
User-Level Language CraftingIntroducing the CLOS Metaobject ProtocolAndreas Paepcke3.1 IntroductionThe idea of open and modular systems is becoming more and more popular in the areasof networking and operating systems. In the former, services like packet transfer may beimplemented in di�erent ways without a�ecting the rest of the system [1]. In operatingsystems, attempts are made to open functions such as memory paging up to change [2].CLOS carries this idea into the realm of language design which has traditionally beenalmost as closed as database implementations.There are many reasons why language implementations should be open. One importantreason is the ever increasing complexity of software development. Its management requirescorrespondingly more sophisticated tools which must obtain detailed language-internalinformation, such as class structure or information about methods. Traditionally designedlanguages often require implementation-speci�c modi�cations to compilers or run-timeenvironments which are non-portable because that information is otherwise not obtainable.As the cost of software development rises, such ine�ciencies in the creation of integratedenvironments become less and less tolerable.The basic idea of the CLOS design is to specify a model for the language implemen-tation and to standardize it. The inner workings of the implementation thereby becomemanipulable in a controlled manner. This internal model is called the CLOS MetaobjectProtocol (MOP)1.The goal of this chapter is to explain the basic idea, the important principles and somedesign issues behind this part of the CLOS language. We make the reader understand whythe approach is important and how it works. The material should be su�cient to provideintuition for deciding when the use of the Metaobject Protocol would be appropriate forsome given application and how to go about its design.This chapter shows selected highlights and is not a replacement for an eventual studyof the speci�cation in part two of [3], although it should make its consumption easier.We have tried to avoid the complexity caused by a formal speci�cation without sacri�cingimportant information on the material we cover. Part one of [3] is a detailed explanationof the principles of protocol-based design, while this is an introduction to the CLOS MOP.Section 3.2 explains what the Metaobject Protocol is about, what it is trying to doand why it is interesting. Most of this material is kept at an abstract level and does notrequire deep knowledge of CLOS particulars.Sections 3.4 and 3.5 are muchmore concrete. They present selected details of the MOPusing an example that is introduced in section 3.3. These sections do assume knowledgeof CLOS as explained in [4, 5].The main body of the chapter closes with pointers to related work and the conclusion.Appendices provide some material about the MOP which is useful for the deeply interestedreader but which are too detailed to include in the text.1

3.2 The Metaobject ProtocolBeyond trying to be a powerful language in general, CLOS has two additional, unusualgoals:� Allowing users and external programs to inspect the internals of CLOS environments.� Allowing external programs to extend the CLOS language itself without modifyingexisting implementation code and without a�ecting other, existing programs.The �rst of these goals is particularly relevant for the construction of browsers that aidin software development, such as class hierarchy layout displays, and for the implementa-tion of other system analysis tools, such as debuggers. Inspecting the internals includes,for example, the ability to programmatically determine the class structure of a program| without scanning and parsing source code, or to �nd out which methods are specializedon some class.The ability to extend or modify the language is necessary to enable experimentationand adjustments to CLOS behavior which may be required to satisfy new applicationsor system environments. This might include control over how slots are accessed or howinstances are made. Enabling non-instrusive modi�cations can signi�cantly increase returnon the investment of designing and building a language because it can be made applicableto a wider range of consumers.Let us take a �rst-level look at how these objectives are addressed in CLOS. Theapproach is at this level quite applicable to designs of other systems that share these goals.3.2.1 Design Premise and ChallengesWhen we study the basics of CLOS internals with focus on their openness and
exibility,it is convenient to separate static from dynamic aspects. This partitioning roughly re
ectsthe two goals of the CLOS internal design we listed above and provides a way of organizingthe material in our mind.The static part of the CLOS design may be called its metalevel architecture. It describesthe components of the system, its structural and procedural building blocks and how theyare put together. Examples of major building blocks are the manifestations of classes, slotsor methods in the language's implementation.The dynamic part is described in terms of protocols which prescribe the manipulationsof the building blocks that must be performed to e�ect the behavior of the language atrun-time. For each `behavior pattern' of the language, one or more protocols specify howthe building blocks must change and interact. Example: everything that is supposed tohappen in a CLOS system when a new class is de�ned is governed by the class initializationand �nalization protocols. They specify the language-internal building blocks and run-timeactivities that together e�ect the de�nition process.Thus we distinguish between the language itself and a `metalevel' where its concepts aredescribed abstractly and then implemented. This metalevel world has collectively becomeknown as the CLOS Metaobject Protocol and is the focus of this chapter.Every reasonably designed system has the characteristics we described so far: an exter-nal speci�cation of behavior and an internal, hopefully modular model and its implementa-tion. The step CLOS is attempting to take beyond this is to export the internal model, tostandardize it and to make it part of the �nal product itself. This �nal step is what givesthis language the desired
exibility and which makes it go beyond many other systems.2

Inspect + Modify = Open System

Public
Metalevel Arch

+ Public
Protocols = ImplementationFigure 3.1: The Top-Level CLOS Design PremiseThe means to modify CLOS have become part of the language and are therefore madeas portable as the language itself.Figure 3.1 tries to illustrate how the metalevel architecture representing statics, andthe protocols representing dynamics together make up the CLOS design. The �gure alsosuggests that the existence of these two explicit, standardized components enables us toinspect internals and to modify behavior, which in turn implies that CLOS is an opensystem | an unusual trait for a language.All this sounds rather obvious and straight-forward. But designing such a system isdi�cult. The challenge begins when the proper break-down into building blocks must bedecided. This break-down determines how cleanly the eventual implementations will beable to re
ect the internal model. It can also determine how far modi�cations to onebuilding block need to propagate through the system to other building blocks. These are,of course, crucial issues because the organized manipulation of the internal model are theway of modifying the implementation. Clean relationships between them are thereforeimportant.An even more di�cult challenge than �nding the proper break-down for the internalmodel is to �nd the level of detail to which protocols must be speci�ed. An incorrect levelnot merely causes inconvenience, but it can lead to system failure. If too much detail isspeci�ed, implementations do not have enough room to introduce necessary optimizations.If too little is speci�ed, it becomes unclear where and how modi�cations must be properlyintroduced to e�ect some desired change in behavior. This can lead to a loss in portabilityof the modi�cations.When trying to �nd the proper balance for standardization questions like these, de-signers face the dilemma that sample applications are needed to �nd where the system'sdegrees of freedom should be placed. Obtaining a signi�cant number of such applications,however, almost requires the a priori existence of the standard. Building an open sys-tem like this is therefore generally much more time consuming and frustrating than theconstruction of a more traditional design2. But the payo� is considerable.3.2.2 Implementation of the Design PremiseWe have so far spoken of `building blocks' and `behavior' in the abstract. What arethese in the concrete case of CLOS? It is a very convenient characteristic of the `CLOS-producing metalevel world' that it is itself written in CLOS. This unity of language is calledmeta-circularity. The language is itself a CLOS program which is manipulated throughtechniques of object-oriented programming. This is accomplished through appropriatebootstrapping facilities which do not need to concern us here. The ability to modify thelanguage's implementation without leaving the realm of the language is called re
ection.3

