User-Level Language Crafting
Introducing the CLOS Metaobject Protocol

Andreas Paepcke

3.1 Introduction

The idea of open and modular systems is becoming more and more popular in the areas
of networking and operating systems. In the former, services like packet transfer may be
implemented in different ways without affecting the rest of the system [1]. In operating
systems, attempts are made to open functions such as memory paging up to change [2].
CLOS carries this idea into the realm of language design which has traditionally been
almost as closed as database implementations.

There are many reasons why language implementations should be open. One important
reason is the ever increasing complexity of software development. Its management requires
correspondingly more sophisticated tools which must obtain detailed language-internal
information, such as class structure or information about methods. Traditionally designed
languages often require implementation-specific modifications to compilers or run-time
environments which are non-portable because that information is otherwise not obtainable.
As the cost of software development rises, such inefficiencies in the creation of integrated
environments become less and less tolerable.

The basic idea of the CLOS design is to specify a model for the language implemen-
tation and to standardize it. The inner workings of the implementation thereby become
manipulable in a controlled manner. This internal model is called the CLOS Metaobject

Protocol (MOP)*.

The goal of this chapter is to explain the basic idea, the important principles and some
design issues behind this part of the CLOS language. We make the reader understand why
the approach is important and how it works. The material should be sufficient to provide
intuition for deciding when the use of the Metaobject Protocol would be appropriate for
some given application and how to go about its design.

This chapter shows selected highlights and is not a replacement for an eventual study
of the specification in part two of [3], although it should make its consumption easier.
We have tried to avoid the complexity caused by a formal specification without sacrificing
important information on the material we cover. Part one of [3] is a detailed explanation
of the principles of protocol-based design, while this is an introduction to the CLOS MOP.

Section 3.2 explains what the Metaobject Protocol is about, what it is trying to do
and why it is interesting. Most of this material is kept at an abstract level and does not
require deep knowledge of CLOS particulars.

Sections 3.4 and 3.5 are much more concrete. They present selected details of the MOP
using an example that is introduced in section 3.3. These sections do assume knowledge
of CLOS as explained in [4, 5].

The main body of the chapter closes with pointers to related work and the conclusion.
Appendices provide some material about the MOP which is useful for the deeply interested
reader but which are too detailed to include in the text.

3.2 The Metaobject Protocol

Beyond trying to be a powerful language in general, CLOS has two additional, unusual
goals:

o Allowing users and external programs to inspect the internals of CLOS environments.

o Allowing external programs to eztend the CLOS language itself without modifying
existing implementation code and without affecting other, existing programs.

The first of these goals is particularly relevant for the construction of browsers that aid
in software development, such as class hierarchy layout displays, and for the implementa-
tion of other system analysis tools, such as debuggers. Inspecting the internals includes,
for example, the ability to programmatically determine the class structure of a program
— without scanning and parsing source code, or to find out which methods are specialized
on some class.

The ability to extend or modify the language is necessary to enable experimentation
and adjustments to CLOS behavior which may be required to satisfy new applications
or system environments. This might include control over how slots are accessed or how
instances are made. Enabling non-instrusive modifications can significantly increase return
on the investment of designing and building a language because it can be made applicable
to a wider range of consumers.

Let us take a first-level look at how these objectives are addressed in CLOS. The
approach is at this level quite applicable to designs of other systems that share these goals.

3.2.1 Design Premise and Challenges

When we study the basics of CLOS internals with focus on their openness and flexibility,
it is convenient to separate static from dynamic aspects. This partitioning roughly reflects
the two goals of the CLOS internal design we listed above and provides a way of organizing
the material in our mind.

The static part of the CLOS design may be called its metalevel architecture. It describes
the components of the system, its structural and procedural building blocks and how they
are put together. Examples of major building blocks are the manifestations of classes, slots
or methods in the language’s implementation.

The dynamic part is described in terms of protocols which prescribe the manipulations
of the building blocks that must be performed to effect the behavior of the language at
run-time. For each ‘behavior pattern’ of the language, one or more protocols specify how
the building blocks must change and interact. Example: everything that is supposed to
happen in a CLOS system when a new class is defined is governed by the class initialization
and finalization protocols. They specify the language-internal building blocks and run-time
activities that together effect the definition process.

Thus we distinguish between the language itself and a ‘metalevel’ where its concepts are
described abstractly and then implemented. This metalevel world has collectively become
known as the CLOS Metaobject Protocol and is the focus of this chapter.

Every reasonably designed system has the characteristics we described so far: an exter-
nal specification of behavior and an internal, hopefully modular model and its implementa-
tion. The step CLOS is attempting to take beyond this is to ezport the internal model, to
standardize it and to make it part of the final product itself. This final step is what gives
this language the desired flexibility and which makes it go beyond many other systems.

Public + Public _ .
Metalevel Arch = Protocols Implementation

V \ v

Inspect + Modify = Open System
Figure 3.1: The Top-Level CLOS Design Premise

The means to modify CLOS have become part of the language and are therefore made
as portable as the language itself.

Figure 3.1 tries to illustrate how the metalevel architecture representing statics, and
the protocols representing dynamics together make up the CLOS design. The figure also
suggests that the existence of these two explicit, standardized components enables us to
inspect internals and to modify behavior, which in turn implies that CLOS is an open
system — an unusual trait for a language.

All this sounds rather obvious and straight-forward. But designing such a system is
difficult. The challenge begins when the proper break-down into building blocks must be
decided. This break-down determines how cleanly the eventual implementations will be
able to reflect the internal model. It can also determine how far modifications to one
building block need to propagate through the system to other building blocks. These are,
of course, crucial issues because the organized manipulation of the internal model are the
way of modifying the implementation. Clean relationships between them are therefore
important.

An even more difficult challenge than finding the proper break-down for the internal
model is to find the level of detail to which protocols must be specified. An incorrect level
not merely causes inconvenience, but it can lead to system failure. If too much detail is
specified, implementations do not have enough room to introduce necessary optimizations.
If too little is specified, it becomes unclear where and how modifications must be properly
introduced to effect some desired change in behavior. This can lead to a loss in portability
of the modifications.

When trying to find the proper balance for standardization questions like these, de-
signers face the dilemma that sample applications are needed to find where the system’s
degrees of freedom should be placed. Obtaining a significant number of such applications,
however, almost requires the a priori existence of the standard. Building an open sys-
tem like this is therefore generally much more time consuming and frustrating than the
construction of a more traditional design?. But the payoff is considerable.

3.2.2 Implementation of the Design Premise

We have so far spoken of ‘building blocks’ and ‘behavior’ in the abstract. What are
these in the concrete case of CLOS? It is a very convenient characteristic of the ‘CLOS-
producing metalevel world’ that it is itself written in CLOS. This unity of language is called
meta-circularity. The language is itself a CLOS program which is manipulated through
techniques of object-oriented programming. This is accomplished through appropriate
bootstrapping facilities which do not need to concern us here. The ability to modify the
language’s implementation without leaving the realm of the language is called reflection.

Unity of language makes the life of the metalevel manipulator much easier. Instead of need-
ing to learn a new configuration or implementation language, we can freely move between
‘regular programming’ and metalevel programming without having to switch languages
and our way of thinking.

In particular, the metalevel architecture is defined and implemented as a CLOS class
hierarchy. Instances of these classes implement elements of the CLOS object model at
run-time. CLOS classes or methods, for instance, are themselves instances of classes at
the metalevel. We will introduce these classes in section 3.4. Extensions to this static part
of the CLOS implementation are made by subclassing the classes at the metalevel.

