in comparison to— 7, j — 1, equal balance is ok. Finally, although Bob guesseg&his;
mostly incorrectly, he can recover. O

Reference: Guha, McGregor SICOMP’09, and Chakrabarti, Cormode, MgGr&TOC'08.
Gap hamming: given two length binary string, approximate hamming distance. There is a
one-pass lower bound.
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8.2 Linear algebraic problems

1. Compressed sensing: many parameters, time to recontsteusignal, etc. There are tables
of parameters in various paper. Pyotr Indyk has the largéss t

2. Algorithmic puzzle: given an array of elements, findn-placea leftmost item that has
a duplicate, if any.O(n?) is trivial, O(nlog®n) more interesting, if allowed to lose info
(overwrite elements) can géX(n).

3. Different sparse approximation problem: given an arffagize n» and a numbek:;, partition
the array ink pieces. Approximate items in every interval by the averdgb@intervala;.
Want to minimize the quantity) *, > — A[j])%; here, full memory is allowed;
no streaming.

jeith interval(ai

Dynamic programming solution give8(n2k). But suppose the problem is generalized to
two dimensions. What kind of partition can it be? There igdmehical partition (every new
line splits an existing block), simple partition (grid), arbitrary partition.

The problem is NP-hard for arbitrary partition, and is in PP licerarchical partition (using
Dynamic Programming). Approximation algorithm convehs problem of arbitrary parti-
tion into a hierarchical partition..

Sparse approximation: intervals correspond to a dictprtaow to get streaming algorithms
for this case? This problem is related to histogram reptasien problem. It is also related
to the wavelets.

8.2.1 Linear algebraic problems
Here we consider three linear algebraic problems:

1. Matrix multiplication.
2. L, regression (least squares)

3. Low rank approximation.

Matrix multiplication

Problem: givend : R™*", B : R™*?, computeA - B. Frobenius norm|z||r = 3, ;7 ;: work
in streaming world, only look at the space to keep the sketchtwve track as the matrices are
updated. Take a projection matigxof dimensiong1/¢?) log 1/§ by n.

Now AB = (AST)(SB). Keep track of of AS”) (size4 log 5 x m, (SB) : Zlog; x p. The
probability Pr(||AB — ASTSB||r < €||A||r||B||r) > 1— 4. This is similar to the approximation
of additive error in wavelets, inner product of vectors.

Expectation of the inner productig(Sz, Sy)] = (x,y), variance/ ar[(Sz, Sy)] < 2¢*||x||3 ||y||3-

This was proved earlier. From this, gefAS”SB] = AB, and
Var(||AB — ASTSBI[;) < 2¢||Al|#|| B
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Pr(min [|AB — ASTSB]|r < el|Al[#l|Bllr) > 1 -4,

wheret ~ ﬁ — need at least bits to solve with this level of accuracy.
4

L, regression (least squares)

Now takeA : R"*4, n > d (oftenn >> d), b € R". The problem is to solvelx ~ b. That is,
given points (observational) draw a line (fit to explain aliqts) minimizing the sum of squares
of distances of points to the lingZ = min, g« || Az — b||o. Best known algorithm i€ (nd?); this
algorithm is based on numerical analysis. How do we solh&eghoblem in the streaming world?
Here, A andb are updated as new points come along. Want guaranteesand Z. Can get the
result:

1. 2<(1+4¢)z

2. Can findx;,,, such that|SAz,, — Sb|[» < (1 + €)z. Take CM sketch, projection of and
a projection of, and solve the problem on them. F@,rtake@ x n CM sketch vectors.
Solvemin, ||SAz — Sb||,. Size of SA is %2 x d, of Sb is 292, This gives thel® term
in the expression. Use fast Johnson-Lindenstrauss tnansfim streaming world, assume
moreS A.

3. [|Top — Thpl]2 < 02572@, the smallest eigenvalue.

Low rank approximation

There is a simple algorithm for the low rank approximatiampsising, knowing the history of the
problem.

