
C--: a portable assembly language

that supports garbage collection

Simon Peyton Jones

1

, Norman Ramsey

2

, and Fermin Reig

3

1

simonpj@microsoft.com, Microsoft Research Ltd

2

nr@cs.virginia.edu, University of Virginia

3

reig@dcs.gla.ac.uk, University of Glasgow

Abstract. For a compiler writer, generating good machine code for a

variety of platforms is hard work. One might try to reuse a retargetable

code generator, but code generators are complex and di�cult to use,

and they limit one's choice of implementation language. One might try

to use C as a portable assembly language, but C limits the compiler

writer's
exibility and the performance of the resulting code. The wide

use of C, despite these drawbacks, argues for a portable assembly lan-

guage. C-- is a new language designed expressly for this purpose. The

use of a portable assembly language introduces new problems in the sup-

port of such high-level run-time services as garbage collection, exception

handling, concurrency, pro�ling, and debugging. We address these prob-

lems by combining the C-- language with a C-- run-time interface. The

combination is designed to allow the compiler writer a choice of source-

language semantics and implementation techniques, while still providing

good performance.

1 Introduction

Suppose you are writing a compiler for a high-level language. How are you to

generate high-quality machine code? You could do it yourself, or you could try

to take advantage of the work of others by using an o�-the-shelf code gener-

ator. Curiously, despite the huge amount of research in this area, only three

retargetable, optimizing code generators appear to be freely available: VPO

(Benitez and Davidson 1988), ML-RISC (George 1996), and the gcc back end

(Stallman 1992). Each of these impressive systems has a rich, complex, and ill-

documented interface. Of course, these interfaces are quite di�erent from one

another, so once you start to use one, you will be unable to switch easily to an-

other. Furthermore, they are language-speci�c. To use ML-RISC you must write

your front end in ML, to use the gcc back end you must write it in C, and so on.

All of this is most unsatisfactory. It would be much better to have one portable

assembly language that could be generated by a front end and implemented by

any of the available code generators. So pressing is this need that it has be-

come common to use C as a portable assembly language (Atkinson et al. 1989;

Bartlett 1989b; Peyton Jones 1992; Tarditi, Acharya, and Lee 1992; Henderson,

Conway, and Somogyi 1995; Pettersson 1995; Serrano and Weis 1995). Unfortu-

nately, C was never intended for this purpose | it is a programming language,

not an assembly language. C locks the implementation into a particular calling

convention, makes it impossible to compute targets of jumps, provides no sup-

port for garbage collection, and provides very little support for exceptions or

debugging (Section 2).

The obvious way forward is to design a language speci�cally as a compiler tar-

get language. Such a language should serve as the interface between a compiler

for a high-level language (the front end) and a retargetable code generator (the

back end). The language would not only make the compiler writer's life much

easier, but would also give the author of a new code generator a ready-made cus-

tomer base. In an earlier paper we propose a design for just such a language, C--

(Peyton Jones, Oliva, and Nordin 1998), but the story does not end there. Sepa-

rating the front and back ends greatly complicates run-time support. In general,

the front end, back end, and run-time system for a programming language are

designed together. They cooperate intimately to support such high-level features

as garbage collection, exception handling, debugging, pro�ling, and concurrency

| high-level run-time services. If the back end is a portable assembler like C--,

we want the cooperation without the intimacy; an implementation of C-- should

be independent of the front ends with which it will be used.

One alternative is to make all these high-level services part of the abstraction of-

fered by the portable assembler. For example, the Java Virtual Machine, which

provides garbage collection and exception handling, has been used as a tar-

get for languages other than Java, including Ada (Taft 1996), ML (Benton,

Kennedy, and Russell 1998), Scheme (Clausen and Danvy 1998), and Haskell

(Wakeling 1998). But a sophisticated platform like a virtual machine embodies

too many design decisions. For a start, the semantics of the virtual machine may

not match the semantics of the language being compiled (e.g., the exception se-

mantics). Even if the semantics happen to match, the engineering tradeo�s may

di�er dramatically. For example, functional languages like Haskell or Scheme

allocate like crazy (Diwan, Tarditi, and Moss 1993), and JVM implementations

are typically not optimised for this case. Finally, a virtual machine typically

comes complete with a very large infrastructure | class loaders, veri�ers and

the like | that may well be inappropriate. Our intended level of abstraction is

much, much lower.

Our problem is to enable a client to implement high-level services, while still

using C-- as a code generator. As we discuss in Section 4, supporting high-

level services requires knowledge from both the front and back ends. The insight

behind our solution is that C-- should include not only a low-level assembly

language, for use by the compiler, but also a low-level run-time system, for use

by the front end's run-time system. The only intimate cooperation required is

between the C-- back end and its run-time system; the front end works with

C-- at arm's length, through a well-de�ned language and a well-de�ned run-

2

time interface (Section 5). This interface adds something fundamentally new:

the ability to inspect and modify the state of a suspended computation.

It is not obvious that this approach is workable. Can just a few assembly-language

capabilities support many high-level run-time services? Can the front-end run-

time system easily implement high-level services using these capabilities? How

much is overall e�ciency compromised by the arms-length relationship between

the front-end runtime and the C-- runtime? We cannot yet answer these ques-

tions de�nitively. Instead, the primary contributions of this paper are to identify

needs that are common to various high-level services, and to propose speci�c

mechanisms to meet these needs. We demonstrate only how to use C-- to im-

plement the easiest of our intended services, namely garbage collection. Re�ning

our design to accommodate exceptions, concurrency, pro�ling, and debugging

has emerged as an interesting research challenge.

2 It's impossible | or it's C

The dream of a portable assembler has been around at least since UNCOL

(Conway 1958). Is it an impossible dream, then? Clearly not: C's popularity as

an assembler is clear evidence that a need exists, and that something useful can

be done.

If C is so popular, then perhaps C is perfectly adequate? Not so. There are many

di�culties, of which the most fundamental are these:

{ The C route rewards those who can map their high-level language rather

directly onto C. A high-level language procedure becomes a C procedure,

and so on. But this mapping is often awkward, and sometimes impossible.

For example, some source languages fundamentally require tail-call optimi-

sation; a procedure call whose result is returned to the caller of the current

procedure must be executed in the stack frame of the current procedure. This

optimisation allows iteration to be implemented e�ciently using recursion.

More generally, it allows one to think of a procedure as a labelled extended

basic block that can be jumped to, rather than as sub-program that can only

be called. Such procedures give a front end the freedom to design its own

control
ow.

It is very di�cult to implement the tail-call optimisation in C, and no C com-

piler known to us does so across separately compiled modules. Those using C

have been very ingenious in �nding ways around this de�ciency (Steele 1978;

Tarditi, Acharya, and Lee 1992; Peyton Jones 1992; Henderson, Conway, and

Somogyi 1995), but the results are complex, fragile, and heavily tuned for

one particular implementation of C (usually gcc).

3

{ A C compiler may lay out its stack frames as it pleases. This makes it di�cult

for a garbage collector to �nd the live pointers. Implementors either arrange

not to keep pointers on the C stack, or they use a conservative garbage

collector. These restrictions are Draconian.

{ The unknown stack-frame layout also complicates support for exception

handling, debugging, pro�ling, and concurrency. For example, an exception-

handling mechanism needs to walk the stack, perhaps removing stack frames

as it goes. Again, C makes it essentially impossible to implement such mecha-

nisms, unless they can be closely mapped onto what C provides (i.e., setjmp

and longjmp).

{ A C compiler has to be very conservative about the possibility of memory

aliasing. This seriously limits the ability of the instruction scheduler to per-

mute memory operations or hoist them out of a loop. The front-end compiler

often knows that aliasing cannot occur, but there is no way to convey this

information to the C compiler.

