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Explicit complete  solution in integers of  a class 
of equations ( a x  2 - b ) ( a y  2 - b )  - -  z 2 - c 

Kenji  Kash iha ra  

D e d i c a t e d  to Dr.  Taro M o r i s h i m a  

In this pape r  we will s tudy  the equat ion  for a rb i t r a ry  integers a # 0, c and 
b = •  •  or •  W h e n  b = •  we suppose  c is divisible by 4. The  pape r  will 
provide one with a me thod  for finding algori thmical ly  all integral non-tr ivial  
solutions of the title equat ions,  where an explicit  uni t  of ~ ( ~ / a 2 n  2 - ab) plays 
an i m p o r t a n t  role. 

I n t r o d u c t i o n  

In [2], L . J . M o r d e l l  commen ted  on the quar t ic  equat ion given by 

2 

a r s x r y  ~ : d z  2, (1) 
r,S-~--O 

where a ' s  and d are integers. His c o m m e n t  is t ha t  when one integer solution 
(x0, y0, z0) of  (1) is known, an infinity can be found under  cer tain condi- 
tions, and tha t  this leads to solut ions (z0, Yl, zl) ,  (x l ,  Yl, z2), ( z l ,  Y2, z3), 
(z2, Y2, z4), ete . . . .  , where f rom a Pellian equat ion,  yl ,  z l ,  y2, x2, . . .  may  
each have an infinity of values. 

We will fur ther  consider this fact for the following special type  : 

( a z  2 - b ) ( a y  2 - b) = z 2 - c, (2) 

where a , c  6 7/, a r 0, b = + 1 , •  •  When  b = •  we suppose  c = 
0 ( m o d  4). In [3], we have invest igated the equat ion for the case a -= 1 and 
b = 1. In this paper ,  we will show tha t  this equat ion can be deal t  with general ly 
in the same me thod .  

I f  we fix z = n, equat ion (2) is wr i t t en  as 

z 2 - (a2n 2 - ab)y  2 "- - a b n  2 + b ~ + c. (3) 
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We can solve equation (3) by the theory of binary quadratic forms as presented 
in [4] or [5]. We will show a permutat ion group on all integral solutions of 
equation (2), which will be denoted by G. And we will prove the possibility of 
computing algorithmically a minimal finite set of integral solutions of the title 
equation, such that  the G-orbits of this set exhaust all integral solutions. 

Here we introduce the notion of the t rw ia l  solut ion.  When (ax  2 - b) 
(ay  2 - b ) ( - a b x  2 + b 2 + c ) ( - a b y  2 + b 2 + c) = 0, the solution can be trivially 
computed.  If e = 0, then (x ,  =l=x, :t:(ax 2 - b)) are trivially integral solutions. 
Thus a tr iv ial  so lu t ion  is defined as an integral solution such that  

(ax  2 - b) (ay  2 - b ) ( - a b x  ~ + b ~ + c ) ( - a b y  2 + b 2 + c) = O, 

or (only if c = 0) x 2 = y2. 
The cases b = 1, 2 or 4, will be discussed in detail and for the other cases we 

will s ta te  the results and give only the proofs different from the previous ones. 
Up to the end of section 3 we suppose b = 1, 2, or 4. Since ( - a x 2 - b ) ( - a y 2 - b )  = 
z 2 - c is equivalent to (ax  ~ + b)(ay  ~ + b) = z 2 - c, we may suppose a > 0. 

Nota t ions .  

F~c : the set of all real solutions of equation (2). 

Sabr : the set of all integral solutions of equation (2). 

C ,  : intersection of F~c and the plane x = n. 

T~r : the set of all trivial solutions of equation (2). 

C +y,  C +~ and C + are the following branches of Cn: 

c2~ := {(~, ~, z) e c .  I y > 0}, 
c.+~:={(x,y,z)eC, lz > 0}, 
c .  + := {(x, y, =) E c .  ly  > 0, z > 0}. 

c~, v, Pl, P2 and P3 are the following permutat ions on Fbr or sbc: 

~(x, u, z ) :=  (y, ~, z), 
pl(~, y, z):= (-~, u, z), 
p~(~, y, z):= (~ , -y ,  z), 
p3(x, y, z ) :=  (~, y, -=). 

G is the following permutat ion group and G1, G2, H and H1 are the following 
subgroups of G: 

G : = ~  0", 7", ,O1, /)2, ,03 >, 

G I "'-"< (T, /91, P2, P3 >, 

G2 : = <  cr >, 

H : = <  T, P1, P2, P3 >, 

H1 : = <  pl,  p2, P3 • �9 



Kashihara 375 

Let P and Q be points on F,br (or S~r I f Q  = g P  for some g E G, then P 
and Q are called G-equivalent, otherwise G-independent. These relations are 
denoted by P --, Q and P fi Q, respectively. 

The following function is used: 

~(z ,  y, z) := z 2 + y2. 

1. T h e  s t r u c t u r e  o f  G 

As already noted, we assume b = 1, 2 or 4. If we fix z = n(> 0), equation (2) is 
written as 

Z 2 -- (a2n 2 -- ab)y 2 = - a b n  2 + b 2 + c. (3) 

or equivalently 

N (z  + yx /a~n  ~ - ab)  = - a b n  ~ + b 2 § c, 

where N denotes the norm from Q(~/a2n  2 - ab) to Q. Here we put  

(4) 

Therefore putting 

zl  4- yl  x[a2n 2 -- ab = (zo + yox[a2n 2 - ab) ~n, 

we have a new solution (Yl, zl). From this fact, if we define cr as above, cr is a 
permutat ion on C,~, and we may replace Cn with F~c or S~r In the cases b = 1 
or 2, r lies in the coefficient ring of the Z - m o d u l e  {1, x /a2n  2 - ab}. Consider 
the case b = 4. Let (z, y, z) lies in S~ ,  and put (z, r/, ~) = e (z ,  y, z). Then 
from (3) and c =_ 0 (rood 4), 

(z + a x y ) ( z  -- a x y )  : - 4 a y  2 - 4ax  2 + 1 6 + c - 0  ( r o o d 4 ) .  

