Building High Performance
Drivers For Oracle Database 11g:
OCI Tips and Techniques

An Oracle White Paper
[05] [2008]

ORACLE

Building High Performance Drivers for Oracle
Database 11g: OCI Tips and Techniques

INEEOAUCHION .ot 4
INITIALIZING OCI ..ottt sesenes 4
Inheriting from NLS LANG .c.cviiiviiiniiiiiieiiciteenisrcieineres s 4
Specifying the client character set during initializationoceevvevvenienienivennenne. 5
ThEad SALEY ceviieviiiiiiiiiieiiett ettt ettt 5
ERROR HANDLINGcctrteiiiinnrieciineeieeetsseeeieeesesee e sesenes 6
MANAGING CONNECTTIONS ..ottt 7
Pooling Database CONNECHONS c..iivviiriiiriiiriieniiniieiieine e 8
Integrating with Oracle 11g Database Resident Connection Pool........c.eevee... 11
PREPARING STATEMENTS ...c.ooiiiiiiineeeirnneccceeseeeeeceneenenes 12
BINDING VARIABLES ..ottt 13
EXECUTING DML ..ottt 15
Array Executes of DML StateMEnts ...ccovvevvuieiviieiniiiniieiiieiieeenieesinesnee e 16
EXECUTING QUERIES AND FETCHING RESULTS........cccccoeeu.. 16
ALFAY FEtCRINE 1ttt ettt 19
CHARACTER SET CONVERSIONS......coceiirrrrrrrteccceeeaenes 20
TRANSACTION CONTROL...c.coeuiiiiriririniriirisercccieieieieieieieiesevesenenns 21
ORACLE SECUREFILEScoviiiieitinicceirinneeectseeeeeveeesesseseneenens 21
RECEIVING DATABASE EVENTS ..ot 22
Consuming FAN FEVENTS...coueuiririeirieirieienieieieteestesesiese sttt ettt saesenes 22
END-TO-END DIAGNOSTIC ATTRIBUTES.ccccoceoeiiiiiinninne 24
CACHING QUERY RESULTS ON THE CLIENTcccccovveecinenenes 26
PREFERED PROGRAMMING MODELS......ccccovviiirinineeccenineees 27
How many Environment Handles should I have?cccocooiniiiiiiiiniinnn. 27
How many Error Handles should T have?ccccceceririncnininenenicieeneneenne 27
Should I petform Defines before of after EXECUer . uvveririrrerinreirieriniereennennn 27
Should I pre-fetch or should T artay-fetch?.....oociviiiniiiiiniiiiniiiniicine, 27
Should T use NoN-blocking OCI?cveuiieuiirieireeiireeienieieneeieeeeeesree e 28
How do Iinterrupt an OCL call? c....ccovieinieinieiinieinicicineeneceeeeeneenee 28
How do T handle connection failures?e.veerervereeieerienieneeieenienieeeeeeeeenene 28
BUILDING YOUR OCI PROGRAMcoovimirieiiiininiicietenininieeieeseneees 28
INSTANT CLIENT ..ottt ssseaes 29
UPGRADING THE CLIENT ..ottt 29
UPGRADING THE SERVERccooiiiiinciirrnccceeneeeceneenes 30
CONCLUSION ..ottt st ssesesaesesssseseenes 30
USEFUL POINTERScocooiiiiiiiieiiireecctieccieeveeesneneneas 31

Building High Performance Drivers for Oracle Database 11g Page 2

Building High Performance Drivers for Oracle Database 11g Page 3

The diverse environments that need to
access the Oracle database is growing and
range from Web applications to enterprise
components, from Java to .Net, from PHP
to Ruby, and from PERL to Python. Amidst
all of this diversity, they all eventually
converge to standard drivers or custom
wrappers built on top of Oracle Call
Interface (OCI). This document aims at
being a guide for building efficient
drivers/adapters/wrappers for accessing
the Oracle database.

Building High Performance Drivers for Oracle
Database 11g: OCI Tips and Techniques

INTRODUCTION

The diverse environments that need to access the Oracle database is growing and
range from Web applications to enterprise components, from Java to .Net, from
PHP to Ruby, and from PERL to Python. Amidst all of this diversity, they all
eventually converge to standard drivers or custom wrappers built on top of Oracle
Call Interface (OCI). This document aims at being a guide for building efficient
drivers/adapters/wrappers for accessing the Oracle database and offers a set of
best practices, tips and techniques that lead to better performance, functionality,
and ease of use.

The scope of this paper is limited to general guidelines and pointers to key
technologies to use for building drivers for the Oracle database. It is not intended
to be a substitute for the Oracle documentation, which is the definitive reference.