Think of sites collecting information. There is a centraésindk other sites. Leb;(¢) be the
number of items seen by a (non-central) citey the timet. We are interested il _, |S;(¢)|. The
central site gets information from all the rest of sites, antputs & if ). |S;(t)| < (1 —¢)7 and
outputl if >, 15;(t)| > 7, wherer is the central site’s threshold parameter. We are intetdnte
minimizing the number of bits sent to the central site by ttiees. There is no communication
from the central site back or between non-central sitessifds knowr andk. In case of 2 players,
send 1 bit when seery2 items: gives 2 bits of communication. Can it be generalipgdplayers
(would that give k bits of communication)?
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Lecture 9. Massive Unordered Distributed Data and Funation
Monitoring

Lecturer: S. Muthu Muthukrishnan Scribes: Eric Allended dmomas Thierauf

9.1 Distributed Functional Monitoring

In the distributed functional monitoring problem [CMYO08]Jewhavek siteseach tracking their
input. The sites can communicate with a designateutral site but not among each other. Let
s;(t) be the number of bits that sitdnas seen up to time The task of the central site is to monitor
a given functionf over the inputss (t), ..., sx(t) for all timest. The goal is to minimize the
number of bits that are communicated between the sites ancktitral site.

We consider the example where the functjois the sum of the values(¢). Define

F = Zsi(t).

The central site is required to detect whEnexceeds a certain threshatdi.e. we consider the
function

1, if >,
c(t) = .
0, otherwise.

The interesting case is to compute the approximate versiofic: for some giver) < ¢ < 1/4
the output of the central site at timeés defined as

(t) 1, if F7 > T,
c =
4 0, if Fy <(1—e)r.

We do not care about the output(if — ¢)7 < F; < 7. The problem of computing, with these
parameters is called thé, F1, 7, ¢) functional monitoring problem
There are two trivial algorithms for it:

1. Each site communicates the central site every bit it sees.
2. Sitei sends a bit to the central site each time thét) increases by (1 — €)/k.

The first solution would even allow the central site to coneghe exact function. However, the
amount of communication is extremely high l§its). The second algorithm needs only abbut
bits of communication, but the error made in computingan be very large.

In this lecture we show
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Theorem 16. There is a randomized algorithm fok, F}, 7, ) monitoring with error probability
< 6 andO(Z log 3 loglog 3)) bits of communication.

It is important to note that the number of bits of communimatis independendf = and k.
Thus it scales as well as one could hope for.

Consider the following algorithm, where we use a constdotbe determined later.

Sitei: Send a bit to the central cite with probability~ each time that
s;(t) increases by
62
E T.

Central site: Outputl if the total number of bits received from the sites

IS
1 1
>c|l—=——],
- g2 2

otherwise outpub.

Define the random variable
X = # bits the central site has received at some point of time

For the expected value o&f we have the following upper and lower bound:

1 F1 CF1
E(X - = — 9.4
(X) = k 21 /ck e2r’ (94)
1 Fy —&%r cFy
EEX) > —-——— = — —c. .
(X) =z k e21/ck 2y ¢ (©-5)
For the variance oK we have
C]CFl 1 1 CF1
Var(X) < o (E - ﬁ) < P (9.6)
Case 1: F; < (1 —¢)7. By equation (9.4) we have
cF c c
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The probability that the central site outputss

PrX >¢ (i - %)] < Pr[X > E(X) - 2—65] by equation (9.7)

— PiX —E(X)>——]

- 2
cFy (2¢)?
€21 2
4F

TC
41 —¢e)r
TC

by Chebyshev inequality and equation (9.6)

IN

by assumption in case 1
4

C

IA

Case 2: F; > 7. By equation (9.5) we have

EX) > Sl—¢c > - —¢ (9.8)

Then the probability that the central site does not outpat

1 1 c .
- < _ — .
PriX <c <€2 25>] < Pr[X <EX)+c¢ 25] by equation (9.8)
C
= PiX —E(X) <c- ]
< ch 1 by Chebyshev inequality and equation (9.6)
€21 (c— 52)?
1 .
< B by assumption in case 2
c(e = 3)

A
|
S
™
A

Choosing: = 64 makes the error probabilitg 1/16 in case 1 ane&l 1/4 in case 2. Hence the
total the error probability is< 1/3. The number of bits communicatedi¥1/s?).

The error probability can be decreased tby runningO(log %) independent instances of the
algorithm. That is, we modify the protocol as follows:
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Sitei: Each time that;(¢) increases b)g% 7, the site makes = O(log )
independent trials, indexed. . ., ¢, to send a bit to the central site
with probability 1/ for each trial. However, instead of just one hi
it sends the index of each successful trial to the central site.