And so 

2 x ( a x y  § z) - 4y  2 a x 2 ( a z y  -% z) - 8 a x y  - 4z 
77= 4 E T], ~ = 4 E T/. 

z + a z y  =_ z - a x y  --- 0 ( m o d  2). Hence 

Therefore (x, r], ~) E S~4c, and so r is a permutation on $4c . From the symme- 
tries of equation (2), we can obtain the other generators of G. 

L e m m a  1. G is a p e r m u t a t i o n  group on Fbar or Sbae. 

2an  2 - b § 2 n x / a 2 n  2 - ab 
~n = b 

Since Ib} ~ {1, 2, 4}, it is straightforward to check that  ~,~ is a unit in the ring 
of integers of the above quadratic field with norm equal to +1; moreover, it is 
useful to note tha t  ~-1 = v_ , .  Let (Y0, z0) be one of the solutions of (4). Then 

N { (zo + yo~/a2n 2 - ab) on}  = - a b n  2 + b 2 + c. 
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By easy  calculat ion we have the  following lemma.  

L e m m a  2. 

p~ = 1, 

vpl = p2v, 

O'pi = pi 0"-1, 

where i , j  = 1,2,3.  

C o r o l l a r y  

Permuta t ions  (r, r, Pl, P2, Pa satisfy the following relations, 

PiPj = pjPi, 7 -2 = 1, 

7-P2 = Pl r, rp3 = p3r, 
= - 1 ,  

, , - x r  = ,-(T(r,-) -1 ,  

1. Let A = {or, (r - t ,  r(rr, ( r ~ r ) - l } ,  H = <  r, Pl,  P2, P3 > ,  then 

A H  = H A .  

C o r o l l a r y  2. A n y  element  o f  G has a representation in the form, 

where a , b , c , d =  0 o r l  a n d e i , f i  E 7 /  

Proof. Let g be an a rb i t r a ry  element  of  G. Using Corollary 1 several  t imes,  g 
takes the form h ( r " ' ( r ( r r ) / ' . .  . (r 'k(r(rr)  lk, where h E H. By the re la t ions p 's  
and v, h takes the fo rm .~a~b~c~d [] F 1  / ' 2 / ' 3 "  �9 

2. T h e  p e r m u t a t i o n  o" 

We continue to assume tha t  b = 1, 2 or 4. In this section, we fix z = n(>_ 0) and 
regard (r as a p e r m u t a t i o n  on Cn. Somet imes ,  for a point  P = (n, y, z) E Cn, 
we will s imply  write P = (y, z). The  curve Cn varies as follows. In the  case 
an ~ - b < O, - a b n  2 + b 2 + c > O, Cn is an ellipse or a single point .  (See Fig. 
1.) In the  case an 2 - b =  O, c>_ 0, it degenerates  to one or two lines. In the 
case an 2 - b > O, - a b n  2 + b 2 + c > 0, it is a hype rbo la  with focuses on the z 
axis. In the  case an 2 - b > O, - a b n  2 + b 2 + c = 0, it degenerates  to two lines. 
And  finally in the  case an 2 - b > O, - a b n  2 + b 2 + c < 0, it is a hype rbo la  with 
focuses on the y axis. (See Fig. 2.) We have the following lemma.  

L e m m a  3. Let n > O, except for  the case ( i ) .  For a point Po on Cn, put 

P1 = (rPo, and let PoP1 be an arc o f  Cn, in which P1 is contained and Po is not. 

( i ) I f  n = O then (r = p2p3. 

(ii) 1 f a n  2 -  b < 0 and - a b n  ~ + b 2 + c > O, let Po = (-Yo,  zo) be a point on Cn 

such that aPo = p~.Po, yo > O, zo > O. Then 

Cn = U (ri PoP1, 
i----0 
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where r = 2, 3 or 5. 

(iii) I f  an 2 - b  > O, - a b n  2-4-b 2 + c > 0 ,  let Po = ( - y o ,  Zo) be a point o n e  +z 
such that aPo = p2Po, yo >_ O. Then 

C+Z = U a' poP, .  
iEZ 

(iv) I f  an 2 - b > 0 and - a b n  ~ + b ~ + c < O, let Po = (Yo, -Zo)  be a point on 
C +y such lhat o'Po -- P3Po, Zo > O. Then 

= U PoP,. 
iEZ 

The proof of case (i) is clear from the definition of r 
Proof  of  case (ii). See Fig. 1. From an 2 - b < 0 and n > 0, we have (a, b, n) = 
(1,2, 1), (1, 4, 1), (2, 4, 1) or (3, 4, 1). or can be expressed by the following matrix 
respectively: 

1 1 1 1 _ 
A l : ( 2 1  10), A 2 : ~ ( - 1 3  _ 1 ) ,  A 3 : ~ ( 2 4  ~ ) ,  A 4 : ~ (  13 11). 

It is obvious that  A14 = I, A 3 = I,  A~ = I, A~ = I and that  such Po exists. 
Here we put  Pi = ~iPo (i = 1 ,2 , . . .  ,6). Then it holds that  P3 = Po, P4 = Po or 

P6 = Po. By linearity ore ,  Pi+lPi+2 = ~rP~i+l.  Therefore C,~ = U[=o P;Pi+] = 
r U~=0 ~iPoPi ,  where r = 2, 3 or 5. 

Proof  of  case (iii). First we note that  the relation r = P2Po is by the definition 
of r and P2, equivalent to zo = nayo and now it is clear that  such a point P0 
exists on C,~. Next let (y, z) E C +z and put  (~/, r = a(y, z). First we show 
(~, ~) E C +Z. From the definition of or, 

C = 2n(a2n2 -- ab)y + (2an 2 - b)z 

b 

From (3) and the assumption - a b n  ~ + b 2 + c > 0, we have 

z 2 -  (a2n 2 - ab)y 2 > O. 

(5) 

(6) 
Therefore 

(2an 2 - b)2 z 2 _ 4n2(a2n 2 _ ab)2y 2 

> (a2n ~ -  ab)(2an ~ -  b)2y 2 -  4n2(a~n 2 _  ab)2y ~ 

= b2(a2n 2 - ab)y 2 > O. 

Hence 
(2an 2 - b)z > :t=2n(a2n 2 - ab)y. 

Combining (5) with (7), we have r > 0. And so (T/, ~) e C +Z. 