So much for fundamental issues. C also lacks the ability to control a number

of important low-level features, including returning multiple values in registers

from a procedure, mis-aligned memory accesses, arithmetic, data layout, and

omitting range checks on multi-way jumps.

In short, C is awkward to use as a portable assembler, and many of these di�-

culties translate into performance hits. A portable assembly language should be

able to o�er better performance, as well as greater ease of use.

3 An overview of C--

In this section we give an overview of the design of C--. Fuller descriptions

can be found in Peyton Jones, Oliva, and Nordin (1998) and in Reig and Peyton

Jones (1998). Figure 1 gives examples of some C-- procedures that give a
avour

of the language. Despite its name C-- is by no means a subset of C, as will become

apparent; C was simply our jumping-o� point.

3.1 What is a portable assember?

C-- is an assembly language | an abstraction of hardware | not a high-level

programming language. Hardware provides computation, control
ow, memory,

and registers; C-- provides corresponding abstractions.

{ C-- expressions and assignments are abstractions of computation. C-- pro-

vides a rich set of computational operators, but these operators work only

on machine-level data types: bytes, words, etc. The expression abstraction

4

/* Ordinary recursion */

export sp1;

sp1(bits32 n) {

bits32 s, p;

if n == 1 {

return(1, 1);

} else {

s, p = sp1(n-1);

return(s+n, p*n);

}

}

/* Tail recursion */

export sp2;

sp2(bits32 n) {

jump sp2_help(n, 1, 1);

}

sp2_help(bits32 n, bits32 s, bits32 p) {

if n==1 {

return(s, p);

} else {

jump sp2_help(n-1, s+n, p*n)

}

}

/* Loops */

export sp3;

sp3(bits32 n) {

bits32 s, p;

s = 1; p = 1;

loop:

if n==1 {

return(s, p);

} else {

s = s+n;

p = p*n;

n = n-1;

goto loop;

}

}

Fig. 1. Three functions that compute the sum

P

n

i=1

i and product

Q

n

i=1

i, written

in C--.

hides the particular combination of machine instructions needed to com-

pute values, and it hides the machine registers that may be needed to hold

intermediate results.

{ C--'s goto and if statements are abstractions of control
ow. (For conve-

nience, C-- also provides structured control-
ow constructs.) The if abstrac-

tion hides the machine's \condition codes;" branch conditions are arbitrary

Boolean expressions.

{ C-- treats memory much as the machine does, except that addresses used

in C-- programs may be arbitrary expressions. This abstraction hides the

limitations of the machine's addressing modes.

{ C-- variables are an abstraction of registers. A C-- back end puts as many

variables as possible in registers; others go in memory. This abstraction hides

the number and conventional uses of the machine's registers.

{ In addition, C-- provides a procedure abstraction, the feature that looks least

like an abstraction of a hardware primitive. However, many processor archi-

5

tectures provide direct support for procedures, although the nature of that

support varies widely (procedure call or multiple register save instructions,

register windows, link registers, branch prediction for return instructions,

and so on). Because of this variety, calling conventions and activation-stack

management are notoriously architecture dependent and hard to specify. C--

therefore o�ers prodedures as a primitive abstraction, albeit in a slightly un-

usual form (Section 3.4).

Our goal is to make it easy to retarget front ends, not to make every C-- program

runnable everywhere. Although every C-- program has a well-de�ned semantics

that is independent of any machine, a front end translating a single source pro-

gram might need to generate two di�erent C-- programs for two di�erent target

architectures. For example, a C-- program generated for a machine without

oating-point instructions would be di�erent from a C-- program generated for

a machine without
oating-point instructions.

Our goal contrasts sharply with \write once; run anywhere," the goal of such dis-

tribution formats as Java class �les, Juice �les (Franz 1997), and ANDF or Ten-

DRA (Macrakis 1993). These formats are abstractions of high-level languages,

not of underlying machines. Their purpose is binary portability, and they re-

tain enough high-level language semantics to permit e�ective compilation at the

remote installation site.

Even though C-- exposes a few architecture-speci�c details, like word size, the

whole point is to hide those details, so that the front end job can largely inde-

pendent of the target architecture. A good C-- implementation therefore must

do substantial architecture-dependent work. For example:

{ Register allocation.

{ Instruction selection, exploiting complex instructions and addressing modes.

{ Instruction scheduling.

{ Stack-frame layout.

{ Classic back-end optimisations such as common-subexpression elimination

and copy propagation.

{ If-conversion for predicated architectures.

Given these requirements, C-- resembles a typical compiler's intermediate lan-

guage more than a typical machine's assembly language.

3.2 Types

C-- supports a bare minimum of data types: a family of bits types (bits8,

bits16, bits32, bits64), and a family of
oating-point types (float32, float64,

6

float80). These types encode only the size (in bits) and the kind of register

(general-purpose or
oating-point) required for the datum.

Not all types are available on all machines; for example, a C-- program emitted

by a front-end compiler for a 64-bit machine might be rejected if fed to a C--

implementation for a 32-bit machine. It is easy to tell a front end how big to

make its data types, and doing so makes the front end's job easier in some ways;

for example, it can compute o�sets statically.

The bits types are used for characters, bit vectors, integers, and addresses

(pointers). On each architecture, a bits type is designated the \native word

type" of the machine. A \native code-pointer type" and \native data-pointer

type" are also designated; exported and imported names must have one of these

pointer types. On many machines, all three types are the same, e.g, bits32.

3.3 Static allocation

C-- o�ers detailed control of static memory layout, much as ordinary assem-

blers do. A data block consists of a sequence of labels, initialised data values,

uninitialised arrays, and alignment directives. For example:

data {

foo: bits32{10}; /* One bits32 initialised to 10 */

bits32{1,2,3,4}; /* Four initialised bits32's */

bits32[8]; /* Uninitialised array of 8 bits32's */

baz1:

baz2: bits8 /* An uninitialised byte */

end:

}

Here foo is the address of the �rst bits32, baz1 and baz2 are both the address

of the bits8, and end is the address of the byte after the bits8. The labels

foo, baz1, etc, should be thought of as addresses, not as memory locations.

They are all immutable constants of the native data-pointer type; they cannot

be assigned to.

How, then, can one access the memory at location foo? Memory accesses (loads

and stores) are typed, and denoted with square brackets. Thus the statement:

bits32[foo] = bits32[foo] + 1;

loads a bits32 from the location whose address is in foo, adds one to it, and

stores it at the same location. The mnemonic for this syntax is to think of bits32

as a C-like array representing all of memory, and bits32[foo] as a particular

element of that array. The semantics of the address is not C-like, however; the

expression in brackets is the byte address of the item. Further, foo's type is

always the native data-pointer type; the type of value stored at foo is speci�ed

by the load or store operation itself. So this is perfectly legal:

bits8[foo+2] = bits8[foo+2] - 1;

7

This statement modi�es only the byte at address foo+2.

Unlike C, C-- has no implicit alignment or padding. Therefore, the address

relationships between the data items within a single data block are machine-

independent; for example, baz1 = foo+52. An explicit align directive provides

alignment where that is required.

C-- supports multiple, named data sections. For example:

data "debug" {

...

}

This syntax declares the block of data to belong to the section named "debug".

Code is by default placed in the section "text", and a data directive with no

explicit section name defaults to the section "data". Procedures can be enclosed

in code "mytext" { ... } to place them in a named section "mytext".

C-- expects that, when linking object �les, the linker concatenates sections with

the same name. (For backwards compatibility with some existing linkers, front

ends may wish to emit an alignment directive at the beginning of each C--

section.) C-- assigns no other semantics to the names of data sections, but par-

ticular implementations may assign machine-dependent semantics. For example,

a MIPS implementation might assume that data in sections named "rodata" is

read-only.