Some of the functions described here are based on features available in Oracle
Database 11g OCI. However, most interfaces are available in older releases as well.
Please consult the OCI documentation for the release that supports the specific

API or call.

INITIALIZING OCI

The very first thing to do in an OCI program is to create the OCI Environment
handle. Over the years, several flavors of OCI initialization functions have been
provided. We recommend the flavors that are available in the most recent OCI
versions.

Inheriting from NLS_LANG

The NLS_LANG environment variable specifies the client side language and
character set settings. If you just want to inherit the NLS LANG setup in your
program, you can simply call OCIEnvCreate () as follows.

OCIEnv *envhp = (OCIEnv *)NULL;

/* returned env handle */
/* initialization modes */

checkenv (envhp, OCIEnvCreate (&envhp,
OCI DEFAULT,

Building High Performance Drivers for Oracle Database 11g Page 4

You will notice the invocation to checkenv (), which is called for checking errors
and will be described momentarily.

Specifying the client character set during initialization

If you want to remain independent of the NLS LANG setting, OCI allows you to
specify your character set programmatically. You have a choice to either fix the
character set in your driver code ot you can dynamically determine the character set
from your own configuration file. The OCIEnvNlsCreate () interface allows you
to specify the default client side character set programmatically.

If you need a Unicode environment handle, you can directly use the predefined
constant OCI_UTF161D for the character set ids to be passed into
OCIEnvNlsCreate().

OCI does not publish ids for other character sets. The Oracle Globalization
Support Guide publishes a comprehensive list of supported character set names.!
OCI also provides a function OCINl1sCharSetNameToId (envhp,

charSetName) that can be used to convert a supported character set name to a
character set id. This function requires an environment handle. If you have need to
convert a character set name to a character set id, you will first need to create an
NLS LANG dependent environment handle using OCIEnvCreate () (as described
catlier) and then call OCIN1sCharSetNameToId ()to convert the character set
name to a character set id. This character set id can then be used to create
specialized charset based environment handles using OCIEnvNlsCreate ().

Thread Safety

If your driver is likely to get used in a multithreaded environment, you should
specify OCI_THREADED instead of OCI_DEFAULT in the initialization mode
parameter. This will ensure that OCI internally serializes concurrent calls to
connections and other OCI resources that can be shared between threads.

Building High Performance Drivers for Oracle Database 11g Page 5

ERROR HANDLING

As a good programming practice, we recommend checking returned error codes
from all OCI calls. OCI requires you to pass an error handle into most calls. The
error handle returns diagnostic information regarding the call, if the call fails. In the
following examples, you will see the usage of a checkerr () call that checks the
returned status from every OCI call and if needed, gets more information from the
error handle. You can customize this call to your error handling requirements. In
this example below, we choose to stop executing the program on the first
OCI_ERROR, as subsequent calls may not be meaningful if an earlier operation was

unsuccessful.

For OCI calls that occur prior to allocating the error handle, it is not possible to
call checkerr (). In such cases, a macro called checkenv () is called instead that
can extract diagnostic info from the OCI environment handle. This is the reason
why the environment handle creation calls in the earlier section called

checkenv ().

The following example illustrates the allocation of an error handle:

This segment shows the definition of the error checking convenience macros.

Building High Performance Drivers for Oracle Database 11g Page 6

MANAGING CONNECTIONS

OCI provides various flavors of connection establishment calls that allow
increasing degrees of control. All flavors of the calls take in a connect descriptor
that has details of the database to which the connection needs to be established.
Oracle has supported TNS style connect strings from an early version. More
recently, Oracle has been promoting the Easy Connect string, which has an easier
syntax for very common use cases.

Prior to using the easy connect naming, make sure that EZCONNECT is specified by

the NAMES . DIRECTORY PATH parameter in the sqlnet.ora file. The location of
sqlnet.ora is specified by the TNS ADMIN environment variable. If TNS ADMIN is

Building High Performance Drivers for Oracle Database 11g Page 7

not set, then $ORACLE HOME/network/admin is searched next. Set the
NAMES.DIRECTORY PATH as follows:

The connect string itself takes the form:

|

ing the same example, some valid connection strings follow:

Us

The following example demonstrates getting a connection for the user "hr":

Note that you could assemble the Easy Connect string dynamically from your own
config file and hence you do not need to depend on tnsnames.ora (and TNS
aliases) at all with the Easy Connect syntax.

Although some of the examples described here use the OCISessionGet () call,
which allows you to deal with a database connection via a single context for
simplicity, for some of the more advanced uses, you may need to use the
OCISessionBegin () call. Please consult the Oracle documentation in case your

requirements extend beyond what OCISessionGet () supportts.