(7) 



378 Kashihara 

Next  we show ~ > y. From the definition of a, we have 

2 2 b)y + nz} .  : u + ~{(~n - 

From (6), 

(8) 

I 
( i )  

R e m a r k  1. Sometimes we suppose an arc PoP1 contains bo th  P0 and P1. Then  
Lemraa 3 still holds. 

L e m m a  4. Let n > 0 and let ( a ,b ,n )  7s (1,4, 1). 

The case - a b n  2 + b 2 + c > 0 : Define 

- a b  - V  a ~  " 

Then C,, G2E~'~ i f  an 2 b < O ,  and C +~ "~ E b" otherwise. - - "  - -  " =  ~ 2  a r  

(ii) The case an 2 - b  > O 

= ! (n, u, z) e Eba~ c:~ 

Then C +u "" E b" : ~'T2 a c '  

and - a b n  2 + b 2 + c < 0 : D e f i n e  

/ a b n  2 -  5 2 - c / a b n  2 -  5 2 - c 

V - J ~ : ~  <-Y<-nv a--~:~ J " 

II I f  P is any point in E~nr and o'P, o ' - l P  do not belong to H1P ,  then 

9~(~P) > ~ ( P ) ,  ~ ( a - l p )  > 9~(e), 

respectively. Moreover, i f  an 2 - b > 0 and P is any point in Ebb, while 
Q - (n, y, z) any point not belonging to Eba'~, then, unless Q E H I P  

~ ( q )  > ~ (P ) .  

n2z 2 _ (an 2 - b)2y 2 > n2(a2n 2 _ ab)y 2 - (an 2 - b)2y 2 

= b(an 2 - b)y 2 ~ O, 

which implies 
nz > +(an 2 - b)y. (9) 

Combining (8) with (9), we have ~ > y. Now we put  Pi+l  = crPi, Pi-1 = 
( r - lP i  and Pi = (Yi, z~) for all i G 77. Then,  by (8) and (9) Yi+l >_ Yi + 2/b for 
all i E 7]. Therefore  Yi > q-c<) as i > +oc .  So we have 

C+" = U PiPi+I.  
i E Z  

By linearity of ~, e,~',+, = ~PZlg, = ~'eo~P~. The res,lt follows. 
Case (iv) is proved similarly. [] 



Kashihara 

Proof of  case (i). From c'P0 = P2Po, we see that  

379 

- ( 2 a n  ~ - b)yo + 2nzo 
Yo = b 

hence z0 = a n y o  and now, since Po E Ca, n 2 + Y~o = ( b2 + c)/ab. Therefore, 
P0 = (n, -Y0, zo), P1 = r = (n, Y0, zo), with Yo = ~ / - n  2 + (b 2 + c)/ab and if 

we choose the arc PoP1 on Ca, which lies in the half plane z > 0 then, obviously, 
b n  PoP1 = E a c .  Since, by the previous lemma, Ca(resp. C +*) is a union of arcs 

r with i E 7], we may conclude that  Ca(resp. C +z) is equal to G2Eba~. 

Proof of  case (ii). From ~P0 = p3Po we see that  

(2an 2 - b)yo - 2nzo 
Yo = b ' 

hence nzo = (an ~ - b)yo and now, since Po E C +y ,y~  = n2(abn 2 - b ~ - c) 
/ (abn  2 -  b2). Thus, P0 = (n, y o , - z o ) ,  P1 = aPo = (n ,yo ,zo) ,  with Y0 = 

nx/(abn~ - b ~ - c) / (abn ~ - b 2) and the projection of the arc PoP1 on the y- 
axis is the interval 

/ a b n  - b  2 - c  /abn  2 - b  2 - c  ] 
V 7 z z z ,  "V 7z:  ] 

As y runs through the values of this interval, the point (n, y, z) runs through 

Eabc n therefore PoP1 ba , = E a c .  By the previous lemma, C +~ = ~Jiez ~ipoP~ 
G E ba = 2 a c "  

Proof of part II. In the proof of part I, we saw that  E ~  = PoP1 ;hence P E E ~  

means, in case an 2 - b > 0, that  P is a point on the arc PoP1 of one of the 

hyperbolas in Fig.2. Then, ~ P  E P'd'P2 and ~r- lp  E PoP-1,  from which it is 
clear that,  unless P = P0 or P1, the y-coordinate of P is strictly less than 
the y coordinate of ~P(resp.  of a - l p ) .  Thus in view of the definition of 9, 
unless crp, cr--lp E H i P ,  we have T(P)  < T( t rP) ,  ~o(a-lP).  In the case 
an ~ - b < 0 we are in one of the four cases explicitly stated at the begining of 
the proof of the previous lemma and we check every case separately. Consider 
for example, the case (a, b, n) = (3, 4, 1); then, for P = (1, y, z) E C1 we have 
crP = (1, (y + z ) / 2 ,  ( - 3 y  + z)/2) and the relation ~o(P) < ~o(aP) is equivalent 
to y~ < ( y + z ) 2 / 4  and this, in turn, means - 1 / 3  < y / z  < 1. The last relation 
is seen to be true as follows. By (1, y, z) E E4r 1 it follows that  y2 < (4 + c)/12 
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and since (1 ,y ,z )  is a solution to the title equation, 2 = 4 + c - 3y s >_ 
(12 + 3c) /4 ,  hence (y/z) s <_ 1/9; consequently - 1 / 3  _< y/z < 1 and it is easy 
to see that  we can have equality only if lYl = ~/(4 + c)/12, z = V/(12 + 3c)/4, 
in which case #P E H1P. We deal with the other cases analogously. The proof 
of the last s tatement is obvious from Fig. 2. [] 

In the case of (a, b) = (1,4), part II of this lemma does not hold, because the 
order of As is equal to 3; however instead of this lemma we have the following. 

L e m m a  5. 

I Define 

{ I E~  = (1,y,z) e C  +~ 0 < _ y <  v 12 j 

Then C 1 41 = G1Elc .  

II If  P is any point in E~le and o'P close not coincide with PaP, then 

~(~P) > ~(p), ~(#-~P) > ~(P). 

