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Explicit complete solution in integers of a class
of equations (axz? -b)(ay?-b) =2%>-c

Kenji Kashihara

Dedicated to Dr. Taro Morishima

In this paper we will study the equation for arbitrary integers a # 0, ¢ and
b= =+1, £2 or +4. When & = +4, we suppose ¢ is divisible by 4. The paper will
provide one with a method for finding algorithmically all integral non-trivial
solutions of the title equations, where an explicit unit of @(v/a?n? — ab) plays
an important role.

Introduction

In [2], L.J.Mordell commented on the quartic equation given by

2

Z ars 2"y’ = dz2?, (1)

r,s=0

where a’s and d are integers. His comment is that when one integer solution
(zo, wo, z0) of (1) is known, an infinity can be found under certain condi-
tions, and that this leads to solutions (zg, y1, 21), (%1, 31, 22), (21, Y2, 23),
(z2, Y2, 2a4), etc. ..., where from a Pellian equation, y1, z1, y2, =2, ... may
each have an infinity of values.

We will further consider this fact for the following special type :

(az? — b)(ay® —b) = 2% — ¢, (2)

where a,¢ € Z, a # 0, b = #£1, £2, +4. When b = £4, we suppose ¢ =
0 (mod 4). In [3], we have investigated the equation for the case a = 1 and
b = 1. In this paper, we will show that this equation can be dealt with generally
in the same method.

If we fix £ = n, equation (2) is written as

2% — (a?n? — ab)y? = —abn? + b% +c. 3)
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We can solve equation (3) by the theory of binary quadratic forms as presented
in [4] or [5]. We will show a permutation group on all integral solutions of
equation (2), which will be denoted by G. And we will prove the possibility of
computing algorithmically a minimal finite set of integral solutions of the title
equation, such that the G-orbits of this set exhaust all integral solutions.

Here we introduce the notion of the trivial solution. When (az? — b)
(ay? — b)(—abz? + b? + c)(—aby® + b% + ¢) = 0, the solution can be trivially
computed. If ¢ = 0, then (:L', +z, +(az? — b)) are trivially integral solutions.
Thus e trivial solution is defined as an integral solution such that

(az? — b)(ay® — b)(—abz?® + 8% + c)(—aby® + b* +¢) = 0,

or (only if ¢ = 0) z% = y2.
The cases b = 1, 2 or 4, will be discussed in detail and for the other cases we
will state the results and give only the proofs different from the previous ones.

Up to the end of section 3 we suppose b = 1, 2, or 4. Since (—az?—b)(—ay?—b) =

z% — ¢ is equivalent to (az? + b)(ay? + b) = z? — ¢, we may suppose a > 0.

Notations.

F?, : the set of all real solutions of equation (2).
5% : the set of all integral solutions of equation (2).
C, : intersection of FY, and the plane z = n.

T?. : the set of all trivial solutions of equation (2).

C}H¥, C}* and C;} are the following branches of C;:
Cn+y = {(zx Y, 2) €Cn | y = 0},
CY ={(z,y,2)€Cpn | z > 0},

C ={(z,y,2)€Cnly 2 0, z > 0}.

o, T, p1, p2 and p3 are the following permutations on F?, or S2.:

i 222 — ab)y + (200
oz, y, 2) = |z (20z b)y+21}z’ 2z(a’z? — ab)y + (2az® — b)z ,
b b

T(:(}, Y, Z) = (y, T, Z),

pl(z’ Y Z) = (—13, Y, Z),

p2(z, y, 2) = (z, —y, 2),

p3(z, y, 2) = (z, y, —2).
G is the following permutation group and G1, G2, H and H; are the following
~ subgroups of G:

G =<0, 7, p1, p2, p3>,
G =<0, p1, p2, P3 >,
Gy =<0 >,

H =<7, p1, p2, p3 >,
Hy =< p1, p2, p3 > .



Kashihara 375

Let P and Q be points on F?, (or S$3,). If @ = gP for some g € G, then P
and @ are called G-equivalent, otherwise G-independent. These relations are
denoted by P ~ @ and P + @, respectively.

The following function is used:

o(z,y,2) =2 + 9.

1. The structure of G

As already noted, we assume b = 1,2 or 4. If we fix £ = n(> 0), equation (2) is
written as
22 — (a®n? — ab)y? = —abn? + b% 4 c. (3)

or equivalently
N(z+y\/?¢Tn—2:_a7;) = —abn® +b% 4, 4)
where N denotes the norm from ®(va?n? — ab) to @. Here we put
6 = 2an? - b + 2:m‘

Since b} € {1, 2, 4}, it is straightforward to check that ¢, is a unit in the ring
of integers of the above quadratic field with norm equal to +1; moreover, it is
useful to note that £, = ¢_,. Let (yo, 20) be one of the solutions of (4). Then

N {(zo + yoVa?n? — ab) 6,,} = —abn? + b% +c.