Unity of language makes the life of the metalevel manipulator much easier. Instead of need-ing to learn a new con�guration or implementation language, we can freely move between`regular programming' and metalevel programming without having to switch languagesand our way of thinking.In particular, the metalevel architecture is de�ned and implemented as a CLOS classhierarchy. Instances of these classes implement elements of the CLOS object model atrun-time. CLOS classes or methods, for instance, are themselves instances of classes atthe metalevel. We will introduce these classes in section 3.4. Extensions to this static partof the CLOS implementation are made by subclassing the classes at the metalevel.The dynamics of CLOS are captured in a set of generic functions and methods special-ized on these classes. The protocols describe the main activities of these generic functionsand explain which of them must be invoked to implement the behavior patterns of the lan-guage. Extensions and modi�cations of the dynamic part of CLOS are therefore usuallyimplemented by de�ning new methods on existing system generic functions.This uniformity of the metalevel and CLOS-level worlds does have the potential ofcausing confusion in that we must keep track of whether we are, for instance, talkingabout classes a regular programmer would de�ne, or classes at the metalevel, which arepieces of the CLOS implementation.The term metaobject class is used to denote a class at the metalevel. Instances of theseclasses are called metaobjects. A metalevel instance that implements a CLOS genericfunction or a CLOS programmer-level class is therefore a metaobject.3.2.3 A More Detailed ViewLet us pull together what we know so far about the CLOS design and its metalevel worldand add some new pieces.Figure 3.2 shows how we could view the system. A regular user of CLOS would be atthe bottom of the �gure `looking up'. Regular programmers do not modify the languageitself. They create metaobjects through de�nitional macros, such as the familiar defclass,defmethod or defgeneric. They unwittingly use these metaobjects by such activities ascreating instances of classes and invoking generic functions.Metalevel programmers perform the same activities, but they also handle metaobjectsmore consciously. In particular, they use mechanisms such as find-class, find-method orsymbol-function which take a name and return an associated metaobject. Find-class,for example, takes the name of a programmer-level class and returns the metaobject thatimplements it.Metalevel programmers also work with the static and dynamic parts of the languageimplementation by subclassing and by adding methods to system generic functions.At the center of �gure 3.2's upper portion we see the snapshot of a run-time collection ofmetaobjects which implement some running CLOS program. They are surrounded by themajor design components which control them: the metaobject class hierarchy de�ning thestatic setup of the metalevel world. The exported, standardized system generic functionsand methods which provide the implementation of the dynamic aspects and the protocolcomponent which controls what the dynamic component does.The next section explains some restrictions that are imposed on manipulations of theinternal model. 4

Protocols

Statics

Metaobject
Class

Hierarchy

Dynamics

Modifiable
System

Functions &
Methods

CLOS Programmer

Metalevel Programmer

Metaobjects

Create named
MOs

Use
MOs

Find named
MOsFigure 3.2: The Overall CLOS Design3.2.4 Curbing ChaosWe have seen that the main tools of the metalevel programmer are subclassing and thede�nition of methods on exported system generic functions. Indiscriminate use of thesetools can prevent a system from functioning properly. The problem lies in the fact thatprogrammers build modules under the assumption that the language they work with isimmutable. If the loading of one module changes the language, other modules can failunless special care is taken.The MOP does not include enforced safeguards against con
icts arising from metalevelmanipulations. Instead, there are rules regarding these activities which are intended toensure that extensions made at the metalevel are portable and do not destroy the sys-tem for other programs running in the same environment. One reason for such extremeopenness is that radical modi�cations do have their place. One example has been thereduction of CLOS to a very small, fast, low-functionality delivery kernel after the comple-tion of program development [6]. In general, however, programs will need to be portable,which means that they will need the ability to coexist with other, independently producedprograms. This includes metalevel programs.The rules regarding metalevel work all have the same purpose: To ensure that newbehavior does not change existing system behavior that is relied upon by others. AppendixA contains a list of these rules.Before we begin to introduce details of the Metaobject Protocol, we describe the skele-ton of an application which we will use throughout the subsequent sections to illustratehow all the facilities can be put to use. 5

3.3 An Example ProblemAs an example for the use of the Metaobject Protocol let us imagine that we want to addpersistence to the objects in CLOS programs [7, 8].We assume that objects may be either transient or persistent. The state of each persis-tent object is stored in a database and retrieved from there as needed. We make objectspersistent by sending them the message make-persistent. This will cause the databaseto be prepared to receive the object's state and will then transfer the state there.Objects may be cached, which means that their state is withdrawn from the databaseand stored in memory until it is explicitly returned to the database. Whether a persistentobject is cached or not, it is always possible to send messages to it as if it were transient.There is to be no semantic di�erence between these object states, other than the persistenceof values. If a slot of an uncached, persistent object is read, the slot value is retrieved fromthe database and returned as if it had been stored in memory. Slot updates are propagatedto the database.For reasons of e�ciency and for some other technical reasons, it is desirable to allowindividual slots to be transient. The value of a transient slot is not placed in the databasebut is always memory-resident, even if the object as a whole is made persistent. Theprogrammer may declare individual slots to be transient when the class is being de�ned.In cases where some slot is provided by more than one superclass, we assert that transienceis legal for the slot only if all superclasses have declared it to be transient. Otherwise itmust be made persistent.One tricky problem is caused by class rede�nition, which CLOS makes easy to accom-plish: we must create some appropriate schema in the underlying database which corre-sponds to the class hierarchy of the program that will generate the persistent instances.If this hierarchy changes, the schema will have to evolve as well. We will not cover howthis can be accomplished in the database | that is a research issue in itself. We willmerely point out how we can use the MOP to cause schema evolution to be initiated whennecessary.Given this problem description, how must we change the behavior of standard CLOSto accommodate a solution:� We must be able to programmatically examine classes so that we can build appro-priate schemas in the underlying database.� The de�nition and rede�nition of classes must be trapped to allow schema creationand evolution to be triggered.� We need to manipulate the class inheritance.� A new slot option must be introduced into the language to allow slots to be declaredtransient.� Information about which slots are transient must be stored somewhere in the run-time system.� Without the programmer being aware, internal information must be kept with eachinstance that is created. An important such piece of information is whether thatparticular instance is currently persistent or not.� Additional information must be kept with each class. This might include informationabout how the database must be accessed or special caching policies for instances ofthat class. 6

� Slot access must be intercepted to implement faulting to the database.Even a cursory glance at this list of requirements shows that these are signi�cantmodi�cations to any language and cannot be accomplished by working outside the languageimplementation. Our strategy will be to de�ne a class metaobject class called persistent-metalevel-class. When a programmer de�nes a class whose instances are to have thepotential of being persistent, she speci�es that persistent-metalevel-class is to providefor that class' implementation.We will de�ne a programmer-level class persistence-root-class which providessome methods for persistent objects, such as cache and make-persistent. We will havepersistent-metalevel-class take care of mixing that class into persistent user classestransparently.Clearly, a full-scale persistent object system will need to do more than what we describein this skeleton, but it turns out that this subset covers the language incisions that arenecessary for such systems. It is therefore well suited to illustrate what we have to sayabout the details of the Metaobject Protocol.In the following section we go into the details of the MOP's structural parts.3.4 Metalevel StaticsWe explained above that the structural part of the Metaobject Protocol re
ects a break-down of CLOS into basic concepts which is itself re
ected in the metalevel class hierarchy.It is, of course, important to understand this hierarchy, as it is the key to making structuralmodi�cations and to accomplishing inspection of program internals.The main building blocks are:1. Classes2. Slots3. Methods4. Generic Functions5. Method combinationEach of these is represented by a class subtree at the metalevel whose terminals are thesources of the corresponding metaobjects.
class slot-definition generic-function method method-combination