Proof. As we saw, in this case, g is expressed by the matrix 

As = ~ - 3  - 1  ' 

the order of which is equal to 3. Let P/'s be the same points that are de- 
fined in the proof of the previous lemma. We consider a point Q0 E C +* such 
that  aQo = p3Qo and put Qi = #iQ0 (i = 1,2). Next we consider a point 
R0 = (1,0, zr) E C +z and put R/ = #iR0 (i = 1,2). (See Fig.l.) Then from 

both the y-coordinate of P2 and the z-coordinate of Q2 are equal to 0. From 

Fig.i, it is obvious that  QoP1 = ~ - I Q I p 2  = #-lpaQoRo and PoRo = 02RoPt. 
2 By case (ii) of Lemma 3, 6'i = Ui=0 #iPoP1, therefore C1 = alRoQ0 = a l E ~ .  

Next we consider a point P E P~Q0- pr0m Fig.1 we can see that  o'P E R1Q1 

and a - l P  E RsQ2. This proves part  II of the lemma. [] 
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p_~ z P2 

Qe P2 
P~ P1 

Pe P1 

Y y 

PB 
R 1 

- I  

Fig. 1. Ca & E~  Fig. 2. Cn & E ~  

3. T h e  M a i n  R e s u l t s  in t h e  Cases  b = 1, 2~ 4 

In section 2, we have investigated c~ as a permutation on Cn. Now we consider 
the permutat ion group G on S~c. 

G - - ~  o', 7", P l ,  P2, P3 > .  

T h e o r e m  1. Lel b = 1 ,2 ,4 ,  (a,b) 7s (1,4) and let Tbac be the set of integral 
trivial solutions of equation (2). Define 

Rl = { ( x , y , z ) E  S ~ l  O < x < y,  x2 +y~ <_ b2 + c  } ab , z > O  , 

and if c < O, 

{ V~ /abx2-b2-c } R~= (~,y,z)~S]o <~<Y-<~V ~ - Z - O  , ~ > o  . 

( i )  Put Rbar = Rz u Tbar if c > O and Rbac = Rt U R2 u Tbae if c < O. Then the 
set of all integral solutions of (2) coincides with G.R~c. 

(ii) I f  (z, y, z) E Rz then 

, /-~_ + c ~f-~ + c 
~  }~b , z < y <  ab 

I f  (x, y, z) e R2(c < O) then, either x • y, in which case 

V~ab < - c +  x/c 2 + 16ab 3 /abx 2 - b 2 - c 
x < 

4ab , x < y < x V .-~-~ -__-b~ , 

or x = y aria V47~  < x < ~/(b - ~)/a. In pa,'tic,,Za,', R1, n~ are at most 
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finite and algorithmically computable. 

Proof. Let P = (x, y, z) be a non-trivial solution of (2), so that - a b x 2 + b 2 + c  # 
0. Since in the Hi-orbi t  of P there is a point with all its three coordinates non- 
negative, it suffices to consider only the case in which z, y and z are non-negative. 

Consider a point P0 = (x0, y0,z0) in the G-orbit of P, such that  !o(P0) is 
b minimal and x0, Y0, z0 are non-negative. We will show that  P E GRar Indeed, 

if P0 E Tab c then P0 is already in Rbc, so we may suppose that P0 is not a trivial 
solution. Suppose first that  - a b x ~  + b 2 + c > 0 or -abyo  2 + b 2 + c > 0. If the first 
of these inequalities holds and Xo = 0, then, by (3) (with n = x0), P0 is already 
in R1, therefore we may suppose that  xo > 0. Similarly, if the second inequality 
holds, then we may suppose yo > 0. By case (i) of L e m m a  ~ , Po or rPo, 
respectively, belongs to the G2-orbit of some point P~ = (n, Yl, z~) E E~ , (where  

b2 + c  
n = z0 or Y0, respectively) and ~o(P1) < ab ' by the definition of E]~ in this 

case. If n < Yl, the point P1, is already in R1, otherwise rPI,p~P1 or "rp2P1 
belongs to R1. Thus, P is in the G-orbit of P1 E R1. 

Next, let -abz2o + b 2 + c < 0 and -abyo  2 + b 2 + c < 0, so that  by (3) (with 
n = xo) ax2o - b > 0 and ayo ~ - b > 0. Suppose that P0 ~ --acb-:b~~ By case (ii) of 
L e m m a  ~,Po is in the G2-orbit of some point P1 E Eab~ ~ and then, by part II 
of the same lemma, ~o(P0) > ~o(P1). But P1 is also in the G-orbit of P,  hence, 
the last inequality contradicts the minimality of ~o(P0). Thus, P0 E E ~  ~ Since 
!o(TP0) = ~(P0), we can prove, in exactly the same way, that rP0 E --acF.bY~ If 
c > 0 we will be led to a contradiction. Indeed, by the definition of the sets F) ~~ 

- -  - - a c  

a n d  ]~byo we must have 

/ abx~  - b 2 - c /abyo 2 - b 2 - c 
V 0< 0<y0 . . . . . .  - - V abY0 - (10) 

If c = 0, it follows that  x0 = Yo, which contradicts our assumption that  P0 is 
not trivial. Next let c > 0. Multiplication and squaring of the last two relations 
gives(as we previously saw, nominators and denominators are positive) 

(abx~o - b 2 - c)(abyo 2 - b 2 - c) > (abx~ - b2)(abyo 2 - b2), (11) 

i.e. c k ab(xo ~ + yo 2) - 2b 2. However, if we add the relations - a b x ~  + b 2 + c < 0 
and -abyo  2 + b 2 + c < 0 we get ab(xo 2 + yo 2) - 2b 2 > 2c > c, arriving at a 
contradiction. If c < 0 we put PI = P0 if x0 _< Yo and P1 = rP0 otherwise. If we 
put  P1 = (x l ,y l  z l ) , t h e n 0  < x l  < y l  zl > 0 and P1 E F,b~ hence, by the , - -  1 , - -  - - a c  , 

definition of this set in the case under c ond i t i on ( -abx2+b~+c  < O, a x ~ - b  > 0), 
we see that  P1 E R2 and P is in GR2. 