Therefore putting
z1 + y1va?n? — ab = (20 + yoVa2n2 — ab) e,

we have a new solution (y;, 21). From this fact, if we define o as above, o is a
permutation on Cy, and we may replace C,, with F?, or S2.. In the cases b= 1
or 2, £, lies in the coefficient ring of the Z-module {1, Va?n2 — ab}. Consider
the case b = 4. Let (z, y, z) lies in S%,, and put (z, 5, {) = (=, y, 2). Then
from (3) and ¢ = 0 (mod 4),

(z + azy)(z — azy) = ~4ay® —4az? + 16+ c=0 (mod 4).
Andso z+azy =z —azy =0 (mod 2). Hence

2z(azy + 2) — 4y
n= 2

_ 2az*(azy + z) — 8azy — 4z
- 4

€ Z.

€ Z, ¢

Therefore (z, 1, ¢) € S2,, and so ¢ is a permutation on Sj.. From the symme-
tries of equation (2), we can obtain the other generators of G.

Lemma 1. G is a permutation group on F., or S%,.
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By easy calculation we have the following lemma.

Lemma 2. Permutations o, 7, p1, p2, ps satisfy the following relations,

P?: 1, Pibj —_-Pjﬂs‘; 72:1)
TPL = p2T, TP2 = /1T, TP3 = p3T,
op=piot,  (ror)ps = pi(ror)™,
or = r(t07), o™it = r(roT)7},

where 1,7 = 1,2,3.

Corollary 1. Let A= {0, 67!, 7or, (ror)"!}, H =<7, p1, p2, p3 >, then
AH = HA.

Corollary 2. Any element of G has a representation in the form,
pipapsria® (o)t ot (rar)lx,

where a,b,c,d=0o0or1 ande;, f; € Z.

Proof. Let g be an arbitrary element of G. Using Corollary I several times, g
takes the form ho® (ra7)/t .. .0 (ror)/*, where h € H. By the relations p’s
and 7, h takes the form pfpfpsTe. 0

2. The permutation o

We continue to assume that b = 1,2 or 4. In this section, we fix z = n(> 0) and
regard o as a permutation on Cy,. Sometimes, for a point P = (n,y,2) € Cy,
we will simply write P = (y, z). The curve C, varies as follows. In the case
an? —b < 0, —abn? + b2 4+ ¢ > 0, C, is an ellipse or a single point. (See Fig.
1) In the case an? —b =0, ¢ > 0, it degenerates to one or two lines. In the
case an? —b> 0, —abn? 4+ b2 + ¢ > 0, it is a hyperbola with focuses on the z
axis. In the case an® —b >0, —abn? 4+ b% + ¢ = 0, it degenerates to two lines.
And finally in the case an?—b> 0, —abn? +b? +¢ < 0, it is a hyperbola with
focuses on the y axis. (See Fig. 2.) We have the following lemma.

Lemma 3. Let n > 0, except for the case (i). For a point Py on C,, put
Py = 0Py, and let Py P, be an arc of Cp, in which Py is contained and Py is not.
(i) Ifn =0 then o = paps.

(ii) Ifan?-b< 0 and —abn? +b%4¢ >0, let Py = (—yo, z0) be a point on Cy,
such that Py = pa Py, Yo > 0,29 > 0. Then

Cn = O o' PoPy,

i=0
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where 1 = 2, 3 or 5.

(i) If an® —b >0, —abn®+b2+c >0, let Py = (—yo, 20) be a point on C*
such that o Py = p Py, yo > 0. Then

Ci =o' PP
i€Z
(iv) Ifan? - b > 0 and —abn? + b2+ ¢ < 0, let Py = (Y0, —20) be a point on
CHY such that oPy = p3Py, zp > 0. Then

cH =)o PP.

i€Z

The proof of case (i) is clear from the definition of o.
Proof of case (ii). See Fig. 1. From an®? — b < 0 and n > 0, we have (a,b,n) =
(1,2,1), (1,4,1),(2,4,1) or (3,4,1). o can be expressed by the following matrix
respectively:

0 1 1 /-1 1 1 0 1 1 1 1

A= (—1 o) » Az=3 (—3 ~1) y As=3 (—4 0) » Ae=3 (—3 1) '
It is obvious that A} = I, A3 =1, A} =1, A§ = I and that such Py exists.
Here we put P; = ¢ Py (i=1,2,---,6). Then it holds that P = Py, Py = Py or
Ps = Py. By linearity of 0, P;1y Py = 0 P;Piyy. Therefore C, = i, PiPiy) =
U:=0 o Py Py, where r = 2, 3 or 5.

Proof of case (iii). First we note that the relation ¢ Py = p; P is by the definition
of o and pg, equivalent to zg = nayy and now it is clear that such a point P,

exists on Cp. Next let (y, z) € C;}* and put (n, ¢) = o(y, z). First we show
(n, ¢) € C;F*. From the definition of o,

= 2n(a?n? — ab);g + (2an? - b)z' (5)

From (3) and the assumption —abn? + b2 + ¢ > 0, we have

22— (a’n? — ab)y? > 0. (6)
Therefore
(2an? — b)22% — 4n?(a%n? — ab)?y?
> (a?n? — ab)(2an? — b)?y* — 4n?(a®n? — ab)?y?
= b*(a’n? - ab)y® > 0.