—

Central site: The central site maintains a counter for each oftthéls,
where it addsl to counterj whenever it receives messagérom
one of the sites.

It outputs 1 if the majority of thet counters has a valug
¢ (% — ), otherwise it outputs.

The number of bits communicated is th$; log 5 loglog ;) as claimed.

9.2 Massive Unordered Distributed Data

We consider truly massive data sets, such as those that meeated by data sources as IP traffic
logs, web page repositories, search query logs, retail aaddial transactions, and other sources
that consist of billions of items per day, and are accumdlater many days. The amount of data
in these examples is so large that no single computer can ewatea single pass over the data
in a reasonable amount of time. Therefore the data is digé&tbin pieces over many machines.
For example, Google’s MapReduce and Apache’s Hadoop acessitl large scale distributed
platforms that can process many terabytes of data at a tirsibdted over hundreds of even
thousands of machines. The machines process the piecetongearallel. Then they send their
results to a central machine. Clearly, the amount of datashsent to the central machine should
be small, i.e. only poly-logarithmic in the input size.

Since the distribution of the data pieces on the machinesasdered, order should have no
impact on the result. Hence, in this lecture we consider aaihfait algorithms which is called
massive, unordered, distributeghrt: mud)algorithms. Mud algorithms consist of three func-
tions:

1. alocal functiormapthat maps a single input data itento a list of pairs of the fornix, v),
wherek is a key and is a value.

2. an aggregate functioeducethat gets as input the sgtof all mapz) (over all data items
x), and computes, for each some function of the pair§:, v) that appear ir5. Because
the input data foreducecan be distributed on several machines, the function shioeild
commutative and associative.

3. afunction for a final post-processing step. This is noagwneeded.

Examples

As an example, we want to compute the number of links to a vagfep The data items are
web-pages anthapx) is defined to consist of all pairg:, v), where keyk is a URL that occurs
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as a link inz andwv is the number of time& occurs inz. Thereducefunction simply computes,
for each URLEK, the sum of the values such that %, v) is produced during thenapphase. This
example does not use the post-processing step.

As another example (using the post-processing step), @@ntie problem of computing the
number of triangles in a graph on n vertices, where the data is presented as a set of edges
(u, w). Applying map(u,w) produces pairgk, v) where the keys are triples of node$i, j, k)
with i < j < k, where{a,b} C {i,j,k}, and the values are triples(b; ;, b; x, b;x), where
b;; = 1,1if (¢, j) is an edge, and, ; = 0 otherwise. Theeducefunction computes the bitwise or
of the values for each key. In the post-processing step, waubthe number of keys for which
(k,(1,1,1)) is produced during theeducephase.

The number of keys that are used has a significant effect oefflagency of the resulting
algorithm. We will examine the computational power of th&eme case, where we have oolye
key.

Mud algorithms with one key

In the following we consider the special case where theraligane key, i.e. we can omit the key.
Thus, in themapphase, each data itemproducesmapz) which is communicated to theduce
phase. We call these “messages”. In tbeéucephase, we apply an operator to the messages (in
some order).

More formally, the three functions of a mud-algorithm siffpas follows: The local function
® : ¥ — () maps an input item to a message, the aggregator) x () — () maps two messages
to a single message, and the post-processing operatq) — > produces the final output.

The output can depend on the order in whighs applied. Let7 be an arbitrary binary tree
circuit with n leaves. We useur(x) to denote the; € () that results from applyingd to the
sequenc®(zy),...,P(x,) along the topology of with an arbitrary permutation of these inputs
as its leaves. The overall output of the mud algorithm(ia(x)), which is a function=” — 3.
Notice that7 is not part of the algorithm, but rather, the algorithm designedsso make sure that
n(mz(x)) isindependent of . We say that a mud algorithm computes a functiaghnoms = f,
for all treesT .

The communication complexity of a mud algorithmlig ||, the number of bits needed to
represent a message from one component to the next. Theréspe,space complexity of a mud
algorithm is the maximum time resp. space complexity of@mponent functions.