The dynamics of CLOS are captured in a set of generic functions and methods special-
ized on these classes. The protocols describe the main activities of these generic functions
and explain which of them must be invoked to implement the behavior patterns of the lan-
guage. Extensions and modifications of the dynamic part of CLOS are therefore usually
implemented by defining new methods on existing system generic functions.

This uniformity of the metalevel and CLOS-level worlds does have the potential of
causing confusion in that we must keep track of whether we are, for instance, talking
about classes a regular programmer would define, or classes at the metalevel, which are
pieces of the CLOS implementation.

The term metaobject class is used to denote a class at the metalevel. Instances of these
classes are called metaobjects. A metalevel instance that implements a CLOS generic
function or a CLOS programmer-level class is therefore a metaobject.

3.2.3 A More Detailed View

Let us pull together what we know so far about the CLOS design and its metalevel world
and add some new pieces.

Figure 3.2 shows how we could view the system. A regular user of CLOS would be at
the bottom of the figure ‘looking up’. Regular programmers do not modify the language
itself. They create metaobjects through definitional macros, such as the familiar defclass,
defmethod or defgeneric. They unwittingly use these metaobjects by such activities as
creating instances of classes and invoking generic functions.

Metalevel programmers perform the same activities, but they also handle metaobjects
more consciously. In particular, they use mechanisms such as find-class, find-method or
symbol-function which take a name and return an associated metaobject. Find-class,
for example, takes the name of a programmer-level class and returns the metaobject that
implements it.

Metalevel programmers also work with the static and dynamic parts of the language
implementation by subclassing and by adding methods to system generic functions.

At the center of figure 3.2’s upper portion we see the snapshot of a run-time collection of
metaobjects which implement some running CLOS program. They are surrounded by the
major design components which control them: the metaobject class hierarchy defining the
static setup of the metalevel world. The exported, standardized system generic functions
and methods which provide the implementation of the dynamic aspects and the protocol
component which controls what the dynamic component does.

The next section explains some restrictions that are imposed on manipulations of the
internal model.

(Protocols)

4 N . ‘ 4 \
Statics _ Dynamics
Metaobjects @
Modifiable
Metaobject @ B System
Class Functions &
Hierarchy Methods
¢ J ¢ J
k Metalevel Pr?grammer <
Create named Use Find named
MOs MOs MOs

\CLOS Programmer

Figure 3.2: The Overall CLOS Design

3.2.4 Curbing Chaos

We have seen that the main tools of the metalevel programmer are subclassing and the
definition of methods on exported system generic functions. Indiscriminate use of these
tools can prevent a system from functioning properly. The problem lies in the fact that
programmers build modules under the assumption that the language they work with is
immutable. If the loading of one module changes the language, other modules can fail
unless special care is taken.

The MOP does not include enforced safeguards against conflicts arising from metalevel
manipulations. Instead, there are rules regarding these activities which are intended to
ensure that extensions made at the metalevel are portable and do not destroy the sys-
tem for other programs running in the same environment. One reason for such extreme
openness is that radical modifications do have their place. One example has been the
reduction of CLOS to a very small, fast, low-functionality delivery kernel after the comple-
tion of program development [6]. In general, however, programs will need to be portable,
which means that they will need the ability to coexist with other, independently produced
programs. This includes metalevel programs.

The rules regarding metalevel work all have the same purpose: To ensure that new
behavior does not change ezisting system behavior that is relied upon by others. Appendix
A contains a list of these rules.

Before we begin to introduce details of the Metaobject Protocol, we describe the skele-
ton of an application which we will use throughout the subsequent sections to illustrate
how all the facilities can be put to use.

3.3 An Example Problem

As an example for the use of the Metaobject Protocol let us imagine that we want to add
persistence to the objects in CLOS programs [7, 8|.

We assume that objects may be either transient or persistent. The state of each persis-
tent object is stored in a database and retrieved from there as needed. We make objects
persistent by sending them the message make-persistent. This will cause the database
to be prepared to receive the object’s state and will then transfer the state there.

Objects may be cached, which means that their state is withdrawn from the database
and stored in memory until it is explicitly returned to the database. Whether a persistent
object is cached or not, it is always possible to send messages to it as if it were transient.
There is to be no semantic difference between these object states, other than the persistence
of values. If a slot of an uncached, persistent object is read, the slot value is retrieved from
the database and returned as if it had been stored in memory. Slot updates are propagated
to the database.

For reasons of efficiency and for some other technical reasons, it is desirable to allow
individual slots to be transient. The value of a transient slot is not placed in the database
but is always memory-resident, even if the object as a whole is made persistent. The
programmer may declare individual slots to be transient when the class is being defined.
In cases where some slot is provided by more than one superclass, we assert that transience
is legal for the slot only if all superclasses have declared it to be transient. Otherwise it
must be made persistent.

One tricky problem is caused by class redefinition, which CLOS makes easy to accom-
plish: we must create some appropriate schema in the underlying database which corre-
sponds to the class hierarchy of the program that will generate the persistent instances.
If this hierarchy changes, the schema will have to evolve as well. We will not cover how
this can be accomplished in the database — that is a research issue in itself. We will
merely point out how we can use the MOP to cause schema evolution to be initiated when
necessary.

Given this problem description, how must we change the behavior of standard CLOS
to accommodate a solution:

e We must be able to programmatically examine classes so that we can build appro-
priate schemas in the underlying database.

e The definition and redefinition of classes must be trapped to allow schema creation
and evolution to be triggered.

¢ We need to manipulate the class inheritance.

e A new slot option must be introduced into the language to allow slots to be declared
transient.

o Information about which slots are transient must be stored somewhere in the run-
time system.

e Without the programmer being aware, internal information must be kept with each
instance that is created. An important such piece of information is whether that
particular instance is currently persistent or not.

o Additional information must be kept with each class. This might include information
about how the database must be accessed or special caching policies for instances of
that class.

e Slot access must be intercepted to implement faulting to the database.

Even a cursory glance at this list of requirements shows that these are significant
modifications to any language and cannot be accomplished by working outside the language
implementation. Our strategy will be to define a class metaobject class called persistent-
metalevel-class. When a programmer defines a class whose instances are to have the
potential of being persistent, she specifies that persistent-metalevel-class is to provide
for that class’ implementation.

We will define a programmer-level class persistence-root-class which provides
some methods for persistent objects, such as cache and make-persistent. We will have
persistent-metalevel-class take care of mixing that class into persistent user classes
transparently.

Clearly, a full-scale persistent object system will need to do more than what we describe
in this skeleton, but it turns out that this subset covers the language incisions that are
necessary for such systems. It is therefore well suited to illustrate what we have to say
about the details of the Metaobject Protocol.

In the following section we go into the details of the MOP’s structural parts.

3.4 Metalevel Statics

We explained above that the structural part of the Metaobject Protocol reflects a break-
down of CLOS into basic concepts which is itself reflected in the metalevel class hierarchy.
It is, of course, important to understand this hierarchy, as it is the key to making structural
modifications and to accomplishing inspection of program internals.

The main building blocks are:

1. Classes

2. Slots

3. Methods

4. Generic Functions
5

. Method combination

Each of these is represented by a class subtree at the metalevel whose terminals are the
sources of the corresponding metaobjects.

|

(class) (slot-definition) (generic-function) (method) (method-combination)

Figure 3.3: The Top-Level MOP Class Hierarchy

Figure 3.3 summarizes this.