Hence
(2an? — b)z > £2n(a’n? — ab)y. (7

Combining (5) with (7), we have ¢ > 0. And so (7, {) € C;}*.
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Next we show 1 > y. From the definition of o, we have
2
n=y+ 7{(an® - by + nz}. (8)
From (6),
n?2? — (an? — b)%y% > n?(a%n? — ab)y? — (an? — b)%y?
= b(an? — b)y? > 0,

which implies
nz > +(an? — b)y. (9)

Combining (8) with (9), we have n > y. Now we put P;y; = ¢F;, P =
oc~1P; and P; = (i, ;) for all i € Z. Then, by (8) and (9) yi41 > ui + 2/b for
all ¢ € Z. Therefore y; — +00 as i — +00. So we have

Cn+2 = U Pi}i-i-l-
i€Z
By linearity of o, PJ’,-_H = aP:lPi = a"P;‘Pl. The result follows.
Case (iv) is proved similarly. O

o~

Remark 1. Sometimes we suppose an arc PyP; contains both Py and P;. Then
Lemma 3 still holds.

Lemma 4. Let n > 0 and let (a,b,n) # (1,4,1).

I
(1) The case —abn? + b2+ c> 0: Define

12 2
a ba.;;c—n2<ys ba—;}—c—n2}'

Then Cn=G2EM ifan?-b<0, and C;j* = G3E! otherwise.
(i) The case an?—b>0 and —abn? +b%+c < 0: Define

EZ’C‘ = {(n,y,z) eCrt?

n‘—b*—c abn*—b° —c
o <y< btk .
ani—ab =7 ="V a2 }
Then C}Y = G,E!".
II If P 1s any point in Eﬁ'; and o P, 0~ 1P do not belong to H, P, then

¢(oP) > p(P), (7' P) > ¢(P),

respectively. Moreover, if an® — b > 0 and P is any point in E,
bn

Q = (n,y, z) any point not belonging to E.7, then, unless Q@ € H P
»(Q) > o(P).

b while
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Proof of case (i). From oPy = py Py, we see that

—(2an? - b)yo + 2nzg
Yo = b s

hence zp = anyy and now, since Py € Cp, n? 4 y2 = (b2 + c)/ab. Therefore,
Py = (n,—yo,20), PL = 0Py = (n,yo,20), with yo = \/—n? + (b2 + ¢)/ab and if

we choose the arc Py Py on Cy,, which lies in the half plane z > 0 then, obviously,

PyPy = E!". Since, by the previous lemma, Cj,(resp. C;¥*) is a union of arcs
o' PyPy with i € Z, we may conclude that Cy,(resp. C;#) is equal to G2 E™.
Proof of case (ii). From o Py = p3 Py we see that

(2an? — b)yy — 2nzy
Yo = b y

hence nzg = (an? — b)y, and now, since Py € C}¥,y8 = n%(abn? — b2 — ¢)
/(abn? — b?). Thus, Py = (n,y0,~20), P = 0Py = (n,y0,20), with yo =

ny/(abn? — b2 — c)/(abn? — b?) and the projection of the arc PyP; on the y-

axis is the interval
abn? — b2 — ¢ abn? — b2 — ¢
n
a?n? —~ab ' abn? — b?

As y runs through the values of this interval, the point (n,y, z) runs through

En therefore PyPy = E'. By the previous lemma, C}V = U,-Eza‘PoPl
= G, El?

Proof of part 1. In the proof of part I, we saw that E" = PoAPl;hence Pe B

means, in case an? — b > 0, that P is a point on the arc PQP1 of one of the

hyperbolas in Fig.2. Then, oP € P1P2 and o~ 1P € PoP..l, from which it is
clear that, unless P = Py or P;, the y-coordinate of P is strictly less than
the y coordinate of oP(resp. of 0~} P). Thus in view of the definition of ¢,
unless 0P, 0" 'P € H;P, we have p(P) < ¢(cP), ¢(c™*P). In the case
an? — b < 0 we are in one of the four cases explicitly stated at the begining of
the proof of the previous lemma and we check every case separately. Consider
for example, the case (a,b,n) = (3,4, 1); then, for P = (1,y,2z) € C; we have
oP = (1,(y+ 2)/2, (—3y + z)/2) and the relation ¢(P) < ¢(cP)is equivalent
to y? < (y+2)?/4 and this, in turn, means —1/3 < y/z < 1. The last relation
is seen to be true as follows. By (1,y,z) € E3! it follows that y? < (4 +¢)/12
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and since (1,y,2) is a solution to the title equation, 22 = 44c¢-3y >

(12+3c)/4, hence (y/z)? < 1/9; consequently —1/3 < y/z < 1 and it is easy
to see that we can have equality only if |y] = /(4 +¢)/12, z = /(12 + 3c)/4,
in which case ¢P € H;P. We deal with the other cases analogously. The proof
of the last statement is obvious from Fig. 2. !

In the case of (a,b) = (1,4), part II of this lemma does not hold, because the
order of Aj is equal to 3; however instead of this lemma we have the following.

Lemma 5.

I Define

Eﬁ = {(l,y,z) € Cl+2

12+¢
<y< }
0sy<y=13 }

Then C, = G E{.

I If P is any point in Ef! and o P dose not coincide with psP, then

¢(aP) > ¢(P), p(e™'P)> p(P).