3.4 Procedures

C-- supports procedures that are both more and less general than C procedures

| for example, C-- procedures o�er multiple results and full tail calls, but they

have a �xed number of arguments. Speci�cally:

{ A C-- procedure, such as sp1 in Figure 1, has parameters, such as n, and local

variables, such as s and p. Parameters and variables are mapped onto ma-

chine registers where possible, and only spilled to the stack when necessary.

In this absolutely conventional way C-- abstracts away from the number of

machine registers actually available. As with registers, C-- provides no way

to take the address of a parameter or local variable.

{ C-- supports fully general tail calls, identi�ed as \jumps". Control does not

return from jumps, and C-- implementations must deallocate the caller's

stack frame before each jump. For example, the procedure sp2_help in Fig-

ure 1 uses a jump to implement tail recursion.

{ C-- supports procedures with multiple results, just as it supports procedures

with multiple arguments. Indeed, a return is somewhat like a jump to a

procedure whose address happens to be held in the topmost activation record

on the control stack, rather than being speci�ed explicitly. All the procedures

8

in Figure 1 return two results; procedure sp1 contains a call site for such a

procedure.

{ A C-- procedure call is always a complete statement, which passes expres-

sions as parameters and assigns results to local variables. Although high-level

languages allow a call to occur in an expression, C-- forbids it. For example,

it is illegal to write

r = f(g(x)); /* illegal */

because the result returned by g(x) cannot be an argument to f. Instead,

one must write two separate calls:

y = g(x);

r = f(y);

This restriction makes explicit the order of evaluation, the location of each

call site, and the names and types of temporaries used to hold the results

of calls. (For similar reasons, assignments in C-- are statements, not expres-

sions, and C-- operators have no side e�ects. In particular, C-- provides no

analog of C's \p++.")

{ To handle high-level variables that can't be represented using C--'s primitive

types, C-- can be asked to allocate named areas in the procedure's activation

record.

f (bits32 x) {

bits32 y;

stack { p : bits32;

q : bits32[40];

}

/* Here, p and q are the addresses of the relevant chunks

of data. Their type is the native data-pointer type. */

}

stack is rather like data; it has the same syntax between the braces, but it

allocates on the stack. As with data, the names are bound to the addresses

of the relevant locations, and they are immutable. C-- makes no provision

for dynamically-sized stack allocation (yet).

{ The name of a procedure is a C-- expression of native code-pointer type. The

procedure speci�ed in a call statement can be an arbitrary expression, not

simply the statically-visible name of a procedure. For example, the following

statements are both valid, assuming the procedure sp1 is de�ned in this

compilation unit, or imported from another one:

9

bits32[ptr] = sp1; /* Store procedure address */

...

r,s = (bits32[ptr])(4); /* Call stored procedure */

{ A C-- procedure, like sp3 in Figure 1, may contain gotos and labels, but

they serve only to allow a textual representation of the control-
ow graph.

Unlike procedure names, labels are not values, and they have no represen-

tation at run time. Because this restriction makes it impossible for front

ends to build jump tables from labels, C-- includes a switch statement, for

which the C-- back end generates e�cient code. The most e�cient mix of

conditional branches and indexed branches may depend on the architecture

(Bernstein 1985).

Jump tables of procedure addresses (rather than labels) can be built, of

course, and a C-- procedure can use the jump statement to make a tail call

to a computed address.

3.5 Calling conventions

The calling convention for C-- procedures is entirely a matter for the C-- imple-

mentation | we call it the standard C-- calling convention. In particular, C--

need not use the C calling convention.

The standard calling convention places no restrictions on the number of argu-

ments passed to a function or the number of results returned from a function. The

only restrictions are that the number and types of actual parameters must match

those in the procedure declaration, and similarly, that the number and types of

values returned must match those expected at the call site. These restrictions en-

able e�cient calling sequences with no dynamic checks. (A C-- implementation

need not check that C-- programs meet these restrictions.)

We note the following additional points:

{ If a C-- function does not \escape" | if all sites where it is called can

be identi�ed statically | then the C-- back end is free to create and use

specialised instances, with specialised calling conventions, for each call site.

Escape analysis is necessarily conservative, but a function may be deemed

to escape only if its name is used other than in a call, or if it is named in

an export directive.

{ Support for unrestricted tail calls requires an unusual calling convention, so

that a procedure making a tail call can deallocate its activation record while

still leaving room for parameters that do not �t in registers.

{ C-- allows the programmer to specify a particular calling convention (chosen

from a small set of standard conventions) for an individual procedure, so that

10

C-- code can interoperate with foreign code. For example, even though C--'s

standard calling convention may di�er from C's, one can ask for a particular

procedure to use C's convention, so that the procedure can be called from

an external C program. Similarly, external C procedures can be called from

a C-- procedure by specifying the calling convention at the call site.

Some C-- implementations may provide two versions of C's calling conven-

tion. The lightweight version would be like an ordinary C call, but it would be

useful only when the C procedures terminate quickly; if control were trans-

ferred to the run-time system while a C procedure was active, the run-time

system might not be able to �nd values that were in callee-saves registers

at the time of the call. The heavyweight version would keep all its state on

the stack, not in callee-saves registers, so the run-time system could handle

a stack containing a mix of C and C-- activations.

3.6 Miscellaneous

Like other assemblers, C-- gives programmers the ability to name compile-time

constants, e.g., by

const GC = 2;

C-- variables may be declared global, in which case the C-- compiler attempts

to put them in registers. For example, given the declaration

global {

bits32 hp;

}

the implementation attempts to put variable hp in a register, but if no register

is available, it puts hp in memory. C-- programs use and assign to hp without

knowing whether it is in a register or in memory. Unlike storage allocated by

data, there is no such thing as \the address of a global", so memory stores to

unknown addresses cannot a�ect the value of a global. This permits a global to be

held in a register and, even if it has to be held in memory, the optimiser does not

need to worry about re-loading it after a store to an unknown memory address.

All separately compiled modules must have identical global declarations, or

horribly strange things will happen.

global declarations may name speci�c (implementation-dependent) registers,

for example:

global {

bits32 hp "%ebx";

bits32 hplim "%esi";

}

We remarked in Section 2 that the front end may know a great deal about

(lack of) aliasing between memory access operations. We do not yet have a way

11

to express such knowledge in C--, but an adaptation of Novack, Hummel, and

Nicolau (1995) looks promising.

4 The problem of run-time support

When a front end and back end are written together, as part of a single compiler,

they can cooperate intimately to support high-level run-time services, such as

garbage collection, exception handling, pro�ling, concurrency, and debugging. In

the C-- framework, the front and back ends work at arm's length. As mentioned

earlier, our guiding principle is this:

C-- should make it possible to implement high-level run-time services,

but it should not actually implement any of them. Rather, it should

provide just enough \hooks" to allow the front-end run-time system to

implement them.

Separating policy from mechanism in this way is easier said than done. It might

appear more palatable to incorporate garbage collection, exception handling,

and debugging into the C-- language, as (say) the Java Virtual Machine does.

But doing so would guarantee that C-- would never be used. Di�erent source

languages require di�erent support, di�erent object layouts, and di�erent excep-

tion semantics | especially when performance matters. No one back end could

satisfy all customers.

Why is the separation between front and back end hard to achieve? High-level

run-time services need to inspect and modify the state of a suspended program. A

garbage collector must �nd, and perhaps modify, all live pointers. An exception

handler must navigate, and perhaps unwind, the call stack. A pro�ler must

correlate object-code locations with source-code locations, and possibly navigate

the call stack. A debugger must allow the user to inspect, and perhaps modify,

the values of variables. All of these tasks require information from both front

and back ends. The rest of this section elaborates.