Now we prove par t  (ii). If (x ,y , z )  e R1 then both x 2 and y2 must be _< 
b2+ c 

b2ab + c and the minimum of these two, i.e. x 2 cannot exceed ~ .  If (x, y, z) E 

R2 and x = y,then ( a x e - b )  2 = z ~ - c  > - c  hence (az  2 - b +  z ) ( a x 2 - b - z )  = - c  
and it follows that  az  2 - b < - c ,  as claimed. Finally, if (z, y, z) E R2 and x < y, 
then, from the inequalities in the definition of R2, it follows that  
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/ abx 2 - b 2 - c 
x v 7x- ~ --b- 5 x > I , (12) 

from which, 
- c x  2 > (2x + 1)(abx ~ - b 2) > 2x(abx 2 - b 2) (13) 

and, consequently, 2abx 2 + cx - 2b 2 < 0, hence x is strictly less than the larger 
root of the left-hand side. This completes the proof. [] 

R e m a r k  2. Note that  the G-orbit of a trivial solution contains both trivial and 
non-trivial solutions. Example: (a, b, c) = (1, 1, 9); a trivial solution is (1,2, 3) 
and ~rr~r(1, 2, 3) = (8,175, 1389) which is not trivial. 

For the case (a, b) = (1,4) we have the following analogous theorem. 

T h e o r e m  2. Let (a, b) = (1, 4) and let T14c be the set of  integral trivial solutions 
of equation (2). Define 

= {(x,u,z)e $14r 

R]' = ~ ( 1 , y , z ) e  $4c 
k 

1 6 + c  
x r 1 6 2  4 

y2 < 1 2 + c  
- -  z > 0  

- -  1 2  ' - -  ) ' 

~ , z > O } ,  

and if  c < O, 

/ 4 x  2 - 16 - c } 
R2= ( ,v,z)eS2c 2<x<u<  V ,z>O 

(i) Put R~ = I~I U R" H _ = , T#r if c > O and aL Ri U Rf U U if c < O. 
Then the set of all integral solutions of (2) coincides with GR4c. 

(ii) I f  (x, y, z) E R] then 

116+c 
O < x <  8 , x < _ y < _  4 

I f  (x, y, z )  E R~(c < O) then, either x is y, in which case 

- c  + x/e ~ + i0'2~I' 14x 2 - 16 - c 

2 < x <  16 'x<v< V ' 

or x = y and 2 < x < v f 4 -  c. In paticular, R~I, R~ ~ and R2 are at most 
finite and algorithmically computable. 

Proof. Let P be a non-trivial solution of (2). Consider a point P0 = (z0, y0, z0) 
in the G-orbit of P, such that  T(P0) is minimal and x0,y0, z0 are non-negative. 
If x0 ~ 1 and Y0 :~ 1 then we can prove P E GR4c in exactly the same way as 
in the general case. We may suppose x0 = 1, indeed if y0 = 1 we can replace 
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P0 with vP0. Then by Lemma 5, Po belongs to the G-orbit of some point P1 = 
(1,yl,  zl) E E141 and by the definition of E14J, we have Yl < (12+e)/12,  Zl > 0, 
so that P1 E R] ~. Therefore P is in the G-orbit of P1 E R] ~. This proves part (i) 
of the theorem. Part (ii) is proved in exactly the same way as in Theorem 1. [] 

Theorem 1 and 2 give us a criterion for solvability of equation (2) with 
b -- 1,2 or 4. It is solvable if and only if R~c is not empty. Moreover we can 
derive effectively all solutions by GRit. Next we will show that  R~c \ T~ is 
a minimal set of integral solutions of equation (2) such that the G-orbits of 
this set exhaust all non-trivial integral solutions except for that derived from a 
trivial solution. 

P r o p o s i t i o n  1. get b = 1, 2, 4. For any points A, B belonging to R~r \ T~r 
it holds that if A "~ B then A = B. 

Proof. Let B = gA , g E G then by Corollary 2 of Lemma 2, we have a 
representation 

g = p~ p~ p~ , d  ~e , (v~v)f , . . .~e~( ,~v)f~  , 

where k is some non-negative integer, el, fi E 7/ (i=1,2 ..... k), a, b, c, d = 0 or 1. 
We can show g E H by reduction to absurdity. Suppose g ~ H and 

A = P 0  a, a2 'P,~+l = B ,  )P1 P2 ' ' "  ' P ~ - I  a. p,~ h 

k 
where C {r h C H, n = + By Corollary 
1 of Lemma 2 we may suppose P i r  HP~ (i < j < n). Consider a point Pm in 
these Pi (i=l, 2 ..... n+l), such that ~a(P,,) is maximal. 

First we show m r 0, n, n + 1. By Lemma d and 5, 

~(~rPo) > ~(Po), ~(a-lpo)  > to(Po), 

where we may replace cr with ray .  So we have m r 0. Similarly we have also 
m r n, n + 1. Now we may suppose 

~(Pm-1) < ~(Pm), ~o(Pm+l) < ~(Pm). (14) 
Let Qm = (~, 77, ~) be apo in t  such that  Qm E HPm, ~, r], ~ > O, 7? > ~. 
By Corollary 1 of Lemma 2, 

Pm+  e u U U 

By the definition of r and a, 

(~, (2a~ 2 -  b)W + 2 ~  
o-Qm 

b 

cr_lQ m _- (~, (2a~ 2 -  5)7/- 2~i 
b 

[ (2aT/2- b)~ + 2z?~ 
To'TQm 

b ' ~' 

r~r_lrQr n = ( (2a t /2 -  b)~ - 2~I 
b , 7, \ 

2~(a2~ 2 -  ab)~+ (2a~ 2 -  b)r 

b ) 

-2~(a2~ 2 -  ab)~ + (2a~ 2 -  b ) ~  

b ) 

2r/(a2~? 2 -  ab)~ T (2a7/2- b)~'~ 

b ] 

--2r/(a2~ 2 -  ab)~ + (2a~ 2 -  b)~'~ 
b ] 
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First we consider the case: 

~( ( r - lQm) < ~(Qm), ~(r~ ~_ ~(Qm). (15) 

From the first inequality, we obtain -b~7 < 2 a ~ r / -  b~7 - 2 ~  < b~/ , hence 

0 < ~ ( a ~  - ~) < ~ .  (16) 

Similarly from the second, 

0 < , (a~ ,  - ~ )  < b~. (17) 

In view of (16), 77 > 0, hence multiplication of (16) and (17) gives 
0 < 5~(a5r / -  r < b25r/, from which 

0 < ( a ~ -  ~)~ < b 2. (18) 

In the case b = 1, this is a contradiction. Consider the case b -- 2. From (18) 
a ~ 7 7 - ~ - - 1 .  Here we put  S = a - I Q m ,  T = r c r - l r Q m .  Then 

S -- (~, ~ - r], a~ ( r ] -  ~) § 1), T - -  ( -~ -F  77, r/, a r / (~ -  r]) q- 1). 