Proof. As we saw, in this case, o is expressed by the matrix

1/7-1 1
AZ—'§(_3 _1)1

the order of which is equal to 3. Let P,’s be the same points that are de-
fined in the proof of the previous lemma. We consider a point (Jg € C’{“ such
that 0Qp = p3Qo and put @; = ¢*Qy (i = 1,2). Next we consider a point
Ro = (1,0,2) € C* and put R; = o*Ro (i = 1,2). (See Fig.1.) Then from

1 12
0Py = paPy and ¢ Qg = p3Qo, we have P, = <\/ 2: c’ \/ Z_C) and Q; =

\/172 + c, \/36 + 3¢ , and it is clear that R; = p3 Py, Ry = p2R; and that

both the y-coordinate of P2 and the z—coordmate of Qz are equal to 0. From
Fig.1, it is obvious that Q0P1 =0 1Q1P2 =0~ p3Q0R0 and PgRo = szoP1
By case (ii) of Lemma 3, C; = U: 0¥ PQPI, therefore Cy = G1R0Q0 = GlEfcl
Next we consuier a point P € RoQo From Fig.1 we can see that oP € R1Q1
and o~!P € R2Q2 This proves part II of the lemma. 0
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z P z Pe
P
Re Q
° Pa P
Ped P
P
Q2
[s) y O, y
Pe
Re R\
P, Qs Pa
Fig. 1. C & Ef! Fig.2. C, & E"

3. The Main Results in the Cases b=1, 2, 4

In section 2, we have investigated ¢ as a permutation on C,. Now we consider
the permutation group G on S2,.

G =< o, T, P1, P2, P3 > .

Theorem 1. Let b = 1, 2, 4, (a,b) # (1,4) and let T®, be the set of integral
trwvial solutions of equation (2). Define

m={u@ae$c

62
0<ze<y, z?+y° < -ZC,ZZO},
a

and if ¢ < 0,

R2 = {(:C,y,Z)E Sabc

b abz? —b% —¢
VE<x5yS$Vimﬁ?ﬁ<22°}

(i) Put Ry, =R UTS, if ¢>0 and R, = RyURyUT?, if ¢ < 0. Then the
set of all integral solutions of (2) coincides with GRY,.

(1) If (z,y,2) € Ry then

2 2
b2+bc r<y<y/iEe
a

If (z,9,2) € Ry(c < 0) then, either z # y, in which case

\/3 —c+Vc? + 16ab3 abz® — 4% —¢
-<z< T <YL B\ — s,
a 4ab abz? — b2

orz =y and \/b/a <z < +/(b~c)/a. In particular, Ry, Ry are at most
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fintte and algorithmically computable.

Proof. Let P = (z,y, z) be a non-trivial solution of (2), so that ~abz?+b%+c #
0. Since in the H;-orbit of P there is a point with all its three coordinates non-
negative, it suffices to consider only the case in which z, y and z are non-negative.

Consider a point Py = (zo, yo,20) in the G-orbit of P, such that o(F;) is
minimal and zg, yo, 20 are non-negative. We will show that P € GR®,. Indeed,
if Py € T?, then P, is already in R’,, so we may suppose that Py is not a trivial
solution. Suppose first that —abz3+b2+c¢ > 0 or —aby?+b%+c > 0. If the first
of these inequalities holds and zy = 0, then, by (3) (with n = zg), P, is already
in R,, therefore we may suppose that zo > 0. Similarly, if the second inequality
holds, then we may suppose yg > 0. By case (i) of Lemma { , Py or 7Fg,

bn

respectively, belongs to the Gy-orbit of some point P; = (n,y1,21) € E,2,(where

4c . . .
, by the definition of E®? in this

case. If n < y;, the point Py, is already in R;, otherwise 7Py, ps Py or Tp2 P
belongs to R;. Thus, P is in the G-orbit of P; € R;.

Next, let —abzd + b% + ¢ < 0 and —aby? + b + ¢ < 0, so that by (3) (with
n = z9) az¢ — b > 0 and ay — b > 0. Suppose that Py ¢ E!®°. By case (ii) of
Lemma 4,Py is in the Gy-orbit of some point P; € E%¢ and then, by part II
of the same lemma, ¢(Py) > ¢(P1). But P, is also in the G-orbit of P, hence,
the last inequality contradicts the minimality of ¢(Py). Thus, Py € Eb®°. Since
o(TPy) = ¢(Py), we can prove, in exactly the same way, that 7Py € Eb¥°. If
¢ > 0 we will be led to a contradiction. Indeed, by the definition of the sets E%%°

and EX°, we must have

b
n = Iy or Yo, respectively) and ¢(P;) <

abzl —b% —¢
abz? — b2

abyl —b? —¢c

& O<zg<y abyoz—bz . (10)

0<yo< o

If ¢ = 0, it follows that g = yp, which contradicts our assumption that P, is
not trivial. Next let ¢ > 0. Multiplication and squaring of the last two relations
gives(as we previously saw, nominators and denominators are positive)

(abzd — b2 — ¢)(abyd — b? — ¢) > (abzd — b?)(abyd — %), (11)

ie. ¢ > ab(zd + yd) — 2b%. However, if we add the relations —abzé + 6%+ ¢ < 0
and —aby? + b2 + ¢ < 0 we get ab(zd + yf) — 26> > 2¢ > ¢, arriving at a
contradiction. If ¢ < 0 we put P; = Py if zg < yo and Py = 7P, otherwise. If we
put P = (21,91,21), then0 <2y <y, 2z, > 0and P, € EZ’C’I, hence, by the
definition of this set in the case under condition(—abz?+b*+c < 0, az?—b > 0),
we see that P, € R; and P is in GR;.

