
Data Stream Algorithms

Notes from a series of lectures by

S. Muthu Muthukrishnan

Guest Lecturer:Andrew McGregor

The 2009 Barbados Workshop on Computational Complexity
March 1st – March 8th, 2009

Organizer:
Denis Thérien

Scribes:
Anıl Ada, Eric Allender, Arkadev Chattopadhyay, Matei David, Laszlo Egri, Faith Ellen, Ricard
Gavaldà, Valentine Kabanets, Antonina Kolokolova, Michal Koucký, Franois Lemieux, Pierre
McKenzie, Phuong Nguyen, Toniann Pitassi, Kenneth Regan, Nicole Schweikardt, Luc Segoufin,
Pascal Tesson, Thomas Thierauf, Jacobo Torán.

1

2

Lecture 1. Data Streams

Lecturer: S. Muthu Muthukrishnan Scribes: Anıl Ada and Jacobo Torán

We start with a puzzle.
Puzzle 1:Given an arrayA[1..n] of logn bit integers, sort them in place inO(n) time.

1.1 Motivation

The algorithms we are going to describe act on massive data that arrive rapidly and cannot be
stored. These algorithms work in few passes over the data anduse limited space (less than linear
in the input size). We start with three real life scenarios motivating the use of such algorithms.

Example 1: Telephone call. Every time a cell-phone makes a call to another phone, several
calls between switches are being made until the connection can be established. Every switch writes
a record for the call over approx. 1000 Bytes. Since a switch can receive up to 500 million calls a
day, this adds up to something like 1 Terabyte per month information. This is a massive amount of
information but has to be analyzed for different purposes. An example is searching for drop calls
trying to find out under what circumstances such drop calls happen. It is clear that for dealing with
this problem we do not want to work with all the data, but just want to filter with a few passes the
useful information.

Example 2: The Internet. The Internet is made of a network of routers connected to each other,
receiving and sending IP packets. Each IP packet contains a packet log including its source and
destination addresses as well as other information that is used by the router to decide which link to
take for sending it. The packet headers have to be processed at the rate at which they flow through
the router. Each package takes about 8 nanoseconds to go through a router and modern routers can
handle a few million packets per second. Keeping the whole information would need more than
one Terabyte information per day and router. Statistical analysis of the traffic through the router
can be done, but this has to be performed on line at nearly realtime.

Example 3: Web Search. Consider a company for placing publicity in the Web. Such a
company has to analyze different possibilities trying to maximize for example the number of clicks
they would get by placing an add for a certain price. For this they would have to analyze large
amounts of data including information on web pages, numbersof page visitors, add prices and so
on. Even if the company keeps a copy of the whole net, the analysis has to be done very rapidly
since this information is continuously changing.

Before we move on, here is another puzzle.
Puzzle 2: Suppose there aren chairs around a circular table that are labelled from0 to n − 1 in
order. So chairi is in between chairsi− 1 andi+ 1 modn. There are two infinitely smart players

3

that play the following game. Initially Player 1 is sitting on chair 0. The game proceeds in rounds.
In each round Player 1 chooses a numberi from {1, 2, . . . , n − 1}, and then Player 2 chooses a
direction left or right. Player 1 moves in that directioni steps and sits on the corresponding chair.
Player 1’s goal is to sit on as many different chairs as possible while Player 2 is trying to minimize
this quantity. Letf(n) denote the maximum number of different chairs that Player 1 can sit on.
What isf(n)?

Here are the solutions for some special cases.

f(2) = 2

f(3) = 2

f(4) = 4

f(5) = 4

f(7) = 6

f(8) = 8

f(p) = p− 1 for p prime

f(2k) = 2k

1.2 Count-Min Sketch

In this section we study a concrete data streaming question.Suppose there aren items and let
F [1..n] be an array of sizen. Indexi of the array will correspond to itemi. Initially all entries of
F are 0. At each point in time, either an itemi is added, in which case we incrementF [i] by one,
or an item is deleted, in which case we decrementF [i] by one. Thus,F [i] equals the number of
copies ofi in the data, or in other words, the frequency ofi. We assumeF [i] ≥ 0 at all times.

As items are being added and deleted, we only haveO(logn) space to work with, i.e. logarith-
mic in the space required to representF explicitly. Here we think of the entries ofF as words and
we count space in terms of number of words.

We would like to estimateF [i] at any given time. Our algorithm will be in terms of two
parametersǫ andδ. With 1 − δ probability, we want the error to be within a factor ofǫ.

The algorithm is as follows. Picklog(1
δ
) hash functionshj : [n] → [e/ǫ] chosen uniformly at

random from a family of pair-wise independent hash functions. We think ofhj(i) as a bucket fori
corresponding to thejth hash function. We keep a counter for each bucket, count(j, hj(i)). Initially
all buckets are empty, or all counters are set to 0. Whenever an item i is inserted, we increment
count(j, hj(i)) by 1 for all j. Whenever an itemi is deleted, we decrement count(j, hj(i)) by 1 for
all j (see Figure 1.1). Our estimation forF [i], denoted byF̃ [i], will be minj count(j, hj(i)).

Claim 1. Let‖F‖ =
∑

i F [i].

1. F̃ [i] ≥ F [i].

2. F̃ [i] ≤ F [i] + ǫ‖F‖ with probability at least1 − δ.

4

h1

h2

...

hlog(1

δ
)

1 2 · · · e
ǫ

+1

+1

+1

+1

+1

Figure 1.1: Each item is hashed to one cell in each row.

Proof. The first part is clear. For the second part, denote byXji the contribution of items other
thani to the(j, hj(i))th cell (bucket) of Figure 1.2. It can be easily shown that

E[Xji] =
ǫ

e
‖F‖.

Then by Markov’s inequality,

Pr
{
F̃ > F [i] + ǫ‖F‖

}
= Pr

{
∀j F [i] +Xji > F [i] + ǫ‖F‖

}

= Pr
{
∀j Xji > eE[Xji]

}

≤
(

1

2

)log 1/δ

Thus, we conclude that we can estimateF [i] within an error ofǫ‖F‖ with probability at least
1 − δ usingO((1/ǫ) log(1/δ)) space. Observe that this method is not effective for estimating
F [i] for smallF [i]. On the other hand, in most applications, one is interested in estimating the
frequency of high frequency objects.

It is possible to show that the above is tight, with respect tothe space requirements, using a
reduction from the communication complexity problem Index. In this problem, Alice holds an
n bit stringx ∈ {0, 1}n and Bob holds alogn bit string y ∈ {0, 1}log n. We view Bob’s input
as an integeri ∈ [n]. We consider the one-way probabilistic communication model. Therefore
only Alice is allowed to send Bob information. Given the information from Alice, Bob needs to
determine the valuexi. In this model, it is well known that Alice needs to sendΩ(n) bits in order
for Bob to determinexi with constant probability greater than 1/2.

Lemma 1. In order to estimateF [i] within an error ofǫ‖F‖ with constant probability, one needs
to useΩ(1/ǫ) space.

5

Proof. Given an instance of the Index problem(x, y), wherex denotes Alice’s input,y denotes
Bob’s input and|x| = n, chooseǫ such thatn = 1

2ǫ
. Construct the arrayF [0.. 1

2ǫ
] as follows. If

xi = 1 then setF [i] = 2 and if xi = 0 then setF [i] = 0 and incrementF [0] by 2 (initially
F [0] = 0). With this construction, clearly we have‖F‖ = 1/ǫ. Suppose we can estimateF [i]
within error ǫ‖F‖ = 1 with constant probability ands space. This means we can determine the
value ofxi: if the estimate forF [i] is above 1 thenxi = 1 andxi = 0 otherwise. Now the
Ω(n) = Ω(1/ǫ) lower bound on the communication complexity of Index implies a lower bound of
Ω(1/ǫ) for s.

Homework: Given a data stream as an arrayA[1..n], how can we estimate
∑

iA[i]2? If we are
given another data streamB[1..n], how can we estimate

∑
iA[i]B[i]?

References:[CM04], [Mut09]

6

Lecture 2. Streaming Algorithms via Sampling

Lecturer: S. Muthu Muthukrishnan Scribes: Faith Ellen and Toniann Pitassi

2.1 Estimating the number of distinct elements

This lecture presents another technique for streaming algorithms, based on sampling.

Definition 1. Let a1, a2, . . . , an denote a stream of items from some finite universe[1..m]. Let
Dn = |{a1, a2, . . . , an}| be the number of distinct elements in the stream, and letUn be the number
of unique items in the stream, i.e. the number of items that occur exactly once.

Let F be the frequency vector, whereF [i] is the number of times that itemi occurs in the
stream, for eachi ∈ [1..m]. ThenDn is the number of nonzero entries in the frequency vectorF
andUn is the number of entries ofF with value 1.

Our goal is to get good estimates forUn/Dn andDn.

2.1.1 EstimatingUn/Dn

First we will try to estimateUn/Dn.
We assume thatn is known. We can easily choose an item uniformly at random from the

stream, by choosing each item with probability1/n. Doing thisk times in parallel gives us a
sample of sizek. The problem with this approach (uniform sampling from the data stream) is that
heavy items, i.e. those with high frequency, are likely to appear many times. Since each such
item doesn’t contribute toUn and only contributes toDn once, such a sample is not helpful for
estimatingUn/Dn.

Instead, we would like to be able to sample nearly uniformly from the set of (distinct) items in
the stream, i.e. elementx is chosen with probability close to1/Dn.

To do this, leth be a permutation of the universe chosen uniformly at random from among all
such permutations. The idea is to remember the items in the stream with the smallest value of
h(s) seen so far and the number of times this item has occurred. Specifically, as we see each item
ai in the stream, we computeh(ai). If h(ai) < h(s) (or i = 1), thens is set toai andc(s) is set to
1. If h(ai) = h(s), then incrementc(s). If h(ai) > h(s), then do nothing. Note that, for any subset
S of the universe, each item inS is equally likely to be mapped to the smallest value byh among
all the elements inS. In particular, each element in the set of items in the streamhas probability
1/Dn of being chosen (i.e. mapped to the smallest value byh) and, thus, being the value ofs at
the end of the stream. At any point in the stream,c(s) is the number of timess has occurred so far
in the stream, since we start counting it from its first occurrence.

Doing thisk times independently in parallel gives us a collection of sampless1, . . . , sk of size
k. We will choosek = O(log(1/δ)/ǫ2). Let c1, . . . , ck be the number of times each of these

7

items occurs in the stream. Our estimate forUn/Dn will be #{i | ci = 1}/k. Since Prob[ci =
1] = Un/Dn, using Chernoff bounds it can be shown that with probabilityat least(1 − δ), (1 −
ǫ)Un/Dn ≤ #{i | ci = 1}/k ≤ (1 + ǫ)Un/Dn. Thus,#{i | ci = 1}/k is a good estimator for
Un/Dn.

It’s not necessary to have chosen a random permutation from the set of all permutations. In
fact, simply storing the chosen permutation takes too much space. It suffices to randomly choose
a hash function from a family of functions such that, for any subset of the universe, every element
in the subsetS has the smallest hashed value for the same fraction (1/|S|) of the functions in the
family. This is called minwise hashing and it was defined in a paper by Broder, et al. They proved
that any family of hash functions with the minwise property must be very large.

Indyk observed that an approximate version of the minwise property is sufficient. Specifically,
for any subsetS of the universe, each element in the subset has the smallest hashed value for at
least a fraction1/((1 + ǫ)|S|) of the functions in the family. There is a family of approximately
minwise hash functions of sizenO(log n), so(log n)2 bits are sufficient to specify a function from
this family.

An application for estimatingUn/Dn comes from identifying distributed denial of service at-
tacks. One way these occur is when an adversary opens many connections in a network, but only
sends a small number of packets on each. At any point in time, there are legitimately some con-
nections on which only a small number of packets have been sent, for example, for newly opened
connections. However, if the connections on which only a small number of packets have been sent
is a large fraction of all connections, it is likely a distributed denial of service attack has occurred.

2.1.2 EstimatingDn

Now we want to estimateDn, the number of distinct elements ina1, . . . , an ∈ [1..m]. Suppose we
could determine, for any numbert, whetherDn < t. To get an approximation to within a factor of
2, we could estimateDn by determining whetherDn < 2i for all i = 1, . . . , log2m. Specifically,
we estimateDn by 2k, wherek = min{i|ci = 0}. If we do these tests in parallel, the time and
space both increase by a factor oflog2m.

To determine whetherDn < t, randomly pick a hash functionh from [1..m] to [1..t]. Let c be
the number of items that hash to bucket 1. We’ll say thatDn < t if c = 0 and say thatDn ≥ t if
c > 0. To record this as we process the stream requires a single bitthat tells us whetherc is 0 or
greater than 0. Specifically, for each itemai, if h(ai) = 1, then we set this bit to1.

If Dn < t, then the probability that no items in the stream hash to bucket 1 (i.e. thatc = 0) is
(1 − 1/t)Dn > (1 − 1/t)t ≈ 1/e. If Dn > 2t, then the probability no items in the stream hash to
bucket 1 (i.e. thatc = 0) is (1−1/t)Dn < (1−1/t)2t ≈ 1/e2. More precisely, using a Taylor series
approximation,Pr[c = 0|Dn ≥ (1 + ǫ)t] ≤ 1/e− ǫ/3 andPr[c = 0|Dn < (1− ǫ)t] ≥ 1/e+ ǫ/3.

To improve the probability of being correct, repeat this several times in parallel and take ma-
jority answer. This give the following result.

Theorem 1. It is possible to get an estimatet for Dn usingO[(1/ǫ2) log(1/δ) logm] words of
space such that Prob[(1− ǫ)t ≤ Dn < (1 + ǫ)t] ≥ 1 − δ.