standard-object

TFigure 3.3: The Top-Level MOP Class Hierarchy7

Figure 3.3 summarizes this.In this section we will take several of these building blocks in turn and will explaintheir structural properties. Please note that we will not show the complete subtrees ofa typical CLOS implementation. We try to extract the subclasses most likely to be ofgeneral interest to avoid confusion. It should not be necessary to understand more of thehierarchy.Remember that the interface to the metalevel world provides us with powerful ways of�nding out about the structural properties covered here. We can use find-class <class-name-symbol> to obtain instances of any of the class metaobjects we talk about. Usingdescribe on those will reveal much useful information. Browsing the implementation inthis way is indeed a very good way of getting acquainted with the system.3.4.1 The Class Metaobject ClassThe most frequently inspected and modi�ed building block is the CLOS class since manyimportant methods are de�ned on it and it contains a large amount of information usefulfor debugging and program maintenance. As a rule of thumb, if desired information isusually speci�ed in a defclass, the resulting class metaobject is the place to �nd thatinformation later on3. Standard CLOS comes with several class metaobject classes builtin.
class

standard-classbuilt-in-class forward-referenced-classFigure 3.4: The Class Metaobject Class SubtreeFigure 3.4 shows some of these. The most important is standard-class since itsinstances are the metaobjects which by default implement the classes a programmer de�neswith the defclass macro. Most new metaclasses a user might want to write will besubclasses of standard-class and we concentrate on it here. But since most metalevelwork tends to cause programmers to come across some of the others in passing, we mentiontheir role brie
y:Instances of built-in-class implement classes that are not speci�ed using defclassbut are pre-constructed by CLOS implementations. Examples are classes that are madeto correspond to standard CommonLisp types. Built-in-class metaobjects have variousspecial properties, like the fact that they may not be rede�ned.The forward-referenced-class is used when a programmer de�nes a class whosesuperclasses are not yet de�ned. In that case a metaobject of class forward-referenced-class is created to act as a `place holder' until the superclass is de�ned later on.The following information is kept in a standard-class metaobject. It is easy to seethe correspondence between what a defclass speci�cation contains and the informationlisted here. Indeed, the class metaobject is where most of the defclass entries end up.This information is available and we list the published reader function names for each ofthe items in parentheses. 8

As an example for the use of this information, assume the existence of a programmer-level class train. We could �nd its direct superclasses through:(class-direct-superclasses (find-class 'train))� The slots of the class are kept as a list of slot metaobjects. Reader class-slotsreturns all slots, including the inherited ones, class-direct-slots returns just theones de�ned for this class explicitly.� The super- and subclasses are stored as a list of class metaobjects (class-direct-superclasses and class-direct-subclasses).� The class precedence list is recorded as a list of classmetaobjects (class-precedence-list).� The default initialization arguments for the class are kept. Reader class-default-initargs returns all initargs, including the ones inherited from superclasses whilereader class-direct-default-initargs returns only the ones speci�ed for the re-spective class directly.� Information on whether the class has already been �nalized is also available (Thiswill be false if, for example, there were unde�ned superclasses at the time the classmetaobject was created.) (class-finalized-p).We can now introduce the �rst of the modi�cations our persistent object examplerequires: the storage of additional information in class metaobjects. We de�ne a newmetaclass:(defclass persistent-metalevel-class (standard-class)((checked-schema-congruence-p :initform NIL:reader class-checked-schema-congruence-p)))It adds a new slot to class metaobjects which allows us to record whether we havechecked that the structure of the class conforms with any schema we might have builtearlier in the database to hold persistent objects of this class.Now we can de�ne our �rst persistent programmer-level class:(defclass hypertext-node ()((contents :initform "" :accessor contents)(in-links :initform NIL)(out-links :initform NIL))(:metaclass persistent-metalevel-class))This is a good time to make sure that easy-to-arise confusion between the metaleveland the regular CLOS level is avoided: at this point we have a programmer-level CLOSclass called hypertext-node which contains the three slots contents, in-links and out-links. This class is all a regular CLOS programmer ever works with. If we now moveinto the metalevel world, we �nd out that this class is in reality a metaobject which is aninstance of the class metaobject class called persistent-metalevel-class. Since thatinherits from standard-class, it presumably has some slots we have no access to (the9

reader functions listed earlier provide all the information we are supposed to have). Butwe have added the additional slot for the schema congruence check whose value is availableto us. This slot is therefore part of the metaobject, not part of any future programmer-levelinstances of hypertext-node.With this clari�ed, let us get a hold of the class metaobject and �nd out some detailsabout it (system responses are indented):(setf hypertext-class-metaobject (find-class 'hypertext-node))(class-direct-slots hypertext-class-metaobject)(#<Standard-Slot-Definition CONTENTS>#<Standard-Slot-Definition IN-LINKS>#<Standard-Slot-Definition OUT-LINKS>)(class-precedence-list hypertext-class-metaobject)(#<Persistent-Metalevel-Class HYPERTEXT-NODE>#<Standard-Class STANDARD-OBJECT>#<Standard-Class T>)(class-checked-schema-congruence-p hypertext-class-metaobject)NILWe can also begin to add some behavior to our new metaclass which allows us tobuild a database relation based on the slots of the class and to record in the database someinformation about the class itself. We assume that we have a database object *database*.This object may be used for calls to generic functions that manipulate a database consistingof tables. We assume further that the database contains a special table called \master-class-table" which we initialized earlier and in which class-related information is stored.Tables can be searched by key and we can add and delete rows:(defmethod create-schema ((class persistent-metalevel-class))(create-table *database* (class-name class) (class-slots class)))(defmethod store-class-structure ((class persistent-metalevel-class))(unless (find-entry *database* 'master-class-table (class-name class))(add-row *database*'master-class-table(class-name class)(class-slots class)(class-precedence-list class))))3.4.2 The Slot-de�nition Metaobject ClassSlots in CLOS and other object-oriented languages are more than a physical place tostore a value. Issues of typing, initialization and accessability must be remembered andmanaged. This is why the second major building block of the Metaobject Protocol isthe slot-definition metaobject. We use the class-slots generic function on the classmetaobject to get a hold of slot-definition metaobjects. Recall that this returns a listof the class' slots. 10

slot-definition

standard-direct-slot-definition standard-effective-slot-definition

standard-slot-definitionFigure 3.5: The Slot-de�nition Metaobject Class SubtreeFigure 3.5 shows part of the relevant metaobject class subtree. We see that thereare two main branches: standard-direct-slot-definition and standard-effective-slot-definition. Instances of the �rst hold the `raw', `untreated' slot-related informa-tion from the class de�nition form, while instances of the second hold information thatre
ects the actual, run-time properties of the slots after the CLOS inheritance rules havebeen applied. If, for instance, a slot is de�ned with the :initarg slot option4set toa value di�erent from the same option in a slot it shadows, the standard-direct-slot-definition will show the child's initialization argument, while the standard-effective-slot-definition will show a list of the initialization arguments containing both the child'sand the parent's speci�cation.Recall that we can extract a list of direct slot de�nitions and e�ective slot de�nitionsfrom a class metaobject class by using the two accessors class-direct-slots and class-slots respectively. Once we have a slot de�nition metaobject in hand, we can extract thefollowing information:� The slot name, type and allocation may be obtained through slot-definition-name, slot-definition-type and slot-definition-allocation, respectively.� The initialization form that was supplied in the defclass may be retrieved froma slot-definition by means of slot-definition-initform. If such an initformhas been supplied, the initialization process of the class will also have provided afunction with no arguments which returns the initform value. Thus, if a slot was de-�ned with the :initform option (+ 1 2), the method slot-definition-initformwill return (+ 1 2), while slot-definition-initfunction returns something like:#<Interpreted-Function (LAMBDA NIL (+ 1 2)) 1238467>. The form (funcall(slot-definition-initfunction <slot-definition-metaobject>)) returns 3.� The methods slot-definition-initargs, slot-definition-readers and slot-definition-writers return lists of the slot initialization argument(s) and reader/writerfunction speci�er(s), respectively.Note that the slot value is not stored in the slot de�nition metaobjects. Remember thatthere is only one such slot de�nition metaobject per slot per class. Since every instancehas its own value for the slot, such an implementation would be incorrect.Our persistent object system will augment the internal representation of slots by addinginformation on whether a slot is transient: 11