Finding roots for garbage collection. If the high-level language requires ac-

curate garbage collection, then the garbage collector must be able to �nd all

the roots that point into the heap. If, furthermore, the collector supports

compaction, the locations of heap objects may change during garbage col-

lection, and the collector must be able to redirect each root to point to the

new location of the corresponding heap object.

The di�culty is that neither the front end nor the back end has all the knowl-

edge needed to �nd roots at run time. Only the front end knows which source-

language variables, and therefore which C-- variables, represent pointers into

the heap. Only the back end, which maps variables to registers and stack

slots, knows where those variables are located at run time. Even the back

12

end can't always identify exact locations; variables mapped to callee-saves

registers may be saved arbitrarily far away in the call stack, at locations not

identi�able until run time.

Printing values in a debugger. A debugger needs compiler support to print

the values of variables. For this task, information is divided in much the

same way as for garbage collection. Only the front end knows how source-

language variables are mapped onto (collections of) C-- variables. Only the

front end knows how to print the value of a variable, e.g., as determined by

the variable's high-level-language type. Only the back end knows where to

�nd the values of the C-- variables.

Loci of control A debugger must be able to identify the \locus of control" in

each activation, and to associate that locus with a source-code location. This

association is used both to plant breakpoints and to report the source-code

location when a program faults.

An exception mechanism also needs to identify the locus of control, because

in some high-level languages, that locus determines which handler should

receive the exception. When it identi�es a handler, the exception mechanism

unwinds the stack and changes the locus of control to refer to the handler.

A pro�ler must map loci of control into entities that are pro�led: procedures,

statements, source-code regions, etc.

At run time, loci of control are represented by values of the program counter

(e.g., return addresses), but at the source level, loci of control are associated

with statements in a high-level language or in C--. Only the front end knows

how to associate high-level source locations or exception-handler scopes with

C-- statements. Only the back end knows how to associate C-- statements

with the program counter.

Liveness. Depending on the semantics of the original source language, the locus

of control may determine which variables of the high-level language are vis-

ible. Depending on the optimizations performed by the back end, the locus

of control may determine which C-- variables are live, and therefore have

values. Debuggers should not print dead variables. Garbage collectors should

not trace them; tracing dead pointers could cause space leaks. Worse, trac-

ing a register that once held a root but now holds a non-pointer value could

violate the collector's invariants. Again, only the front end knows which vari-

ables are interesting for debugging or garbage collection, but only the back

end knows which are live at a given locus of control.

Exception values. In addition to unwinding the stack and changing the locus

of control, the exception mechanism may have to communicate a value to an

exception handler. Only the front end knows which variable should receive

this value, but only the back end knows where variables are located.

13

Succinctly stated, each of these operations must combine two kinds of informa-

tion:

{ Information that only the front end has:

� Which C-- parameters and local variables are heap pointers.

� How to map source-language variables to C-- variables and how to as-

sociate source-code locations with C-- statements.

� Which exception handlers are in scope at which C-- statements, and

which variables are visible at which C-- statements.

{ Information that only the back end has:

� Whether each C-- local variable and parameter is live, where it is lo-

cated (if live), and how this information changes as the program counter

changes.

� Which program-counter values correspond to which C-- statements.

� How to �nd activations of all active procedures and how to unwind

stacks.

5 Support for high-level run-time services

The main challenge, then, is arranging for the back end and front end to share

information, without having to implement them as a single integrated unit. In

this section we describe a framework that allows this to be done. We focus on

garbage collection as our illustrative example. Other high-level run-time services

can �t in the same framework, but each requires service-speci�c extensions; we

sketch some ideas in Section 7.

In what follows, we use the term \variable" to mean either a parameter of the

procedure or a locally-declared variable.

5.1 The framework

We assume that executable programs are divided into three parts, each of which

may be found in object �les, libraries, or a combination.

{ The front end compiler translates the high-level source program into one or

more C-- modules, which are separately translated to generated object code

by the C-- compiler.

14

{ The front end comes with a (probably large) front-end run-time system.

This run-time system includes the garbage collector, exception handler, and

whatever else the source language needs. It is written in a programming

language designed for humans, not in C--; in what follows we assume that

the front end run-time system is written in C.

{ Every C-- implementation comes with a (hopefully small) C-- run-time sys-

tem. The main goal of this run-time system is to maintain and provide access

to information that only the back end can know. It makes this information

available to the front end run-time system through a C-language run-time

interface, which we describe in Section 5.2. Di�erent front ends may inter-

operate with the same C-- run-time system.

To make an executable program, we link generated object code with both run-

time systems.

In outline, C-- can support high-level run-time services, such as garbage collec-

tion, as follows. When garbage collection is required, control is transferred to

the front-end run-time system (Section 6.1). The garbage collector then walks

the C-- stack, by calling access routines provided by the C-- run-time system

(Section 5.2). In each activation record on the C-- stack, the garbage collector

�nds the location of each live variable, using further procedures provided by

the C-- runtime. However, the C-- runtime cannot know which of these vari-

ables holds a pointer. To answer this question, the front-end compiler builds a

statically-allocated data block that identi�es pointer variables, and it uses a span

directive (Section 5.3) to associate this data block with the corresponding pro-

cedure's range of program counter values. The garbage collector combines these

two sources of information to decide whether to treat the procedure's variable

as a root. Section 5.4 describes one possible garbage collector in more detail.

5.2 The C-- run-time interface

This section presents the core run-time interface provided by the C-- run-time

system. Using this interface, a front-end run-time system can inspect and modify

the state of a suspended C-- computation. Rather than specify representations of

a suspended computation or its activation records, we hide them behind simple

abstractions. These abstractions are presented to the front-end run-time system

through a set of C procedures.

The state of a C-- computation consists of some saved registers and a logical

stack of procedure activations. This logical stack is usually implemented as some

sort of physical stack, but the correspondence between the two may not be very

direct. Notably, callee-saves registers that logically belong with one activation are

not necessarily stored with that activation, or even with the adjacent activation;

they may be stored in the physical record of an activation that is arbitrarily

far away. This problem is the reason that C's setjmp and longjmp functions

15

don't necessarily restore callee-saves registers, which is why some C compilers

make pessimistic assumptions when compiling procedures containing setjmp

(Harbison and Steele 1995, x19.4).

We hide this complexity behind a simple abstraction, the activation. The idea of

an activation of procedure P is that it approximates the state the machine will

be in when control returns to P. The approximation is not completely accurate

because other procedures may change the global store or P's stack variables

before control returns to P. At the machine level, the activation corresponds to

the \abstract memory" of Ramsey (1992), Chapter 3, which gives the contents

of memory, including P's activation record (stack frame), and of registers.

The activation abstraction hides machine-dependent details and raises the level

of abstraction to the C-- source-code level. In particular, the abstraction hides:

{ The layout of an activation record, and the encoding used to record that

layout for the bene�t of the front end runtime,

{ The details of manipulating callee-saves registers (whether to use callee saves

registers is entirely up to the C-- implementation), and

{ The direction in which the stack grows.

All of these matters become private to the back end and the C-- runtime.

In the C-- run-time interface, an activation record is represented by an activation

handle, which is a value of type activation. Arbitrary registers and memory

addresses are represented by variables, which are referred to by number.

The procedures in the C-- run-time interface include:

void *FindVar(activation *a, int var_index) asks an activation han-

dle for the location of any parameter or local variable in the activation

record to which the handle refers. The variables of a procedure are indexed

by numbering them in the order in which they are declared in that procedure,

starting with zero. FindVar returns the address of the location containing

the value of the speci�ed variable. The front end is thereby able to examine

or modify the value. FindVar returns NULL if the variable is dead. It is a

checked runtime error to pass a var_index that is out of range.

void FirstActivation(tcb *t, activation *a). When execution of a

C-- program is suspended, its state is captured by the C-- run-time sys-

tem. FirstActivation uses that state to initialise an activation handle that

corresponds to the procedure that will execute when the program's execution

is resumed.

int NextActivation(activation *a) modi�es the activation handle a to

refer to the activation record of a's caller, or more precisely, to the activa-

tion to which control will return when a returns. NextActivation returns

16

nonzero if there is such an activation record, and zero if there is not. That is,

NextActivation(&a) returns zero if and only if activation handle a refers

to the bottom-most record on the C-- stack.