In this section we will take several of these building blocks in turn and will explain
their structural properties. Please note that we will not show the complete subtrees of
a typical CLOS implementation. We try to extract the subclasses most likely to be of
general interest to avoid confusion. It should not be necessary to understand more of the
hierarchy.

Remember that the interface to the metalevel world provides us with powerful ways of
finding out about the structural properties covered here. We can use find-class <class-
name-symbol> to obtain instances of any of the class metaobjects we talk about. Using
describe on those will reveal much useful information. Browsing the implementation in
this way is indeed a very good way of getting acquainted with the system.

3.4.1 The Class Metaobject Class

The most frequently inspected and modified building block is the CLOS class since many
important methods are defined on it and it contains a large amount of information useful
for debugging and program maintenance. As a rule of thumb, if desired information is
usually specified in a defclass, the resulting class metaobject is the place to find that
information later on®. Standard CLOS comes with several class metaobject classes built

.
class

/

(built-in-class) (forward-referenced-class) (standard-class)

Figure 3.4: The Class Metaobject Class Subtree

Figure 3.4 shows some of these. The most important is standard-class since its
instances are the metaobjects which by default implement the classes a programmer defines
with the defclass macro. Most new metaclasses a user might want to write will be
subclasses of standard-class and we concentrate on it here. But since most metalevel
work tends to cause programmers to come across some of the others in passing, we mention
their role briefly:

Instances of built-in-class implement classes that are not specified using defclass
but are pre-constructed by CLOS implementations. Examples are classes that are made
to correspond to standard CommonLisp types. Built-in-class metaobjects have various
special properties, like the fact that they may not be redefined.

The forward-referenced-class is used when a programmer defines a class whose
superclasses are not yet defined. In that case a metaobject of class forward-referenced-
class is created to act as a ‘place holder’ until the superclass is defined later on.

The following information is kept in a standard-class metaobject. It is easy to see
the correspondence between what a defclass specification contains and the information
listed here. Indeed, the class metaobject is where most of the defclass entries end up.
This information is available and we list the published reader function names for each of
the items in parentheses.

As an example for the use of this information, assume the existence of a programmer-
level class train. We could find its direct superclasses through:

(class-direct-superclasses (find-class ’train))

o The slots of the class are kept as a list of slof metaobjects. Reader class-slots
returns all slots, including the inherited ones, class-direct-slots returns just the
ones defined for this class explicitly.

e The super- and subclasses are stored as a list of class metaobjects (class-direct-
superclasses and class-direct-subclasses).

e The class precedence list is recorded as a list of class metaobjects (class-precedence-
list).

o The default initialization arguments for the class are kept. Reader class-default-
initargs returns all initargs, including the ones inherited from superclasses while
reader class-direct-default-initargs returns only the ones specified for the re-
spective class directly.

e Information on whether the class has already been finalized is also available (This
will be false if, for example, there were undefined superclasses at the time the class
metaobject was created.) (class-finalized-p).

We can now introduce the first of the modifications our persistent object example
requires: the storage of additional information in class metaobjects. We define a new
metaclass:

(defclass persistent-metalevel-class (standard-class)
((checked-schema-congruence-p :initform NIL
:reader class—checked—schema—congruence—p)
))

It adds a new slot to class metaobjects which allows us to record whether we have
checked that the structure of the class conforms with any schema we might have built
earlier in the database to hold persistent objects of this class.

Now we can define our first persistent programmer-level class:

(defclass hypertext-node ()
((contents :initform "'" :accessor contents)
(in-links :initform NIL)
(out-links :initform NIL))
(:metaclass persistent-metalevel-class)

)

This is a good time to make sure that easy-to-arise confusion between the metalevel
and the regular CLOS level is avoided: at this point we have a programmer-level CLOS
class called hypertext-node which contains the three slots contents, in-1links and out-
links. This class is all a regular CLOS programmer ever works with. If we now move
into the metalevel world, we find out that this class is in reality a metaobject which is an
instance of the class metaobject class called persistent-metalevel-class. Since that
inherits from standard-class, it presumably has some slots we have no access to (the

9

reader functions listed earlier provide all the information we are supposed to have). But
we have added the additional slot for the schema congruence check whose value is available
to us. This slot is therefore part of the metaobject, not part of any future programmer-level
instances of hypertext-node.

With this clarified, let us get a hold of the class metaobject and find out some details
about it (system responses are indented):

(setf hypertext-class-metaobject (find-class ’hypertext-node))

(class-direct-slots hypertext-class-metaobject)
(#<Standard-Slot-Definition CONTENTS>
#<Standard-Slot-Definition IN-LINKS>
#<Standard-Slot-Definition OUT-LINKS>)

(class-precedence-list hypertext-class-metaobject)
(#<Persistent-Metalevel-Class HYPERTEXT-NODE>
#<Standard-Class STANDARD-OBJECT>
#<Standard-Class T>)

(class-checked-schema-congruence-p hypertext-class-metaobject)
NIL

We can also begin to add some behavior to our new metaclass which allows us to
build a database relation based on the slots of the class and to record in the database some
information about the class itself. We assume that we have a database object *databasex*.
This object may be used for calls to generic functions that manipulate a database consisting
of tables. We assume further that the database contains a special table called “master-
class-table” which we initialized earlier and in which class-related information is stored.
Tables can be searched by key and we can add and delete rows:

(defmethod create-schema ((class persistent-metalevel-class))
(create-table *database* (class—name class) (class-slots class)))

(defmethod store-class-structure ((class persistent-metalevel-class))
(unless (find-entry *database* ’master-class-table (class-name class))
(add-row *database*
‘master-class-table
(class-name class)
(class-slots class)
(class-precedence-list class))))

3.4.2 The Slot-definition Metaobject Class

Slots in CLOS and other object-oriented languages are more than a physical place to
store a value. Issues of typing, initialization and accessability must be remembered and
managed. This is why the second major building block of the Metaobject Protocol is
the slot-definition metaobject. We use the class-slots generic function on the class
metaobject to get a hold of slot-definition metaobjects. Recall that this returns a list
of the class’ slots.

10

(slot-definition)

(standard-slot-definition)

/\

(standard-direct-slot-definition) (standard-effective-slot-definition)

Figure 3.5: The Slot-definition Metaobject Class Subtree

Figure 3.5 shows part of the relevant metaobject class subtree. We see that there
are two main branches: standard-direct-slot-definition and standard-effective-
slot-definition. Instances of the first hold the ‘raw’, ‘untreated’ slot-related informa-
tion from the class definition form, while instances of the second hold information that
reflects the actual, run-time properties of the slots after the CLOS inheritance rules have
been applied. If, for instance, a slot is defined with the :initarg slot option®set to
a value different from the same option in a slot it shadows, the standard-direct-slot-
definition will show the child’s initialization argument, while the standard-effective-
slot-definition will show a list of the initialization arguments containing both the child’s
and the parent’s specification.