By easy calculation, we have 

S = pip2p3r~T or equivalently T = pip2p3r(r~r)S. (19) 

It follows that P,~+i = h'g* P,~_ i with some h* E H, g* E {or, z -  i, rzr ,  rcr- lr}.  
By Corollary 1 of Lemma 2, we have a representation 

~ I i  h I I  g,h. = h, g:, 
i=m+2 i=m+2 

with some h I E H, g~ E {cr, ~r -1, rc~r, r a - l r }  (i=m+~,...,,~). So we obtain a new 
sequence of points from A to B, where the number of Pi's decreases by one. 
In the case b = 4, from (18) and ~2 _ a2~2~2 = 0 (rood 4), we have a~,j - r = 2, 
hence we obtain the relation (19) and the same result. 

In the case 

~(~Q,~) < ~(Qm), ~(~-r _< ~(Qm), 

we have ~,77 > 0, a~ ~ - b < 0, at/2 - b < 0, hence ~ = q = 1. Therefore 

o-Qm = p3r (r~rQ,,~), 

which contradicts the assumption Pm+l ~ HPm-1. 
Next we consider the case 

~(~-XQm ) < ~(Qm), ~ ( r ~ r Q m )  < ~(Q~).  (20) 

From these inequalities we have 

0 < r / ,  0 < a ~ r ] - - ~ ,  ~(a~r]--~) <br/, (21) 
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0 < ~, 0 < a~r] § ~, rl(a~v] -t- ()  _~ b~. (22) 

Combining these, we have 

0 <  a2~2r] 2 - ~ 2 < b  2. 

In the case b = 1, this is a contradiction. Consider the cases b = 2 or 4. From 
(22), ~(a~ 2 - b) + ~ < 0, which implies ~ = 1. Therefore from (21), (22), we 
have 

0 < ~ ,  0 < a ~ - ( ,  ~ ( a ~ - ~ ) < b .  

Hence~ = 1, because a ~ - ( -  0 (mod2) in the case b = 4. From (20), we 
have a-IQm = (1, 0, ~'), r(rrQm = (0,1, (") .  Therefore P,~+~ e HPm-1, which 
contradicts the assumption. Similarly 

~(~Qm) < ~(Q,~), ~ ( r a - l r Q , ~ )  _< ~(Qm), 

leads to a contradiction. 
Finally we consider the case: 

< <_ 

From this assumption we have ~, ~ > 0, a~ ~ - b < 0. After consideration of 
Pm+l ~ HPm-1, Pro-l, Pm+l ~ HPm, only one case remains, that  is (a, b,~) = 
(1,4, 1). In this case, the order ofo" as a permutation on C1 is 3, hence o'-lQm = 
o'(o'Qm). Therefore we come to the same result. Similarly 

< _< 

leads also to the same result. 
Now the assumption leads us to a contradiction or a new sequence of points 

from A to B, where the number of Pi's decreases by one. And if n = 1, either 

~(B)  > ~(A) or ~(A) > ~(B) ,  

which contradicts A, B E Rbar Consequently g E H, which implies A = B. [] 

R e m a r k  3. In the case b2+c < 0, the proof becomes simple. We consider a point 
Qm as in the proof. From (3) with -ab~ 2 + b 2 + c < 0, we have a~ 2 - b > 0, 

similarly we have a~? 2 - b > 0. From the first we have ( 2 a ~ -  b)g + 2 ~  _ 
b 

2(a~ 2 - b)q + 2 ~  (2a~ 2 - b)q + 2~( 
> 0, consequently > ~, from which r ] =  b b 

we have ~(~Qm) > ~(Qm). Likewise, from the second we have ~(r~rQm) > 
~(Q,~). From these relations it is clear that  it suffices to consider only the case 

< _< 
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4. The Cases b------l, - 2  or - 4  

In this section, we examine the cases b = - 1 ,  - 2  or - 4 .  We state  the results 
and give the proof  only at the points in which the proof  differs essentially f rom 
the previous one. We preserve the nota t ions  for the case b > 0, except for the 
permuta t ion  cr and Tabc. 

In the case n = 0, we can solve equat ion (3) by the theory of binary quadrat ic  
forms (see [4] or [5]), the integral solutions of which are algorithmically com- 
putable.  Thus  we define a trivial solution of equat ion (2) as an integral solution 
such tha t  x y ( - a b x  2 + b 2 + c ) ( - a b y  2 + b 2 + c) = 0 or (only if c = 0) x 2 = y2. 
(Note tha t  it always holds tha t  (ax 2 - b)(ay 2 - b) r 0 in this case.) 1 

We define cr as 

( ( 2 a x 2 - b ) y + 2 x z  2 x ( a 2 x 2 - a b ) y + ( 2 a x 2 - b ) z )  
o'(x, y, z ) : =  x, - b  ' - b  " 

Since 
2an 2 - b + 2n~/a2n 2 - ab 

~n ~ 
- b  

is a uni t  with norm +1  in the ring of  integers of  ff~(x/a2n 2 - ab), ~ is a permu- 
ta t ion on Sabc , F~c or C~ and satisfies lemmas and corollaries in Sec.1. We can 
prove the following in the same way as in Lemma 3. 

L e m m a  6. Let n > O. For a point Po on C~, put P1 = ~P0, and let PoP1 be an 
arc of  Cn, in which P1 is contained and Po is not . 

( i )  I f  - a b n  2 + b 2 + c < O, let Po = (Yo, -Zo)  be a point on C +v  such that 

rrP0 = P3P0, Zo > O. Then 

C+Y = U ~iP~ 
i ~ z  

(ii) I f  - a b n  2 + b 2 + c > O, let Po = 
crPo = P2Po, Yo >_ O. Then 

( -Yo ,  Zo) be a point on C +z such that 

cZ" = U 
iEZ 

Also we can prove the following in the same way as in Lemma 4. 