8

2.2 Extensions for inserts and deletes

ExerciseExtend the algorithm for approximating the number of distinct items to allow the stream
to include item deletions as well as item insertions.

The algorithm described above for sampling nearly uniformly from the set of (distinct) items in
the stream doesn’t extend as easily to allow deletions. The problem is that if all occurrences of the
item with the minimum hash value are deleted at some point in the stream, we need to replace that
item with another item. However, information about other items that have appeared in the stream
and the number of times each has occurred has been thrown away. For example, suppose in our
sampling procedure all of the samples that we obtain happen to be items that are inserted but then
later deleted. These samples will clearly be useless for estimating the quantities of interest.

We’ll use a new trick that uses sums in addition to counts. Choose log2m hash functions
hj : [1..m] to [1..2j], for j = 1, . . . , log2m. For the multiset of items described by the current
prefix of the stream, we will maintain the following information, for eachj ∈ [1.. log2m]:

1. D′
j, which is an approximation to the number of distinct items that are mapped to location 1

by hj ,

2. Sj, which is the exact sum of all items that are mapped to location 1 byhj , and

3. Cj, which is the exact number of items that are mapped to location 1 byhj.

For each itemai in the stream, ifhj(ai) = 1, thenCj is incremented or decremented andai is
added to or subtracted fromSj , depending on whetherai is being inserted or deleted.

The number of distinct elements is dynamic: at some point in the stream it could be large and
then later on it could be small. Thus, we havelog2m hash functions and maintain the information
for all of them.

If there is a single distinct item in the current multiset that is mapped to location 1 byhj , then
Sj/Cj is the identity of this item. Notice that, becauseSj andCj are maintained exactly, this works
even if the number of distinct items in the current multiset is very large and later becomes 1.

Suppose thatD′
j is always bounded below and above by(1 − ǫ) and(1 + ǫ) times the number

of distinct items hashed to location 1 byhj , respectively, for some constantǫ < 1. Then there is
only 1 distinct item hashed to location 1 byhj , if and only ifD′

j = 1.
If D′

j = 1, thenSj/Cj can be returned as the sample. If there is noj such thatDj = 1, then no
sample is output. If the hash functions are chosen randomly (from a good set of hash functions),
then each distinct item is output with approximately equal probability.

Instead of getting just one sample, for many applications, it is better to repeat this(1/ǫ2) log(1/δ)
times in parallel, using independently chosen hash functions. We’ll call this the sampling data
structure.

Yesterday, we had an arrayF [1..m] keeping track of the number of occurrences of each of the
possible items in the universe[1..m]. We calculated the heavy hitters (i.e. itemsi whose number of
occurrences,F [i], is at least some constant fraction of the total number of occurrences,

∑m
i=1 F [i])

and estimatedF [i],
∑m

i=1 F [i],
∑m

i=1 F [i]2, and quantiles. Today, we estimated the number of
distinct elements, i.e.,#{i | F (i) > 0}. The following definition gives a more succinct array

9

for answering many of the questions that we’ve looked at so far (i.e., distinct elements, quantiles,
number of heavy hitters.)

Definition 2. LetI[1..k] be an array, whereI[j] is the number of items that appearj times, i.e. the
number of items with frequencyj, andk ≤ n is the maximum number of times an item can occur.
For example,I[1] is the number of unique items, items that appear exactly once. Heavy hitters are
items that have frequency at leastφ

∑k
i=1 I[i], for some constantφ.

We’d like to apply the CM sketch directly to theI array. The problem is how to updateI as we
see each successive item in the stream. If we know how many times this item has previously been
seen, we could decrement that entry ofI and increment the following entry. However, we don’t
know how to compute this directly fromI.

The sampling data structure as described above, which can bemaintained as items are added
and deleted, allows the entries of theI array to be approximated.

2.3 Homework Problems

1. A (directed or undirected) graph withn vertices andm < n2 distinct edges is presented as
a stream. Each item of the stream is an edge, i.e. a pair of vertices(i, j). Each edge may
occur any number of times in the stream. Edge deletions do notoccur. Letdi be the number
of distinct neighbors of vertexi. The goal is to approximateM2 =

∑
i d

2
i . It is calledM2

since it is analogous toF2 from yesterday. The key difference is thatM2 only counts a new
item if it is distinct, i.e. it hasn’t appeared before.

The best known algorithm for this problem uses spaceO((1/ǫ4)
√
n log n). It can be obtained

by combining two sketches, for example, the CM sketch and minwise hashing. (In general,
the mixing and matching of different data structures can be useful.) The solution to this
problem doesn’t depend on the input being a graph. The problem can be viewed as an array
of values, where each input increments two array entries.

Although the space bound is sublinear inn, we would like to use only(logn)O(1) space. This
is open.

2. Sliding window version of sampling:
Input a sequence of items, with no deletions. Maintain a sample uniformly chosen from
among the set of distinct items in the lastw items. The space used should beO(logw).

Note that if minwise hashing is used and the last copy of the current item with minimum
hashed value is about to leave the window, a new item will needto be chosen.

10

Lecture 3. Some Applications of CM-Sketch

Lecturer: S. Muthu Muthukrishnan Scribes: Arkadev Chattopadhyay and Michal Koucký

3.1 Count-Min Sketch

Prelude: Muthu is a big fan of movies. What we will see today is like the movie “The Usual
Suspects” with Kevin Spacey: 12 years of research fit into onesketch. It will also take some
characteristics of another great movie “Fireworks” by Takashi Beat Kitano. That movie has three
threads which in the end meet. This lecture will have three threads.

Problem 1 (from yesterday): Sort an arrayA[1, . . . , n] of log2 n-bit integers in place in linear
time.

Solution idea: With a bit of extra space, sayO(
√
n), one could run

√
n-way radix sort to sort

the array inO(n) time. Where do we get this extra space? Sort/re-arrange the elements according
to the highest order bit. Now, we can save a bit per element by representing the highest order bit
implicitly. This yieldsO(n/ logn) space to run the radix sort. The details are left to the reader.
There are also other solutions.

Problem 2: We have a stream of items from the universe{1, . . . , n} and we want to keep a count
F [x] of every single itemx. We relax the problem so that we do not have to provide a precise count
but only some approximatioñF [x]:

F [x] ≤ F̃ [x] ≤ F [x] + ǫ

n∑

i=1

F [i].

Solution: For t that will be picked later, letq1, . . . , qt are the firstt primes. Hence,qt ≈ t ln t.
We will keept arrays of countersFj [1, . . . , qj], j = 1, . . . , t. All the counters will be set to zero
at beginning and whenever an itemx arrives we will increment all countersFj [x mod qj] by one.
DefineF̃ [x] = minj=1,...,t Fj [x mod qj].

Claim 2. For anyx ∈ {1, . . . , n},

F [x] ≤ F̃ [x] ≤ F [x] +
log2 n

t

n∑

i=1

F [i].

Proof. The first inequality is trivial. For the second one note that for anyx′ ∈ {1, . . . , n}, x′ 6= x,
x′ mod qj = x mod qj for at mostlog2 n different j’s. This is implied by Chinese Reminder
Theorem. Hence, at mostlog2 n counters corresponding toxmay get incremented as a result of an
arrival ofx′. Since this is true for allx′ 6= x, the counters corresponding toxmay get over-counted

11

by at mostlog2 n ·∑x′∈{1,...,n}\{x} F [x′] in total. On average they get over-counted by at most
log2 n

t
·∑x′∈{1,...,n}\{x} F [x′], so there must be at least one of the counters corresponding to x that

gets over-counted by no more than this number.

We chooset = log2 n
ǫ

. This implies that we will use spaceO(t2 log t) = O(log2 n
ǫ2

log log n),
where we measure the space in counters. This data structure is called Count-Min Sketch (CM
sketch) and was introduced inG. Cormode, S. Muthukrishnan: An improved data stream summary:
the count-min sketch and its applications. J. Algorithms 55(1):58-75 (2005). It is actually used in
Sprinter routers.

Intermezzo: Al Pacino’s second movie: Godfather (depending on how you count).

Problem 3: We have two independent streams of elements from{1, . . . , n}. Call the frequency
(count) of items in one of themA[1, . . . , n] andB[1, . . . , n] in the other one. EstimateX =∑n

i=1A[i] · B[i] with additive errorǫ · ||A||1 · ||B||1.
Solution: Again we use CM sketch for each of the streams:TA = (TA

j [1, . . . , qj])j=1,...,t and
TB = (TB

j [1, . . . , qj])j=1,...,t, and we output estimate

X̃ = min
j=1,...,t

∑

k=1

TA
j [k] · TB

j [k].

Claim 3.

X ≤ X̃ ≤ X +
log2 n

t
||A||1 · ||B||1.

Proof. The first inequality is trivial. For the second one note againthat for anyx, x′ ∈ {1, . . . , n},
x′ 6= x, x′ mod qj = x mod qj for at mostlog2 n different j’s. This means that the term
A[x] · B[x′] contributes only to at mostlog2 n of the sums

∑
k=1 T

A
j [k] · TB

j [k]. Hence again, the

total over-estimate is bounded bylog2 n · ||A||1 · ||B||1 and the average one bylog2 n
t

||A||1 · ||B||1.
Clearly, there must be somej for which the over-estimate is at most the average.

Choosingt = log2 n
ǫ

gives the required accuracy of the estimate and requires spaceO(log2 n
ǫ2

log log n).

Intermezzo: Mario is not happy: for vectorsA = B = (1/n, 1/n, . . . , 1/n) the error is really
large compare to the actual value. Well, the sketch works well for vectors concentrated on few
elements.

Problem 4: A single streamA[1, . . . , n] of elements from{1, . . . , n}. EstimateF2 =
∑n

i=1(A[i])2.

Solution: The previous problem provides a solution with an additive error ǫ||A||21. We can do
better. So far, our CM sketch was deterministic, based on arithmetic modulo primes. In general
one can take hash functionsh1, . . . , ht : {1, . . . , n} → {1, . . . , w} and keep a set of counters
Tj [1, . . . , w], j = 1, . . . , t. On arrival of itemx one increments countersTj [hj(x)], j = 1, . . . , t.
The hash functionshj are picked at random from some suitable family of hash functions. In such
a case one wants to guarantee that for a given stream of data, the estimates derived from this
CM sketch are good with high probability over the random choice of the hash functions. For the
problem of estimatingF2 we will use a family of four-wise independent hash functions. Our sketch

12

will consists of countersTj[1, . . . , w], j = 1, . . . , t, for evenw. To estimateF2 we calculate for
eachj

Yj =

w/2∑

k=1

(Tj [2k − 1] − Tj [2k])
2,

and we output the mediañX of Yj ’s.

Claim 4. For t = O(ln 1
δ
) andw = 1

ǫ2
,

|X̃ − F2| ≤ ǫF2

with probability at least1 − δ.

Proof. Fix j ∈ {1, . . . , t}. First observe that

E[Yj] = F2.

To see this let us look at the contribution of termsA[x] ·A[y] for x, y ∈ {1, . . . , n} to the expected
value ofYj. Let us define a random variablefx,y so that forx 6= y, fx,y = 2 if hj(x) = hj(y),
fx,y = −2 if hj(x) = 2k = hj(y) + 1 or hj(y) = 2k = hj(x) + 1 for somek, andfx,y = 0
otherwise. Forx = y, fx,y = 1 always. Notice forx 6= y, fx,y = 2 with probability1/w and
alsofx,y = −2 with probability1/w. It is straightforward to verify thatYj =

∑
x,y fx,yA[x] ·A[y].

Clearly, ifx 6= y thenE[fx,y] = 0. By linearity of expectation,

E[Yj] =
∑

x,y

E[fx,y] · A[x] · A[y] = F2.

Now we show that

V ar[Yj] ≤
8

w
F 2

2 .

V ar[Yj] = E



(
∑

x,y

fx,yA[x] · A[y] −
∑

x

A[x] · A[x]

)2



= E



(
∑

x 6=y

fx,yA[x] · A[y]

)2



= E

[
∑

x 6=y,x′ 6=y′

fx,y · fx′,y′ ·A[x] · A[y] ·A[x′] ·A[y′]

]
.

For (x, y) 6= (x′, y′), x 6= y, x′ 6= y′

E [fx,y · fx′,y′ · A[x] · A[y] · A[x′] · A[y′]] = 0

13

because of the four-wise independence ofhj . For(x, y) = (x′, y′), x 6= y, x′ 6= y′

E [fx,y · fx′,y′ · A[x] · A[y] ·A[x′] ·A[y′]] =

(
1

w
· 4 +

1

w
· 4
)
A[x]2 · A[y]2

=
8

w
·A[x]2 · A[y]2.

Hence,

V ar[Yj] ≤
8

w

(
·
∑

x

A[x]2

)2

=
8

w
F 2

2 .

Applying Chebyshev’s inequality, and the fact thatw = 1
ǫ2

we get,

Pr
[
|Yj − F2| ≥ ǫF2

]
≤ 1

8

Since each hash function is chosen independently, we can apply Chernoff bound to conclude
that takingO(log(1/δ)) hash functions is enough to guarantee that the median of theYj ’s gives an
approximation ofF2 with additive error less thanǫF2 with probability at least1 − δ.

Definition: LetA[1, . . . , n] be the count of items in a stream. For a constantφ < 1, itemi is called
aφ-heavy hitterif A[i] ≥ φ

∑n
j=1A[j].

Problem 5: Find allφ-heavy hitters of a stream.

Solution: First we describe a procedure that finds allφ-heavy hitters given access to any sketching
method. In this method, we formlogn streamsB0, . . . Blog n−1 in the following way:

Bi[j] =

j2i∑

k=(j−1)2i+1

A[k]

This means thatBi[j] = Bi−1[2j − 1] + Bi−1[2j]. When a new element arrives in streamA,
we update simultaneously the sketch of eachBi. Finally, in order to findφ-heavy hitters ofA, we
do a binary search by making hierarchical point queries on the logn streams that we created, in
the following way: we start atBlog n−1. We queryBlog n−1[1] andBlog n−1[2]. If Blog n−1[1] ≥
φ
∑n

k=1A[k] = T (say), then we recursively check the two next level nodesBlog n−2[1] and
Blog n−2[2] and so on.