Let us compare mud algorithms with streaming algorithmgnfadly, a streaming algorithm
is given by a pairs = (o,7), wheres : @ x ¥ — () maps a state and an input to a state.
is an operator applied repeatedly to the input stream. () — X converts the final state to the
output.s?(x) denotes the state of the streaming algorithm after staatistate; and operating on
the sequence = x4, ...z, in that order, that is

sl(x)=oc(o(...0(a(q,z1),%2) ..., Tp_1), Tpn)-

On inputz € X", the streaming algorithm computeé&s’(x)), where 0 is the starting state. The
communication complexity of a streaming algorithniig ||, and the time, resp. space complex-
ity is the maximum time resp. space complexityodinds.
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Clearly, for every mud algorithrm = (®, @, n) there is a equivalent streaming algorithm
s = (o,n)) of the same complexity by settindq, z) = ©(q, ®(z)) and maintaining). The central
guestion is whether the converse direction also holds. Takel@m is that a streaming algorithm
gets its input sequentially, whereas for a mud algorithme, itiput is unordered. Consider the
problem of computing the number of occurrences of the fissheint in the input. This is trivial for
a streaming algorithm. However, no mud algorithm can acdmmghis because a mud algorithm
cannot determine the first element in the input. Thereforgeséict our attention teymmetric
functions. Here one can show that the models are equivaléheifollowing sense:

Theorem 17. [FMS*08] For any symmetric functiorf : 3" — X computed by a(n)-space
andc(n)-communication streaming algorithm there exists a mudritigam that computeg within

spaceO(g*(n)) andO(c(n)) communication.

The proof of this theorem has much the same flavor of Savitti@erem and can be found
in [FMS*08].
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Lecture 10. A Few Pending Items and Summary

Lecturer: Andrew McGregor and S. Muthu Muthukrishnan  SesitRicard Gavalda and Ken
Regan

10.1 Four Things Andrew Still Wants to Say

Andrew wanted to tell us about 14 things, which were evehtubbecause of time constraints:
Computing spanners, estimating the entropy, a lower boongf and solving the:-center prob-
lem.

10.1.1 Computing Spanners

Recall the definition of-spannerof a graphGG (alluded to in Lecture 4): It is a subgraph Gf
obtained by deleting edges such that no distance among anyestices increases by a factor of
more than.

Here is a simple algorithm for bulding(@ — 1)-spanner in one pass, over a stream of edges:
When a new edge arrives, check whether it completes a cybdmgth at most. If it does,ignore
it; otherwise, include it in the spanner. The resulting gréf is at-spanner of the original graph
G because for every edde, v) in G — G’ there must be a path fromto v in G’ of lengtht — 1,
namely, the rest of the cycle that prevented us from adgling) to G’. Therefore, for every path
of lengthk in G there is a path of length at mast— 1)k in G’ with the same endpoints.

Elkin [EIkO7] proposed an algorithm using this idea that portes a2t — 1)-spanner in one
pass using memory and total tirﬁ)e(nHl/t). Furthermore, the expected time per itendid ).

10.1.2 Estimating the Entropy

Given a stream of elements {1, ..., m}, letm; be the frequency of elementn the stream. We
would like to estimate the entropy of the stream,

S = Z—log—

A first solution to this problem is simply to pick a random eksrmhin the stream, call it, then
count the occurrences offrom that point in the stream on, call this numbderThen output

~ m m
=Rlog— —(R—-1)1 :
S RogR (R )ogR_1
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We claim thatS is an estimator of the entrog. Indeed, if we defingf (1) = r log(m/r),

E[S] = ) PrR=r]- (f(r)= f(r—1))

T

=¥ 4 Priz =] - Pr[R=r|v =4 (f(r) — f(r—1))

T

= ; % g m% (f(r)—f(r—1)) (and the sum telescopes, so)
i 1 my;
= D0 (fm) = f) =30 og -

7 1

One can show that the variance is also smaién the entropy is largeA solution that works also
when the entropy is small was given by Chakrabarti, Cormadd McGregor [CCMO07].

10.1.3 A Lower Bound for (1 + ¢)-approximation of Fj

One can give &(e2) lower bound, hence matching the algorithm that Muthu preskenThe
bound is a reduction from the communication complexity @f pnoblem of estimating the Ham-
ming distance among two streams.