(defclass persistent-standard-direct-slot-definition(standard-direct-slot-definition)((transientp :initform NIL :reader slot-definition-transient-p)))(defclass persistent-standard-effective-slot-definition(standard-effective-slot-definition)((transientp :initform NIL :reader slot-definition-transient-p)))In section 3.5 we will see how the MOP may be in
uenced to use these classes insteadof their parents when constructing one of our persistent classes.3.4.3 The Method Metaobject ClassMethods are the next building block of the Metaobject Protocol. The metaobjects thatimplement them hold all the information associated with methods. This includes theinformation speci�ed in the de�ning defmethod. We can get a hold of method metaobjectsby using find-method as follows:(find-method <generic-function-meta-object><list-of-qualifier-keywords><list-of-class-metaobjects>)
method

standard-method

standard-accessor-method

standard-reader-method standard-writer-methodFigure 3.6: The Method Metaobject Class SubtreeFigure 3.6 shows part of the relevant metaobject class subtree. In order to illustratethe kind of information we can extract from method objects, let us de�ne two hypotheticalmethods for the persistent hypertext class de�ned earlier on:(defmethod linking ((source-node hypertext-node)(destination-node hypertext-node))(push destination-node (slot-value source-node 'out-links))(push source-node (slot-value destination-node 'in-links)))The following :before method allows us to observe the linking together of nodes at run-time: 12

(defmethod linking :before ((source-node hypertext-node)(destination-node hypertext-node))(format t "Creating link from ~S to ~S.~%"source-node destination-node))Here is how we can obtain the method metaobjects that implement these two methods:(let ((linking-gen-func (symbol-function 'linking)))(setq *primary-method* (find-method linking-gen-funcnil(list (find-class 'hypertext-node)(find-class 'hypertext-node))))(setq *before-method* (find-method linking-gen-func'(:before)(list (find-class 'hypertext-node)(find-class 'hypertext-node)))))Let us see some of what we can �nd out about these two methods:� The generic function a method is currently associated with is returned by method-generic-function as a generic function metaobject.� We can �nd the lambda list and the list of specializers of a method by using method-lambda-list and method-specializers. Both return lists. The �rst is a list of theargument names without any of the classes they are specialized to. The second is alist of class metaobjects. For both of our methods these would be:(SOURCE-NODE DESTINATION-NODE)(#<Persistent-Metalevel-Class HYPERTEXT-NODE>#<Persistent-Metalevel-Class HYPERTEXT-NODE>)� The quali�ers of a method, �nally, are obtained through method-qualifiers. Thisreturns a list of quali�er speci�cations as they are used in the defmethod macro. Ourprimary method would return NIL, the :before method would return (:before).This concludes our look at the static part of the Metaobject Protocol. The informationpresented should be su�cient to extract a large amount of interesting information from therun-time environment of a CLOS program. In the next section we turn to the dynamicsof the Protocol.3.5 Metalevel DynamicsWhen we want to go beyond inspection to modifying the behavior of the language, we willoften modify the static part of the MOP by subclassing. Most of the time we will thenneed to modify parts of the dynamics as well. Many times this will involve initializing newinformation we keep in our metalevel subclasses. Sometimes there will be other run-timework to be taken care of as well. The goal of this section is to explain the sequencesof events that take place to e�ect some of the major behavior patterns of CLOS. Thisinformation should be su�cient to locate where to `hook in' to change these patterns.As explained in section 3.2, the dynamics of the MOP are captured in a set of protocols.Here is a list of some major ones: 13

� The class initialization and class �nalization protocols control what happens when anew class is de�ned.� The instance initialization protocol describes what goes on when a new instance iscreated and readied for use.� The dependent maintenance protocol helps in maintaining relationships amongmetaob-jects. Examples are classes and their subclasses, or generic functions and their meth-ods.� The method lookup protocol determines how the correct method is found when ageneric function is invoked.� The instance structure protocol attempts to formalize just enough of the implemen-tation of instance access to allow for organized modi�cation, while leaving su�cientfreedom for implementors.We will begin with a tour through the process of de�ning a new class. The creationand initialization of slot metaobjects is part of this process. This will be followed by adescription of how slot access works5.A theme common to most of metalevel CLOS initialization is that a user's de�ni-tional macros, such as defclass are checked for errors. Then the information supplied isbrought into a canonical form that makes further processing easier. Once this has beenaccomplished, metalevel functions are invoked to create metaobjects and to initialize them.After the error checking and canonicalization, these processes are the same whetherthey were initiated by the execution of a de�ning macro, or whether they were begun byprograms. There is, for instance, a speci�c point in the processing of a class de�nition whereprograms wishing to de�ne a new class would begin. We will point out those programmaticentry points into the metalevel machinery as we encounter them.3.5.1 Class De�nitionWhen CLOS classes are �rst de�ned, their superclasses need not necessarily have beende�ned yet. Class metaobjects must therefore be created and initialized as far as possible,without necessarily knowing all necessary details. Later, once all information is available,the inheritance of the class is �nalized. The following two subsections explain how thishappens.3.5.1.1 InitializationFigure 3.7 gives a simpli�ed overview of what happens during class initialization. A fulloverview is available in appendix B. This �gure, and similar ones later on in the text, listthe various activities that must take place during the course of the protocol. A series ofindented subactivities below an entry shows the steps necessary to accomplish that entry.For example, (re)initialization of the class metaobject involves the superclass compatibilitycheck and the other subactivities at the same level of indentation. Successive levels ofindentation thus represent increasing levels of detail.Generic functions listed below an entry in parentheses are responsible for accomplishingthat entry's task, often with help from the functions listed further down the list. Whenappropriate, we point out in the �gures the functions through which programsmay initiateprotocols that are normally initiated through macros, such as defclass. The �gures serve14

two purposes: to give a quick overview of a protocol and to show the `hooks' available toe�ect changes.DEFCLASS1 Syntax error checking2 Canonicalize information3 Obtain class metaobject(ensure-class, � Programmatic entryensure-class-using-class) � Programmatic entry3.1 Find or make instance of proper class metaobject class(make-instance, the :metaclass option) � Programmatic entry3.2 (Re)initialize the class metaobject((re)initialize-instance)3.2.1 Check compatibility with superclasses(validate-superclass)3.2.2 Determine proper slot-de�nition metaobject class(direct-slot-definition-class)3.2.3 Create and initialize the slot-de�nition metaobjects(make-instance, initialize-instance)3.2.4 Maintain the `subclasses' lists of superclasses(add-direct-subclass,remove-direct-subclass)3.2.5 Initiate inheritance �nalization, if appropriate(finalize-inheritance)Figure 3.7: Summary of the Class Initialization ProtocolLet us touch on the main pieces of the class initialization process a step at a time.DEFCLASS Expansion. The goal of the defclass macro expansion is to produce a call tothe function ensure-class which will create the actual class metaobject. It is also usedfor rede�ning existing classes.ensure-class <name> &key :environment&allow-other-keysNote that this is a regular function, not a generic one because when it is called we have noinstance whose class we would specialize to. To illustrate the processing from defclassto ensure-class, consider the following subclass of our hypertext node:(defclass monitored-hypertext-node (hypertext-node)((access-count :initform 0 :accessor access-count)(security-level :reader security-level))(:metaclass persistent-metalevel-class))Here is roughly what we will end up with when this macro is expanded:15