Now we prove part (ii). If (z,y,2) € R; then both z? and y? must be <
b2 +c .. . 2 b2 +c
" and the minimum of these two, i.e. M (z,y,2) €
R; and z = y,then (az?—b)? = 22—¢ > —~c hence (az? —b+2)(az?~b—2) = —c
and it follows that az? —b < —¢, as claimed. Finally, if (z,y,2z) € Ry and z < y,
then, from the inequalities in the definition of Rs, it follows that

cannot exceed
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abz? —b* —¢
Voo T2 (12)

from which,

—cz? > (2z + 1)(abz? - b%) > 2z(abz? — b?) (13)
and, consequently, 2abz? + cz — 2b? < 0, hence z is strictly less than the larger
root of the left-hand side. This completes the proof. O

Remark 2. Note that the G-orbit of a trivial solution contains both trivial and
non-trivial solutions. Example: (a,b,¢) = (1, 1,9); a trivial solution is (1,2, 3)
and oro(1,2,3) = (8,175, 1389) which is not trivial.

For the case (a,b) = (1,4) we have the following analogous theorem.

Theorem 2. Let (a,b) = (1,4) and let T}, be the set of integral trivial solutions
of equation (2). Define

c#1,y#£1,0<z<y,z?+3° < 1626,220},

< 2te zzO},

Ry = {(1,y,z)e st

and if ¢ < 0,

Ry = {(m,y,z)e Sfc

[4z? - 16 — ¢
<y< —_— 2> .
2<z<y<z 716 ,z_O}

(i) Pt R{, = R{URYUTY, ifc>0and R}, = RYUR{UR, UTY, ifc < 0.
Then the set of all integral solutions of (2) coincides with GR},.

(i) If (z,y,2) € R} then

/16 + ¢ /16 + ¢
< <y< .
0<z< 3 e <y< 2

If (z,y,2) € Ra(c < 0) then, either z # y, in which case
—c+ Ve? +1024 422~ 16— ¢
< y ELYS B\~
16 4z2 - 16

orz =y and 2 < ¢ < v/4—c. In paticular, Ry, R} and Ry are at most
finite and algorithmically computable.

2<zx

Proof. Let P be a non-trivial solution of (2). Consider a point Py = (o, yo, 20)
in the G-orbit of P, such that ¢(Pp) is minimal and zg, yo, 2o are non-negative.
If 2y # 1 and yy # 1 then we can prove P € GRS, in exactly the same way as
in the general case. We may suppose zo = 1, indeed if yo = 1 we can replace
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Py with 7Py. Then by Lemma 5, Py belongs to the G-orbit of some point P, =
(1,y1,21) € E}! and by the definition of E}}, we have y; < (12+¢)/12, 2; > 0,
so that Py € RY. Therefore P is in the G-orbit of P; € RY. This proves part (i)
of the theorem. Part (ii) is proved in exactly the same way as in Theorem 1. 0O

Theorem I and 2 give us a criterion for solvability of equation (2) with
b = 1,2 or 4. It is solvable if and only if R%, is not empty. Moreover we can
derive effectively all solutions by GRY,. Next we will show that R, \ T, is
a minimal set of integral solutions of equation (2) such that the G-orbits of
this set exhaust all non-trivial integral solutions except for that derived from a
trivial solution.

Proposition 1. Let b =1, 2, 4. For any points A, B belonging to Rb_ \ T®
it holds thatif A ~ B then A= B.

c’

Proof. Let B = gA , g € G then by Corollary 2 of Lemma 2, we have a
representation

g=p' pg o3 rd ae‘(rar)f‘ coo gtk (Tor)f“ ,
where k is some non-negative integer, e;, f; € Z (i=1,2,...,k), @, b, ¢, d = 0 or 1.
We can show g € H by reduction to absurdity. Suppose ¢ ¢ H and
A=P PP — P P AP =B,

where g; € {0, ¢7!, Tor, 077}, h€e H, n = Zle(e,- + fi). By Corollary
1 of Lemma 2 we may suppose P; ¢ HP; (i < j < n). Consider a point Py, in
these P; (i=1,2,..,n+1), such that ¢(P,;) is maximal.

First we show m # 0, n, n+ 1. By Lemma 4 and 5,

p(aPo) > p(Po),  @(07'Po) > p(Po),

where we may replace ¢ with ror. So we have m # 0. Similarly we have also
m # n,n + 1. Now we may suppose

¢(Pm-1) <¢(Pm),  ¢(Pm1) < ¢(Prm). (14)

Let Qm = (§, n, ¢) be a point such that Qm € HP», §, 1, ( 20, > ¢&.
By Corollary 1 of Lemma 2,

Pr_1, Pry1 EH(oQm)UH (07 'Qm) UH(T01Qm) U H(to ' 1Qm).
By the definition of r and o,

0Qm = (6, (20— 1;)77+ 2 26(a%~ ab)vz + (2067 - b)() |
c1Q,, = (6, (2a£%— 1;)77 — 254, —2(a262— ab)b,) + (2062 b)C) |