Let z, y be twon-bit strings, and say that Alice hasand Bob hag. Let S, andS, be the set
of elements with characteristic vectarendy. Then

Fo(S, USy) = |Su] + 1Sy — Sz NSy).

Jayram, Kumar, and Sivakumar [JKS35] showed that estimatia Hamming distance up to an
additive/n requirest2(n) bits of one-way communication. From here, one can see tha-aass
algorithm that approximatef, within multiplicativee must use2(e—2) bits of memory.

Brody and Chakrabarti [BC09] have recently shown lower lsuior the multiround commu-
nication complexity of the gap hamming distance problemgctvimplies lower bounds foFy, Fi,
F3, etc. in the multipass streaming model.

10.1.4 Solving thek-center problem

Let us sketch the main trick for solving thecenter problem, discussed already in Lecture 4.
Recall that the problem is: givenpointspy, ...,p, from some metric space, we want to takef
them,y, ..., yx, such the maximum distance of apyto its closesy;, is minimized. That is, so
that each initial point igl-away from its closesy;, for minimald.

We observe first that if we are told the optimal distadzET in advance, we can give &
approximation algorithm easily: We get the first pgint We ignore all subsequent points within
radius20 PT of it, and keep the first one that is not as a new center. We kpepilog centers as
necessary, and ignore all points alre@dyPT close to one center. (D PT is achieved by some
points, we give 20 PT solution with no more thak points.
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Similarly, if we only have a guesgwith OPT < g < (14 ¢)OPT. we can give &(1 + ¢)-
approximation. When we have no guess at all, we could of eotrgsthe algorithm above in
parallel all possible guesses (spacing them out by afoute)). The problem is that instances
with too large a guess will use too much memory by themsebke@sje have to be more cautious.
We proceed as follows:

1. Look at the first: + 1 points, and find its besi-clustering; this gives a lower bourndon
OPT.

2. Run the algorithm above with= (1 +¢)"a, fori =0...a/e.

If one of theseO(1/¢) distances goes well, take the first one that goes well and we &a
2(1 + €) approximation.

If none goes well, this means that after examinjn@intsp;, .. .,p; the algorithm is trying to
open a(k + 1)-th center besides the poinjs, ..., y, it has already picked. We realize now that
we should have picked a guegs- a/e.

Butobserve that all points, . .., p,; are within2g of somey,. The crucial claim is that by keep-
ing only thesey; and ignoring the previous points we can still compute a neaisle approximation
to the besk-clustering:

Claim 6. If the cheapest clustering of, ..., p;, pjt1, ..., p, has costOPT, then the cheapest
clustering ofys, ..., yk, pj+1, ..., pn has COSOPT + 2g.

Therefore, if we clustey,, ..., yx, pj+1, - .., P, We get a (roughly)1 + €)-approximation to
the best clustering ofy, ...,p,.

We therefore uses, ...y, as seeds for the next iterations, using larger guessese dbtm
(9 +a/e) - (14 ¢)". We can do this by recycling the space already used, ratheruking new
space.

This is due to McClutchin and Khuller [MK08b] and Guha [Guh09

10.2 Summary of the Course

[Muthu’s summary actually came before Andrew’s items, batthought it better to put it last—or
not quite last—and what actually came dead last was theigoltd thek-center problem, which
we've put first. RG+KWR]

Lectures 1 and 2 were d@M sketchesapplied to:

e point queries, such as the numbey of times an itemr appeared;
e heavy hitters, i.e. which items appear markedly frequently
e medians and other quantiles;

e dot products;
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e quantities such a8, = > m2.

The primary objective was to usfé(% log %) space, where quantifies the target accuracy ahi

the probability of missing the target accuracy. Usually dlceuracy involves approximating one

of these statistics to within an additive terfacn, wheren is the size of the stream—or for some,
with relative error within a factor ofl + ¢). Having an extra polyeg(n) factor was generally fine,

but having something like? in the denominator was less welcome. We saw one example later
involving sampling for distinct out-neighbors in graphestms where terms Iik@(g%\/ﬁ log %)
(needing improvement!) entered the analysis.

Lecture 3 was on “Inverse Problems,” meaning that insteathef“forward distribution”
f(z) = m,, one works with its “inverse”f~!(i) = the number of items that appeatimes.