Recall that we can extract a list of direct slot definitions and effective slot definitions
from a class metaobject class by using the two accessors class-direct-slots and class-
slots respectively. Once we have a slot definition metaobject in hand, we can extract the
following information:

e The slot name, type and allocation may be obtained through slot-definition-
name, slot-definition-type and slot-definition-allocation, respectively.

e The initialization form that was supplied in the defclass may be retrieved from
a slot-definition by means of slot-definition-initform. If such an initform
has been supplied, the initialization process of the class will also have provided a
function with no arguments which returns the initform value. Thus, if a slot was de-
fined with the :initform option (+ 1 2), the method slot-definition-initform
will return (+ 1 2), while slot-definition-initfunction returns something like:
#<Interpreted-Function (LAMBDA NIL (+ 1 2)) 1238467>. The form (funcall
(slot-definition-initfunction <slot-definition-metaobject>)) returns 3.

e The methods slot-definition-initargs, slot-definition-readers and slot-
definition-writers return lists of the slot initialization argument(s) and reader/writer
function specifier(s), respectively.

Note that the slot value is not stored in the slot definition metaobjects. Remember that
there is only one such slot definition metaobject per slot per class. Since every instance
has its own value for the slot, such an implementation would be incorrect.

Our persistent object system will augment the internal representation of slots by adding
information on whether a slot is transient:

11

(defclass persistent-standard-direct-slot-definition
(standard-direct-slot-definition)
((transientp :initform NIL :reader slot-definition-transient-p)))
(defclass persistent-standard-effective-slot-definition
(standard-effective-slot-definition)
((transientp :initform NIL :reader slot-definition-transient-p)))

In section 3.5 we will see how the MOP may be influenced to use these classes instead
of their parents when constructing one of our persistent classes.

3.4.3 The Method Metaobject Class

Methods are the next building block of the Metaobject Protocol. The metaobjects that
implement them hold all the information associated with methods. This includes the
information specified in the defining defmethod. We can get a hold of method metaobjects
by using find-method as follows:

(find-method <generic-function-meta-object>
<list-of-qualifier-keywords>
<list-of-class-metaobjects>)

(method)

(standard-method)

(standard-accessor-method)

/\

(standard-reader-method) ('standard-writer-method)

Figure 3.6: The Method Metaobject Class Subtree

Figure 3.6 shows part of the relevant metaobject class subtree. In order to illustrate
the kind of information we can extract from method objects, let us define two hypothetical
methods for the persistent hypertext class defined earlier on:

(defmethod linking ((source-node hypertext-node)
(destination-node hypertext-node))
(push destination-node (slot-value source-node ’out-links))
(push source-node (slot-value destination-node ’in-links)))

The following :before method allows us to observe the linking together of nodes at run-
time:

12

(defmethod linking :before ((source-node hypertext-node)
(destination-node hypertext-node))
(format t "Creating link from *S to ~S.~)"
source-node destination-node))

Here is how we can obtain the method metaobjects that implement these two methods:

(let ((linking-gen-func (symbol-function ’linking)))
(setq *primary-method* (find-method linking-gen-func
nil
(1ist (find-class ’hypertext-node)
(find-class ’hypertext-node))))
(setq *before-method* (find-method linking-gen-func
' (:before)
(1ist (find-class ’hypertext-node)
(find-class ’hypertext-node)))))

Let us see some of what we can find out about these two methods:

e The generic function a method is currently associated with is returned by method-
generic-function as a generic function metaobject.

e We can find the lambda list and the list of specializers of a method by using method-
lambda-list and method-specializers. Both return lists. The first is a list of the
argument names without any of the classes they are specialized to. The second is a
list of class metaobjects. For both of our methods these would be:

(SOURCE-NODE DESTINATION-NODE)
(#<Persistent-Metalevel-Class HYPERTEXT-NODE>
#<Persistent-Metalevel-Class HYPERTEXT-NODE>)

o The qualifiers of a method, finally, are obtained through method-qualifiers. This
returns a list of qualifier specifications as they are used in the defmethod macro. Our
primary method would return NIL, the :before method would return (:before).

This concludes our look at the static part of the Metaobject Protocol. The information
presented should be sufficient to extract a large amount of interesting information from the
run-time environment of a CLOS program. In the next section we turn to the dynamics
of the Protocol.

3.5 Metalevel Dynamics

When we want to go beyond inspection to modifying the behavior of the language, we will
often modify the static part of the MOP by subclassing. Most of the time we will then
need to modify parts of the dynamics as well. Many times this will involve initializing new
information we keep in our metalevel subclasses. Sometimes there will be other run-time
work to be taken care of as well. The goal of this section is to explain the sequences
of events that take place to effect some of the major behavior patterns of CLOS. This
information should be sufficient to locate where to ‘hook in’ to change these patterns.

As explained in section 3.2, the dynamics of the MOP are captured in a set of protocols.
Here is a list of some major ones:

13

e The class initialization and class finalization protocols control what happens when a
new class is defined.

e The instance initialization protocol describes what goes on when a new instance is
created and readied for use.

o The dependent maintenance protocol helps in maintaining relationships among metaob-
jects. Examples are classes and their subclasses, or generic functions and their meth-
ods.

e The method lookup protocol determines how the correct method is found when a
generic function is invoked.

e The instance structure protocol attempts to formalize just enough of the implemen-
tation of instance access to allow for organized modification, while leaving sufficient
freedom for implementors.

We will begin with a tour through the process of defining a new class. The creation
and initialization of slot metaobjects is part of this process. This will be followed by a
description of how slot access works®.

A theme common to most of metalevel CLOS initialization is that a user’s defini-
tional macros, such as defclass are checked for errors. Then the information supplied is
brought into a canonical form that makes further processing easier. Once this has been
accomplished, metalevel functions are invoked to create metaobjects and to initialize them.

After the error checking and canonicalization, these processes are the same whether
they were initiated by the execution of a defining macro, or whether they were begun by
programs. There is, for instance, a specific point in the processing of a class definition where
programs wishing to define a new class would begin. We will point out those programmatic
entry points into the metalevel machinery as we encounter them.

3.5.1 Class Definition

When CLOS classes are first defined, their superclasses need not necessarily have been
defined yet. Class metaobjects must therefore be created and initialized as far as possible,
without necessarily knowing all necessary details. Later, once all information is available,
the inheritance of the class is finalized. The following two subsections explain how this
happens.

3.5.1.1 Initialization

Figure 3.7 gives a simplified overview of what happens during class initialization. A full
overview is available in appendix B. This figure, and similar ones later on in the text, list
the various activities that must take place during the course of the protocol. A series of
indented subactivities below an entry shows the steps necessary to accomplish that entry.
For example, (re)initialization of the class metaobject involves the superclass compatibility
check and the other subactivities at the same level of indentation. Successive levels of
indentation thus represent increasing levels of detail.

Generic functions listed below an entry in parentheses are responsible for accomplishing
that entry’s task, often with help from the functions listed further down the list. When
appropriate, we point out in the figures the functions through which programs may initiate
protocols that are normally initiated through macros, such as defclass. The figures serve

14

two purposes: to give a quick overview of a protocol and to show the ‘hooks’ available to
effect changes.

DEFCLASS

1 Syntax error checking

2 Canonicalize information
3 Obtain class metaobject

(ensure-class, «—— Programmatic entry

ensure-class-using-class) «—— Programmatic entry
3.1 Find or make instance of proper class metaobject class

(make-instance, the :metaclass option) «—— Programmatic entry

3.2 (Re)initialize the class metaobject
((re)initialize-instance)

3.2.1 Check compatibility with superclasses
(validate-superclass)

3.2.2 Determine proper slot-definition metaobject class
(direct-slot-definition-class)

3.2.3 Create and initialize the slot-definition metaobjects
(make-instance, initialize-instance)

3.2.4 Maintain the ‘subclasses’ lists of superclasses
(add-direct-subclass,remove-direct-subclass)

3.2.5 Initiate inheritance finalization, if appropriate
(finalize-inheritance)

Figure 3.7: Summary of the Class Initialization Protocol

Let us touch on the main pieces of the class initialization process a step at a time.