Notice that FindVar always returns a pointer to a memory location, even though

the speci�ed variable might be held in a register at the moment at which gar-

bage collection is required. But by the time the garbage collector is walking the

stack, the C-- implementation must have stored all the registers away in mem-

ory somewhere, and it is up to the C-- run-time system to �gure out where the

variable is, and to return the address of the location holding it.

Names bound by stack declarations are considered variables for purposes of

FindVar, even though they are immutable. For such names, FindVar returns

the value that the name has in C-- source code, i.e., the address of the stack-

allocated block of storage. Storing through this address is meaningful; it alters

the contents of the activation record a. Stack locations are not subject to liveness

analysis.

5.3 Front-end information

Suppose the garbage collector is examining a particular activation record. It can

use FindVar to locate variable number 1, but how can it know whether that

variable is a pointer? The front end compiler cooperates with C-- to answer this

question, as follows:

{ The front end builds a static initialised data block (Section 3.3), or descrip-

tor, that says which of the parameters and local variables of a procedure are

heap pointers. The format of this data block is known only to the front-end

compiler and run-time system; the C-- run-time system does not care.

{ The front end tells C-- to associate a particular range of program counters

with this descriptor, using a span directive.

{ The C-- run-time system provides a call, GetDescriptor, that maps an

activation handle to the descriptor associated with the program counter at

which the activation is suspended.

We discuss each of these steps in more detail. As an example, suppose we have

a function f(x, y), with no other variables, in which x holds a pointer into

the heap and y holds an integer. The front end can encode the heap-pointer

information by emitting a data block, or descriptor, associating 1 with x and

0 with y:

data {

gc1: bits32 2; /* this procedure has two variables */

bits8 1; /* x is a pointer */

bits8 0; /* y is a non-pointer */

}

17

This encoding does not use the names of the variables; instead, each variable is

assigned an integer index, based on the textual order in which it appears in the

de�nition of f. Therefore x has index 0 and y has index 1.

Many other encodings are possible. The front end might emit a table that uses

one bit per variable, instead of one byte. It might emit a list of the indices of

variables that contain pointers. It might arrange for pointer variables to have

continuous indices and emit only the �rst and last such index.

1

The key property

of our design is that the encoding matters only to the front end and its runtime

system. C-- does not know or care about the encoding.

To associate the garbage-collection descriptor with f, the front end places the

de�nition of f in a C-- span:

span GC gc1 {

f(bits32 x, bits32 y) {

...code for f...

}

}

A span may apply to a sequence of function de�nitions, or to a sequence of

statements within a function de�nition. In this case, the span applies to all of f.

There may be several independent span mappings in use simultaneously, e.g.,

one for garbage collection, one for exceptions, one for debugging, and so on.

C-- uses integer tokens to distinguish these mappings from one another; GC is

the token in the example above. C-- takes no interest in the tokens; it simply

provides a map from a (token, PC) pair to an address. Token values are usually

de�ned using a const declaration (Section 3.6).

When the garbage collector (say) walks the stack, using an activation handle a,

it can call the following C-- run-time procedure:

void *GetDescriptor(activation *a, int token) returns the address of

the descriptor associated with the smallest C-- span tagged with token and

containing the program point where the activation a is suspended.

There are no constraints on the form of the descriptor that gc1 labels; that form

is private to the front end and its run-time system. All C-- does is transform

span directives into mappings from program counters to values.

The front end may emit descriptors and spans to support other services, not just

garbage collection. For example, to support exception handling or debugging, the

front end may record the scopes of exception handlers or the names and types

of variables. C-- supports multiple spans, but they must not overlap. Spans can

nest, however; the innermost span bearing a given token takes precedence. One

can achieve the e�ect of overlapping by binding the same data block to multiple

spans.

1

This scenario presumes the front end has the privilege of reordering parameters;

otherwise, it would have to use some other scheme for parameters.

18

5.4 Garbage collection

This section explains in more detail how the C-- run-time interface might be used

to help implement a garbage collector. Our primary concern is how the collector

�nds, and possibly updates, roots. Other tasks, such as �nding pointers in heap

objects and compacting the heap, can be managed entirely by the front-end

run-time system (allocator and collector) with no support from the back end.

C-- takes no responsibility for heap pointers passed to code written in other

languages. It is up to the front end to pin such pointers or to negotiate changing

them with the foreign code. We defer until Section 6.1 the question of how control

is transferred from running C-- code to the garbage collector.

To help the collector �nd roots in global variables, the front end can arrange to

deposit the addresses of such variables in a special data section. To �nd roots in

local variables, the collector must walk the activation stack. For each activation

handle a, it calls GetDescriptor(&a, GC) to get the garbage-collection descrip-

tor deposited by the front end. The descriptor tells it how many variables there

are and which contain pointers. For each pointer variable, it gets the address

of that variable by calling FindVar. If the result is NULL, the variable is dead,

and need not be traced. Otherwise the collector marks or moves the object the

variable points to, and it may redirect the variable to point to the object's new

location. Note that the collector need not know which variables were stored on

the stack and which were kept in callee-saves registers; FindVar provides the

location of the variable no matter where it is. Figure 2 shows a simple copying

collector based on Appel (1989), targeted to the C-- run-time interface and the

descriptors shown in Section 5.3.

A more complicated collector might have to do more work to decide which vari-

ables represent heap pointers. TIL is the most complicated example we know of

(Tarditi et al. 1996). In TIL, whether a parameter is a pointer may depend on

the value of another parameter. For example, a C-- procedure generated by TIL

might look like this:

f(bits32 ty, bits32 a, bits32 b) { ... }

The �rst parameter, ty, is a pointer to a heap-allocated type record. It is not

statically known, however, whether a is a heap pointer. At run time, the �rst �eld

of the type record that ty points to describes whether a is a pointer. Similarly,

the second �eld of the type record describes whether b is a pointer.

To support garbage collection, we attach to f's body a span that points to a

statically allocated descriptor, which encodes precisely the information in the

preceding paragraph. How this encoding is done is a private matter between the

front end and the garbage collector; even this rather complicated situation is

easily handled with no further support from C--.

19

struct gc_descriptor {

unsigned var_count;

char heap_ptr[1];

};

void gc(void) {

activation a;

FirstActivation(tcb, &a);

for (;;) {

struct gc_descriptor *d = GetDescriptor(&a, GC);

if (d != NULL) {

int i;

for (i = 0; i < d->var_count; i++)

if (d->heap_ptr[i]) {

typedef void *pointer;

pointer *rootp = FindVar(a, i);

if (rootp != NULL) *rootp = gc_forward(*rootp);

/* copying forward, as in Appel, if live */

}

}

if (NextActivation(&a) == NULL)

break;

}

gc_copy(); /* from-space to to-space, as in Appel */

}

Fig. 2. Part of a simple copying garbage collector

5.5 Implementing the C-- run-time interface

Can spans and the C-- run-time interface be implemented e�ciently? By sketch-

ing a possible implementation, we argue that they can. Because the implementa-

tion is private to the back end and the back-end run-time system, there is wide

latitude for experimentation. Any technique is acceptable provided it implements

the semantics above at reasonable cost. We argue below that well-understood

techniques do just that.