L e m m a  7. Let n > O. 

I 
( i ) I f  - a b n  2 + b 2 + c < 0 ,  define 

1 Finding all trivial solutions with x = 0 or y = 0 amounts to solving a Pell equation 
and, in that sense, these solutions are not trivial in a strict sense. 
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E2~ : { ( . , y , z )  e c .  +~ 

Then C +y G E b" = 2 a c '  

Kashihara 

V ~l/abn2-a~n 2 -  b2ab- c < Y < v~/b2ao'7 + c n2 } . 

(ii) I f  - abn  2 + b 2 + c > 0, define Eba n as 

(n,y,z) e CU -n  V ----d-g~-?-~ <Y-<nV --~-7-'~ 

Then C +~ = :" E b'~ t2r 2 a c �9 

II I f  P is any point in E ~  and c~P, cr- lP do not belong to H1P, then 

~(~p) > : ( p ) ,  ~ (~ - lp )  > ~(p), 

respectively. Moreover, if  P is any point in E~'~, while Q = (n,y, z) any 
point not belonging to E~'~, then, unless Q 6 HI P 

: (Q)  > : (P) .  

T h e o r e m  3. Let b = - 1 , - 2 , - 4  and let Tbac be the set of integral trivial 
solutions of equation (2). Define 

and if c > O, 

b2 + c  } 
y,z)  ES~e O < x < y , x  ~+y2  < ab 'z>-O , 

l / - a b x  2 + b 2 + c } 
R2= (=,y,z)~SL 0<x<y<= V ---~-ZT-b~ ,z>O 

( i)  Put Rbac = R2 U Tbae i f  c > 0 and Rbae = R1 U Tbac if C < O. Then the set of 
all integral solutions of (2) coincides with GRbae. 

(ii) I f  (=, y, z) E R1 then 

0 < x <  V 2ab ' x<<-Y<V aT 

If (z, y, z) ~ R2(c > o) then, eitheT z # y, in which case 

c + x/c 2 + 16ab 3 / - a b x  2 + b 2 + c 
o<~< -4ab ' = < Y - < ~ V  - - : - Z ~ 7 ~  ' 

or x = y and x < k/(b + c)/a. In paticular, R1, R2 are at most finite and 
algorithmically computable. 
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Rep lac ing  the  case "-abx~ + b 2 + c > 0 or -abyo ~ + b 2 + c > 0" in the  p roof  
of  Theorem 1 with  "-abx~ + b ~ + c < 0 or -abyo 2 + b 2 + c < 0" and the  case 
" - a b z ~ + b  2 + c  < 0 a n d - a b y 0  ~ + b  2 + c <  0" with " - 2 b 2 - a 0 z  0 + + c >  0 and 
-abyo 2 + b 2 + c > 0", and using Lemma 7 ins tead  of Lemma ~, we can prove 
this  in the  same  way as in Theorem 1. 

P r o p o s i t i o n  2. Letb = - 1 ,  - 2 ,  - 4 .  For any poinls A, B belonging to R~c\T~r 
it holds that if A ..~ B then A = B. 

Proof. The  p roo f  is s imi lar  to t ha t  of Proposition 1 and we give only a sketch 
of  it .  We preserve  the  def ini t ions and no ta t i ons  in the  p roo f  of Proposition 1. For 
a po in t  P = (x,  y, z) e R~c \ Tabc with  x, y > O, z > O, unless crP, vt77"P E HP,  
we have 

W(trP) > #(P) ,  ~ (varP)  > ~(P).  

Consequen t ly  if  P,~ is a poin t  such t h a t  ~ ( P m )  is m a x i m a l  in the  sequence of 
po in t s  f rom A to B,  then  we may  assume 

~(~-lPm) < ~(Pm), ~(r~-'*Pm) < ~(P~). 

From these  inequal i t ies  we ob ta in  

0 < ; - a~7 < -b .  (23) 

If  b = - 1  this  is a con t rad ic t ion .  If  b = - 2  we have ( -  a ( y  = 1, hence 

S = (~, 77 - ~, a~(~ - 7) + 1) ,  T = (~ - 7, q, a7(7  - ( )  + 1), f rom which we have 

S = p2vcrT or equivalently T = plv(r~v)S ,  (24) 

hence, there  is a new sequence  of  po in t s  f rom A to B where  the  number  of P ' s  
decreases  by one. In the  case b = - 4 ,  f rom (23) and (2 _ a2~272 - O(mod 4) we 

have ( - a ~ q  = 2, hence we o b t a i n  the  re la t ion  (24) and  come to the  same resul t .  

A n d  if n = 1 we are led to a con t rad ic t ion  in the  same way as in the  p roof  of 
Proposition 1. Thus  if  we suppose  g ~ H then  we are led to a con t rad ic t ion .  
Consequen t ly  g E H ,  hence we ar r ive  a t  A = B.  [3 

5. E x a m p l e s  

In Table I and 2, we show R ~  for the  cases a = 2, b = -t-1, - 8 5  < c < 85, e ~ 0, 
which we have o b t a i n e d  by using UBASIC. 

T h e o r e m  5. Let a > 2, b = 1, c = - 1 .  Then equation (2) has only one solution 
(0, O, 0). 