DEFCLASS Expansion. The goal of the defclass macro expansion is to produce a call to
the function ensure-class which will create the actual class metaobject. It is also used
for redefining existing classes.

ensure-class <name> &key :environment
&allow-other-keys

Note that this is a regular function, not a generic one because when it is called we have no
instance whose class we would specialize to. To illustrate the processing from defclass
to ensure-class, consider the following subclass of our hypertext node:

(defclass monitored-hypertext-node (hypertext-node)
((access-count :initform O :accessor access-count)
(security-level :reader security-level))
(:metaclass persistent-metalevel-class))

Here is roughly what we will end up with when this macro is expanded:

15

(ensure-class ’monitored-hypertext-node

’:direct-superclasses ’(hypertext-node)

’:direct-slots (list (list ’:name ’access-count
:initform ’0
:initfunction #’(lambda () 0)
:readers ’(access-count)
:writers ’((setf access-count)))
:name ’security-level
:readers ’(security-level)))
) :metaclass ’persistent—metalevel—class)

(1list

P

We see that all but the name information from the defclass form is passed to ensure-
class through keyword arguments. The specification of slots deserves special attention.
It is the result of step 2 in figure 3.7 and takes the form of a list of canonicalized slot
specifications. Each of these is itself a list of keyword-value pairs which will be used as
keyword arguments when making slot-definition metaobjects later on.

This technique of preparing information into a form that can be used directly as an
initialization argument later on is a common canonicalization method in the MOP and we
will see other examples of it.

The :initform entry relays the form that was specified in the class definition. The
:initfunction entry is a function that, when called, will return the proper initial value.

The next step in the initialization process happens in the generic function ensure-
class-using-class which is the workhorse of ensure-class and is specialized to a par-
ticular class metaobject class or to null.

ensure-class-using-class <class> <name> &key :metaclass
:direct-superclasses
:environment
&allow-other-keys

It is called either with a class metaobject bound to <class>, indicating that we wish
to redefine a class, or with NIL, indicating that we are to create a new one.

Make-instance is used to create new class metaobjects and the regular CLOS instance
initialization procedures are used to get the class ready for use: initialize-instance
takes care of fixing up a new class, reinitialize-instance handles existing classes that
are to be redefined. Here is what the class initialization protocol calls for when defining a
new class metaobject.

Superclass Compatibility Check. The first job is to convert the superclass names
from the defclass form into class metaobjects and to make sure there is no clash. This
can happen, for instance, when the class being defined and one of its superclasses are of
different metalevel classes. The compatibility check is done by the generic function:

validate-superclass <class-metaobject> <superclass-—metaobject>

When constructing a new class metaobject class, the designer must decide whether a
programmer-level class implemented by his new metalevel class and inheriting from a
super that is implemented by a different metalevel class would lead to inconsistencies.

Unless we define a method on validate-superclass, the following will lead to an
error because the proper :metaclass option was not specified and the system therefore
defaulted to using standard-class:

16

(defclass simple-hypertext-node (hypertext-node)
((slot1)))

If we were sure that our new metaclass followed a protocol compatible with standard-
class, we would provide:

(defmethod validate-superclass
((class persistent-metalevel-class)
(superclass standard-class))

t)

This would make the above class definition work. Note that incompatibilities can be
a pervasive problem because they prevent the user from inheriting existing superclasses
which are not under his control. If, for instance, someone else had provided an interesting
‘text display’ class facility that we want to reuse by mixing it in with hypertext-nodes,
we must either certify compatibility in a validate-superclass method, or that provider
must be asked to change his class to use the :metaclass persistent-metalevel-class
option in his class definition.

Slot Definitions. Next in the process of class definition is the creation of an appropriate
slot-definition metaobject for each slot which contains the ‘untreated’ information specified
in the defclass definition. Recall that ‘untreated’ means that slot conflicts with inherited
attributes have not been resolved yet. Once these metaobjects exist, dealing with the
slots in the later stages of class initialization and finalization will be more convenient.
The generic function direct-slot-definition-class is called with the class metaobject
and the canonicalized slot definitions to find out which slot-definition metaobject class
should be instantiated to implement each slot. This allows the slot implementation to
be controlled either by the class metaobject class or by new slot options an implementor
might introduce.

The choice of slot implementation is something we need to take care of in our persistence
example. Recall that we defined a new persistent-standard-direct-slot-definition
metaobject class and we must make sure that it is used, instead of standard-direct-
slot—-definition:

(defmethod direct-slot-definition-class
((class persistent-metalevel-class) initargs)
(declare (ignore initargs))
(find-class ’persistent-standard-direct-slot-definition))

This will ensure that all slots in persistent classes will be implemented with our slot
metaobjects. The initargs contain the information about the slot that was provided in
the defclass form, such as :initform, :allocation or :type. This information may be
needed by some methods on this generic function to make their decision, though we do
not require it for our purposes here.

Creating Slot Definitions. When make-instance is used to create a direct slot defini-
tion, all the slot options from the defclass form are passed in as initialization arguments.
The standard-direct-slot-definition metaobject classes therefore have initialization
arguments corresponding to each legal slot option. These arguments are then processed
and installed in the direct slot definition metaobject as we have seen in section 3.4.

We will need to make some changes to introduce our new :transient slot option into
the system. As things stand, a class definition, such as:

17

(defclass foo ()
((slotl :tramsient t)))

would produce an error, such as:

>>Error: Invalid initialization argument :TRANSIENT for class
STANDARD-DIRECT-SLOT-DEFINITION

In order to allow this new option, we modify our definition for slot metaobjects introduced
in section 3.4.2 to include an :initarg option:

(defclass persistent-standard-direct-slot-definition
(standard-direct-slot-definition)
((transientp :initform NIL
:initarg :transient
:reader slot-definition-transient-p)))
(defclass persistent-standard-effective-slot-definition
(standard-effective-slot-definition)
((transientp :initform NIL
:initarg :transient
:reader slot-definition-transient-p)))

After the appropriate direct slot definition metaobject has been created and initialized
for each slot specified in the defclass, the list is kept with the metaobject so that class-
direct-slots can retrieve and return it.

Maintaining Class Hierarchy Pointers. Recall that we are to be able to ask for all
direct super- and subclasses of any class. Since we validated and recorded the superclasses
of our new class as part of this initialization process earlier, we know how the information
for the former is obtained. But something must still be done to maintain the information
for the latter. This is done through the generic functions:

add-direct-subclass <superclass-metaobject> <class-metaobject>
remove-direct-subclass <superclass-metaobject> <class-metaobject>

When a class is first defined, a call is made to add-direct-subclass for each of the new
class’ supers. In case of reinitialization, a combination of both functions is used to ensure
that all class ‘downpointers’ are correct.

With this the initialization process of the new class metaobject is complete. At some
point between now and the time the first instance is made, the final, inheritance-related
issues must be resolved.

3.5.1.2 Inheritance Finalization

The class finalization protocol is responsible for controlling everything that has to do with
a class’ inheritance.

Figure 3.8 shows what needs to happen during the finalization of a class. A full overview
is included in appendix B.

Let us go through the protocol a step at a time.