Implementing spans The span mappings of Section 5.3 take their inspi-

ration from table mappings for exception handling, and the key procedure,

GetDescriptor, can be implemented in similar ways (Chase 1994a). The main

challenge is to build a mapping from object-code locations (possible values of the

program counter) to source-code location ranges (spans). The most common way

is to use tables sorted by program counter. If suitable linker support is available,

tables for di�erent tokens can go in di�erent sections, and they will automat-

ically be concatenated at link time. Otherwise, tables can be chained together

(or consolidated) by an initialisation procedure called when the program starts.

20

Pointer to second
callee-save register

Pointer to an
activation record

Activation handle

Top of stack

Bottom of stack

Pointer to first
callee-save register

Activation
record

The activation handle points to an activation record, which

may contain values of some local variables. Other local vari-

ables may be stored in callee-saves registers, in which case

their values are not saved in the current activation record,

but in the activation records of one or more called procedures.

These activation records can't be determined until run time,

so the stack walker incrementally builds a map of the loca-

tions of callee-save registers, by noting the saved locations of

each procedure.

Fig. 3. Walking a stack

Implementing stack walking In our sketch implementation, the call stack is

a contiguous stack of activation records. An activation handle is a static record

consisting of a pointer to an activation record on the stack, together with pointers

to the locations containing the values that the non-volatile registers

2

had at the

moment when control left the activation record (Figure 3). FirstActivation

initialises the activation handle to point to the topmost activation record on the

stack and to the private locations in the C-- runtime that hold the values of

registers. Depending on the mechanism used to suspend execution, the runtime

2

The non-volatile registers are those registers whose values are unchanged after return

from a procedure call. They include not only the classic callee-saves registers, but

also registers like the frame pointer, which must be saved and restored but which

aren't always thought of as callee-saves registers.

21

might have values of all registers or only of non-volatile registers, but this detail

is hidden behind the run-time interface. Ramsey (1992) discusses retargetable

stack walking in Chapters 3 and 8.

The run-time system executes only when execution of C-- procedures is sus-

pended. We assume that C-- execution is suspended only at a \safe point."

Broadly speaking, a safe point is a point at which the C-- run-time system is

guaranteed to work; we discuss the details in Section 6.2. For each safe point,

the C-- code generator builds a statically-allocated activation-record descriptor

that gives:

{ The size of the activation record; NextActivation can use this to move to

the next activation record.

{ The liveness of each local variable, and the locations of live variables, indexed

by variable number. The \location" of a live variable might be an o�set

within the activation record, or it might be the name of a callee-saves register.

GetVar uses this \location" to �nd the address of the true memory location

containing the variable's value, either by computing an address within the

activation record itself, or by returning the address of the location holding

the appropriate callee-saves register, as recorded in the activation handle

(Figure 3).

{ If the safe point is a call site, the locations where the callee is expected to

put results returned from the call.

{ The locations where the caller's callee-saves registers may be found. Again,

these may be locations within the activation record, or they may be this

activation's callee-saves registers. NextActivation uses this information to

update the pointers-to-callee-saves-registers in the activation handle.

The C-- runtime can map activations to descriptors using the same mechanism

it uses to implement the span mappings of Section 5.3. The run-time interface

can cache these descriptors in the activation handle, so the lookup need be done

only when NextActivation is called, i.e., when walking the stack. An alternative

that avoids the lookup is to store a pointer to the descriptor in the code space,

immediately following the call, and for the call to return to the instruction after

the pointer. The SPARC C calling convention uses a similar trick for functions

returning structures (SPARC 1992, Appendix D).

The details of descriptors and mapping of activations to descriptors are im-

portant for performance. At issue is the space overhead of storing descriptors

and maps, and the time overhead of �nding descriptors that correspond to PCs.

Liskov and Snyder (1979) suggests that sharing descriptors between di�erent call

sites has a signi�cant impact on performance. Because these details are private

between the back end and the back-end run-time system, we can experiment

with di�erent techniques without changing the approach, the run-time interface,

or the front end.

22

6 Re�ning the design

The basic idea of providing a run-time interface that allows the state of a sus-

pended C-- computation to be inspected and modi�ed seems quite
exible and

robust. But working out the detailed application of this idea to a variety of

run-time services, and specifying precisely what the semantics of the resulting

language is, remains challenging. In this section we elaborate some of the de-

tails that were not covered in the preceding section, and discuss mechanisms

that support run-time services other than garbage collection. Our design is not

�nalised, so this section is somewhat speculative.

6.1 Suspension and introspection

All our intended high-level run-time services must be able to suspend a C--

computation, inspect its state, and modify it, before resuming execution.

In many implementations of high-level languages, the run-time system runs on

the same physical stack as the program itself. In such implementations, walking

the stack or unwinding the stack requires a thorough understanding of system

calling conventions, especially if an interrupt can cause a transfer of control

from generated code to the run-time system. We prefer not to expose this im-

plementation technique through the C-- run-time interface, but to take a more

abstract view. The C-- runtime therefore operates as if the generated code and

the run-time system run on separate stacks, as separate threads:

{ The system thread runs on the system stack supplied by the operating sys-

tem. The front-end run-time system runs in the system thread, and it can

easily inspect and modify the state of the C-- thread.

{ The C-- thread runs on a separate C-- stack. When execution of the C--

thread is suspended, the state of the C-- thread is saved in the C-- thread-

control block, or TCB.

We have to say how a C-- thread is created, and how control is transferred

between the system thread and a C-- thread.

{ The system thread calls InitTCB to create a new thread. In addition to pass-

ing the program counter for a C-- procedure without parameters, the system

thread must provide space for a stack on which the thread can execute, as

well as space for a thread-control block.

{ The system thread calls Resume to transfer control to a suspended C--

thread.

23

{ Execution of a C-- thread continues until that thread calls the C-- procedure

yield, which suspends execution of the C-- thread and causes a return from

the system thread's Resume call. The C-- thread passes a yield code, which

is returned as the result of Resume.

For example, garbage collection can be invoked via a call to yield, when the

allocator runs out of space. Here is how the code might look if allocation takes

place in a single contiguous area, pointed to by a heap pointer hp, and bounded

by heap_limit:

f(bits32 a,b,c) {

while (hp+12 > heap_limit) {

yield(GC); /* Need to GC */

}

hp = hp+12;

...

}

It may seem unusual, even undesirable, to speak of two \threads" in a completely

sequential setting. In a more tightly-integrated system it would be more usual

simply to call the garbage collector. But simply making a foreign call to the

garbage collector will not work here. How is the garbage collector to �nd the top

of the C-- portion of the stack that it must traverse? What if live variables (such

as a, b, c) are stored in C's callee-saves registers across the call to the garbage

collector? Such complications a�ect not only the garbage collector, but any high-

level run-time service that needs to walk the stack. Our two-thread conceptual

model abstracts away from these complications by allowing the system thread

to inspect and modify a tidily frozen C-- thread.

Using \threads" does not imply a high implementation cost. Though we call

them threads, \coroutines" may be a more accurate term. The system thread

never runs concurrently with the C-- thread, and the two can be implemented

by a single operating-system thread.

Another merit of this two-thread view is that it extends smoothly to accommo-

date multiple C-- threads. Indeed, though it is not the focus of this paper, we

intend that C-- should support many very lightweight threads, in the style of

Concurrent ML (Reppy 1991), Concurrent Haskell (Peyton Jones, Gordon, and

Finne 1996), and many others.

6.2 Safe points

When can the system thread safely take control? We say a program-counter

value within a procedure is a safe point if it is safe to suspend execution of the

procedure at that point, and to inspect and modify its variables. We require the

following precondition for execution in the front-end run-time system:

A C-- thread can be suspended only at a safe point.

24

A call to yield must be a safe point, and because any procedure could call

yield, the code generator must ensure that every call site is a safe point. This

safe point is associated with the state in which the call has been made and

the procedure is suspended awaiting the return. C-- does not guarantee that

every instruction is a safe point; recording local-variable liveness and location

information for every instruction might increase the size of the program by a

signi�cant fraction (Stichnoth, Lueh, and Cierniak 1999).