(ensure-class 'monitored-hypertext-node':direct-superclasses '(hypertext-node)':direct-slots (list (list ':name 'access-count':initform '0':initfunction #'(lambda () 0)':readers '(access-count)':writers '((setf access-count)))(list ':name 'security-level':readers '(security-level)))':metaclass 'persistent-metalevel-class)We see that all but the name information from the defclass form is passed to ensure-class through keyword arguments. The speci�cation of slots deserves special attention.It is the result of step 2 in �gure 3.7 and takes the form of a list of canonicalized slotspeci�cations. Each of these is itself a list of keyword-value pairs which will be used askeyword arguments when making slot-de�nition metaobjects later on.This technique of preparing information into a form that can be used directly as aninitialization argument later on is a common canonicalization method in the MOP and wewill see other examples of it.The :initform entry relays the form that was speci�ed in the class de�nition. The:initfunction entry is a function that, when called, will return the proper initial value.The next step in the initialization process happens in the generic function ensure-class-using-class which is the workhorse of ensure-class and is specialized to a par-ticular class metaobject class or to null.ensure-class-using-class <class> <name> &key :metaclass:direct-superclasses:environment&allow-other-keysIt is called either with a class metaobject bound to <class>, indicating that we wishto rede�ne a class, or with NIL, indicating that we are to create a new one.Make-instance is used to create new class metaobjects and the regular CLOS instanceinitialization procedures are used to get the class ready for use: initialize-instancetakes care of �xing up a new class, reinitialize-instance handles existing classes thatare to be rede�ned. Here is what the class initialization protocol calls for when de�ning anew class metaobject.Superclass Compatibility Check. The �rst job is to convert the superclass namesfrom the defclass form into class metaobjects and to make sure there is no clash. Thiscan happen, for instance, when the class being de�ned and one of its superclasses are ofdi�erent metalevel classes. The compatibility check is done by the generic function:validate-superclass <class-metaobject> <superclass-metaobject>When constructing a new class metaobject class, the designer must decide whether aprogrammer-level class implemented by his new metalevel class and inheriting from asuper that is implemented by a di�erent metalevel class would lead to inconsistencies.Unless we de�ne a method on validate-superclass, the following will lead to anerror because the proper :metaclass option was not speci�ed and the system thereforedefaulted to using standard-class: 16

(defclass simple-hypertext-node (hypertext-node)((slot1)))If we were sure that our new metaclass followed a protocol compatible with standard-class, we would provide:(defmethod validate-superclass((class persistent-metalevel-class)(superclass standard-class))t)This would make the above class de�nition work. Note that incompatibilities can bea pervasive problem because they prevent the user from inheriting existing superclasseswhich are not under his control. If, for instance, someone else had provided an interesting`text display' class facility that we want to reuse by mixing it in with hypertext-nodes,we must either certify compatibility in a validate-superclass method, or that providermust be asked to change his class to use the :metaclass persistent-metalevel-classoption in his class de�nition.Slot De�nitions. Next in the process of class de�nition is the creation of an appropriateslot-de�nition metaobject for each slot which contains the `untreated' information speci�edin the defclass de�nition. Recall that `untreated' means that slot con
icts with inheritedattributes have not been resolved yet. Once these metaobjects exist, dealing with theslots in the later stages of class initialization and �nalization will be more convenient.The generic function direct-slot-definition-class is called with the class metaobjectand the canonicalized slot de�nitions to �nd out which slot-de�nition metaobject classshould be instantiated to implement each slot. This allows the slot implementation tobe controlled either by the class metaobject class or by new slot options an implementormight introduce.The choice of slot implementation is something we need to take care of in our persistenceexample. Recall that we de�ned a new persistent-standard-direct-slot-definitionmetaobject class and we must make sure that it is used, instead of standard-direct-slot-definition:(defmethod direct-slot-definition-class((class persistent-metalevel-class) initargs)(declare (ignore initargs))(find-class 'persistent-standard-direct-slot-definition))This will ensure that all slots in persistent classes will be implemented with our slotmetaobjects. The initargs contain the information about the slot that was provided inthe defclass form, such as :initform, :allocation or :type. This information may beneeded by some methods on this generic function to make their decision, though we donot require it for our purposes here.Creating Slot De�nitions. When make-instance is used to create a direct slot de�ni-tion, all the slot options from the defclass form are passed in as initialization arguments.The standard-direct-slot-definition metaobject classes therefore have initializationarguments corresponding to each legal slot option. These arguments are then processedand installed in the direct slot de�nition metaobject as we have seen in section 3.4.We will need to make some changes to introduce our new :transient slot option intothe system. As things stand, a class de�nition, such as:17

(defclass foo ()((slot1 :transient t)))would produce an error, such as:>>Error: Invalid initialization argument :TRANSIENT for classSTANDARD-DIRECT-SLOT-DEFINITIONIn order to allow this new option, we modify our de�nition for slot metaobjects introducedin section 3.4.2 to include an :initarg option:(defclass persistent-standard-direct-slot-definition(standard-direct-slot-definition)((transientp :initform NIL:initarg :transient:reader slot-definition-transient-p)))(defclass persistent-standard-effective-slot-definition(standard-effective-slot-definition)((transientp :initform NIL:initarg :transient:reader slot-definition-transient-p)))After the appropriate direct slot de�nition metaobject has been created and initializedfor each slot speci�ed in the defclass, the list is kept with the metaobject so that class-direct-slots can retrieve and return it.Maintaining Class Hierarchy Pointers. Recall that we are to be able to ask for alldirect super- and subclasses of any class. Since we validated and recorded the superclassesof our new class as part of this initialization process earlier, we know how the informationfor the former is obtained. But something must still be done to maintain the informationfor the latter. This is done through the generic functions:add-direct-subclass <superclass-metaobject> <class-metaobject>remove-direct-subclass <superclass-metaobject> <class-metaobject>When a class is �rst de�ned, a call is made to add-direct-subclass for each of the newclass' supers. In case of reinitialization, a combination of both functions is used to ensurethat all class `downpointers' are correct.With this the initialization process of the new class metaobject is complete. At somepoint between now and the time the �rst instance is made, the �nal, inheritance-relatedissues must be resolved.3.5.1.2 Inheritance FinalizationThe class �nalization protocol is responsible for controlling everything that has to do witha class' inheritance.Figure 3.8 shows what needs to happen during the �nalization of a class. A full overviewis included in appendix B.Let us go through the protocol a step at a time.18