A core task here is to maintain a sampléhat approximates a samptg taken uniformly over
the set ofdistinctelements in the stream, even in the presence of deletionglaasvinsertions.
Then we can estimate the same statistics as in lecture Iglhwith €2 in the denominator of space
usage—coming from fully storing samples of size involvihgttfactor. A prime ingredient here is
minwise hashingand calculations involve estimating the number of distetements, represented
as the zeroth momed, = >~ f(2)°.

Lecture 4 (by Andrew) focused agraph streamsusually presenting a (multi-)graph as a
streamed list of its edges. Estimating the number of triesglG was niftily reduced to estimating
the momentdy, F, and F;. This lecture introduced techniques for obtaining matgHower
bounds via communication complexity, here by reductiommfreet-disjointness for the case of
telling apart when& haso triangles froml-or-more. Bounds did not care about polynomials in
logn: “O is your friend.” Another core task is retaining a gt of edges, no two sharing an
endpoint (i.e. a partial matching), that maximizes somessi@ such as the number of such edges
e or aweighted sum___,, w.. Given a new edge from the stream that conflicts with some edge
e € M, the nub is when and whether to discarieh favor of¢'.

Then geometric streamsvere introduced, meaning streams of points from a generaiane
space, such as higher-dimensional Euclidean spacek-theater problenis to retaink points from
the stream so as to minimize the distance from any other ppsame chosen point. (Technically
this means minimizingnax, min, d(p, y), whered is the metric and, ranges over the set df
chosen points—can we coin the word “minimaximin”?) The $bestrpath metric on graphs led to
merging the two ideas of streams. A key problem was findingdge-enduced subgraph on the
same vertex sat such that the distances restricteddare within a multiplicativex factor of the
distances irz. This was also a case where allowing multiple passes ovesttéam gives notably
better results.

Lectures 5 and 6 covered sparse approximation problemshendteresting, historically cen-
tral notion of Haar wavelets The goal is to approximate a signal (represented as a Yeuitbr
high fidelity using as few terms as possible over the Haaisbdsiis connected to the hot topic of
compressed sensinig which we are still trying to represent a vector by a smatnber of terms
over a basis, but the goal is to do so with as few (physicalsmeaments as possible. Compressed
sensing is more than just a theory of linear projectionsabse not all projections are the same—
they have different costs. In a digital camera, each pixdopas a measurement, but generally
each measurement involves some cost to the system—heraefiden compressed sensing en-
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gendered the technological goal of a “Single-Pixel Cardtas cool that considerations from
streaming played a role in the development of this field.

Lecture 7 (by Andrew) presented the random-order streamehad multi-pass algorithms.
In the random-order model, the underlying input (say, edgesgraph) is chosen adversarily but
items are presented in a (uniformly) random order. In botlle(random order and multipass)
some problems such as the median become slightly easighdyution’t help much for the fre-
guency momentsy, Fi, ' — 2,.... We presented some lower bounds in the multipass model by
reducing to the Index Problem and the Pointer Chasing tgaleni

In Lecture 8, Linear Algebra Problems, we discussed maklmyMatrix Product and the Least
Squares problems. For the matrix product, we saw that kgepii-sketches for the matrix rows,
and multiplying the sketches when needed, gave us an appation with memory linear rather
than quadratic im. For the least squares problem, we saw that keeping CM+&letd to a good
approximation algorithm not only in the streaming model&lsb in the standard sense.

Lecture 9 presented Map-Reduce and discussed distribwézsheng computations. The lead-
ing example was the “continuous problem” in which we have ynsites and a central site that
must outputl when the number of items collected among all sites exceedea threshold. This
led to the definition of the MUD (Massive Unordered Data) m@adl its relation to streaming.