So far we have suggested that a C-- program can only yield control voluntarily,

through a yield call. What happens if an interrupt or fault occurs, transferring

control to the front-end run-time system, and the currently executing C-- pro-

cedure is not at a safe point? This may happen if a user deliberately causes an

interrupt, e.g., to request that the stack be unwound or the debugger invoked. It

may happen if a hardware exception (e.g., divide by zero) is to be converted to

a software exception. It may happen in a concurrent program if timer interrupts

are used to pre-empt threads. The answer to the question remains a topic for

research; asynchronous pre-emption is di�cult to implement, not only in C-- but

in any system. Chase (1994b) and Shivers, Clark, and McGrath (1999) discuss

some of the problems. One common technique is to ensure that every loop is

cut by a safe point, and to permit an interrupted program to execute until it

reaches a safe point. C-- therefore enables the front end to insert safe points, by

inserting the C-- statement

safepoint;

6.3 Call-site invariants

In the presence of garbage collection and debugging, calls have an unusual prop-

erty: live local variables are potentially modi�ed by any call. For example, a com-

pacting garbage collector might modify pointers saved across a call. Consider

this function, in which a+8 is a common subexpression:

f(bits32 a) {

bits32[a+8] = 10; /* put 10 in 32-bit word at address a+8 */

g(a);

bits32[a+8] = 0; /* put 0 in 32-bit word at address a+8 */

return;

}

If g invokes the garbage collector, the collector might modify a during the call

to g, so the code generator must recompute a+8 after the call | it would be

unsafe to save a+8 across the call. The same constraint supports a debugger that

might change the values of local variables. Calls may also modify C-- values that

are declared to be allocated on the stack.

A compiler writer might reasonably object to the performance penalty imposed

by this constraint; the back end pays for compacting garbage collection whether

the front end needs it or not. To eliminate this penalty, the front end can

25

mark C-- parameters and variables as invariant across calls, using the keyword

invariant, thus:

f(invariant bits32 a) {

invariant bits16 b;

bits32 c;

...

g(a, b, c); /* "a" and "b" are not modified

by the call, but "c" might be */

...

}

The invariant keyword places an obligation on the front-end run-time system,

not on the caller of f. The keyword constitutes a promise to the C-- compiler

that the value of an invariant variable will not change \unexpectedly" across a

call. The run-time system and debugger may not change the values of invariant

variables.

If variables will not be changed by a debugger, a front end can safely mark non-

pointer variables as invariant across calls, and front ends using mostly-copying

collectors (Bartlett 1988; Bartlett 1989a) or non-compacting collectors (Boehm

and Weiser 1988) can safely mark all variables as invariant across calls.

7 Exceptions and other services

In Section 4 we argued that many high-level run-time services share at least

some requirements in common. In general, they all need to suspend a running

C-- thread, and to inspect and modify its state. The spans of Section 5.3 and the

run-time interface of Section 5.2 provide this basic service, but each high-level

run-time service requires extra, special-purpose support. Garbage collection is

enhanced by the invariant annotation of Section 6.3. Exception handling re-

quires rich mechanisms for changing the
ow of control. Interrupt-based pro�ling

requires the ability to inspect (albeit in a very modest way) the state of a thread

interrupted asynchronously. Debugging requires all of the above, and more be-

sides. We believe that our design can be extended to deal with these situations,

and that many of C--'s capabilities will be used by more than one high-level

service. Here we give an indicative discussion of just one other service, exception

handling.

Making a single back end support a variety of di�erent exception-handling mech-

anisms is signi�cantly harder than supporting a variety of garbage collectors, in

part because exceptions alter the control
ow of the program. If raising an ex-

ception could change the program counter arbitrarily, chaos would ensue; two

di�erent program points may hold their live variables in di�erent locations, and

they may have di�erent ideas about the layout of the activation record and

the contents of callee-saves registers. They may even have di�erent ideas about

which variables are alive and which are dead. In other words, unconstrained,

26

dynamic changes in locus of control make life hard for the register allocator and

the optimiser; if the program counter can change arbitrarily, there is no such

thing as dead code, and a variable live anywhere is live everywhere.

Typically, handling an exception involves �rst unwinding the stack to the caller

of the current procedure, or its caller, etc., and then directing control to an excep-

tion handler. Many of the mechanisms used for garbage collection are also useful

for exception handling; for example, stack walking and spans can be used to �nd

exactly which handler should catch a particular exception. But the mechanisms

we have described so far don't allow for changes in control
ow. C-- controls

such changes by requiring annotations on procedure calls.

The key idea is that, in the presence of exceptions, a call might return to more

than one location, and every C-- program speci�es explicitly all the locations to

which a call could return. In e�ect, a call has many possible continuations instead

of just one. When an activation is suspended at a call site, three outcomes are

possible.

{ The call returns normally, and execution continues at the statement following

the call.

{ The call raises an exception that is handled in the activation, so the call

terminates by transferring control to a di�erent location in that activation.

{ The call raises an exception that is not handled in the current activation,

so the activation is aborted, and the run-time system transfers control to a

handler in some calling procedure.

C--'s call-site annotations specify these outcomes in detail.

We are currently re�ning a design that supports suitable annotations, plus a

variety of mechanisms for transfer of control (Ramsey and Peyton Jones 1999).

Exception dispatch might unwind the stack one frame at a time, looking for

a handler, or it might use an auxiliary data structure to �nd the handler, then

\cut the stack" directly to that handler in constant time. Our design also permits

exception dispatch to be implemented either in the front-end run-time system

or in generated code. The C-- run-time system provides supporting procedures

that can unwind the stack, change the address to which a call returns, and pass

values to exception handlers.

8 Status and conclusions

The core design of C-- is stable, and an implementation based on ML-RISC

is freely available from the authors. This implementation supports the features

described in Section 3, but it does not yet include the span directive or a C--

run-time system.

27

Many open questions remain. What small set of mechanisms might support the

entire gamut of high-level language exception semantics? How about the range of

known implementation techniques? Support for debugging is even harder than

dealing with exceptions. Exactly what is the meaning of a breakpoint? How

should breakpoints interact with optimization? What are the primitive \hooks"

required for concurrency support? How should C-- cope with pre-emption?

These questions are not easily answered, but the prize is considerable. Reuse

of code generators is a critically important problem for language implementors.

Code generators embedded in C compilers have been widely reused, but the

nature of C makes it impossible to use the best known implementations of high-

level run-time services like garbage collection, exception handling, debugging,

and concurrency | C imposes a ceiling on reuse.

We hope to break through this ceiling by taking a new approach: design a low-

level, reusable compiler-target language in tandem with a low-level, reusable

run-time system. Together, C-- and its run-time system should succeed in hiding

machine-dependent details of calling conventions and stack-frame layout. They

should eliminate the distinction between variables living in registers and variables

living on the stack. By doing so, they should

{ Permit sophisticated register allocation, even in the presence of a garbage

collector or debugger.

{ Make the results of liveness analyses available at run time, e.g., to a garbage

collector.

{ Support the best known garbage-collection techniques, and possibly enable

experimentation with new techniques.

Although the details are beyond the scope of this paper, we have some reason to

believe C-- can also support the best known techniques for exception handling,

as well as supporting pro�ling, concurrency, and debugging.

Acknowledgements

We thank Xavier Leroy, Simon Marlow, Gopalan Nadathur, Mike O'Donnell,

and Julian Seward for their helpful feedback on earlier drafts of this paper. We

also thank Richard Black, Lal George, Thomas Johnsson, Greg Morrisett, Nikhil,

Olin Shivers, and David Watt for feedback on the design of C--.