FINALIZE-INHERITANCE � Programmatic entry1 Compute the class precedence list(compute-class-precedence-list)2 Resolve con
icts among inherited slots with the same name2.1 Determine proper e�ective slot de�nition metaobject class(effective-slot-definition-class)2.2 Create the e�ective slot de�nition metaobjects(make-instance)2.3 Initialize the e�ective slot de�nitions(initialize-instance, compute-effective-slot-definition)Figure 3.8: Summary of the Class Finalization ProtocolThe Class Precedence List. The generic function:compute-class-precedence-list <class-metaobject>computes the linearized list of class metaobjects that are in the hierarchy above the classbeing �nalized. The default methods do this according to the rules of o�cial CLOS. We willmake a small change here that causes all persistent classes to inherit a class which providessome persistence-related methods, such as cached?, persistent?, make-persistent andso on. We �rst de�ne that class:(defclass persistence-root-class ()((persistent? :initform T)(cached? :initform NIL))(:metaclass persistent-metalevel-class))We see that this service class also introduces some slots that are used for house keeping.This is our way of adding system information to each instance of our persistent world.Now let us `sneak' this class into the class precedence list of every persistent class. We dothis right when a class is de�ned.The member-if statement in the following method looks at each superclass in turn and�nds out whether any of them is a persistent class. If yes, that super already providesthe service class through inheritance and we do nothing special. Otherwise we add ourservice class to the list of direct superclasses. The apply is necessary to make the keywordmanipulation work:(defmethod initialize-instance :around((class persistent-metalevel-class)&rest all-keys&key direct-superclasses)(let ((root-class (find-class 'persistence-root-class))(pobjs-mc (find-class 'persistent-metalevel-class)))(if (member-if#'(lambda (super)(eq (class-of super) pobjs-mc)) direct-superclasses)19

(call-next-method)(apply #'call-next-methodclass:direct-superclasses (append direct-superclasses(list root-class))all-keys))))The next major step in the class �nalization is the coalescence of slots: The systemneeds to �nd the slots that are de�ned in multiple classes and must resolve any con
ictsthat arise in the details of their speci�cations, such as required value type or initialization.Resolving Slot Inheritance Con
icts. The �rst entry point to the slot coalescenceactivity is:compute-slots <class-metaobject>Its �nal outcome is a list of effective-slot-definition metaobjects, each of whichcontains all information about one coalesced slot. Compute-slots �rst collects groups ofall like-named direct slot de�nitions from the superclasses and then repeatedly calls thegeneric function:compute-effective-slot-definition <class-metaobject><slot-name><direct-slot-definitions>There is one call to this function for each group of con
icting slots. Each time, a singleeffective-slot-definition metaobject is created and returned. As explained earlier,the complete list of these is available through class-slots when the process is �nished.As an example, consider a class and its superclass which both provide a slot named`contents'. The class initialization procedures of the two classes would each have pro-duced one direct-slot-definition metaobject which would be kept with the respec-tive class metaobject. During �nalization of the subclass, compute-slots would con-struct a list of these two direct-slot-definition metaobjects and would call compute-effective-slot-definition with that list. The result would be a single effective-slot-definition metaobject that records the `net' properties of the slot for instances ofthe subclass.Analogous to the mechanism that allowed ensure-class-using-class to create properdirect slot de�nition metaobjects, the generic function effective-slot-definition-class is used to determine which metaobject class should be used for e�ective slot def-inition metaobjects. Recall that we de�ned persistent-standard-effective-slot-definition earlier on and we need to ensure that the system uses this class instead of thedefault:(defmethod effective-slot-definition-class((class persistent-metalevel-class) initargs)(declare (ignore initargs))(find-class 'persistent-standard-effective-slot-definition))Now we need to ensure that our inheritance rules regarding slot transience will be enforced:A slot will be treated as transient only if all classes in the inheritance chain that de�ne aslot with that name agree that it should be transient. Otherwise the slot will be persistent.20

(defmethod compute-effective-slot-definition :around((class persistent-metalevel-class)slot-namedirect-slot-definitions);; Let default system do its work first:(let ((slotd (call-next-method)))(setf (slot-value slotd 'transientp)(every #'slot-definition-transient-p direct-slot-definitions))slotd))This example also illustrates how class metaobject class incompatibilities discussed in sec-tion 3.5.1.1 may introduce subtle problems: our persistence example was written to usepersistent-standard-direct-slot-definitions for the slots of persistent-metalevel-class. All its slot metaobjects therefore have a method slot-definition-transient-pde�ned for them. If all classes involved in the inheritance used our metaobject class, thecode above would therefore work. If, on the other hand, some of the supers were not using:metaclass persistent-metalevel-class, some direct-slot-definitions would nothave slot-definition-transient-p de�ned on them and the code would fail. To ensurecompatibility, we would have to de�ne a default method on slot-definition-transient-p that returned nil.We have one more problem to solve in the context of our persistent object system:Whenever a class is de�ned or rede�ned to change the number of slots, we must createor modify a corresponding piece of database schema. This can happen through changesto the class itself or through modi�cations of one of its superclasses. We can handle thisconveniently by using the `chokepoint' introduced in this section:(defmethod finalize-inheritance :after((class persistent-metalevel-class))(maintain-schema class))(defmethod maintain-schema ((class persistent-metalevel-class))(if (schema-exists-p class)(rework-database-schema class)(progn(create-schema class)(store-class-structure class))))This concludes our look at the creation and rede�nition of classes. A full treatmentof method de�nition and invocation would overload this introductory text, but we includethe protocol outlines in appendix B.3.5.2 Slot AccessThe last piece of CLOS dynamics we will consider here is the setting and retrieving of slots.When making modi�cations in this area, the implementor should keep a small checklist ofissues in mind:� The di�erent built-in CLOS slot allocations must be considered (e.g. :instance vs.:class allocation).� There is a group of slot access related built-in generic functions that must be keptsynchronized: Changes to one could require changes in the other. We will point toexamples below. 21

All the `o�cial', programmer-level slot tra�c goes through the slot-value function.This will not generally be true for code generated automatically for reader or writer meth-ods. The entry point for such code is the generic function slot-value-using-class andits setf dual which are the main point for slot access modi�cations:slot-value-using-class <class-metaobject><instance><effective-slot-definition-metaobject>(setf slot-value-using-class) <new-value><class-metaobject><instance><effective-slot-definition-metaobject>Figure 3.9 shows the protocol for accessing slots.SLOT-VALUE-USING-CLASS � Programmatic entry1 Check for existence of slot(slot-exists-p, slot-missing)2 Check for slot being bound(slot-boundp-using-class, slot-unbound)3 Retrieve the valueFigure 3.9: Summary of the Slot Reading ProtocolApart from the generic functions listed in the �gure, slot-makunbound-using-classshould be considered if changes are made to the slot access process.It is an error to attempt access to a non-existent slot. The Metaobject Protocol allowsmetalevel programmers to control what happens when this condition is encountered. Thatenables the programmer to react in a way that makes sense in his modi�ed CLOS context.This control is exercised by de�ning methods on:slot-missing <class-metaobject> <instance> <slot-name> <operation>&optional new-valueThe operation parameter is one of the symbols slot-value, setf, slot-bound or slot-makunbound. These can be used to provide a helpful error message.We need to intercept slot access for our persistent objects to work correctly. The mainproblem is that we must fault to the database if the object is persistent and not currentlycached. In all other cases, we will defer to the built-in way of accessing slots6.This brings up a subtle problem that exempli�es the potential dangers of metalevelprogramming: recall that we record with each instance whether it is persistent and whetherit is cached. We did this by causing persistent classes to inherit from persistence-root-class, which adds the slots persistent? and cached?. In order to �nd out whether aninstance is cached or persistent, we therefore need to perform a slot access. Since we mustdo this to accomplish slot access in the �rst place, there will be in�nite recursion whenevera slot is read, unless we take special precautions. We take care of this in the following codefor reading a slot for persistent classes7: 22