In other words, the recursive procedure is simply the following: if Bi[j] ≥ T , then descend
into Bi[2j − 1] andBi[2j]. If Bi[j] < T , then this path of recursion is terminated. Ifi = 0, and
Bi[j] ≥ T , then we have found a heavy hitter.

Clearly, this procedure finds all heavy hitters if the point queries worked correctly. The number
of queries it makes can be calculated in the following way: for eachi, Bi can have at most1/φ
heavy hitters and the algorithm queries at most twice the number of heavy-hitters of a stream.
Thus, at most(2 logn/φ) point queries are made.

14

If we implement the probabilistic version of CM-sketch, as described in the solution to Problem
4 above, it is not hard to see that each point-query can be madeto return an answer with positive
additive error bounded byǫ, with probability1 − δ, by using roughlylog(1/δ) pairwise1 indepen-
dent hash functions, where each hash function has aboutO(1/ǫ) hash values. Such a sketch uses
O
(

1
ǫ
log(1/δ)

)
space.

For the application to our recursive scheme here for finding heavy hitters, we want that with
probability at least(1 − δ), none of the at most(2 logn/φ) queries fail2. Thus, using probabilistic
CM-sketch with spaceO

(
1
ǫ
log n log

(
2 log n

φδ

))
and probability(1 − δ), we identify all φ-heavy

hitters and not return any element whose count is less than(φ− ǫ)-fraction of the total count.

Reference:[CM04]

1Note for making point queries we just need pairwise independence as opposed to 4-wise independence used for
estimating the second moment in the solution to Problem 4 before.

2A query fails if it returns a value with additive error more than anǫ-fraction of the total count.

15

Lecture 4. Graph and Geometry Problems in the Stream Model

Lecturer: Andrew McGregor Scribes: Matei David and François Lemieux

In the lectures so far, we considered numerical data streams. In this lecture, we consider streams
describing graphs and metric spaces. Agraph streamis a stream of edgesE = {e1, e2, . . . , em}
describing a graphG onn vertices. Ageometric streamis a stream of pointsX = {p1, p2, . . . , pm}
from some metric space(χ, d). We’re now interested in estimating properties ofG or X, e.g.,
diameter, shortest paths, maximal matchings, convex hulls.

This study is motivated by practical questions, e.g., edgesin the graph can be pairs of IP ad-
dresses or phone numbers that communicate. In general,m is the number of edges. Unless stated
otherwise, we’ll assume each edge appears only once in the stream. We’re interested in both
directed and undirected graphs. We’re usingÕ in our bounds, hiding dependence on polylogarith-
mic terms inm andn. Further, we assume single points can be stored inÕ(1) space and that the
distanced(p1, p2) can be computed easily if bothp1 andp2 are stored in memory.

The specific problems we consider arecounting the number of triangles in a graph(Sec-
tion 4.1), computing a matching in a graph(Section 4.2),clustering points(Section 4.3), and
computing graph distances(Section 4.4).

4.1 Counting Triangles

The Problem. Let T3 denote the number of triangles in a graphG. WhenG is presented as a
stream of edges, we’re interested in estimatingT3 up to a factor of(1 + ǫ) with probability1 − δ,
given the promise thatT3 > t for somet.

Warmup. We start with a simple algorithm using̃O(ǫ−2(n3/t) log δ−1) space. Note, this only
improves on keeping all edges inO(n2) space whent = ω(n).

1. pick1/ǫ2 triples(u1, v1, w1), (u2, v2, w2), . . .
2. as edges stream by, check that all 3 edges in every triple are present
3. estimateT3 by the number of triples for which we found all 3 edges
4. repeat steps 1-3 forlog δ−1 times (in parallel), output the average of the estimates

Note that the probability(ui, vi, wi) is a triangle inG is preciselyT3/
(

n
3

)
. Standard Chernoff

bounds yield the desired correctness bounds.

Theorem 2. To determine whetherT3 > 0, Ω̃(n2) space is required, even for randomized algo-
rithms.

16

Proof. We give a reduction from 2-player Set-Disjointness: Alice and Bob have an × n matrices
A,B, and they are trying to determine if∃i, j such thatA(i, j) = B(i, j) = 1. By [Raz92], this
requiresΩ(n2) bits even for protocols that are correct with probability3/4.

Suppose there is a spaces algorithm for determining ifT3 > 0. LetG be a graph on3n vertices,
with V = {u1, . . . , un, v1, . . . , vn, w1, . . . , wn}, and initial edgesE = {(ui, vi) : i ∈ [n]}. Alice
adds edges{(ui, wj) : A(i, j) = 1}, and Bob adds edges{(vi, wj) : B(i, j) = 1}. Alice starts
simulating the algorithm until it processes the initial edges and her own, then communicates the
memory of the algorithm to Bob, usings bits. He continues the simulation, eventually obtains the
output of the algorithm, and announces it using one more bit.

For correctness, observe thatG contains a triangle (i.e.,T3 > 0) iff the inputs to the protocol
intersect.

Observe that the lower bound works even for algorithms that are allowed several passes over
the input stream.

Theorem 3(Sivakumar et. al). There is an algorithm using spacẽO(ǫ−2(nm/t)2 log δ−1).

Proof. The algorithm reduces this problem to that of computing frequency moments of a related
stream. Given the graph streamσ, construct a new streamσ′ as follows: for every edge(u, v),
generate all triples(u, v, w) for w ∈ V \ {u, v}.

Denote byTi the number of triples inV for which exactlyi edges are present inG. Observe
that thek-th frequency moment ofσ′ is

Fk(σ
′) =

∑

(u,v,w)

(#(u, v, w))k = 1 · T1 + 2k · T2 + 3k · T3,

and that

T3 = F0 −
3

2
· F1 +

1

2
· F2.

Hence, good approximations forF0, F1, F2 suffice to give an approximation forT3.

Theorem 4(Buriol et. al). There is an algorithm using spacẽO(ǫ−2(nm/t) log δ−1).

Proof. We can obtain a better algorithm using the following idea.

1. pick an edgeei = (u, v) uniformly at random from the stream
2. pickw uniformly at random fromV \ {u, v}
3. if ej = (u, w) andek = (v, w) for j, k > i exist, return 1, else return 0

To obtain an algorithm, we run this basic test many times in parallel, and we output the average of
these runs, scaled by a certain amount.

4.2 Maximum Weight Matching

The Problem. We now consider the Maximum Weight Matching problem: Given astream of
weighted edges(e, we), findM ⊂ E that maximizes

∑
e∈M we such that no two edes inM share

an endpoint.

17

Warmup. Let’s us first find a 2-approximation for the unweighted case using onlyÕ(n) space.
Given each edge(e, we) from the stream, we must decide if we add it to our current matching. For
, we consider all previously choosen edges that share an end point with (e, we) and we compute
the sumv of their weights. Ifwe > v then we remove these edges fromM and replace them with
(e, we). It is a simple exercice to show that the weight OPT of the optimal solution is at most twice
the weight of any maximal matching.

We will sketch the proof of the following result from [McG05]:

Theorem 5. There is a3+
√

2-approximation algorithm for the Maximal Weight Matching problem
that usesÕ(n) space .

Before giving the algorithm, we mention that result has beenimproved by a series of recent
results: 5.59... [Zel08] and 5.24... [Sar09] and that it is an open question to prove a lower bound
or a much better result. Letγ be some parameter. The algorithm is the following:

• At all time, we maintain a matchingM

• On seeing an edge(e, we), suppose thate′ ∈ M and (maybe)e′′ ∈ M have a common end
point withe

• If we ≥ (1 + γ)(we′ + we′′) then replacee′ ande′′ by e in M .

For the analysis, we use the following (macabre) definitionsto describe the execution of the
algorithm:

• An edgee kills and edgee′ if e′ was removed from current matching whene arrived.

• We say an edge is asurvivor if it is in the final matching.

• For survivore, thetrail of the deadsis T (e) = C1 ∪ C1 ∪ · · · , whereC0 = e and

Ci =
⋃

e′∈Ci−1

{edges killed bye′}

For any set of edgesS we definew(S) =
∑

e∈S we, wherewe is the weight of the edgee

Lemma 2. LetS be the set of survivors andw(S) be the weight of the final matching.

1. w(T (S)) ≤ w(S)/γ

2. OPT≤ (1 + γ)(w(T (S)) + 2w(S))

Put together this give OPT≤ (1/γ + 3 + 2γ)w(S) andγ = 1/
√

2 gives Theorem 5.

Proof. 1. Observe first that theT (e) are disjoints. Hence, it suffices to observe that for each
e ∈ S we have:

(1 + γ)w(T (e)) =
∑

i≥1

(1 + γ)w(Ci) = w(T (e) + we)

18

2. We can charge the weights of edges in OPT toS ∪ T (S) such that each edgee ∈ T (S) is
charged at most(1 + γ)w(e) and each edgee ∈ S is charged at most2(1 + γ)w(e). More
details are given in [FKM+05].

4.3 K-Center Clustering

Due to the lack of time, the topics discussed in this section and the next one have only been
sketched.

The Problem. We are given an integerk, and a stream ofn distinct pointsX = (p1, p2, . . . , pn)
from a metric space(χ, d). We need to find a set ofk pointsY ⊆ X that minimizesmaxi miny∈Y d(pi, y).
Since we need to outputk points, we consider the case where we haveΩ(k) memory to store them.

Warmup. The standard Greedy algorithm for this problem works in small space, and it obtains
a 2-approximation if given the optimal value,OPT : set radius to2 · OPT , then pick as a centre
any node which is not covered by the previous centres.

If only given boundsa ≤ OPT ≤ b on the optimal radius, one can obtain a(2 + ǫ) ap-
proximation algorithm by running the original algorithm inparallel with several values forOPT :
a, (1 + ǫ)a, (1 + ǫ)2a, . . . , b. This requires spacẽO(k log(1+ǫ)(b/a)), which is not good whenb/a
is large.

Theorem 6. [MK08a, Guh09] There exists a(2+ǫ)-approximation algorithm using spacẽO(kǫ−1 log ǫ−1).

4.4 Distance Estimation in a Graph

The Problem. We are given a stream with the (unweighted) edges from a graphG. This defines
the shortest path metricdG : V ×V (wheredG(u, v) is the shortest path betweenu andv inG.) The
problem is to estimatedG(u, v) for some verticesu, v. We can consider the problem whereu, v are
known in advance of seeing the graph stream, and also when they are not known in advance.

A common method for approximating graph distance is via the construction of a spanner.

Definition 3. Given a graphG = (V,E), a t-spanner ofG is a graphH = (V,E ′) such that for
all u, v, dG(u, v) ≤ dH(u, v) ≤ t · dG(u, v).

Theorem 7. [Elk07, Bas08] There is an algorithm that accept as input a stream of edges from a
graph and that computes a2t− 1 spanner using̃O(n1+1/t) space.

19

Lecture 5. Functional Approximation

Lecturer: S. Muthu Muthukrishnan Scribes: Laszlo Egri and Phuong Nguyen

5.1 Setting

LetD be a subset ofRN , called adictionary. Given an input vectorA ∈ R
N and an natural number

b ≥ 1, we wish to findb vectorsD1, D2, . . . , Db from D so that

min
α1,α2,...,αb

{‖A−
b∑

i=1

αiDi‖2 : αi ∈ R for 1 ≤ i ≤ b} (5.1)

is minimal. For each subset{D1, D2, . . . , Db} of D, the quantity (5.1) always exists (it is the
distance from the vectorA to the subspace generated by{D1, D2, . . . , Db}) and is also called the
error of the subset{D1, D2, . . . , Db}. So here we are asking for the subset of sizeb with smallest
error.

For example, ifb = N andD contains a basisD1, D2, . . . , DN for R
N , then we can take this

basis as our output. The minimal value for (5.1) for this output is 0 and is achieved by takingαi so
thatαiDi is the projection ofA along the corresponding basis vectorDi.

For another example, suppose thatD consists of an orthonormal basis forR
N , andb < N .

Then the error (5.1) is minimal when we takeD1, D2, . . . , Db to be theb unit vectors with largest
projections ofA, andαi = A ·Di.

In the second example, computing a projection ofA takes timeO(N). So the naive algorithm
that computes all projections ofA and then choosesb largest among them takes timeO(N2). The
basic question is whether we can improve on this running time. We will show later that ifD is
some special basis (e.g., the Haar wavelet) then we need onlylinear time.

In practice, for an application (e.g., audio, video, etc.) it is important to find the “right” basis
that is suitable to the common kind of queries (i.e.,A andb).

5.2 Arbitrary Dictionary

We show that the general setting, where the dictionary is arbitrary, it is NP-hard even to estimate
whether the minimal error (5.1) is 0. We do this by reducing the estimation problem to theexact set
coverproblem. LetU = {1, 2, . . . , n}, U is called the set ofground elements. Given a collection
S1, S2, . . . , Sm of subsets ofU and a numberd ≤ n, the exact set cover problem is to find anexact
coverof size≤ d, i.e., a collection ofd pairwise disjoint subsetsSk1

, Sk2
, . . . , Skd

such that

d⋃

i=1

Ski
= U

20

(Theset coverproblem is defined in the same way but the subsetsSki
are not required to be pairwise

disjoint.) The problem is NP-hard to approximate, in the sense that for any given constantη < 1,
there is a reduction from SAT to exact set cover so that

• a YES instance of SAT results in an instance of exact set coverwith a cover of size≤ ηd,

• a NO instance of SAT produces an instance of exact set cover with no cover of size≥ d.