28

References

Appel, Andrew W. 1989 (February). Simple generational garbage collection and

fast allocation. Software|Practice & Experience, 19(2):171{183.

Atkinson, Russ, Alan Demers, Carl Hauser, Chnristian Jacobi, Peter Kessler,

and Mark Weiser. 1989 (July). Experiences creating a portable Cedar.

Proceedings of the '89 SIGPLAN Conference on Programming Language

Design and Implementation, SIGPLAN Notices, 24(7):322{329.

Bartlett, Joel F. 1988 (February). Compacting garbage collection with ambigu-

ous roots. Technical Report 88/2, DEC WRL, 100 Hamilton Avenue, Palo

Alto, California 94301.

. 1989a (October). Mostly-copying garbage collection picks up generations

and C++. Technical Report TN-12, DECWRL, 100 Hamilton Avenue, Palo

Alto, California 94301.

. 1989b. SCHEME to C: A portable Scheme-to-C compiler. Technical

Report RR 89/1, DEC WRL.

Benitez, Manuel E. and Jack W. Davidson. 1988 (July). A portable global opti-

mizer and linker. In ACM Conference on Programming Languages Design

and Implementation (PLDI'88), pages 329{338. ACM.

Benton, Nick, Andrew Kennedy, and George Russell. 1998 (September). Com-

piling Standard ML to Java bytecodes. In ACM Sigplan International Con-

ference on Functional Programming (ICFP'98), pages 129{140, Balitmore.

Bernstein, Robert L. 1985 (October). Producing good code for the case state-

ment. Software Practice and Experience, 15(10):1021{1024.

Boehm, Hans-Juergen and Mark Weiser. 1988 (September). Garbage collec-

tion in an uncooperative environment. Software Practice and Experience,

18(9):807{820.

Chase, David. 1994a (June). Implementation of exception handling, Part I. The

Journal of C Language Translation, 5(4):229{240.

. 1994b (September). Implementation of exception handling, Part II:

Calling conventions, asynchrony, optimizers, and debuggers. The Journal

of C Language Translation, 6(1):20{32.

Clausen, LR and O Danvy. 1998 (April). Compiling proper tail recursion and

�rst-class continuations: Scheme on the Java virtual machine. Technical

report, Department of Computer Science, University of Aarhus, BRICS.

Conway, ME. 1958 (October). Proposal for an UNCOL. Communications of the

ACM, 1(10):5{8.

Diwan, A, D Tarditi, and E Moss. 1993 (January). Memory subsystem perfor-

mance of programs using copying garbage collection. In 21st ACM Sym-

posium on Principles of Programming Languages (POPL'94), pages 1{14.

Charleston: ACM.

Franz, Michael. 1997 (October). Beyond Java: An infrastructure for high-

performance mobile code on the World Wide Web. In Lobodzinski, S.

and I. Tomek, editors, Proceedings of WebNet'97, World Conference of the

WWW, Internet, and Intranet, pages 33{38. Association for the Advance-

ment of Computing in Education.

George, Lal. 1996. MLRISC: Customizable and reusable code generators. Un-

published report available from http://www.cs.bell-labs.com/ george/.

Harbison, Samuel P. and Guy L. Steele, Jr. 1995. C: A Reference Manual. fourth

edition. Englewood Cli�s, NJ: Prentice Hall.

Henderson, Fergus, Thomas Conway, and Zoltan Somogyi. 1995. Compiling

logic programs to C using GNU C as a portable assembler. In ILPS'95

Postconference Workshop on Sequential Implementation Technologies for

Logic Programming, pages 1{15, Portland, Or.

Liskov, Barbara H. and Alan Snyder. 1979 (November). Exception handling in

CLU. IEEE Transactions on Software Engineering, SE-5(6):546{558.

Macrakis, Stavros. 1993 (January). The Structure of ANDF: Principles and

Examples. Open Systems Foundation.

Novack, Steven, Joseph Hummel, and Alexandru Nicolau. 1995. A Simple Mecha-

nism for Improving the Accuracy and E�ciency of Instruction-level Disam-

biguation, chapter 19. Lecture Notes in Computer Science. Springer Verlag.

Pettersson, M. 1995. Simulating tail calls in C. Technical report, Department

of Computer Science, Linkoping University.

Peyton Jones, Simon L., A. J. Gordon, and S. O. Finne. 1996 (January). Con-

current Haskell. In 23rd ACM Symposium on Principles of Programming

Languages (POPL'96), pages 295{308, St Petersburg Beach, Florida.

Peyton Jones, SL, D Oliva, and T Nordin. 1998. C--: A portable assembly

language. In Proceedings of the 1997 Workshop on Implementing Func-

tional Languages (IFL'97), Lecture Notes in Computer Science, pages 1{19.

Springer Verlag.

Peyton Jones, Simon L. 1992 (April). Implementing lazy functional languages

on stock hardware: The spineless tagless G-machine. Journal of Functional

Programming, 2(2):127{202.

Ramsey, Norman and Simon L. Peyton Jones. 1999. Exceptions need not be

exceptional. Draft available from http://www.cs.virginia.edu/nr.

Ramsey, Norman. 1992 (December). A Retargetable Debugger. PhD thesis,

Princeton University, Department of Computer Science. Also Technical

Report CS-TR-403-92.

Reig, F and SL Peyton Jones. 1998. The C-- manual. Technical report, Depart-

ment of Computing Science, University of Glasgow.

Reppy, JH. 1991 (June). CML: a higher-order concurrent language. In

ACM Conference on Programming Languages Design and Implementation

(PLDI'91). ACM.

30

Serrano, Manuel and Pierre Weis. 1995 (September). Bigloo: a portable and

optimizing compiler for strict functional languages. In 2nd Static Analysis

Symposium, Lecture Notes in Computer Science, pages 366{381, Glasgow,

Scotland.

Shivers, Olin, James W. Clark, and Roland McGrath. 1999 (September). Atomic

heap transactions and �ne-grain interrupts. In ACM Sigplan International

Conference on Functional Programming (ICFP'99), Paris.

SPARC International. 1992. The SPARC Architecture Manual, Version 8. En-

glewood Cli�s, NJ: Prentice Hall.

Stallman, Richard M. 1992 (February). Using and Porting GNU CC (Version

2.0). Free Software Foundation.

Steele, Guy L., Jr. 1978 (May). Rabbit: A compiler for Scheme. Technical Report

AI-TR-474, Arti�cial Intelligence Laboratory, MIT, Cambridge, MA.

Stichnoth, JM, G-Y Lueh, and M Cierniak. 1999 (May). Suppport for garbage

collection at every instruction in a Java compiler. In ACM Conference

on Programming Languages Design and Implementation (PLDI'99), pages

118{127, Atlanta.

Taft, Tucker. 1996. Programming the Internet in Ada 95. In Strohmeier, Al-

fred, editor, 1996 Ada-Europe International Conference on Reliable Software

Technologies, Vol. 1088 of Lecture Notes in Computer Science, pages 1{16,

Berlin. Available through www.appletmagic.com.

Tarditi, David, Anurag Acharya, and Peter Lee. 1992. No assembly required:

compiling Standard ML to C. ACM Letters on Programming Languages

and Systems, 1(2):161{177.

Tarditi, D, G Morrisett, P Cheng, C Stone, R Harper, and P Lee. 1996 (May).

TIL: A type-directed optimizing compiler for ML. In ACM Conference

on Programming Languages Design and Implementation (PLDI'96), pages

181{192. Philadelphia: ACM.

Wakeling, D. 1998 (September). Mobile Haskell: compiling lazy functional lan-

guages for the Java virtual machine. In Proceedings of the 10th International

Symposium on Programming Languages, Implementations, Logics and Pro-

grams (PLILP'98), Pisa.

31