ToTQm = <(2‘”’2" ’;)f +20¢ | 2natn’— ab)s; + (2an?— b)C) |
ro1Qm = ((zanZ— De-mC |, o= e+ = 0C).
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First we consider the case:

P(071Qm) < p(Q@m), P10 1Qm) < ¢(Qm). (15)
From the first inequality, we obtain —bn < 2a€%n — by — 26¢ < by , hence
0 <¢(agn— () < by. (16)

Similarly from the second,
0 < nlaén () < BE. (17)

In view of (16), n > 0, hence multiplication of (16) and (17) gives
0 < &n(atn —¢)? < b?¢n, from which

0 < (aén —~¢)* < b2, (18)

In the case b = 1, this is a contradiction. Consider the case b = 2. From (18)
atn—¢ =1 Hereweput S=0"1Q,,, T =10"'7Q,,. Then

S:(é.a{_n’ af(’l—f)‘l’l): T:(_£+77a 7, ‘177(5—77)“}'1)

By easy calculation, we have
S = p1papareT  or equivalently T = pypapar(roT)S. (19)

It follows that P41 = h*g* Py -1 withsome h* € H, ¢* € {0,007}, 707,707 17},
By Corollary 1 of Lemma 2, we have a representation

n n
o I] et =w I] 4
i=m-+42 i=m+2

with some h' € H, ¢! € {0, 07!, 701, 76717} (i=m+2,..,n). So we obtain a new
sequence of points from A to B, where the number of P;’s decreases by one.
In the case b = 4, from (18) and (2 — a?¢2n? = 0 (mod 4), we have aép—( = 2,
hence we obtain the relation (19) and the same result.

In the case

‘p(UQm) < ‘P(Qm); ‘P(T‘TTQm) < ‘P(Qm)y
we have £,7 > 0, af? —b < 0, an? — b < 0, hence £ = 57 = 1. Therefore
0Qm = pat (TUTQm) )

which contradicts the assumption P43 & HPpog.
Next we consider the case

‘P(”-—lQm) < ‘P(Qm)y SO(TUTQm) < o(Qm)- (20)

From these inequalities we have

0<n, O<aln—¢, &(aén—¢) <y, (21)
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0<¢ O0<afn+(, nlaén+() < bE (22)
Combining these, we have
0 < a2?n® — (% < b2

In the case b = 1, this is a contradiction. Consider the cases b = 2 or 4. From
(22), €(an® —b) + n¢ < 0, which implies = 1. Therefore from (21), (22), we
have

0<Ev 0<a€"<7 E(aE—C)<b

Hence £ = 1, because af — ¢ = 0 (mod 2) in the case b = 4. From (20), we
have 071Q,n = (1,0,¢), 707Qm = (0,1,¢"). Therefore P41 € HPp_1, which
contradicts the assumption. Similarly

P(0Qm) < p(Qm), SO(TO'_ITQm) < o(@m),

leads to a contradiction.
Finally we consider the case:

‘P(UQm) < ‘P(Qm); ‘P(U-IQm) < Sa(Qm)'

From this assumption we have &, > 0, af? — b < 0. After consideration of
Pry1 @ HPp 1, Pn—1, Pny1 ¢ HPy, only one case remains, that is (a, b,€) =
(1,4,1). In this case, the order of o as a permutation on Cj is 3, hence 07 1Q,, =
o(0Qm). Therefore we come to the same result. Similarly

<p(‘r‘"TQm) < ‘P(Qm), ‘P(TU—ITQm) < ‘P(Qm)v

leads also to the same result.
Now the assumption leads us to a contradiction or a new sequence of points
from A to B, where the number of P;’s decreases by one. And if n = 1, either

¢(B) > p(A) or ¢(4) > ¢(B),

which contradicts A, B € R%,. Consequently g € H, which implies A = B. O

Remark 3. In the case b2+4c < 0, the proof becomes simple. We consider a point

Qm as in the proof. From (3) with —ab¢? + b? + ¢ < 0, we have aé? — b > 0,
2a¢? —

similarly we have an? — b > 0. From the first we have (2a€” - b)n + 26¢ -

n = 2(ag?® — b)n + 2¢¢ (2a€% — b)n + 26¢

we have ©(0Qm) > ¢©(Qm). Likewise, from the second we have p(107Qm) >
©(Qm). From these relations it is clear that it suffices to consider only the case

P(071Qm) <e(Qm),  @(ro”'mQm) < o(Qm).

> 0, consequently > 7, from which
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4. The Cases b= -1, -2 or -4

In this section, we examine the cases b = —1, —2 or —4. We state the results
and give the proof only at the points in which the proof differs essentially from
the previous one. We preserve the notations for the case b > 0, except for the
permutation ¢ and T,.

In the case n = 0, we can solve equation (3) by the theory of binary quadratic
forms (see [4] or [5]), the integral solutions of which are algorithmically com-
putable. Thus we define a trivial solution of equation (2) as an integral solution
such that zy(—abz? 4+ b2 + ¢)(—aby® + b2 + ¢) = 0 or (only if ¢ = 0) z2 = y2.
(Note that it always holds that (az? — b)(ay? — b) # 0 in this case.) !