We represent the inputsS1, S2, . . . , Sm to the exact set cover problem by ann×m matrixM ,
where

Mi,j = 1 iff i ∈ Sj

(Thus thej-th column ofM is the characteristic vector ofSj .)
For the reduction, consider the dictionary consisting of the characteristic vectors (also denoted

bySj) of Sj (for 1 ≤ j ≤ m),A = ~1 (the all-1 vector of lengthn) andb = ηd. It is easy to see that
an exact cover of sizes ≤ b = ηd gives rise to a subset

{D1, D2, . . . , Db}

such that

A =
s∑

i=1

Di

(Here we take
α1 = α2 = . . . = αs = 1, αs+1 = . . . = αb = 0

The vectorsDi are precisely thoseSki
that belong to the exact cover.) Consequently, if there is an

exact cover of sizeηd, then the minimal value of (5.1) is 0. Otherwise, if there areno exact cover
of size≥ d, then the error (5.1) of each subset{D1, D2, . . . , Db} is always at least the distance
fromA to the subspace generated by{D1, D2, . . . , Db}. Let h be the smallest distance fromA to
any subspace generated byb vectors inS, thenh > 0. The error (5.1) is at leasth, and hence is
strictly greater than 0.

5.3 An orthogonal basis: Haar wavelet

Suppose thatN = 2k. An orthogonal basis forRN based on the Haar wavelet can be described as
follows. Consider a fully balanced binary treeT of depthk with N = 2k leaves andN − 1 inner
nodes. Each inner node inT is labeled with an integern, 1 ≤ n < N in the following way: the
root is labeled with 1, and for2 ≤ n < N with binary notation

n = nt−1nt−2 . . . n0

(where2 ≤ t ≤ k) the node labeled byn is the other endpoint of the path that starts at the root and
follows the direction specified by the bitsnt−2, . . . , n0. (Here ifnt−2 is 0 then we follow the left
child of the root, otherwise ifnt−2 is 1 then we follow the right child of the root, etc.)

21

Number the leaves ofT from left to right with1, 2, . . . , N . For eachn (1 ≤ n < N) the basic
vectorwn:

wn = (u1, u2, . . . uN)

is defined so that for all indexi:

ui =





0 if i is not a descendant ofn

1 if i is a descendant of the left child ofn

−1 if i is a descendant of the right child ofn

More precisely, For a noden, 1 ≤ n < N , let ℓ(n) (resp.r(n)) be the left-most (resp. right-most)
leaf descendant ofn, andt(n) be the number of the right-most leaf descendant of the left child of
n. (Note thatℓ(n) ≤ t(n) < r(n).) Now define the basic vector

wn = (0, 0, . . . , 0, 1, 1, . . . , 1,−1,−1, . . . ,−1, 0, 0, . . . , 0) (5.2)

where the 1’s are from positionℓ(n) to t(n), and the−1’s are from positiont(n) + 1 to r(n). For
example, for the root:

w1 = (1, 1, . . . , 1,−1,−1, . . . ,−1)

where the first half of the coordinates are 1 and the other halfare -1. For another example,

w2k−1 = (1,−1, 0, 0, . . . , 0), wN−1 = (0, 0, . . . , 0, 1,−1)

Finally, define
wN = (1, 1, . . . , 1)

It is easy to verify that〈wn1
, wn2

〉 = 0 for all n1 6= n2. So we have a set ofN vectors that are
orthogonal, and hence they form a basis forR

N . We also assume that each vectorwn is normalized
so we get an orthonormal basis.

5.4 An efficient way of finding the b Haar wavelets with the
largest projections

Now, given a queryA andb < N , we need to find a subset of basis vectorsD1, D2, . . . , Db so that
(5.1) is minimal. This is equivalent to finding such a subsetD1, D2, . . . , Db that the projection of
A on the subspace generated byD1, D2, . . . , Db is maximum. We will show that this can be done
in timeO(N logN) (better than the obvious algorithm that takes timeΩ(N2)). Indeed, the running
time can be improved to linear inN , but we will not prove it here.

The inner nodes in the treeT above consist ofk layers. For example, the root alone makes up
the first layer, and all nodesn wheren ≥ 2k−1 make up thek-th layer.

Because the Haar basis is an orthogonal basis, we can solve the problem stated in the Sec-
tion 5.1 by finding theb largest projections. We can do this by calculating the innerproduct with
each of theseN vectors. This would takeO(N2) time. The question is whether we can do it

22

faster. So far we have been looking at items that have been either inserted or deleted. We can now
look at a simpler streaming model where there is a vector and you are looking at the vector left to
right, just reading one character at a time. In other words, we are inserting thei-th component, the
i+ 1-th component, and so on. So we are going to take a signalA with N components, read it left
to right, keep computing something which in the end will giveus theb largest wavelet coefficients.

More precisely, the idea comes from the following observation. For1 ≤ i ≤ N let Ai be
the vectorA at timei, i.e. the vector whose firsti coordinates are the same as that ofA, and the
remaining coordinates are 0. In other words, ifA = (A[1], A[2], . . . , A[N]), then

Ai = (A[1], . . . , A[i], 0, 0, . . .)

Consider the pathpi from the root to leafi in the tree described above. Observe that ifn is to the
left of this path (i.e.r(n) < i), then the projection ofA onwn is determined already byAi:

〈A,wn〉 = 〈Ai, wn〉

Thus, the high level idea of the algorithm is to compute recursively for i = 1, 2, . . . , N the
b basis vectorswn, wheren is to the left of the pathpi, that give the largest value of〈Ai, wn〉.
For this, we will also have to maintain the dot products〈Ai, wm〉 for every nodem that lie on the
current pathpi. Observe that to keep track of this information we needO(b+ log(N)) space.

Consider now inserting the(i+1)-th elementA[i+1] (i.e. the(i+1)-st step in the algorithm).
Let pi+1 be the path from the root to the(i+1)-th leaf node. We want to compute the inner product
of the partial input vector (i.e. when only the firsti+ 1 components have been inserted) with each
vectorw corresponding to a node on the pathpi+1. For simplicity, we assume that the entries of
the Haar basis vectors are0,−1, 1, but note that actually, the Haar wavelets are normalized. There
are three things to observe:

1. Observe that by the definition of the Haar wavelet basis, ifn is on the pathpi+1 then the
(i + 1)-th component ofwn is either1 or −1. Assume thatw is a node of bothpi andpi+1.
In this case, if the(i+ 1)-th element ofwn is a1 (−1), then

〈Ai+1, wn〉 = 〈Ai, wn〉 ± A[i+ 1]

So to update〈Ai, wn〉 we simply need to add (subtract)A[i+ 1] to (from) the current value.
If w is a “new” node, i.e. it does not appear inpi, then〈Ai+1, wn〉 = A[i+ 1].

2. Intuitively, the path we consider in the binary tree at each step is “moving” left to right.
Consider a wavelet vectorw′ that corresponds to a node of the binary tree that is to the left
of pi+1. More formally, assume that for somej < i + 1, w′ corresponds to a noden of pj,
butn is not inpi+1. Then the(i + 1)-th component ofw′ is 0 by the definition of the Haar
wavelet basis and therefore the inner product ofw′ with A is not affected byA[i+ 1].

3. The inner product ofA at timei with wavelet vectors that correspond to nodes which did not
yet appear in any path is0.

23

To keep track of theb largest coefficients, we need spaceO(b). We can use a heap to store
this information. Observe that the time required isO(N logN) sinceN elements are inserted and
whenever an element is inserted, we need to updateO(log(N)) inner products along the path from
the root to thei-th leaf. We note that there are other ways to do this in lineartime.

We consider now a slightly different problem. We want to place the previous problem into a
real streaming context. In other words, we consider the input vectorA and we allow insertions and
deletions at any point. We are looking at the frequency of items, i.e.A[i] represents the frequency
of item i. The query is to find the bestb-term representation using the Haar wavelet basis.

We discuss some informal ideas Muthu gave about this problem. Clearly, if we get information
aboutA from left to right, we can just do what we did before. But that is not very useful. So
observe that any time we update a particular element, it corresponds to updating the coefficients
of log(N) wavelet vectors. We haveN wavelet basis vectors, so consider the vectorW that stores
the coefficients of the basis vectors when the signalA is expressed in the Haar wavelet basis. Now
you can think of updating an element inA as updatinglog(N) elements inW . In a sense, now we
are facing the heavy hitter problem, i.e. we need theb largest elements ofW . Using techniques
we have seen before, it is possible to findb wavelet vectors whose linear combination (where the
coefficients are the inner products of the wavelet vectors with A) is R̃, such that the following
holds:‖ A− R̃ ‖≤‖ A−ROPT

b ‖ +ǫ ‖ A ‖2, whereROPT
b is the bestb-term representation ofA.

There is also another algorithm that guarantees that‖ A− R̃ ‖≤ (1 + ǫ) ‖ A− ROPT
b ‖. This

algorithm is more complicated and Muthu gave only the high-level intuition. The difficulty with
directly getting the topk elements asA gets updated is the following. We can get the large ones
using a CM sketch. But if there are a lot of “medium” ones, we will not be able to get them in a
small space. But you can get them if you estimate the large ones, subtract it out from the signal
(use linearity of CM sketch), look at the remaining signal. (You are not estimating the large ones
exactly, so the rest of the signal has some error.) Try to find the heavy hitters again. You repeat
and the residual error keeps on going down. With a reasonableamount of iteration, you will get
the estimation. At a high level, it is a greedy algorithm.

5.5 A variation on the previous problem

LetD be a dictionary consisting of Haar wavelets. LetA be a signal withN components. Letb be
the number of vectors we want to combine:

Rb =
∑

D1,...,Db∈D

αiDi.

In the previous sections, we wanted to minimize the error

‖ A−Rb ‖2=

N∑

i=1

(A[i] − Rb[i])
2.

The following problem is open (in 2009 March). As before, thebasis is the Haar wavelet basis.
There is another vectorπ with positive entries that is also part of the input. The vector π has the

24

same numberN of entries as the signal vectorA and it is normalized to1, i.e.
∑N

i=1 π[i] = 1. The
problem is tominimizethe “weighted error”:

N∑

i=1

π(i)(A[i] −Rb[i])
2.

(Note that if all the entries ofπ are equal, then this is just the previous problem.) The problem is
well-motivated: these representations are used to approximate signals. The question is that when
you approximate a signal what do you do with it? In the database context, for example, people
often look at queries for individual items. So usually databases keep record which items are asked
more often than others, and this is what the vectorπ corresponds to.

Some informal aspects of the problem: Recall that in the original problem, the coefficients
were the inner products of the Haar wavelets with the signalA. It is no longer the case when
we have weighted norms. When we do sparse approximation we don’t just have to come up with
which vectors to choose but also we have to come up with the right choice of coefficients. It is
harder to work with this, but we could make the problem easieras follows. We could assume that
once we picked the vectors we use the coefficients only along that direction, i.e. we assume that
the coefficients are inner products with the signal vector. If we do this then there is an interesting
O(N2b2) dynamic programming algorithm. (This algorithm uses the binary tree we used before
and benefits from the fact that each node in the binary tree hasat mostlog(N) ancestors. This
makes it possible to take a look at all possible subsets of thelog(N) ancestors of a node in linear
time.)

Sparse approximation people use Haar wavelets because Haarwavelets work well for the sig-
nals they work with. But if you put arbitrary weights as we done above, then the Haar basis might
not be the best basis. One question is: if we know the class of weights, which dictionary should
we use? Another question would be: what weights would be goodfor those signals for which Haar
wavelets give a good basis? Muthu mentioned that they can getgood approximations when they
use piecewise linear weights. You can also ask the same questions about a Fourier-dictionary.

25

Lecture 6. Compressed Sensing

Lecturer: S. Muthu Muthukrishnan Scribes: Nicole Schweikardt and Luc Segoufin

6.1 The problem

Assume asignalA ∈ R
n, for n large. We want to reconstructA from linearmeasurements〈A,ψi〉,

where eachψi is a vector inR
n, and〈A,ψi〉 denotes the inner product ofA andψi. For suitably

chosenψi, n measurements suffice to fully reconstructA (if the set of allψi forms a basis of
R

n). However, we would like to do onlyk measurements fork << n. The question is which
measurements should be done in order to minimize the error between what we measure and the
actual value ofA.

We fix some notation necessary for describing the problem precisely: We assume that an or-
thonormal basisψ1, . . . , ψn of R

n is given. Thedictionary Ψ is then × n matrix thei-th row
of which consists of the vectorψi. The measurements〈A,ψi〉, for i = 1, . . . , n, form the vector
θ(A) := ΨA, the vector of coordinates ofA with respect to the basisψ1, . . . , ψn. Note that by the
orthonormality ofΨ one obtains thatA =

∑n
i=1 θi(A)ψi, whereθi(A) denotes thei-th component

of θ(A).
In the area ofsparse approximation theoryone seeks for a representation ofA that is sparse in

the sense that it uses few coefficients. Formally, one looks for a setK ⊆ {1, . . . , n} of coefficients
such thatk = |K| << n such that for the vector

R(A,K) :=
∑

i∈K

θi(A)ψi

the error||A−R(A,K)||22 =
∑n

i=1(Ai −Ri(A,K))2 is as small as possible. SinceΨ is orthonor-
mal,

||A−R(A,K)||22 =
∑

i6∈K

θi(A)2.