18

FINALIZE-INHERITANCE «—— Programmatic entry
1 Compute the class precedence list
(compute-class-precedence-list)
2 Resolve conflicts among inherited slots with the same name
2.1 Determine proper effective slot definition metaobject class
(effective-slot-definition-class)
2.2 Create the effective slot definition metaobjects
(make-instance)
2.3 Initialize the effective slot definitions

(initialize-instance, compute-effective-slot-definition)

Figure 3.8: Summary of the Class Finalization Protocol

The Class Precedence List. The generic function:
compute-class-precedence-list <class-metaobject>

computes the linearized list of class metaobjects that are in the hierarchy above the class
being finalized. The default methods do this according to the rules of official CLOS. We will
make a small change here that causes all persistent classes to inherit a class which provides
some persistence-related methods, such as cached?, persistent?, make-persistent and
so on. We first define that class:

(defclass persistence-root-class ()
((persistent? :initform T)
(cached? :initform NIL))
(:metaclass persistent-metalevel-class))

We see that this service class also introduces some slots that are used for house keeping.
This is our way of adding system information to each instance of our persistent world.
Now let us ‘sneak’ this class into the class precedence list of every persistent class. We do
this right when a class is defined.

The member-if statement in the following method looks at each superclass in turn and
finds out whether any of them is a persistent class. If yes, that super already provides
the service class through inheritance and we do nothing special. Otherwise we add our
service class to the list of direct superclasses. The apply is necessary to make the keyword
manipulation work:

(defmethod initialize-instance :around

((class persistent-metalevel-class)

&rest all-keys

&key direct-superclasses)

(let ((root-class (find-class ’persistence-root-class))
(pobjs-mc (find-class ’persistent-metalevel-class)))

(if (member-if
#’ (lambda (super)
(eq (class-of super) pobjs-mc)) direct-superclasses)

19

(call-next-method)
(apply #’call-next-method
class
:direct-superclasses (append direct-superclasses
(1list root-class))
all-keys))))

The next major step in the class finalization is the coalescence of slots: The system
needs to find the slots that are defined in multiple classes and must resolve any conflicts
that arise in the details of their specifications, such as required value type or initialization.

Resolving Slot Inheritance Conflicts. The first entry point to the slot coalescence
activity is:

compute-slots <class-metaobject>

Its final outcome is a list of effective-slot-definition metaobjects, each of which
contains all information about one coalesced slot. Compute-slots first collects groups of
all like-named direct slot definitions from the superclasses and then repeatedly calls the
generic function:

compute-effective-slot-definition <class-metaobject>
<slot-name>
<direct-slot-definitions>

There is one call to this function for each group of conflicting slots. Each time, a single
effective-slot-definition metaobject is created and returned. As explained earlier,
the complete list of these is available through class-slots when the process is finished.

As an example, consider a class and its superclass which both provide a slot named
‘contents’. The class initialization procedures of the two classes would each have pro-
duced one direct-slot-definition metaobject which would be kept with the respec-
tive class metaobject. During finalization of the subclass, compute-slots would con-
struct a list of these two direct-slot-definition metaobjects and would call compute-
effective-slot-definition with that list. The result would be a single effective-
slot-definition metaobject that records the ‘net’ properties of the slot for instances of
the subclass.

Analogous to the mechanism that allowed ensure-class-using-class to create proper
direct slot definition metaobjects, the generic function effective-slot-definition-
class is used to determine which metaobject class should be used for effective slot def-
inition metaobjects. Recall that we defined persistent-standard-effective-slot-
definition earlier on and we need to ensure that the system uses this class instead of the
default:

(defmethod effective-slot-definition-class
((class persistent-metalevel-class) initargs)
(declare (ignore initargs))
(find-class ’persistent-standard-effective-slot-definition))

Now we need to ensure that our inheritance rules regarding slot transience will be enforced:

A slot will be treated as transient only if all classes in the inheritance chain that define a
slot with that name agree that it should be transient. Otherwise the slot will be persistent.

20

(defmethod compute-effective-slot-definition :around
((class persistent-metalevel-class)
slot—-name
direct-slot-definitions)
;; Let default system do its work first:
(let ((slotd (call-next-method)))
(setf (slot-value slotd ’transientp)
(every #’slot-definition-transient-p direct-slot-definitions))
slotd))

This example also illustrates how class metaobject class incompatibilities discussed in sec-
tion 3.5.1.1 may introduce subtle problems: our persistence example was written to use
persistent-standard-direct-slot-definitions for the slots of persistent-metalevel-
class. All its slot metaobjects therefore have a method slot-definition-transient-p
defined for them. If all classes involved in the inheritance used our metaobject class, the
code above would therefore work. If, on the other hand, some of the supers were not using
:metaclass persistent-metalevel-class, some direct-slot-definitions would not
have slot-definition-transient-p defined on them and the code would fail. To ensure
compatibility, we would have to define a default method on slot-definition-transient-
p that returned nil.

We have one more problem to solve in the context of our persistent object system:
Whenever a class is defined or redefined to change the number of slots, we must create
or modify a corresponding piece of database schema. This can happen through changes
to the class itself or through modifications of one of its superclasses. We can handle this
conveniently by using the ‘chokepoint’ introduced in this section:

(defmethod finalize-inheritance :after
((class persistent-metalevel-class))
(maintain-schema class))

(defmethod maintain-schema ((class persistent-metalevel-class))
(if (schema-exists-p class)
(rework-database-schema class)
(progn
(create-schema class)
(store-class-structure class))))

This concludes our look at the creation and redefinition of classes. A full treatment
of method definition and invocation would overload this introductory text, but we include
the protocol outlines in appendix B.

3.5.2 Slot Access

The last piece of CLOS dynamics we will consider here is the setting and retrieving of slots.
When making modifications in this area, the implementor should keep a small checklist of
issues in mind:

e The different built-in CLOS slot allocations must be considered (e.g. :instance vs.
:class allocation).

o There is a group of slot access related built-in generic functions that must be kept
synchronized: Changes to one could require changes in the other. We will point to
examples below.

21

All the ‘official’, programmer-level slot traffic goes through the slot-value function.
This will not generally be true for code generated automatically for reader or writer meth-
ods. The entry point for such code is the generic function slot-value-using-class and
its setf dual which are the main point for slot access modifications:

slot-value-using-class <class-metaobject>
<instance>
<effective-slot-definition-metaobject>
(setf slot—value—using—class) <new-value>
<class-metaobject>
<instance>
<effective-slot-definition-metaobject>

Figure 3.9 shows the protocol for accessing slots.

SLOT-VALUE-USING-CLASS «—— Programmatic entry
1 Check for existence of slot
(slot-exists-p, slot-missing)
2 Check for slot being bound
(slot-boundp-using-class, slot-unbound)
3 Retrieve the value

Figure 3.9: Summary of the Slot Reading Protocol

Apart from the generic functions listed in the figure, slot-makunbound-using-class
should be considered if changes are made to the slot access process.

It is an error to attempt access to a non-existent slot. The Metaobject Protocol allows
metalevel programmers to control what happens when this condition is encountered. That
enables the programmer to react in a way that makes sense in his modified CLOS context.
This control is exercised by defining methods on:

slot-missing <class-metaobject> <instance> <slot-name> <operation>
4optional new-value

The operation parameter is one of the symbols slot-value, setf, slot-bound or slot-
makunbound. These can be used to provide a helpful error message.

We need to intercept slot access for our persistent objects to work correctly. The main
problem is that we must fault to the database if the object is persistent and not currently
cached. In all other cases, we will defer to the built-in way of accessing slots®.