(defmethod slot-value-using-class :around((class persistent-metalevel-class)object(slotd persistent-standard-effective-slot-definition))(let ((slot-name (slot-definition-name slotd))(persistent?-slotd(find-if #'(lambda (slotd)(eq (slot-definition-name slotd) 'persistent?))(class-slots class)))(cached?-slotd(find-if #'(lambda (slotd)(eq (slot-definition-name slotd) 'cached?))(class-slots class))))(if (and (not (eq slot-name 'persistent?))(not (eq slot-name 'cached?))(slot-value-using-class class object persistent?-slotd)(not (slot-value-using-class class object cached?-slotd))(not (slot-definition-transient-p slotd)))(slot-value-from-database class slotd)(call-next-method))))This concludes our summary of the Metaobject Protocol dynamics. We have seenthat each protocol attempts to specify just enough detail about some piece of the CLOSoperation to allow controlled modi�cations to be made. We have covered the processaround creating and initializing new classes and the access to slots. Let us now move onto putting the approach into perspective with earlier work.3.6 Related WorkThe concept of making languages extensible concentrated initially on syntactic extensionand the creation of new types [9]. Opening languages up for deep semantic changes is amore recent development. This requires the kind of architectural considerations introducedin this chapter.The idea of making seemingly fundamental components of systems in reality be elementsof a meta-level `world' has been explored in various earlier systems.Like CLOS, Smalltalk [10] includes the notion of metaclasses. But the concept, thoughequal in name, is quite di�erent in the two languages: Each Smalltalk class is an instanceof exactly one metaclass which in turn may only have that one class as its instance.A class thereby acts like `regular', program-level objects in the sense that it respondsto messages whose e�ects are determined by its metaclass. In particular, the metaclasscontrols the initialization of class variables and also manufactures the class' instances. Butin contrast to CLOS, the programmer cannot modify metaclasses and use object-orientedprogramming at the metalevel to produce special e�ects.ObjVlisp [11], which is very similar to CLOS [12], has worked on introducing a fullmetalevel class mechanism into Smalltalk-80 [13]. This has led to a kind of `metaclassworkbench' called Classtalk which helps with the construction of metaclass libraries andprovides a metaclass browser.An interesting angle to metalevel architectures is added by [14] which shows how theprinciple can be used in the construction of operating systems.23

There is a rapidly accumulating body of literature about CLOS and its uses. The�rst, second and third \CLOS Users and Implementors Workshops" of 1988-1990 are goodsources for information on a wide spectrum of CLOS aspects. Another report on the useof the Metaobject Protocol can be found in chapter �ve of this volume.3.7 ConclusionThis chapter has attempted to introduce the CLOS programmer to the world that liesbeyond the con�nes of the language proper. This world is de�ned and controlled by theMetaobject Protocol which makes the mechanisms for changing CLOS part of the languagede�nition and thereby renders it portable.We have introduced the basic notions of this `metalevel world', giving the reader enoughunderstanding to appreciate the concepts and to read the somewhat more formal speci�-cation for more in-depth information.We believe that the tendency of making systems open should extend beyond areas likenetworking to the realm of language implementation, operating systems and databases.The CLOS Metaobject Protocol approach is an important step in this direction. Expe-rience during its development has shown that it is di�cult to �nd the correct balancebetween standardized degrees of freedom and the needs for optimization, between open-ness and safety, between
exibility and portability. Writing modular systems is moredi�cult initially than building monoliths. Making systems be open and portable is an ad-ditional dimension which requires additional care and sophistication. The payo�, however,is worth the investment because the system covers much more ground than it could withmore conventional approaches.A word of caution is in order at this point. Metalevel programming is still systemsprogramming. Increased power bears with it additional dangers. Research is neededto understand which design rules and conventions can be added to the object-orientedprogramming style to introduce the necessary measure of safety. We have introducedthe rules that were developed for controlling the use of the Metaobject Protocol. Moreexperience is needed to �nd out whether these rules are necessary and su�cient. Moreprobing still is needed to understand whether they have any universal applicability.Designing protocols is another area that needs further investigation. The current spec-i�cation of the Metaobject Protocol is only slightly more formal than our presentationin this chapter. Are there good formal ways of specifying behavior at the right level ofdetail? Are there indeed formal or informal ways of �nding the correct level of detail inthe �rst place? What de�nitely has to be speci�ed to ensure portability of modi�cationsand what must be left open to allow for optimizations? Understanding the nature of pro-tocol design would go a long way towards making the idea of the CLOS design approachapplicable to systems other than languages, a goal that seems intriguing after seeing theCLOS Metaobject Protocol as a datapoint.3.8 AcknowledgementsThis work bene�ted greatly from detailed and insightful suggestions by Daniel G. Bobrowand Gregor Kiczales. Robin Je�ries contributed through comments on earlier drafts of thischapter. 24

3.9 Appendix A: Rules for Metalevel ExtensionsDi�erent rules apply for implementors of the system and programmers wishing to createportable code which manipulates the metalevel. We do not address restrictions for imple-mentors here but concentrate on the ones applying to portable programs. The followingrules all have the same underlying reason: To ensure that new behavior does not modifyexisting system behavior that is relied upon by others:� For a metalevel program to be portable it must not rede�ne existing metaobjectclasses, generic functions, methods or method combinations which are explicitly spec-i�ed by the MOP.In syntactic terms this implies that every new metalevel method must have at leastone specializer in its parameters which is not one of the built-in metaobject classes.This means that writing a :before, :after or :around method which specializes only onexisting metaobject classes can render a program non-portable. Violating this rulecould inadvertently destroy a method provided by the system, or it could cause unex-pected side e�ects for programs using the default implementation. The programmermust produce his own metaobject class and specialize on it.Allowing the destructive modi�cation of the existing stock of behavior could alsolead to a kind of race condition in which two programs make a modi�cation to thesame piece of behavior. The order in which the programs are loaded would thendetermine the �nal behavior, which is unacceptable.� Unless explicitly forbidden by the underlying generic function, it is always legal toextend the behavior of an existing method by writing a new one which specializes torelevant subclasses as explained above. But the arrangement must ensure that theoriginal, less speci�c method will be called. For standard CLOS this means that thenew method must be a :before or :after method, or that it is a primary or :aroundmethod which calls call-next-method. This ensures that any new behavior is addedto the default behavior, as opposed to replacing it.� Only if a generic function explicitly allows it, may methods be overridden, that isreplaced completely by primary or :around methods that do not use call-next-method in their body.Note that MOP generic functions often come in `groups' which must be kept consis-tent. When overriding one, consistency with the others must be ensured. One ex-ample is the group add-dependent, remove-dependent and map-dependent. Thesegroupings are not always explicitly de�ned in the MOP.
25