Thus, the error is minimized ifK consists of thek coordinates of highest absolute value in the
vectorθ(A). In the following, we writeθj1 , θj2, . . . , θjn

to denote the components of the vector
θ(A), ordered in descending absolute value, i.e., ordered such that |θj1| ≥ |θj2 | ≥ · · · ≥ |θjn

|.
Furthermore, we writeRk

opt(A) to denote the vectorR(A,K) whereK is a set of sizek for which
the error is minimized, i.e.,

Rk
opt(A) =

k∑

i=1

θji
ψji
. (6.3)

Of course, the optimal choice ofK depends on the signalA which is not known in advance.
The ultimate goal incompressed sensingcan be described as follows: Identify a large class of

signalsA and a dictionaryΨ′, described by ak × n matrix, such that instead of performing then

26

measurementsΨA, already thek measurementsΨ′A suffice for reconstructing a vectorR(A) such
that the error||A− R(A)||22 is provably small on all signalsA in the considered class.

A particluar class of signals for which results have been achieved in that direction is the class
of p-compressible signalsdescribed in the next section.

6.2 p-compressible signals

We assume that a dictionaryΨ is given. Furthermore, let us fixp to be a real number with0 < p <
1.

Definition 4. A signalA is calledp-compressible (with respect toΨ) iff for eachi ∈ {1, . . . , n},
|θji

| = O(i−1/p).

Obviously, ifA is p-compressible, then

||A−Rk
opt(A)||22 =

n∑

i=k+1

θ2
ji

≤
∫ n

k+1

O((i−1/p)2) ≤ Cp · k1−2/p

for a suitable numberCp. Thus, if we assumep to be fixed, the optimal error||A−Rk
opt(A)||22 is of

size at mostCk
opt = O(k1−2/p) (for Ck

opt := Cp · k1−2/p).
The following result shows that for reconstructing a vectorR such that the error||A− R||22 is

of sizeO(Ck
opt), alreadyk log n measurements suffice.

Theorem 8 (Donoho 2006; Candès and Tao 2006). There exists a(k log n) × n matrix Ψ′ such
that the following is true for allp-compressible signalsA: when given the vectorΨ′A ∈ R

k log n,
one can reconstruct (in time polynomial inn) a vectorR ∈ R

n such that||A− R||22 = O(Copt
k).

The proof details are beyond the scope of this lecture; the overall structure of the proof is by
showing the existence ofΨ′ by proving the following: ifΨ′ is chosen to be the matrixTΨ, where
T is a random(k log n)×n matrix with entries in{−1, 1}, then the probability thatΨ′ satisfies the
theorem will be nonzero. A crucial step in the proof is to use “theL1 trick”, i.e., to consider the
L1-norm|| · ||1 instead of theL2-norm|| · ||2 and solve a suitable linear program.

Note that in lecture #5 we already considered the particularcase whereΨ is a Haar wavelet
basis, and solved similar questions as that of Donoho and Candès and Tao for that particular case.

6.3 An explicit construction of Ψ′

Theorem 8 states that a matrixΨ′ exists, and the proof of Theorem 8 shows thatΨ′ can be chosen
as TΨ, for a suitable(k log n) × n matrix T . The goal in this section is to give an explicit,
deterministic construction ofT .

Recall from Section 6.1 thatθ(A) = ΨA. Our goal is to approximate the vectorRk
opt(A) from

equation (6.3) by a vectorR that can be found using only the measurementsΨ′A instead of using
all the measurementsΨA. Clearly, if Ψ′ = TΨ, thenΨ′A = TΨA = Tθ(A). Since we want to

27

useΨ′A = Tθ(A) to findRk
opt(A), we clearly should chooseT in such a way that it picks up thek

largest components (w.r.t. the absolute value) ofθ(A).

Note the striking similarity between this problem and the following combinatorial group testing
problem: We have a setU = {1, . . . , n} of items and a setD of distinguished items,|D| ≤ k.
We identify the items inD by performing “group tests” on subsetsSi ⊆ U . The output of each
group test is0 or 1, revealing whether the subsetSi contains at least one distinguished item, i.e.,
|Si ∩D| ≥ 1. Collections ofO(k logn)2) nonadaptive tests are known which identify each of the
distinguished items precisely.

For the special case where onlyk-support signalsare considered (i.e., signalsA where at most
k of the components inθ(A) are nonzero), a solution of the combinatorial group testingproblem
almost immediately gives us a matrixT with the desired properties.

For the more general case ofp-compressible signals, the following is known.

Theorem 9(Cormode and Muthukrishnan, 2006). We can construct a poly(k, ε, logn)× n matrix
T in time polynomial ink andn such that the following is true for the matrixΨ′ := TΨ and for all
p-compressible signalsA: when given the vectorΨ′A, one can reconstruct a vectorR ∈ R

n such
that ||A−R||22 ≤ ||A− Rk

opt(A)||22 + εCopt
k .

The construction ofT in the proof of Theorem 9 is based on the following two facts (where[n] :=
{1, . . . , n}).

Fact 1 (k-separative strong set).Givenn andk, for l = k2 log2 n, one can findl setsS1, · · · , Sl

included in[n] such that for allX ⊆ [n] with |X| ≤ k we have

∀x ∈ X, ∃i such thatSi ∩X = {x}.
Fact 2 (k-separative set).Givenn and k, for m = k log2 n, one can findm setsS1, · · · , Sm

included in[n] such that for allX ⊆ [n] with |X| ≤ k we have

∃i such that|Si ∩X| = 1.

Furthermore, we need the following notations for describing the matrixT :

1. Given au × n matrixM and av × n matrixN , M ⊕ N denotes the(u + v) × n matrix
consisting of the rows ofM followed by the rows ofN .

2. Given a vectorB ∈ R
n and au × n matrixM , B ⊗M denotes theu × n matrix whose

element(i, j) isBj ∗M [i, j]. If N is av×n matrix thenN ⊗M is auv×n matrix obtained
by applying the vector operation on each row ofN , using⊕ to merge the results.

3. TheHamming matrixH is thelog n× n matrix such that columni is the binary coding ofi.
We add an extra row toH with 1 everywhere. Withn = 8 this yields :




1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


 .

This basically corresponds to a binary search strategy for aset of sizen.

28

Now setk′ as a suitable function ofk andp and letm be the number corresponding ton andk′ as
given by Fact 2 and letS ′ be the correspondingk′-separating sets. Setk′′ as a(k′ log n)2 and letl
be the number corresponding ton andk′′ as given by Fact 1 and letS ′′ be the corresponding strong
k′′-separative sets. FromS ′ form the characteristic matrixM ′ and fromS ′′ form the characteristic
matrix M ′′. Let T be the matrix(M ′ ⊗ H) ⊕ M ′′. This matrix has a number of rows that is:
m ∗ log n+ l which is poly-log inn by construction.

The fact that this matrix has the desired properties can be found in [Cormode and Muthukrish-
nan, SIROCCO 2006].

6.4 Literature

A bibliography on compressed sensing can be found athttp://dsp.rice.edu/cs .

In particular the following references were mentioned during the lecture:

• David Donoho: Compressed sensing. IEEE Trans. on Information Theory, 52(4), pp. 1289–
1306, April 2006.

• Emmanuel Candès and Terence Tao: Near optimal signal recovery from random projections:
Universal encoding strategies? IEEE Trans. on InformationTheory, 52(12), pp. 5406–5425,
December 2006.

• Graham Cormode and S. Muthukrishnan: Combinatorial Algorithms for Compressed Sens-
ing. SIROCCO 2006, LNCS volume 4056, pp. 280–294, Springer-Verlag, 2006.

• S. Muthukrishnan: Some Algorithmic Problems and Results inCompressed Sensing. Forty-
Fourth Annual Allerton Conference. (The article is available on Muthu’s webpage athttp:
//www.cs.rutgers.edu/ ˜ muthu/resrch_chrono.html)

29

Lecture 7. The Matador’s Fate and the Mad Sofa Taster: Random
Order and Multiple Passes

Lecturer: Andrew McGregor Scribes: Pierre McKenzie and Pascal Tesson

7.1 Introduction

The previous lectures have focused on algorithms that get a single look at the input stream of data.
This is the correct model in many applications but in other contexts a (typically small) number
of passes through input may be allowed. For example, it can bea reasonable model for massive
distributed data. We want to understand the inherent trade-offs between the number of passes and
the space complexity of algorithms for problems consideredin previous lectures.

We have also considered the space complexity of algorithms in a “doubly-worst-case” sense.
We are of course assuming worst-case data but, implicitly, we have also assumed that theorder of
presentationof the data is chosen adversarially. This simplifies the analysis and provides guaran-
tees on the space required for the computation but average-case analysis is often more appropriate:
in many real-world applications, such as space-efficientlysampling salaries from a database of
employees for example, data streams are relatively unstructured. We thus consider the complex-
ity of algorithms on random-order streams and again seek to identify cases where this point of
view provides significant gains in space-complexity. Thesegains sometimes come simply from a
sharper analysis of algorithms discussed earlier but, moreinterestingly, we can also tweak existing
algorithms to take full advantage of the random order model.Lower bounds for this model are
obviously trickier but more meaningful from a practical point of view.

7.2 Basic Examples

Smallest value not in the stream

Consider first the task of identifying the smallest valuex that isnotoccurring in a stream of length
m consisting of values in[n]. Let us look at variants of the problem where some promise on the
input is provided.

Version 1: Promised thatm = n − 1 and that all elements butx occur (i.e. all elements butx
occur exactly once)

In this case, the obvious solution is to keep a running sumS of the elements of the stream

and getx = m(m+ 1/2) − S. The space required is
∼

Θ(1)

Version 2: Promised that all elements less thanx occur exactly once.

30

In this case, the complexity is
∼

Θ(m1/p) wherep is the number of passes.

Version 3: No promise.

In this case, the complexity is
∼

Θ(m/p) wherep is the number of passes.

Increasing subsequence

As a second example, consider the problem of finding an increasing subsequence of lengthk in the
stream, given that such a subsequence exists. Liben-Nowellet al. [LNVZ06] gave an upper bound
of space complexityO(k1+1/2p−1) which was later shown to be tight [GM09].

Medians and approximate medians

Obviously, the assumption that the data arrives in a random order is often of little help. But there
are classical examples for which the gains are significant. Consider the problem of finding the
median ofm elements in[n] using onlypolylog(m,n) space. We also consider the easier problem
of finding at-approximate median, i.e. an elementx whose rank in them elements ism/2 ± t.

If we assume that the stream is given in an adversarial order,and if we impose apolylog(m,n)

space bound, we can find at-approximate median ift =
∼

Ω(m/polylog(m) and that bound is tight.
However, if we assume that the stream is random-order, we cangett down toΩ(

√
m). This bound

is not known to be optimal butt-approximate medians cannot be computed fort = ω(3
√
m).

Suppose instead that we want to compute the exact median. Thebounds above show that this
is not possible in spacepolylog(m,n) even assuming random order. However the bounds are for
1-pass algorithms and given sufficiently many passes, we canidentify the exact median without
exceeding our space bound. Specifically, the number of passes needed/sufficient for this task it
∼

Θ(logm/ log logm) in the adversarial model and only
∼

Θ(log logm) in the random-order model.

Theorem 10. In the adversarial order model, one can find an element of rankm/2±ǫm in a single

pass and using
∼

O(1/ǫ) space. Moreover, one can find the exact median inO(logm/ log logm)

passes using
∼

O(1) space.

Proof. We have already discussed the one-pass result. In fact, we even showed that it is possible
to find quantiles, i.e. find for anyi ∈ [ǫ−1] an element of rankiǫm± ǫm

The multi-pass algorithm is built through repeated applications of this idea. In a first pass, we
setǫ = 1/ logm and finda andb with

rank(a) = m/2 − 2/ logm±m/ logm and rank(b) = m/2 + 2/ logm±m/ logm

Now in pass 2, we can find the precise rank ofa andb and from there recurse on elements
within the range[a, b]. Note that this range is of size at mostm/ logm and every pair of passes
similarly shrinks the range by a factor oflogm. HenceO(logm/ log logm) passes are sufficient
to find the median.

31

Let us now focus on lower bound arguments for this same problem.

Theorem 11. Finding an element of rankm/2 ±mδ in a single pass requiresΩ(m1−δ) space.

Proof. Once again the proof relies on a reduction from communication complexity. Specifically
we look at the communication complexity of the INDEX function: Alice is givenx ∈ {0, 1}t, Bob
is givenj ∈ [t] and the function is defined as INDEX(x, j) = xj . Note that the communication
complexity of this problem is obviouslyO(logn) if Bob is allowed to speak first. However, if
we consider one-way protocols in which Alice speaks first, thenΩ(t) bits of communication are
necessary (this is easy to show using a simple information-theoretic argument).

We want to show that Alice and Bob can transform a single pass algorithm for the approximate
median into a protocol for INDEX. Givenx, Alice creates the stream elements{2i + xi : i ∈ [t]}
while Bob appends to the streamt− j copies of0 andj − 1 copies of2t+ 2. Clearly, the median
element in the resulting stream is2j + xj and Alice can send to Bob the state of the computation
after passing through her half of the stream. Hence, finding the exact median requiresΩ(m)
space. To get the more precise result about approximate medians, it suffices to generate2mδ + 1
copies of each of the elements: anymδ-approximate median still has to be2j + xj and since the
resulting stream is of lengthO(tmδ), the communication complexity lower bound translates into
anΩ(m/mδ) lower bound on the space complexity of the streaming algorithm.

If we hope to obtain lower bounds in the multi-pass model using the same approach, we cannot
simply rely on the lower bound for INDEX. Intuitively, each pass through the stream forces Bob to
send to Alice the state of the computation after the completion of the first pass and forces Alice to
send to Bob the state of the computation after the completionof the first half of the second pass.
Instead, we consider a three-party3 communication game in the “pointer-jumping” family. Aliceis
given at × t matrixX, Bob is giveny ∈ [t]t and Charlie is giveni ∈ [t]. Let j ∈ [t] be defined
asj = yi: the players’ goal is to computeXij with anA → B → C → A → B → C protocol.
(Alice speaks first, followed by Bob,. . .) Any ABCABC protocol for this function requiresΩ(t)
communication [NW93].