This brings up a subtle problem that exemplifies the potential dangers of metalevel
programming: recall that we record with each instance whether it is persistent and whether
it is cached. We did this by causing persistent classes to inherit from persistence-root-
class, which adds the slots persistent? and cached?. In order to find out whether an
instance is cached or persistent, we therefore need to perform a slot access. Since we must
do this to accomplish slot access in the first place, there will be infinite recursion whenever
a slot is read, unless we take special precautions. We take care of this in the following code
for reading a slot for persistent classes:

22

(defmethod slot-value-using-class :around
((class persistent-metalevel-class)
object
(slotd persistent-standard-effective-slot-definition))
(1let (
(slot-name (slot-definition-name slotd))
(persistent?-slotd
(find-if #’(lambda (slotd)
(eq (slot-definition-name slotd) ’persistent?))
(class-slots class)))
(cached?-slotd
(find-if #’(lambda (slotd)
(eq (slot-definition-name slotd) ’cached?))
(class-slots class))))
(if (and (not (eq slot-name ’persistent?))
(not (eq slot-name ’cached?))
(slot—value—using—class class object persistent?—slotd)
(not (slot-value-using-class class object cached?-slotd))
(not (slot-definition-transient-p slotd)))
(slot-value-from-database class slotd)
(call-next-method))))

This concludes our summary of the Metaobject Protocol dynamics. We have seen
that each protocol attempts to specify just enough detail about some piece of the CLOS
operation to allow controlled modifications to be made. We have covered the process
around creating and initializing new classes and the access to slots. Let us now move on
to putting the approach into perspective with earlier work.

3.6 Related Work

The concept of making languages extensible concentrated initially on syntactic extension
and the creation of new types [9]. Opening languages up for deep semantic changes is a
more recent development. This requires the kind of architectural considerations introduced
in this chapter.

The idea of making seemingly fundamental components of systemsin reality be elements
of a meta-level ‘world’ has been explored in various earlier systems.

Like CLOS, Smalltalk [10] includes the notion of metaclasses. But the concept, though
equal in name, is quite different in the two languages: Each Smalltalk class is an instance
of exactly one metaclass which in turn may only have that one class as its instance.
A class thereby acts like ‘regular’, program-level objects in the sense that it responds
to messages whose effects are determined by its metaclass. In particular, the metaclass
controls the initialization of class variables and also manufactures the class’ instances. But
in contrast to CLOS, the programmer cannot modify metaclasses and use object-oriented
programming at the metalevel to produce special effects.

ObjVlisp [11], which is very similar to CLOS [12], has worked on introducing a full
metalevel class mechanism into Smalltalk-80 [13]. This has led to a kind of ‘metaclass
workbench’ called Classtalk which helps with the construction of metaclass libraries and
provides a metaclass browser.

An interesting angle to metalevel architectures is added by [14] which shows how the
principle can be used in the construction of operating systems.

23

There is a rapidly accumulating body of literature about CLOS and its uses. The
first, second and third “CLOS Users and Implementors Workshops” of 1988-1990 are good
sources for information on a wide spectrum of CLOS aspects. Another report on the use
of the Metaobject Protocol can be found in chapter five of this volume.

3.7 Conclusion

This chapter has attempted to introduce the CLOS programmer to the world that lies
beyond the confines of the language proper. This world is defined and controlled by the
Metaobject Protocol which makes the mechanisms for changing CLOS part of the language
definition and thereby renders it portable.

We have introduced the basic notions of this ‘metalevel world’, giving the reader enough
understanding to appreciate the concepts and to read the somewhat more formal specifi-
cation for more in-depth information.

We believe that the tendency of making systems open should extend beyond areas like
networking to the realm of language implementation, operating systems and databases.
The CLOS Metaobject Protocol approach is an important step in this direction. Expe-
rience during its development has shown that it is difficult to find the correct balance
between standardized degrees of freedom and the needs for optimization, between open-
ness and safety, between flexibility and portability. Writing modular systems is more
difficult initially than building monoliths. Making systems be open and portable is an ad-
ditional dimension which requires additional care and sophistication. The payoff, however,
is worth the investment because the system covers much more ground than it could with
more conventional approaches.

A word of caution is in order at this point. Metalevel programming is still systems
programming. Increased power bears with it additional dangers. Research is needed
to understand which design rules and conventions can be added to the object-oriented
programming style to introduce the necessary measure of safety. We have introduced
the rules that were developed for controlling the use of the Metaobject Protocol. More
experience is needed to find out whether these rules are necessary and sufficient. More
probing still is needed to understand whether they have any universal applicability.

Designing protocols is another area that needs further investigation. The current spec-
ification of the Metaobject Protocol is only slightly more formal than our presentation
in this chapter. Are there good formal ways of specifying behavior at the right level of
detail? Are there indeed formal or informal ways of finding the correct level of detail in
the first place? What definitely has to be specified to ensure portability of modifications
and what must be left open to allow for optimizations? Understanding the nature of pro-
tocol design would go a long way towards making the idea of the CLOS design approach
applicable to systems other than languages, a goal that seems intriguing after seeing the
CLOS Metaobject Protocol as a datapoint.

3.8 Acknowledgements

This work benefited greatly from detailed and insightful suggestions by Daniel G. Bobrow
and Gregor Kiczales. Robin Jeffries contributed through comments on earlier drafts of this
chapter.

24

3.9 Appendix A: Rules for Metalevel Extensions

Different rules apply for implementors of the system and programmers wishing to create
portable code which manipulates the metalevel. We do not address restrictions for imple-
mentors here but concentrate on the ones applying to portable programs. The following
rules all have the same underlying reason: To ensure that new behavior does not modify
ezisting system behavior that is relied upon by others:

o For a metalevel program to be portable it must not redefine existing metaobject
classes, generic functions, methods or method combinations which are explicitly spec-

ified by the MOP.

In syntactic terms this implies that every new metalevel method must have at least
one specializer in its parameters which is not one of the built-in metaobject classes.
This means that writing a :before, :after or :around method which specializes only on
existing metaobject classes can render a program non-portable. Violating this rule
could inadvertently destroy a method provided by the system, or it could cause unex-
pected side effects for programs using the default implementation. The programmer
must produce his own metaobject class and specialize on it.

Allowing the destructive modification of the existing stock of behavior could also
lead to a kind of race condition in which two programs make a modification to the
same piece of behavior. The order in which the programs are loaded would then
determine the final behavior, which is unacceptable.

o Unless explicitly forbidden by the underlying generic function, it is always legal to
extend the behavior of an existing method by writing a new one which specializes to
relevant subclasses as explained above. But the arrangement must ensure that the
original, less specific method will be called. For standard CLOS this means that the
new method must be a :before or :after method, or that it is a primary or :around
method which calls call-next-method. This ensures that any new behavior is added
to the default behavior, as opposed to replacing it.

e Only if a generic function explicitly allows it, may methods be overridden, that is
replaced completely by primary or :around methods that do not use call-next-
method in their body.

Note that MOP generic functions often come in ‘groups’ which must be kept consis-
tent. When overriding one, consistency with the others must be ensured. One ex-
ample is the group add-dependent, remove-dependent and map-dependent. These
groupings are not always explicitly defined in the MOP.

25

3.10 Appendix B: Protocol Overviews

In order to make the MOP specification easier to follow we include here the full summaries
of various protocols that were shortened in the text or are not covered there at all. We
explained in section 3.5.1.1 how these figures are to be read.