We define o as

ow )= (o

(2az? — b)y + 222 2z(a®z? — ad)y + (2az? - b)2
S, = )
Since
. = 2an? ~ b + 2nv/a?n? — ab
n — ——b )
is a unit with norm +1 in the ring of integers of @(v'a?n? — ab), o is a permu-

tation on St , F, or C, and satisfies lemmas and corollaries in Sec./. We can
prove the following in the same way as in Lemma 3.

Lemma 6. Let n > 0. For a point Py on C,, put Py = 0P, and let PP, be an
arc of Cy, tn which P; 1s contained and Py is not .

(i) If —abn? + b2 + ¢ < 0, let Py = (yo, —20) be a point on C}Y such that
ocPy = p3Py, zo > 0. Then
cr =)o PP.
i€z
(i) If —abn? + b2 + ¢ > 0, let Py = (~yo, z0) be a point on C}* such that
O'P() = p2P0, Yo Z 0. Then

Cn+z = U UiP;PI.
i€Z

Also we can prove the following in the same way as in Lemma 4.

Lemma 7. Let n > 0.
I
(i) If —abn® + 5%+ ¢ < 0, define

! Finding all trivial solutions with £ = 0 or y = 0 amounts to solving a Pell equation
and, in that sense, these solutions are not trivial in a strict sense.
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n‘—b°—c¢c 2 +c
— <y < —-n? 5.
a?n?—ab =¥= ab n}

Egt = {(n,y,Z) €Cr

Then CjH¥ = GoE™.
(ii) If —abn® 4+ b2+ ¢ > 0, define EX? as

—abn? + b +¢ < —abn2+b2+c}

+2 | et AL IS
{(n,y, )€ Cy —abn? 4 b2 SYEMN e + b2

Then C;}* = GRE!".
Il If P is any point in EX* and 0P, 0~ 'P do not belong to H, P, then
¢(oP) > ¢(P), ¢(c™'P) > ¢(P),

respectively. Moreover, if P is any point in E?, while Q@ = (n,y,2) any
point not belonging to E3", then, unless Q € H P

©(Q) > »(P).

Theorem 3. Let b = —1, -2, ~4 and let TP, be the set of integral trivial
solutions of equation (2). Define

b2
O<z<y, 2?49’ < ;;C,zZO},

R, = {(z,y, Z)E Sgc

and if ¢ > 0,
—abz?+ b2 +¢
<y< e > .
O0<z<y<zy STV ,z_O}

(i) Put R, = RyUT!, ifc >0 and Rb, = RyUTY, ifc < 0. Then the set of
all integral solutions of (2) coincides with GR?,.

(ll) If(:c) y;z) € Rl then

[62 + ¢ [62 + ¢
0<zs 2ab »TSYS ab
If (z,y,2) € Ryo(c > 0) then, either z # y, in which case
) 3 —bo? 4 b2
0<z<c+\/c + 16ab ,:c<y_<_x/ abz’ +b +c’
—4ab —abz? + b?

orz =y and £ < \/(b+c¢)/a. In paticular, Ry, Ry are al most finite and

algorithmically computable.

Ry = {(x)y,z)e Sgc
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Replacing the case “—~abzd + b2+ ¢ > 0 or —aby? + 5% + ¢ > 0” in the proof
of Theorem I with “—abzl + 4% + ¢ < 0 or —aby? + b% + ¢ < 0” and the case
“—abad +b% + ¢ < 0 and —abyd + 6% + ¢ < 0” with “—abzd + 62+ ¢ > 0 and
—abyd + % + ¢ > 07, and using Lemma 7 instead of Lemma 4, we can prove
this in the same way as in Theorem 1.

Proposition 2. Letb = —1, —2, —4. For any points A, B belonging to ch\T‘f
it holds that if A ~ B then A= B.

¢

Proof.  The proof is similar to that of Proposition I and we give only a sketch
of it. We preserve the definitions and notations in the proof of Proposition 1. For
a point P = (z,y,2z) € R, \ T}, with z,y > 0,2 > 0, unless cP,707P € HP,
we have

p(oP) > p(P),  p(rarP) > p(P).

Consequently if Py, is a point such that ¢(Pp,) is maximal in the sequence of
points from A to B, then we may assume

P07 Pn) < @(Pm),  @(r07'mPr) < o(Pn).

From these inequalities we obtain
0<(—afn< b (23)

If b = —1 this is a contradiction. If b = —2 we have ( — aép = 1, hence
S=En-§af€—n+1), T=(§—nmnan(n~€)+ 1), from which we have

S = paroT or equivalently T = pyr(roT)S§, (24)

hence, there is a new sequence of points from A to B where the number of P’s
decreases by one. In the case b = —4, from (23) and (% — a2¢2n? = O(mod 4) we
have ( —a€n = 2, hence we obtain the relation (24) and come to the same result.
And if n = 1 we are led to a contradiction in the same way as in the proof of
Proposition 1. Thus if we suppose g € H then we are led to a contradiction.
Consequently ¢ € H, hence we arrive at 4 = B. 0D

5. Examples

In Table I and 2, we show RY, for the casesa =2, b= 41, -85 < ¢ <85, ¢ £0,
which we have obtained by using UBASIC.

Theorem 5. Leta > 2, b= 1, ¢ = —1. Then equation (2) has only one solution
(0, 0, 0).