Theorem 12. Finding the exact median in two passes requires spaceΩ(
√
m).

Proof. The reduction from the pointer-jumping problem works as follows. Again, we think of
Alice, Bob and Charlie as creators of, respectively, the first, second and last third of a stream.
Therefore, a space-efficient 2-pass algorithm can be translated into a cheap ABCABC communi-
cation protocol.

Let T > 2t + 2 and letok = T (k − 1). Alice creates for eachk ∈ [t], the elementsAk =
{2ℓ + Xℓk : ℓ ∈ [t]} + ok. Bob creates for eachk ∈ [t], the elementsBk = {t − yk copies of
0 andyk − 1 copies ofB} + ok. In other words, Alice and Bob’s stream elements formt non-
overlapping blocks. Each such block has2t − 1 elements and follows the pattern of the 1-pass
reduction. Charlie on the other hand addst(t − i) copies of0 andt(i − 1) copies ofBot. It is
convenient to also think of these ast blocks of(t− i) copies of0s andt blocks of(i− 1) copies of

3Note that the multi-party model considered here is the “number in hand model” and not the “number on the
forehead” model.

32

Bot. The total number of blocks in our construction is2t−1 and the median element in the stream
is the median element of the median block.

The elements generated by Charlie guarantee that the medianblock is theith one and by con-
struction of theAk andBk, the median of this block isoi + 2j +Xij wherej = yi.

A 2-pass algorithm using spaceS yields an ABCABC protocol of cost5S for the pointer-
chasing problem and since the stream above is of lengthO(t2), the communication complexity
lower bound translates into anΩ(

√
m) space lower bound for two-pass algorithms.

Throughout our discussion on medians, we assumed that the lengthm of the stream is known
in advance. This is crucial for the upper bounds: one can in fact show that whenm is not known
a priori, an algorithm for the exact median requiresΩ(m) space even if the data is presented in
sorted order. (Left as an exercise)

7.3 Taking advantage of random streams

Theorem 13. In the random order model, one can find an element of rankm/2 ±
∼

O(
√
m) in a

stream of elements from[n] in a single pass using
∼

O(1) space.

Proof. We split the stream intoO(logm) segments of lengthO(m/ logm). We seta1 = −∞,
b1 = +∞. At the ith step we process theith segment. We enter theith step thinking that we have
ai andbi fulfilling rank(ai) < m/2 < rank(bi), and then

• we pick in theith segment the firstc fulfilling ai < c < bi

• we use the rest of theith segment to compute an estimater̃ of rank(c), by settingr̃ to
O(logm) × the rank ofc within theith segment

• if r̃ is within
∼

O(
√
m) of m/2 then we outputc, otherwise we proceed to stepi + 1 after

setting

(ai+1, bi+1) =

{
(ai, c) if r̃ > m/2 (i.e. the median is likely belowc)
(c, bi) if r̃ < m/2.

This algorithm finds an approximation to the median with highprobability. The probability analy-
sis uses a variant of Chernoff-Hoeffding bounds applied to sampling without replacement [GM09].

The algorithm manipulates a constant number of(logmn)-bit numbers so uses
∼

O(1) space.

The above algorithm is more accurate than the CM sketch but the latter yields all the quan-
tiles. By increasing the number of passes, yet a better approximation to the median can be ob-

tained. A second pass can improve the approximation from±
∼

O(
√
m) to ±

∼

O(m1/4), a third pass

to ±
∼

O(m1/8), and so on. One needs care to account for the fact that the input is not rerandomized

at each pass [GK01]. The exact median can be found in space
∼

O(1) usingO(log logm) passes
[GM09].

33

Turning to lower bounds to match the above theorem, the difficulty in extending the commu-
nication complexity technique to the random order model is to account for randomisation when

partitioning the player inputs. It can be shown that approximating the median to±
∼

O(mδ) in one
pass requiresΩ(m

1−3δ
2) space. This is known to be tight whenδ = 0 but an open problem is to

proveΩ(m
1

2
−δ). See [GM09] for a refined statement that takes the number of passes into account.

The bearing of the communication complexity of the Hamming distance problem (in which
Alice and Bob want to estimate the Hamming distance between their respectiven-bit strings) on
the data stream complexity of computing frequency moments was not treated in these lectures. The
2-line story here is:

• see [GM09],

• see [CCM08].

34

Lecture 8. Random order, one pass. Linear algebraic problems.

Lecturer: Andrew McGregor and S. Muthu Muthukrishnan Scribes: Valentine Kabanets and
Antonina Kolokolova

8.1 Random order

Theorem 14. Finding the exact median requiresΩ(
√
m) space.

Theorem 15. To findmδ-approximation of the median in one pass, in random order setting, re-
quires spaceΩ(m

1−3δ
2).

The lower bound is tight forδ = 0, but not known to be tight forδ = 1/2.

Problem 1. Improve this toΩ(m
1

2
−δ).

Proof of theorem 14.The proof is by reduction from communication problem INDEX.Suppose
Alice hasx ∈ {0, 1}t and Bob hasj ∈ [t].

Claim 5. Even whenx ∈R {0, 1}t (that is, picked uniformly at random from{0, 1}t), any one-pass
one way (Alice to Bob) protocol requiresΩ(t) communication.

Let Alice haveA = {2i + xi | i ∈ [t]}, and let Bob havet − j copies of0 (setB1) andj − 1
copies of2t+ 2 (setB2). Then, finding a median requires Alice to knowj.

This is the case of adversarial stream. For the random streamcase, how can Alice and Bob
simulate an algorithm on a random permutation ofA,B1, B2? They cannot do such a simulation,
but they do an “almost random” stream.

Start by adding toA,B1, B2 t
2 copies ofB1 andB2 items. So the size of the set of 0sB1

becomest2 + t− j, and of newB2, |B2| = t2 + j − 1. Using public randomness, decide ahead of
time where elements ofA appear. To Alice’s elements on Bob’s side, add random valuesyi. Alice
guessesj = t/2, and randomly fills Bob’s places in her part of the stream withvalues0 (small)
and2t+2 (large) so that it is balanced by the end of her part of the stream. Bob knows the balance
by the start of his stream, and fills in the rest of0 and2t+ 2 to make the balance exact. Sincet2 is
large in comparison tot− j, j − 1, equal balance is ok. Finally, although Bob guesses his2i+ xi

mostly incorrectly, he can recover.

Reference: Guha, McGregor SiCOMP’09, and Chakrabarti, Cormode, McGregor STOC’08.
Gap hamming: given two lengthn binary string, approximate hamming distance. There is a

one-pass lower bound.

35

8.2 Linear algebraic problems

1. Compressed sensing: many parameters, time to reconstruct the signal, etc. There are tables
of parameters in various paper. Pyotr Indyk has the largest table.

2. Algorithmic puzzle: given an array ofn elements, findin-placea leftmost item that has
a duplicate, if any.O(n2) is trivial, O(n log2 n) more interesting, if allowed to lose info
(overwrite elements) can getO(n).

3. Different sparse approximation problem: given an array of sizen and a numberk, partition
the array ink pieces. Approximate items in every interval by the average of the intervalai.
Want to minimize the quantity:

∑
i

∑
j∈ith interval(ai − A[j])2; here, full memory is allowed;

no streaming.

Dynamic programming solution givesO(n2k). But suppose the problem is generalized to
two dimensions. What kind of partition can it be? There is hierarchical partition (every new
line splits an existing block), simple partition (grid), orarbitrary partition.

The problem is NP-hard for arbitrary partition, and is in P for hierarchical partition (using
Dynamic Programming). Approximation algorithm converts the problem of arbitrary parti-
tion into a hierarchical partition..

Sparse approximation: intervals correspond to a dictionary. How to get streaming algorithms
for this case? This problem is related to histogram representation problem. It is also related
to the wavelets.

8.2.1 Linear algebraic problems

Here we consider three linear algebraic problems:

1. Matrix multiplication.

2. L2 regression (least squares)

3. Low rank approximation.

Matrix multiplication

Problem: givenA : Rm×n, B : Rn×p, computeA · B. Frobenius norm||x||F =
∑

i,j x
2
i,j : work

in streaming world, only look at the space to keep the sketch what we track as the matrices are
updated. Take a projection matrixS of dimensions(1/ǫ2) log 1/δ by n.

NowAB = (AST)(SB). Keep track of of(AST) (size 1
ǫ2

log 1
δ
×m, (SB) : 1

ǫ2
log 1

δ
× p. The

probabilityPr(||AB−ASTSB||F ≤ ǫ||A||F ||B||F) ≥ 1− δ. This is similar to the approximation
of additive error in wavelets, inner product of vectors.

Expectation of the inner product isE[〈Sx, Sy〉] = 〈x, y〉, varianceV ar[〈Sx, Sy〉] ≤ 2ǫ2||x||22 ||y||22.
This was proved earlier. From this, getE[ASTSB] = AB, and

V ar(||AB −ASTSB||2F) ≤ 2ǫ2||A||F ||B||F .

36

Pr(min
1...t

||AB −AST
i SiB||F ≤ ǫ||A||F ||B||F) > 1 − δ,

wheret ≈ 1
log 1

δ

– need at least1
ǫ2

bits to solve with this level of accuracy.

L2 regression (least squares)

Now takeA : Rn×d, n > d (oftenn >> d), b ∈ Rn. The problem is to solveAx ?
= b. That is,

given points (observational) draw a line (fit to explain all points) minimizing the sum of squares
of distances of points to the line.Z = minx∈Rd ||Ax− b||2. Best known algorithm isO(nd2); this
algorithm is based on numerical analysis. How do we solve this problem in the streaming world?
Here,A andb are updated as new points come along. Want guarantees onx andZ. Can get the
result:

1. z̃ ≤ (1 + ǫ)z

2. Can findx′opt such that||SAxopt − Sb||2 ≤ (1 + ǫ)z. Take CM sketch, projection ofA and
a projection ofb, and solve the problem on them. ForS, taked log d

ǫ2
× n CM sketch vectors.

Solveminx ||SAx − Sb||2. Size ofSA is d log d
ǫ2

× d, of Sb is d log d
ǫ2

. This gives thed3 term
in the expression. Use fast Johnson-Lindenstrauss transform. In streaming world, assume
moreSA.

3. ||xopt − x′opt||2 ≤ ǫ2

σ2

min(A)
, the smallest eigenvalue.

Low rank approximation

There is a simple algorithm for the low rank approximation; surprising, knowing the history of the
problem.

Think of sites collecting information. There is a central site andk other sites. LetSi(t) be the
number of items seen by a (non-central) citei by the timet. We are interested in

∑
i |Si(t)|. The

central site gets information from all the rest of sites, andoutputs a0 if
∑

i |Si(t)| < (1 − ǫ)τ and
output1 if

∑
i |Si(t)| > τ , whereτ is the central site’s threshold parameter. We are interested in

minimizing the number of bits sent to the central site by the others. There is no communication
from the central site back or between non-central sites. Allsites knowτ andk. In case of 2 players,
send 1 bit when seenτ/2 items: gives 2 bits of communication. Can it be generalized to k players
(would that give k bits of communication)?

37

Lecture 9. Massive Unordered Distributed Data and Functional
Monitoring

Lecturer: S. Muthu Muthukrishnan Scribes: Eric Allender and Thomas Thierauf

9.1 Distributed Functional Monitoring

In the distributed functional monitoring problem [CMY08] we havek siteseach tracking their
input. The sites can communicate with a designatedcentral site, but not among each other. Let
si(t) be the number of bits that sitei has seen up to timet. The task of the central site is to monitor
a given functionf over the inputss1(t), . . . , sk(t) for all times t. The goal is to minimize the
number of bits that are communicated between the sites and the central site.

We consider the example where the functionf is the sum of the valuessi(t). Define

F1 =

k∑

i=1

si(t).

The central site is required to detect whenF1 exceeds a certain thresholdτ , i.e. we consider the
function

c(t) =

{
1, if F1 > τ,

0, otherwise.

The interesting case is to compute the approximate versioncA of c: for some given0 < ε ≤ 1/4
the output of the central site at timet is defined as

cA(t) =

{
1, if F1 > τ,

0, if F1 ≤ (1 − ε)τ.

We do not care about the output if(1 − ε)τ < F1 ≤ τ . The problem of computingcA with these
parameters is called the(k, F1, τ, ε) functional monitoring problem.

There are two trivial algorithms for it:

1. Each site communicates the central site every bit it sees.

2. Sitei sends a bit to the central site each time thatsi(t) increases byτ(1 − ǫ)/k.

The first solution would even allow the central site to compute the exact functionc. However, the
amount of communication is extremely high (τ bits). The second algorithm needs only aboutk
bits of communication, but the error made in computingcA can be very large.

In this lecture we show

38

Theorem 16. There is a randomized algorithm for(k, F1, τ, ε) monitoring with error probability
≤ δ andO(1

ε2 log 1
δ

log log 1
δ
)) bits of communication.

It is important to note that the number of bits of communication is independentof τ andk.
Thus it scales as well as one could hope for.

Consider the following algorithm, where we use a constantc to be determined later.

Site i: Send a bit to the central cite with probability1/k each time that
si(t) increases by

ε2

ck
τ.

Central site: Output1 if the total number of bits received from the sites
is

≥ c

(
1

ε2
− 1

2ε

)
,

otherwise output0.

Define the random variable

X = # bits the central site has received at some point of time.