Proof. It is obvious that T~_ 1 = { (0 ,0 ,0 ) }  and R1 = { (0 ,0 ,0 )} ,  hence we 
have Rla_l  : {(0, O, 0)}. Therefore by Theorem 1 we obtain sin,-1 = GRin,-1 - ~ -  

{(o,o,o)}.  [] 
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T a b l e l .  R~r of (2x 2 - 1 ) ( 2 y  2 - 1 ) - - z  2 - c ,  for -85  < c <  85, c r  

c x y z  c x y z  c x y z  c x y z  

-85 4 6 4 6  -33 3 3 16 1 2 5 53 0 3 6 
-83 2 3 6 -31 1 4 0 19 1 3 6 0 5 2 
-81 1 7 4 -30 1 4 1 21 0 3 2 56 0 2 7 
-80 1 9 9 -27 1 4 2 23 0 2 4 56 0 4 5 
-78 1 8 7 -24 1 5 5 24 0 0 5 57 1 2 8 
-75 4 538  2 2 5 1 1 5 2 5 2 0  
-73 2 4 12 -22 1 4 3 25 2 312  58 0 5 3 
-72 1 7 5 -21 2 4 14 26 0 1 5 63 0 0 8 
-71 I 6 0 -19 2 3 I0 0 3 3 i 1 8 
-70 1 6 1 -17 1 3 0 29 1 2 6 4 432 

2 3 7 -16 1 3 1 31 0 4 0 64 1 3 9 
-67 1 6 2 -15 I 4 4 32 0 2 5 65 0 1 8 
-64 3 3 15 -13 1 3 2 0 4 1 0 5 4 
-63 1 8 8 2 2 6 1 3 7 66 0 3 7 
-62 1 6 3 -8 1 3 3 2 2 9 67 0 4 6 
-61 1 7 6 -7 1 2 0 33 0 3 4 3 530 

4 430 -6 1 2 1 1 4 8 69 1 4 i0 
-56 2 621 -3 1 2 2 35 0 0 6 71 0 2 8 
-55 1 6 4 -1 0 0 0 0 4 2 0 6 0 

238 1 i0 116 72 061 
-54 2 5 17 1 0 1 0 3 318 1 5 ii 
-51 3 634 2 0 1 1 40 0 4 3 3 3 19 

3 528 3 0 0 2 42 0 3 5 73 1 6 12 
-48 I 5 1 I 1 2 1 2 7 74 0 5 5 

i 7 7 5 0 1 2 37 0 1 6 2 211 
-49 1 5 0 7 0 2 0 39 2 416 2 4 17 

2 2 0 8 0 0 3 43 0 2 6 12 9 
2 2 1 0 2 1 47 0 4 4 75 0 6 2 
2 4 13 1 1 3 1 3 8 77 2 3 14 

-46 1 6 5 9 1 2 4 48 0 0 7 79 2 624  
-45 1 5 2 10 0 1 3 1 1 7 80 0 0 9 

2 2 2 11 0 2 2 49 0 5 0 0 4 7 
-43 3 4 2 2  15 0 0 4 3 424  0 6 3 
-40 1 5 3 1 1 4 50 0 1 7 1 1 9 

2 2 3  2 2 8  0 5 1  81 0 3 8  
-38 2 3 9 16 0 2 3 1 4 9 4 5 4 0  
-35 1 6 6 17 0 1 4 2 313 82 0 1 9 
-33 1 5 4 0 3 0 51 1 5 10 83 1 3 10 

2 2 4 18 0 3 1 2 210 85 0 5 6 
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Table 2. R~-~ of (2x 2+1)(2y ~ + l ) = z  2 - c ,  for -85 < c < 8 5 ,  c ~ 0  
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c x y z  c x y z  c x y z  c x y z  

-85 0 7 4 -50 0 5 1 -8 1 1 1 45 0 3 8 
1 4 4 1 4 7 -5 0 2 2 1 4 12 
4 540  2 311 1 1 2 46 0 1 7 

-82 0 9 9 -48 0 6 5 -3 0 1 0 48 0 0 7 
-81 2 6 2 4  1 3 3 -2 0 1 1 0 4 9 

2 2 0 -47 0 5 2 -1 0 0 0 49 0 5 10 
-80 0 8 7 -45 2 2 6 1 0 1 2 3 426  

2 2 1 -42 0 5 3 3 0 0 2 54 1 2 9 
-77 2 2 2 -41 1 3 4 6 0 1 3 2 3 15 
-75 1 6 12 2 4 16 7 0 2 4 55 0 2 8 
-74 0 7 5 -37 0 6 6 1 1 4 3 532  

1 4  5 3 318  8 0 0 3 1 1 8  
-73 0 6 0 -35 0 5 4 9 1 2 6 57 3 638  
-72 0 6 1 1 4 8 13 0 1 4 61 0 1 8 

1 5 9 -33 0 4 0 15 0 0 4 62 0 3 9 
2 4 1 5  -32 0 4 1 16 0 2 5 63 0 0 8 
2 2 3  1 3 5  1 1 5  2 2 1 2  
3 317  2 2 7 17 0 3 6 64 1 3 11 

-71 2 3 10 -29 0 4 2 19 2 2 10 2 4 19 
-69 0 6 2 -27 1 2 0 22 0 1 5 67 0 6 10 

3 530  2 312  1 2 7 4 434  
-65 0 8 8 -26 0 5 5 24 0 0 5 70 0 5 11 

2 2 4 1 2 1 1 3 9 1 413  
4 432  -24 0 4 3 25 2 3 14 2 523  

-64 0 6 3 -23 1 2 2 27 0 2 6 71 0 6 12 
-63 0 7 6 -21 1 3 6 2 4 18 72 0 2 9 

1 4 6 -19 0 3 0 1 1 6 1 5 15 
-59 2 520  -18 0 3 1 30 0 3 7 2 627  
-57 0 6 4 1 2 3 31 0 4 8 1 1 9 

1 3 0 -17 0 4 4 33 0 1 6 73 1 2 10 
-56 1 3 1 2 2 8 35 0 0 6 78 0 1 9 

2 2 5 -15 0 3 2 37 1 2 8 80 0 0 9 
-53 1 5 10 -11 1 2 4 39 3 3 2 0  3 321 

1 3 2 -10 0 3 3 40 0 2 7 81 0 3 10 
-51 0 5 0 -9 0 2 0 1 1 7 4 542  

3 4 2 4  1 1 0 2 2 11 85 2 3 16 
-50 0 7 7 -8 0 2 1 43 1 3 10 82 0 1 9 

N o t e .  T h e  solution (0, 7, ~) such that  ~ + T/x/~ = (Zo + yox/2)(3 + 2v~)  k, 
k >_ 0, k E 7] is expressed by (0, yo, z0). 
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By  Theorem 3 we can prove  the following analogously.  

T h e o r e m  6. Let b = - 1 ,  c = - 1 ,  and let a be not a square. Then equation (2) 
has only one solution (0, O, 0). 
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