Proof. It is obvious that T}_; = {(0,0,0)} and R; = {(0,0,0)}, hence we
have R;_; = {(0,0,0)}. Therefore by Theorem I we obtain S; _, = GR. _; =
{(0,0,0)}. o
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, C#0

for —85 < ¢ < 85

Table1. R} of (2z° —1)(2y* - 1)=2*—¢,

z
5

y
6
3 2

2
3

6
2

3
5

0
0
0
0
1

53

1
1
0
0
0
1

J 316
1
1
1
1
2
1

4 646 -33
2

-85

19
21

0
1
2
5
5
3

4
4
4
5
2
4

-31

6
4
9
7

3
7
9
8

-83

2
4

2
2520

0
0
1

56
56
57

-30

1
1

1
4 538

-81

2 4
0
1

23
24

-27

-24

-80

8

5
5

-78

-75

3
8

5
0

58
63

2 312

0
0
1
0
0
0
1
2
0

25

-22

2 412

-73

5
3

1
3

26

21 2 414

5
0
1
7
2

7
6
6
3
6

1
1

-T2
-71

1
4 432
139
018
0

2 310

1
1
1
1
2
1
1
1
1

-19
-17
-16
-15
-13

26
40
2

29
31

0
1
4
2

3
3
4
3
2
3

-70

64
65

2

5

32

1
3 315

-67

5 4

41
37

-64

03

66
67

8
3
6

8
6
7

1
1

1
4 430

-63

29
3 4
4 8
0

3

-62

33

20
2
2

-61

1
0

1
2
0

-6
-3

6

35

2 621

-56

042

1

00
1
0
0

6

1

1
1
1

3 318

0
0
1

3 319

4 3
35

40
42

1
2
2
2

2

3 634

-51

1 612
0

73
74

00
1

3

3 528

1

55

27
1

1
1

1
7

5
7

-48

37

1

416

2
4

39
43

[ e ]
N O
SO

O
1D N

— O

-49

47

77
79
80

3 8

1

3
4
3
2

1

2
1

1
1
0

2 413

2 624
009

007

1

48

5
2
2

6
5

1
1
2

-46

7

1

10
11

-45

050

49

02

2

3 424

0
0
1

004
1

2
0

15

3 422

-43

7

1
5
4

50

1
2
2

3
3
9

5
2
3

1
2
2

-40

(=]

1
9

8
3

<

bl

16

-38

313
510

51

< <o
— o
oo

2 210
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, c#D0

<c<85

of (222 + 1)(2y2 +1) =22 ~¢, for —85

-1
2¢

Table 2. R

Y

z
1
7

y
05

e o}
o
o

45

1
2
2

1

2
1

1

0
1

-50

074
4

-85

o~
-

<t

—i

4
2311

1

4

1
4 540

-

<

46

O o
S
O <t
OO oM
[+ o] (o]
<t <t
O - O N
— e 3 e
[ e B e B e
o N
[ I R |
) M AN
W A
O - O™
[ee] b= 0
R
<!
9207
O © AN o
O NN O
oy —t o
® R X

[V
o
[ B

— N

54

0
1

053
13 4
2 416

-42
-41

21

2 2
1612
0

=77

2
3 532

53

0214
1
0

7

-75

4
3
6
4

1
0
2

066
3 318

-37

5
5
0

7
4
6

-74

8

1
0
0

R o0 oo N —

o

—

O~ D O NN D
N OO O N —

57
61

1
0

05 4

-35

-73
-72

1

13

4 8

1
04
0
1

1

6

62
63
64

4
5
5
6

00
02
11
03

15
16
17

0
1
5
7

4
3
22

-33
-32

2419

2 210
0

19
22

2
0

4
2
2 312

0
1
0

-29

2 310
0

-71
-69

67 0 610

5
7
5
9

1
2
0
3
2 314

-27

6 2

4 434

1
0

3 530

0
2

—
r—{

[ie]
(]

70

24

5

5
2

-26

8
4

8
2

-65

o
-

<

—

1

1
3

1
0 4

2 523

25
27

-24

4 432

o
—_ >
© N

o O

71
72

26
2 418

0
1

2
6
0
1
3
4
8
2
4
3
0
0
1

2
3
3
3
2

1
1
0
0

-23
-21

063
076

-64
-63

1515
2 627

6
7

1

-19
-18

4 6

1

03

30
31

2 520

0
1
1
2

-59

19

1

0438
0

1
0 4

2

6 4
30
3
2

-57

1210
019
009

73
78
80

6
6
8

1

33

-17

3% 00
1

37
39

40

2

1
5

-56

2

03

-15
-11

3 321

3 320

0
1

2
3
2
1

1
0
0

1510

-53

81 0310

7
7

2
1

-10

2
50
3 424

0

3

1
0

4 542
2 316

-51

85

2211

1
0 2

9

1 310 82 1

43

7T

-50

(20 + ¥0vV2)(3 + 2/2)%,

Note. The solution (0, 5, ¢) such that ¢ + 7v/2

k>0, k € Z is expressed by (0, yo, 20).
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By Theorem 8 we can prove the following analogously.

Theorem 6. Let b = —1, c = —1, and let a be not a square. Then equation (2)
has only one solution (0, 0, 0).
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