For the expected value ofX we have the following upper and lower bound:

E(X) ≤ 1

k

F1

ε2τ/ck
=

cF1

ε2τ
, (9.4)

E(X) ≥ 1

k

F1 − ε2τ

ε2τ/ck
=

cF1

ε2τ
− c. (9.5)

For the variance ofX we have

Var(X) ≤ ckF1

ε2τ

(
1

k
− 1

k2

)
≤ cF1

ε2τ
. (9.6)

Case 1: F1 ≤ (1 − ε)τ . By equation (9.4) we have

E(X) ≤ cF1

ε2τ
≤ c

ε2
(1 − ε) ≤ c

ε2
. (9.7)

39

The probability that the central site outputs1 is

Pr[X ≥ c

(
1

ε2
− 1

2ε

)
] ≤ Pr[X ≥ E(X) − c

2ε
] by equation (9.7)

= Pr[X − E(X) ≥ − c

2ε
]

≤ cF1

ε2τ

(2ε)2

c2
by Chebyshev inequality and equation (9.6)

=
4F1

τc

≤ 4(1 − ε)τ

τc
by assumption in case 1

≤ 4

c

Case 2: F1 > τ . By equation (9.5) we have

E(X) ≥ cF1

ε2τ
− c >

c

ε2
− c. (9.8)

Then the probability that the central site does not output1 is

Pr[X < c

(
1

ε2
− 1

2ε

)
] ≤ Pr[X < E(X) + c− c

2ε
] by equation (9.8)

= Pr[X − E(X) < c− c

2ε
]

≤ cF1

ε2τ

1

(c− c
2ε

)2
by Chebyshev inequality and equation (9.6)

≤ 1

c(ε− 1
2
)2

by assumption in case 2

≤ 16

c
for ε ≤ 1

4
.

Choosingc = 64 makes the error probability≤ 1/16 in case 1 and≤ 1/4 in case 2. Hence the
total the error probability is≤ 1/3. The number of bits communicated isO(1/ε2).

The error probability can be decreased toδ by runningO(log 1
δ
) independent instances of the

algorithm. That is, we modify the protocol as follows:

40

Site i: Each time thatsi(t) increases byε
2

ck
τ , the site makest = O(log 1

δ
)

independent trials, indexed1, . . . , t, to send a bit to the central site
with probability1/k for each trial. However, instead of just one bit,
it sends the indexj of each successful trial to the central site.

Central site: The central site maintains a counter for each of thet trials,
where it adds1 to counterj whenever it receives messagej from
one of the sites.

It outputs 1 if the majority of the t counters has a value≥
c
(

1
ε2 − 1

2ε

)
, otherwise it outputs0.

The number of bits communicated is thusO(1
ε2 log 1

δ
log log 1

δ
) as claimed.

9.2 Massive Unordered Distributed Data

We consider truly massive data sets, such as those that are generated by data sources as IP traffic
logs, web page repositories, search query logs, retail and financial transactions, and other sources
that consist of billions of items per day, and are accumulated over many days. The amount of data
in these examples is so large that no single computer can makeeven a single pass over the data
in a reasonable amount of time. Therefore the data is distributed in pieces over many machines.
For example, Google’s MapReduce and Apache’s Hadoop are successful large scale distributed
platforms that can process many terabytes of data at a time, distributed over hundreds of even
thousands of machines. The machines process the pieces of data in parallel. Then they send their
results to a central machine. Clearly, the amount of data that is sent to the central machine should
be small, i.e. only poly-logarithmic in the input size.

Since the distribution of the data pieces on the machines is unordered, order should have no
impact on the result. Hence, in this lecture we consider a model for algorithms which is called
massive, unordered, distributed (short: mud)algorithms. Mud algorithms consist of three func-
tions:

1. a local functionmapthat maps a single input data itemx to a list of pairs of the form(k, v),
wherek is a key andv is a value.

2. an aggregate functionreducethat gets as input the setS of all map(x) (over all data items
x), and computes, for eachk, some function of the pairs(k, v) that appear inS. Because
the input data forreducecan be distributed on several machines, the function shouldbe
commutative and associative.

3. a function for a final post-processing step. This is not always needed.

Examples

As an example, we want to compute the number of links to a web-page. The data itemsx are
web-pages andmap(x) is defined to consist of all pairs(k, v), where keyk is a URL that occurs

41

as a link inx andv is the number of timesk occurs inx. Thereduce-function simply computes,
for each URLk, the sum of the valuesv such that(k, v) is produced during themapphase. This
example does not use the post-processing step.

As another example (using the post-processing step), consider the problem of computing the
number of triangles in a graphx on n vertices, where the data is presented as a set of edges
(u, w). Applying map(u, w) produces pairs(k, v) where the keysk are triples of nodes(i, j, k)
with i < j < k, where{a, b} ⊆ {i, j, k}, and the valuesv are triples(bi,j , bi,k, bj,k), where
bi,j = 1, if (i, j) is an edge, andbi,j = 0 otherwise. Thereduce-function computes the bitwise or
of the values for each key. In the post-processing step, we output the number of keysk for which
(k, (1, 1, 1)) is produced during thereducephase.

The number of keys that are used has a significant effect on theefficiency of the resulting
algorithm. We will examine the computational power of the extreme case, where we have onlyone
key.

Mud algorithms with one key

In the following we consider the special case where there is only one key, i.e. we can omit the key.
Thus, in themapphase, each data itemx producesmap(x) which is communicated to thereduce
phase. We call these “messages”. In thereducephase, we apply an operator to the messages (in
some order).

More formally, the three functions of a mud-algorithm simplify as follows: The local function
Φ : Σ → Qmaps an input item to a message, the aggregator⊕ : Q×Q→ Qmaps two messages
to a single message, and the post-processing operatorη : Q→ Σ produces the final output.

The output can depend on the order in which⊕ is applied. LetT be an arbitrary binary tree
circuit with n leaves. We usemT (x) to denote theq ∈ Q that results from applying⊕ to the
sequenceΦ(x1), . . . ,Φ(xn) along the topology ofT with an arbitrary permutation of these inputs
as its leaves. The overall output of the mud algorithm isη(mT (x)), which is a functionΣn → Σ.
Notice thatT is notpart of the algorithm, but rather, the algorithm designer needs to make sure that
η(mT (x)) is independent ofT . We say that a mud algorithm computes a functionf if η◦mT = f ,
for all treesT .

The communication complexity of a mud algorithm islog |Q|, the number of bits needed to
represent a message from one component to the next. The time,resp. space complexity of a mud
algorithm is the maximum time resp. space complexity of its component functions.

Let us compare mud algorithms with streaming algorithms. Formally, a streaming algorithm
is given by a pairs = (σ, η), whereσ : Q × Σ → Q maps a state and an input to a state.σ
is an operator applied repeatedly to the input stream.η : Q → Σ converts the final state to the
output.sq(x) denotes the state of the streaming algorithm after startingat stateq and operating on
the sequencex = x1, . . . xn in that order, that is

sq(x) = σ(σ(. . . σ(σ(q, x1), x2) . . . , xk−1), xn).

On inputx ∈ Σn, the streaming algorithm computesη(s0(x)), where 0 is the starting state. The
communication complexity of a streaming algorithm islog |Q|, and the time, resp. space complex-
ity is the maximum time resp. space complexity ofσ andη.

42

Clearly, for every mud algorithmm = (Φ,⊕, η) there is a equivalent streaming algorithm
s = (σ, η)) of the same complexity by settingσ(q, x) = ⊕(q,Φ(x)) and maintainingη. The central
question is whether the converse direction also holds. The problem is that a streaming algorithm
gets its input sequentially, whereas for a mud algorithm, the input is unordered. Consider the
problem of computing the number of occurrences of the first element in the input. This is trivial for
a streaming algorithm. However, no mud algorithm can accomplish this because a mud algorithm
cannot determine the first element in the input. Therefore werestrict our attention tosymmetric
functions. Here one can show that the models are equivalent in the following sense:

Theorem 17. [FMS+08] For any symmetric functionf : Σn → Σ computed by ag(n)-space
andc(n)-communication streaming algorithm there exists a mud algorithm that computesf within
spaceO(g2(n)) andO(c(n)) communication.

The proof of this theorem has much the same flavor of Savitch’stheorem and can be found
in [FMS+08].

43

Lecture 10. A Few Pending Items and Summary

Lecturer: Andrew McGregor and S. Muthu Muthukrishnan Scribes: Ricard Gavaldà and Ken
Regan

10.1 Four Things Andrew Still Wants to Say

Andrew wanted to tell us about 14 things, which were eventually 4 because of time constraints:
Computing spanners, estimating the entropy, a lower bound for F0, and solving thek-center prob-
lem.

10.1.1 Computing Spanners

Recall the definition oft-spannerof a graphG (alluded to in Lecture 4): It is a subgraph ofG
obtained by deleting edges such that no distance among any two vertices increases by a factor of
more thant.

Here is a simple algorithm for bulding a(t − 1)-spanner in one pass, over a stream of edges:
When a new edge arrives, check whether it completes a cycle oflength at mostt. If it does,ignore
it; otherwise, include it in the spanner. The resulting graphG′ is at-spanner of the original graph
G because for every edge(u, v) in G −G′ there must be a path fromu to v in G′ of lengtht− 1,
namely, the rest of the cycle that prevented us from adding(u, v) toG′. Therefore, for every path
of lengthk in G there is a path of length at most(t− 1)k in G′ with the same endpoints.

Elkin [Elk07] proposed an algorithm using this idea that computes a(2t − 1)-spanner in one
pass using memory and total timẽO

(
n1+1/t

)
. Furthermore, the expected time per item isO(1).

10.1.2 Estimating the Entropy

Given a stream of elements in{1, . . . , m}, letmi be the frequency of elementi in the stream. We
would like to estimate the entropy of the stream,

S =
∑

i

mi

m
log

m

mi
.

A first solution to this problem is simply to pick a random element in the stream, call itx, then
count the occurrences ofx from that point in the stream on, call this numberR. Then output

Ŝ = R log
m

R
− (R − 1) log

m

R− 1
.

44

We claim thatŜ is an estimator of the entropyS. Indeed, if we definef(r) = r log(m/r),

E[Ŝ] =
∑

r

Pr[R = r] · (f(r) − f(r − 1))

=
∑

r

∑

i

Pr[x = i] · Pr[R = r|x = i] (f(r) − f(r − 1))

=
∑

i

mi

m

mi∑

r=1

1

mi

(f(r) − f(r − 1)) (and the sum telescopes, so)

=
∑

i

mi

m

1

mi

(f(mi) − f(1)) =
∑

i

mi

m
log

m

mi

One can show that the variance is also smallwhen the entropy is large. A solution that works also
when the entropy is small was given by Chakrabarti, Cormode,and McGregor [CCM07].

10.1.3 A Lower Bound for (1 + ǫ)-approximation of F0

One can give aΩ(ǫ−2) lower bound, hence matching the algorithm that Muthu presented. The
bound is a reduction from the communication complexity of the problem of estimating the Ham-
ming distance among two streams.

Let x, y be twon-bit strings, and say that Alice hasx and Bob hasy. LetSx andSy be the set
of elements with characteristic vectorsx andy. Then

F0(Sx ∪ Sy) = |Sx| + |Sy| − |Sx ∩ Sy|.

Jayram, Kumar, and Sivakumar [JKS35] showed that estimating the Hamming distance up to an
additive

√
n requiresΩ(n) bits of one-way communication. From here, one can see that a one-pass

algorithm that approximatesF0 within multiplicativeǫ must useΩ(ǫ−2) bits of memory.
Brody and Chakrabarti [BC09] have recently shown lower bounds for the multiround commu-

nication complexity of the gap hamming distance problem, which implies lower bounds forF0, F1,
F2, etc. in the multipass streaming model.

10.1.4 Solving thek-center problem

Let us sketch the main trick for solving thek-center problem, discussed already in Lecture 4.
Recall that the problem is: givenn pointsp1, . . . ,pn from some metric space, we want to takek of
them,y1, . . . , yk, such the maximum distance of anypi to its closestyj is minimized. That is, so
that each initial point isd-away from its closestyj , for minimald.

We observe first that if we are told the optimal distanceOPT in advance, we can give a2-
approximation algorithm easily: We get the first pointp1. We ignore all subsequent points within
radius2OPT of it, and keep the first one that is not as a new center. We keep opening centers as
necessary, and ignore all points already2OPT close to one center. IfOPT is achieved by somek
points, we give a2OPT solution with no more thank points.

45

Similarly, if we only have a guessg with OPT ≤ g ≤ (1 + ǫ)OPT . we can give a2(1 + ǫ)-
approximation. When we have no guess at all, we could of course try the algorithm above in
parallel all possible guesses (spacing them out by about(1 + ǫ)). The problem is that instances
with too large a guess will use too much memory by themselves,so we have to be more cautious.
We proceed as follows:

1. Look at the firstk + 1 points, and find its bestk-clustering; this gives a lower bounda on
OPT .

2. Run the algorithm above withg = (1 + ǫ)i a, for i = 0 . . . a/ǫ.

If one of theseO(1/ǫ) distances goes well, take the first one that goes well and we have a
2(1 + ǫ) approximation.

If none goes well, this means that after examiningj pointsp1, . . . ,pj the algorithm is trying to
open a(k + 1)-th center besides the pointsy1, . . . , yk it has already picked. We realize now that
we should have picked a guessg > a/ǫ.

Butobserve that all pointsp1, . . . ,pj are within2g of someyi. The crucial claim is that by keep-
ing only theseyi and ignoring the previous points we can still compute a reasonable approximation
to the bestk-clustering:

Claim 6. If the cheapest clustering ofp1, . . . , pj , pj+1, . . . , pn has costOPT , then the cheapest
clustering ofy1, . . . ,yk, pj+1, . . . ,pn has costOPT + 2g.

Therefore, if we clustery1, . . . , yk, pj+1, . . . , pn we get a (roughly)(1 + ǫ)-approximation to
the best clustering ofp1, . . . ,pn.

We therefore usey1, . . .yk as seeds for the next iterations, using larger guesses, of the form
(g + a/ǫ) · (1 + ǫ)i. We can do this by recycling the space already used, rather than using new
space.