10.3 Some Topics Not Covered

Finally, let us conclude by mentioning some of the many tepiot covered. [Muthu only listed
the following bulleted ones, but I've supplied descriptdetails for each (so any bugs are on me
not him), and have also added one more example at the end fveny aecent paper. KWR]

e (More) Results on Geometric Streanhs.geometric streams, the items are not single values
but rather vectors it-dimensional space. Per their main mention on p37 of [Myt0$]
main effect is that instead of having a linear spectrum ofi@s] one must also specify and
maintain a partitioning of space into geometrically-detered grids, according to some met-
ric. The resulting notion of “bucket” requires one “to maiimt quite sophisticated statistics
on points within each of the buckets in small space. Thisiksniaing various (non-)standard
arguments and norm estimation methods within each of thiedbsit

Topics here includecore setswhich are relatively small subset$of the stream point set
S such that the convex hull @f' is a good approximation to the convex hull 8f Again,
one must specify a spatial metric to quantify the goodnesisefpproximation. Another is
where one wishes the median in each dimension of the poirdtsinbe a good approxima-
tion to the respective median i#y; this is called the problem of-medians Bi-chromatic
matching where one is given equal-sized point setsB and needs to find a bijection
f : A — B that optimizes some metric-dependent cost function on #ies fu, f(a)),
also depends delicately on the space and the metric. A 2@3@pration by S. Suri [Sur06]
covers some of the technical issues.

e String StreamsA stream can be viewed as a string for properties that areralejpendent,
such as the length of the longest common subsequence betweestrings. One can also
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picture streams of strings—distinguishing them from streaf k-vectors by considering
problems in which the ordering of vector components mattesting-edit operations may
be applied. Geometric issues also come into play here.

e Probabilistic Streams This does not merely mean random presentation of the itanas i
stream according to some distribution, but refers to sitaatin which the items themselves
are not determined in advance but rather drawn from a digtob D, whereD may or may
not be known to the algorithm. One motivation is represgnsineams of sensor measure-
ments that are subject to uncertainties. One can regaaslan ensemble over possible input
streams. [Our two presenters wrote a major paper on thigimasng Aggregate Proper-
ties on Probabilistic Streamdyttp://arxiv.org/abs/cs.DS/0612031 , and then
joined forces with T.S. Jayram (who initiated the topic) &d/ee for [JMMVO07].]

e Sliding Window Models This can be treated as a “dynamical complexity” versionhaf t
standard streaming model. The issue is not so much whagstarad other privileges may
be granted to the algorithm for the lastitems it sees (for som#&), but more the necessity
to maintain statistics on the laat items seen and update them quickly when new items are
presented and older ones slide outside the window. A ddtatlevey is [DMO7].

e Machine Learning ApplicationsMany data-mining and other learning applications must
operate within the parameters of streaming: a few looksrgeldata, no place to store it
locally. Another avenue considers not just the quality @f shatistical estimates obtained,
as we have mostly done here, but also their robustness whesstimates are used inside
a statistical inferencingapplication. Joao Gama of Portugal has written and edibedes
papers and books on this field.

The considerations of streaming can also be applied to otimeputational models, for instance
various kinds of protocols and proof systems. For one exaentpé last topic above can include
analyzing the standard PAC learning model under streaneisigictions. For another, the new pa-
per “Best-Order Streaming Model” by Atish Das Sarma, RidHapton, and Dampon Nahongkai
[SLNO9], which is publicly available from the first authosge, pictures a prover having control
over the order in which the input stream is presented to th&ese This resembles best-case mod-
els discussed above, except that the requirement thatdkenmannot cheat on “no”-instances and
the full dependence of the ordering on details of the inpatdiffer from particulars of the others
and their associated communication models. Consider gkedfproving that a big undirected
graphG with vertices labeled, . . ., n has a perfect matching. In the “yes” case, the prover orders
the stream to begin with the/2 edges of a perfect matching, then sends a separator symbol, a
then sends the rest of the graph. The verifier still needs ¢glcthat then-many vertex labels
seen before the separator are all distinct, indeed filllout. , n. They give a randomized proto-
col needing onlyO(logn) space, but show by reduction from a lower bound for set-ulisjess
in a variant-of-best-case communication model that angrdenistic verifier needs)(n) space
(for graphs presented as streams of edges). For graph ¢ivityewhich has()(n) space bounds
even for randomized algorithms in worst-case and randase-streaming models, they give an
O(log® n)-space best-order proof system. For non-bipartitenessithple idea is to begin with an
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odd cycle, but proving bipartiteness space-efficientlyagman open problem in their model. The
motivation comes from “cloud-computing” situations in whiit is reasonable to suppose that the
server has the knowledge and computational resources chéed@timize the order of presenta-

tion of the data to best advantage for the verifier or leamérether we have optimized our notes
stream for learning the material is left for you to decide!
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