3.10 Appendix B: Protocol OverviewsIn order to make the MOP speci�cation easier to follow we include here the full summariesof various protocols that were shortened in the text or are not covered there at all. Weexplained in section 3.5.1.1 how these �gures are to be read.Class De�nition Protocol:DEFCLASS1 Syntax error checking2 Canonicalize information3 Obtain class metaobject(ensure-class, � Programmatic entryensure-class-using-class) � Programmatic entry3.1 Find or make instance of proper class metaobject class(make-instance, the :metaclass option) � Programmatic entry3.2 (Re)initialize the class metaobject((re)initialize-instance)3.2.1 Default unsupplied keyword arguments/error checking3.2.2 Check compatibility with superclasses(validate-superclass)3.2.3 Associate superclasses with this new class metaobject3.2.4 Determine proper slot-de�nition metaobject class(direct-slot-definition-class)3.2.5 Create and initialize the slot-de�nition metaobjects(make-instance, initialize-instance)3.2.6 Associate them with this new class metaobject3.2.7 Check default-initargs3.2.8 Maintain the `subclasses' lists of superclasses(add-direct-subclass,remove-direct-subclass)3.2.9 Initiate inheritance �nalization, if appropriate(finalize-inheritance)3.2.10 Create reader/writer methods3.2.11 Associate them with this new class metaobjectSlot Reading Protocol:SLOT-VALUE-USING-CLASS � Programmatic entry1 Check for existence of slot(slot-exists-p, slot-missing)2 Check for slot being bound(slot-boundp-using-class, slot-unbound)3 Retrieve the value 26

Class Finalization Protocol:FINALIZE-INHERITANCE � Programmatic entry1 Compute the class precedence list(compute-class-precedence-list)2 Resolve con
icts among inherited slots with the same name2.1 Determine proper e�ective slot de�nition metaobject class(effective-slot-definition-class)2.2 Create the e�ective slot de�nition metaobjects(make-instance)2.3 Initialize the e�ective slot de�nitions(initialize-instance, compute-effective-slot-definition)2.4 Associate them with the class metaobject3 Enable/Disable slot access optimizations(slot-definition-elide-access-method-p)Method Lookup Protocol:Generic Function Call1 Invoke the generic function's discriminating function1.1 Find out which methods are applicable for the given arguments(compute-applicable-methods-using-classes, compute-applicable-methods)1.2 Combine the methods into one piece of code(compute-effective-method)1.2 Run the combined methods(method-function-applier)

27

Method De�nition Protocol:DEFMETHOD1 Syntax error checking2 Obtain target generic function metaobject(ensure-generic-function, � Programmatic entryensure-generic-function-using-class) � Programmatic entry2.1 Find or make instance of proper generic function metaobject class(make-instance, :generic-function-class from defgeneric form)2.2 (Re)initialize the generic function metaobject((re)initialize-instance)2.2.1 Default unsupplied keyword arguments/error checking2.2.2 Check lambda list congruence with existing methods2.2.3 Check argument precedence order spec against lambda list2.2.4 (Re)de�ne any old `initial methods'2.2.5 Recompute the generic function's discriminating function(compute-discriminating-function)3 Build method function(make-method-lambda)4 Obtain method metaobject4.1 Make instance of proper method metaobject class(make-instance, generic-function-method-class)4.2 Initialize the method metaobject(initialize-instance)4.2.1 Default unsupplied keyword arguments/error checking5 Add the method to the generic function(add-method)5.1 Add method to the generic function's method set5.2 Recompute the generic function's discriminating function(compute-discriminating-function)5.3 Update discriminating function5.4 Maintain mapping from specializers to methods(add-direct-method)
28

Bibliography[1] International Organization for Standardization. Basic reference model for open sys-tems interconnection, 1984.[2] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron, DavidBlack, William Bolosky, and Jonathan Chew. Machine-independent virtual memorymanagement for paged uniprocessor and multiprocessor architectures. In Proc. 2ndInternational Conference on Architectural Support for Programming Languages andOperating Systems. Computer Society Press, 1987.[3] Gregor Kiczales, Jim des Rivi�eres, and Daniel G. Bobrow. The Art of the MetaobjectProtocol. MIT Press, 1991.[4] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya Keene, GregorKiczales, and David A. Moon. Common Lisp Object System Speci�cation. TechnicalReport 88-002R, X3J13 Standards Committee, 1988. (Also published in SIGPLANNotices, Vol. 23, special issue, Sept. 1988, and in Guy Steele: Common Lisp, TheLanguage, 2nd ed., Digital Press, 1990.).[5] Sonya E. Keene. Object-Oriented Programming in Common Lisp. Addison-WesleyPublishing Company, 1989.[6] James Bennett, John Dawes, and Reed Hastings. Cleaning CLOS applications withthe MOP. In Gregor Kiczales, editor, Proceedings of the Second CLOS Users andImplementors Workshop, 1989.[7] Andreas Paepcke. PCLOS: A Flexible Implementation of CLOS Persistence. InS. Gjessing and K. Nygaard, editors, Proceedings of the European Conference onObject-Oriented Programming. Lecture Notes in Computer Science, Springer Verlag,1988.[8] Andreas Paepcke. PCLOS: A Critical Review. In Proceedings of the Conference onObject-Oriented Programming Systems, Languages and Applications, 1989.[9] ECL programmer's manual. Center for Research in Computing Technology, HarvardUniversity, TR-23-74, December 1974.[10] Adele Goldberg and David Robinson. Smalltalk-80: The Language and its Implemen-tation. Addison Wesley, 1983.[11] Pierre Cointe. Metaclasses are �rst class: The ObjVlisp model. In NormanMeyrowitz,editor, Proceedings of the Conference on Object-Oriented Programming Systems, Lan-guages and Applications. Association of Computing Machinery, 1987.29

[12] P. Cointe and N. Graube. Programming with metaclasses in CLOS. In Proceedingsof the First CLOS Users and Implementors Workshop, 1988.[13] Jean-Pierre Briot and Pierre Cointe. Programming with explicit metaclasses inSmalltalk-80. In Proceedings of the Conference on Object-Oriented Programming Sys-tems, Languages and Applications, 1989.[14] Yasuhiko Yokote, Fumio Teraoka, and Mario Tokoro. A re
ective architecture for anobject-oriented distributed operating system. In Proceedings of the European Confer-ence on Object-Oriented Programming, 1989.

30

Notes:

1The MOP is not part of the o�cial CLOS standard at this time. Its current state is documented in parttwo of [3].2CLOS was developed using a reference implementation (PCL) which was distributed, critiqued andimproved many times before commercial implementations began to emerge.3Notable exception: details about slots are kept in another kind of metaobject which is covered insection 3.4.2 but which is also accessed indirectly through class metaobjects.4Recall that an initarg is a name that may be associated with a slot and that may later be used in callsto make-instance to specify an initial value for that slot.5Interesting protocols we do not cover here include the de�nition process for generic functions and methodsand the addition of methods to generic functions.6This assumes that we make cached objects look like regular CLOS objects. This is actually a very usefulway of dealing with caching.7For e�ciency, the persistent? and cached? slot de�nition metaobjects should not be searched forduring every slot access as is done by the find-if calls in the example. They would be cached in a realsystem. 31

Biography:Andreas Paepcke has been with Hewlett-Packard Laboratories since 1982, working on awide range of projects, including an infrared network for terminals and workstations, theintegration of telephone service into workstation environments, transparent persistence ofCLOS objects on a variety of databases and access to information services throughobject-oriented views. Mr. Paepcke received his BS and MS degrees from HarvardUniversity and his Ph.D. in Computer Science from the University of Karlsruhe,Germany.

32