This is due to McClutchin and Khuller [MK08b] and Guha [Guh09].

10.2 Summary of the Course

[Muthu’s summary actually came before Andrew’s items, but we thought it better to put it last—or
not quite last—and what actually came dead last was the solution to thek-center problem, which
we’ve put first. RG+KWR]

Lectures 1 and 2 were onCM sketches, applied to:

• point queries, such as the numbermx of times an itemx appeared;

• heavy hitters, i.e. which items appear markedly frequently;

• medians and other quantiles;

• dot products;

46

• quantities such asF2 =
∑

xm
2
x.

The primary objective was to useO(1
ǫ
log 1

δ
) space, whereǫ quantifies the target accuracy andδ is

the probability of missing the target accuracy. Usually theaccuracy involves approximating one
of these statistics to within an additive term,±ǫn, wheren is the size of the stream—or for some,
with relative error within a factor of(1+ ǫ). Having an extra poly-log(n) factor was generally fine,
but having something likeǫ2 in the denominator was less welcome. We saw one example later
involving sampling for distinct out-neighbors in graph streams where terms likeO(1

ǫ4

√
n log 1

δ
)

(needing improvement!) entered the analysis.
Lecture 3 was on “Inverse Problems,” meaning that instead ofthe “forward distribution”

f(x) = mx, one works with its “inverse”f−1(i) = the number of items that appeari times.
A core task here is to maintain a sampleS that approximates a sampleS ′ taken uniformly over
the set ofdistinct elements in the stream, even in the presence of deletions as well as insertions.
Then we can estimate the same statistics as in lecture 1, though withǫ2 in the denominator of space
usage—coming from fully storing samples of size involving that factor. A prime ingredient here is
minwise hashing, and calculations involve estimating the number of distinct elements, represented
as the zeroth momentF0 =

∑
x f(x)0.

Lecture 4 (by Andrew) focused ongraph streams, usually presenting a (multi-)graphG as a
streamed list of its edges. Estimating the number of triangles inGwas niftily reduced to estimating
the momentsF0, F1, andF2. This lecture introduced techniques for obtaining matching lower
bounds via communication complexity, here by reduction from set-disjointness for the case of
telling apart whenG has0 triangles from1-or-more. Bounds did not care about polynomials in
log n: “Õ is your friend.” Another core task is retaining a setM of edges, no two sharing an
endpoint (i.e. a partial matching), that maximizes some statistic, such as the number of such edges
e or a weighted sum

∑
e∈M we. Given a new edgee′ from the stream that conflicts with some edge

e ∈M , the nub is when and whether to discarde in favor ofe′.
Then geometric streamswere introduced, meaning streams of points from a general metric

space, such as higher-dimensional Euclidean space. Thek-center problemis to retaink points from
the stream so as to minimize the distance from any other pointto some chosen point. (Technically
this means minimizingmaxp miny d(p, y), whered is the metric andy ranges over the set ofk
chosen points—can we coin the word “minimaximin”?) The shortest-path metric on graphs led to
merging the two ideas of streams. A key problem was finding an edge-induced subgraphH on the
same vertex setV such that the distances restricted toH are within a multiplicativeα factor of the
distances inG. This was also a case where allowing multiple passes over thestream gives notably
better results.

Lectures 5 and 6 covered sparse approximation problems and the interesting, historically cen-
tral notion ofHaar wavelets. The goal is to approximate a signal (represented as a vector) with
high fidelity using as few terms as possible over the Haar basis. This connected to the hot topic of
compressed sensing, in which we are still trying to represent a vector by a small number of terms
over a basis, but the goal is to do so with as few (physical) measurements as possible. Compressed
sensing is more than just a theory of linear projections, because not all projections are the same—
they have different costs. In a digital camera, each pixel performs a measurement, but generally
each measurement involves some cost to the system—hence ideas from compressed sensing en-

47

gendered the technological goal of a “Single-Pixel Camera.” It is cool that considerations from
streaming played a role in the development of this field.

Lecture 7 (by Andrew) presented the random-order stream model and multi-pass algorithms.
In the random-order model, the underlying input (say, edgesin a graph) is chosen adversarily but
items are presented in a (uniformly) random order. In both models (random order and multipass)
some problems such as the median become slightly easier, butthey don’t help much for the fre-
quency momentsF0, F1, F − 2, We presented some lower bounds in the multipass model by
reducing to the Index Problem and the Pointer Chasing technique.

In Lecture 8, Linear Algebra Problems, we discussed mainly the Matrix Product and the Least
Squares problems. For the matrix product, we saw that keeping CM-sketches for the matrix rows,
and multiplying the sketches when needed, gave us an approximation with memory linear rather
than quadratic inn. For the least squares problem, we saw that keeping CM-vectors led to a good
approximation algorithm not only in the streaming model butalso in the standard sense.

Lecture 9 presented Map-Reduce and discussed distributed streaming computations. The lead-
ing example was the “continuous problem” in which we have many sites and a central site that
must output1 when the number of items collected among all sites exceeds a given threshold. This
led to the definition of the MUD (Massive Unordered Data) model and its relation to streaming.

10.3 Some Topics Not Covered

Finally, let us conclude by mentioning some of the many topics not covered. [Muthu only listed
the following bulleted ones, but I’ve supplied descriptivedetails for each (so any bugs are on me
not him), and have also added one more example at the end from avery recent paper. KWR]

• (More) Results on Geometric Streams:In geometric streams, the items are not single values
but rather vectors ink-dimensional space. Per their main mention on p37 of [Mut09], the
main effect is that instead of having a linear spectrum of values, one must also specify and
maintain a partitioning of space into geometrically-determined grids, according to some met-
ric. The resulting notion of “bucket” requires one “to maintain quite sophisticated statistics
on points within each of the buckets in small space. This entails using various (non-)standard
arguments and norm estimation methods within each of the buckets.”

Topics here include:core sets, which are relatively small subsetsC of the stream point set
S such that the convex hull ofC is a good approximation to the convex hull ofS. Again,
one must specify a spatial metric to quantify the goodness ofthe approximation. Another is
where one wishes the median in each dimension of the points inC to be a good approxima-
tion to the respective median inS; this is called the problem ofk-medians. Bi-chromatic
matching, where one is given equal-sized point setsA,B and needs to find a bijection
f : A −→ B that optimizes some metric-dependent cost function on the pairs (a, f(a)),
also depends delicately on the space and the metric. A 2006 presentation by S. Suri [Sur06]
covers some of the technical issues.

• String Streams. A stream can be viewed as a string for properties that are order-dependent,
such as the length of the longest common subsequence betweentwo strings. One can also

48

picture streams of strings—distinguishing them from streams of k-vectors by considering
problems in which the ordering of vector components matter or string-edit operations may
be applied. Geometric issues also come into play here.

• Probabilistic Streams. This does not merely mean random presentation of the items in a
stream according to some distribution, but refers to situations in which the items themselves
are not determined in advance but rather drawn from a distributionD, whereD may or may
not be known to the algorithm. One motivation is representing streams of sensor measure-
ments that are subject to uncertainties. One can regardD as an ensemble over possible input
streams. [Our two presenters wrote a major paper on this, “Estimating Aggregate Proper-
ties on Probabilistic Streams,”http://arxiv.org/abs/cs.DS/0612031 , and then
joined forces with T.S. Jayram (who initiated the topic) andE. Vee for [JMMV07].]

• Sliding Window Models. This can be treated as a “dynamical complexity” version of the
standard streaming model. The issue is not so much what storage and other privileges may
be granted to the algorithm for the lastN items it sees (for someN), but more the necessity
to maintain statistics on the lastN items seen and update them quickly when new items are
presented and older ones slide outside the window. A detailed survey is [DM07].

• Machine Learning Applications. Many data-mining and other learning applications must
operate within the parameters of streaming: a few looks at large data, no place to store it
locally. Another avenue considers not just the quality of the statistical estimates obtained,
as we have mostly done here, but also their robustness when the estimates are used inside
a statistical inferencingapplication. João Gama of Portugal has written and edited some
papers and books on this field.

The considerations of streaming can also be applied to othercomputational models, for instance
various kinds of protocols and proof systems. For one example, the last topic above can include
analyzing the standard PAC learning model under streaming restrictions. For another, the new pa-
per “Best-Order Streaming Model” by Atish Das Sarma, Richard Lipton, and Dampon Nahongkai
[SLN09], which is publicly available from the first author’ssite, pictures a prover having control
over the order in which the input stream is presented to the verifier. This resembles best-case mod-
els discussed above, except that the requirement that the prover cannot cheat on “no”-instances and
the full dependence of the ordering on details of the input can differ from particulars of the others
and their associated communication models. Consider the task of proving that a big undirected
graphG with vertices labeled1, . . . , n has a perfect matching. In the “yes” case, the prover orders
the stream to begin with then/2 edges of a perfect matching, then sends a separator symbol, and
then sends the rest of the graph. The verifier still needs to check that then-many vertex labels
seen before the separator are all distinct, indeed fill out1, . . . , n. They give a randomized proto-
col needing onlyO(logn) space, but show by reduction from a lower bound for set-disjointness
in a variant-of-best-case communication model that any deterministic verifier needsΩ(n) space
(for graphs presented as streams of edges). For graph connectivity, which hasΩ(n) space bounds
even for randomized algorithms in worst-case and random-case streaming models, they give an
O(log2 n)-space best-order proof system. For non-bipartiteness, the simple idea is to begin with an

49

odd cycle, but proving bipartiteness space-efficiently remains an open problem in their model. The
motivation comes from “cloud-computing” situations in which it is reasonable to suppose that the
server has the knowledge and computational resources needed to optimize the order of presenta-
tion of the data to best advantage for the verifier or learner.Whether we have optimized our notes
stream for learning the material is left for you to decide!

50

Bibliography

[Bas08] Surender Baswana. Streaming algorithm for graph spanners - single pass and constant
processing time per edge.Inf. Process. Lett., 106(3):110–114, 2008.

[BC09] Joshua Brody and Amit Chakrabarti. A multi-round communication lower bound for
gap hamming and some consequences.CoRR abs/0902.2399:, 2009.

[CCM07] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal algo-
rithm for computing the entropy of a stream. InProc. SODA’07, volume SIAM Press,
pages 328–335, 2007.

[CCM08] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds
for communication and stream computation. InSTOC, pages 641–650, 2008.

[CM04] Graham Cormode and S. Muthukrishnan. An improved data stream summary: The
count-min sketch and its applications.J. Algorithms, 55:29–38, 2004.

[CMY08] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithmsfor distributed functional
monitoring. In19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1076–1085, 2008.

[DM07] Mayur Datar and Rajeev Motwani. The sliding-window computation model and re-
sults. InAdvances in Database Systems. Springer US, 2007. Chapter 8.

[Elk07] Michael Elkin. Streaming and fully dynamic centralized algorithms for constructing
and maintaining sparse spanners. InICALP, pages 716–727, 2007.

[FKM+05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. On graph problems in a semi-streaming model.Theor. Comput. Sci., 348(2-
3):207–216, 2005.

[FMS+08] J. Feldman, S. Muthukrishnan, A. Sidiropoulos, C. Stein, and Z. Svitkina. On the
complexity of processing massive, unordered, distributeddata. In19th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 710–719, 2008.

[GK01] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quan-
tile summaries. InSIGMOD Conference, pages 58–66, 2001.

51

[GM09] Sudipto Guha and Andrew McGregor. Stream order and order statistics: Quantile
estimation in random-order streams.SIAM Journal on Computing, 38(5):2044–2059,
2009.

[Guh09] Sudipto Guha. Tight results for summarizing data streams. InProc. ICDT’09, 2009.

[JKS35] T. S. Jayram, Ravi Kumar, and D. Sivakumar. The one-way communication complex-
ity of hamming distance.4, 2008:Theory of Computing, 129–135.

[JMMV07] T.S. Jayram, A. McGregor, S. Muthukrishnan, and E.Vee. Estimating statistical ag-
gregates on probabilistic data streams. InProceedings of PODS’07, 2007.

[LNVZ06] David Liben-Nowell, Erik Vee, and An Zhu. Finding longest increasing and common
subsequences in streaming data.J. Comb. Optim., 11(2):155–175, 2006.

[McG05] A. McGregor. Finding graph matchings in data stream. In Proceedings of the 8th In-
ternational Workshop on Approximation Algorithms for Combinatorial Optimization
Problems, pages 170–181, 2005.

[MK08a] Richard Matthew McCutchen and Samir Khuller. Streaming algorithms for k-center
clustering with outliers and with anonymity. InAPPROX-RANDOM, pages 165–178,
2008.

[MK08b] Richard Matthew McCutchen and Samir Khuller. Streaming algorithms fork-center
clustering with outliers and with anonymity. InProc. APPROX-RANDOM 2008, pages
165–178, 2008.

[Mut09] S. Muthu Muthukrishnan. Data Streams: Algorithms and Applications, 2009.

[NW93] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited.
SIAM J. Comput., 22(1):211–219, 1993.

[Raz92] Alexander A. Razborov. On the distributional complexity of disjointness. Theor.
Comput. Sci., 106(2):385–390, 1992.

[Sar09] Artish Das Sarma. Distributed streaming: The powerof communication.Manuscript,
2009.

[SLN09] Atish Das Sarma, Richard J. Lipton, and Danupon Nanongkai. Best-order streaming
model. InProceedings of TAMC’09, 2009. to appear.

[Sur06] S. Suri. Fishing for patterns in (shallow) geometric streams, 2006. Presentation, 2006
IIT Kanpur Workshop on Algorithms for Data Streams.

[Zel08] Mariano Zelke. Weighted matching in the semi-streaming model. In25th International
Symposium on Theoretical Aspects of Computer Science (STACS 2008), pages 669–
680, 2008.

52