Class Definition Protocol:
DEFCLASS
1 Syntax error checking
2 Canonicalize information
3 Obtain class metaobject
(ensure-class, «—— Programmatic entry
ensure-class-using-class) «—— Programmatic entry
3.1 Find or make instance of proper class metaobject class
(make-instance, the :metaclass option) «—— Programmatic entry
3.2 (Re)initialize the class metaobject
((re)initialize-instance)
3.2.1 Default unsupplied keyword arguments/error checking
3.2.2 Check compatibility with superclasses
(validate-superclass)
3.2.3 Associate superclasses with this new class metaobject
3.2.4 Determine proper slot-definition metaobject class
(direct-slot-definition-class)
3.2.5 Create and initialize the slot-definition metaobjects
(make-instance, initialize-instance)
3.2.6 Associate them with this new class metaobject
3.2.7 Check default-initargs
3.2.8 Maintain the ‘subclasses’ lists of superclasses
(add-direct-subclass,remove-direct-subclass)
3.2.9 Initiate inheritance finalization, if appropriate
(finalize-inheritance)
3.2.10 Create reader/writer methods
3.2.11 Associate them with this new class metaobject

Slot Reading Protocol:
SLOT-VALUE-USING-CLASS «—— Programmatic entry
1 Check for existence of slot
(slot-exists-p, slot-missing)
2 Check for slot being bound
(slot-boundp-using-class, slot-unbound)
3 Retrieve the value

26

Class Finalization Protocol:
FINALIZE-INHERITANCE «—— Programmatic entry
1 Compute the class precedence list
(compute-class-precedence-list)
2 Resolve conflicts among inherited slots with the same name
2.1 Determine proper effective slot definition metaobject class
(effective-slot-definition-class)
2.2 Create the effective slot definition metaobjects
(make-instance)
2.3 Initialize the effective slot definitions
(initialize-instance, compute-effective-slot-definition)
2.4 Associate them with the class metaobject
3 Enable/Disable slot access optimizations
(slot-definition-elide-access-method-p)

Method Lookup Protocol:
Generic Function Call
1 Invoke the generic function’s discriminating function
1.1 Find out which methods are applicable for the given arguments
(compute-applicable-methods-using-classes, compute-applicable-methods)
1.2 Combine the methods into one piece of code
(compute-effective-method)
1.2 Run the combined methods
(method-function-applier)

27

Method Definition Protocol:
DEFMETHOD
1 Syntax error checking
2 Obtain target generic function metaobject
(ensure-generic-function, «—— Programmatic entry
ensure-generic-function-using-class) «—— Programmatic entry
2.1 Find or make instance of proper generic function metaobject class
(make-instance, :generic-function-class from defgeneric form)
2.2 (Re)initialize the generic function metaobject
((re)initialize-instance)
2.2.1 Default unsupplied keyword arguments/error checking
2.2.2 Check lambda list congruence with existing methods
2.2.3 Check argument precedence order spec against lambda list
2.2.4 (Re)define any old ‘initial methods’
2.2.5 Recompute the generic function’s discriminating function
(compute-discriminating-function)
3 Build method function
(make-method-lambda)
4 Obtain method metaobject
4.1 Make instance of proper method metaobject class
(make-instance, generic-function-method-class)
4.2 Initialize the method metaobject
(initialize-instance)
4.2.1 Default unsupplied keyword arguments/error checking
5 Add the method to the generic function
(add-method)
5.1 Add method to the generic function’s method set
5.2 Recompute the generic function’s discriminating function
(compute-discriminating-function)
5.3 Update discriminating function
5.4 Maintain mapping from specializers to methods
(add-direct-method)

28

Bibliography

1]
2]

International Organization for Standardization. Basic reference model for open sys-
tems interconnection, 1984.

Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron, David
Black, William Bolosky, and Jonathan Chew. Machine-independent virtual memory
management for paged uniprocessor and multiprocessor architectures. In Proc. 2nd
International Conference on Architectural Support for Programming Languages and
Operating Systems. Computer Society Press, 1987.

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991.

Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya Keene, Gregor
Kiczales, and David A. Moon. Common Lisp Object System Specification. Technical
Report 88-002R, X3J13 Standards Committee, 1988. (Also published in SIGPLAN

Notices, Vol. 23, special issue, Sept. 1988, and in Guy Steele: Common Lisp, The
Language, 2nd ed., Digital Press, 1990.).

Sonya E. Keene. Object-Oriented Programming in Common Lisp. Addison-Wesley
Publishing Company, 1989.

James Bennett, John Dawes, and Reed Hastings. Cleaning CLOS applications with
the MOP. In Gregor Kiczales, editor, Proceedings of the Second CLOS Users and
Implementors Workshop, 1989.

Andreas Paepcke. PCLOS: A Flexible Implementation of CLOS Persistence. In
S. Gjessing and K. Nygaard, editors, Proceedings of the European Conference on
Object- Oriented Programming. Lecture Notes in Computer Science, Springer Verlag,

1988.

Andreas Paepcke. PCLOS: A Critical Review. In Proceedings of the Conference on
Object- Oriented Programming Systems, Languages and Applications, 1989.

ECL programmer’s manual. Center for Research in Computing Technology, Harvard

University, TR-23-74, December 1974.

Adele Goldberg and David Robinson. Smalltalk-80: The Language and its Implemen-
tation. Addison Wesley, 1983.

Pierre Cointe. Metaclasses are first class: The ObjVlisp model. In Norman Meyrowitz,
editor, Proceedings of the Conference on Object-Oriented Programming Systems, Lan-
guages and Applications. Association of Computing Machinery, 1987.

29

[12] P. Cointe and N. Graube. Programming with metaclasses in CLOS. In Proceedings
of the First CLOS Users and Implementors Workshop, 1988.

[13] Jean-Pierre Briot and Pierre Cointe. Programming with explicit metaclasses in
Smalltalk-80. In Proceedings of the Conference on Object-Oriented Programming Sys-
tems, Languages and Applications, 1989.

[14] Yasuhiko Yokote, Fumio Teraoka, and Mario Tokoro. A reflective architecture for an

object-oriented distributed operating system. In Proceedings of the European Confer-
ence on Object-Oriented Programming, 1989.

30

Notes:

1The MOP is not part of the official CLOS standard at this time. Its current state is documented in part
two of [3].

?CLOS was developed using a reference implementation (PCL) which was distributed, critiqued and
improved many times before commercial implementations began to emerge.

3Notable exception: details about slots are kept in another kind of metaobject which is covered in
section 3.4.2 but which is also accessed indirectly through class metaobjects.

“Recall that an initarg is a name that may be associated with a slot and that may later be used in calls
to make-instance to specify an initial value for that slot.

SInteresting protocols we do not cover here include the definition process for generic functions and methods
and the addition of methods to generic functions.

6This assumes that we make cached objects look like regular CLOS objects. This is actually a very useful
way of dealing with caching.

"For efficiency, the persistent? and cached? slot definition metaobjects should not be searched for
during every slot access as is done by the find-if calls in the example. They would be cached in a real
system.

31

Biography:

Andreas Paepcke has been with Hewlett-Packard Laboratories since 1982, working on a
wide range of projects, including an infrared network for terminals and workstations, the
integration of telephone service into workstation environments, transparent persistence of

CLOS objects on a variety of databases and access to information services through
object-oriented views. Mr. Paepcke received his BS and MS degrees from Harvard
University and his Ph.D. in Computer Science from the University of Karlsruhe,
Germany.

32