Pooling Database Connections
Pooling objects is an optimization that is widely adopted in many scenarios.
Pooling an object makes sense if the object is:

 required for a relatively short duration

Building High Performance Drivers for Oracle Database 11g Page 8

o expensive to create each time it is required
e cxpensive to tear down each time when it is no longer required

o cxpensive to hold on to when not being actively used, as it consumes

resources

Pooling such objects enables a component that needs the object to quickly access it
from the pool and release it back when no longer needed, thereby enabling other
components to reuse the pooled object. Pooling drastically improves system
scalability and performance.

Database connections generally satisty all of the above-mentioned criteria; in other
words, connection establishment involves: (i) creation of a network channel; (ii)
spawning an associated operating system process/thread; (i) performing the
requisite authentication; and (iv) session creation with a session private context for
SQL statements and other metadata. Tearing down a database connection is also
expensive. And needless to say that unnecessarily maintaining them when not
required eats up precious resources on the database server. That explains why
database connection pooling greatly helps high traffic web applications where
connections are needed for short durations. Most multithreaded systems that talk
to a database offer some form of connection pooling.

OCI allows for connection pooling. The recommended connection pool for
stateless web applications is called the OCI Session Pool. OCI also has a feature
known as the OCI Connection Pool but Oracle recommends sticking to using the
OCI Session Pool as that is designed to meet the requirements of most web
applications for stateless database sessions.

There are many advantages of using OCI Session Pool:

o No reinventing the wheel You get all the pool management within OCL. This
involves (i) dynamically growing and shrinking the pool based on load; (ii)
enforcing pool size limits; and (iii) enforcing appropriate concurrency control

between threads which try to access the pool.

o Better performance: Seamless integration with Runtime Load Balancing (RLB)
Events. This is particularly useful when you are using a RAC Database. In
this scenario, any thread requesting a connection is given a connection from
the pool to the best performing instance based on the most recent load
balancing advisories that are published by the database.

o Better availability: Seamless integration with Fast Application Notification
(FAN) Events. When FAN Events are enabled, OCI Session Pool
terminates any idle connections in the pool upon database node/instance
failure so that any new connection requests are directed to surviving nodes,
thereby preventing the application from faulting due to a dead/orphan
connection. It also provides immunity from waits in the TCP stack typically

caused during node failures

o Better scalability: Transparent integration with the Database Resident
Connection Pool (DRCP) functionality in Oracle Database 11g. DRCP allows

Building High Performance Drivers for Oracle Database 11g Page 9

sharing of database connections across middle tier hosts, yielding extreme
scalability and optimal memory consumption.

Using OCI Session Pool involves the creation of the pool by providing a connect
string containing the target database and service identification e.g.
“/ /sales-servet.example.com/sales”

This step returns a pool-name, which uniquely identifies the session pool. After
that, checking connections out of the pool and checking connections back into the
pool look quite similar to the earlier example except that the OCISessionGet() call
takes in the pool-name instead of the database connect string.

Building High Performance Drivers for Oracle Database 11g Page 10

The example above illustrates only one thread. A multithreaded system, on the
other hand, should typically do the 0OCISessionPoolCreate () once (per unique
connect string) for a given process and every thread operating on the database
should do the 0CISessionGet () and OCISessionRelease () calls every time it
needs a database connection from the pool or wants to give back a database
connection.

The above example also illustrates the case wherein connections for multiple users
are allowed to exist in the session pool. If it is so desired, one could make the
session pool OCI SPC HOMOGENEOUS. In this case, the session pool only creates
connections for the user given in the 0OCISessionPoolCreate () call

Integrating with Oracle 11g Database Resident Connection Pool

Database Resident Connection Pooling (DRCP) provides a connection pool in the
database server for typical Web application usage scenarios where the application
acquires a database connection, works on it for a relatively short duration, and then
releases it. DRCP pools a set of "dedicated" servers, which are referred to as
"pooled" servers.

DRCP complements middle-tier connection pools, which share connections
between threads in a middle-tier process. Unlike middle-tier connection pools,
DRCP enables sharing of database connections across middle-tier processes on the
same middle-tier host and across middle-tier hosts. This results in significant
reduction in key database resources needed to support a large number of client
connections, thereby reducing the database tier memory footprint and boosting the
scalability of both middle-tier and database tiers. Having a pre-spawned pool of
readily available servers also has the additional benefit of reducing the cost of
creating and tearing down client connections.

DRCP is especially needed for architectures with multi-process single threaded
application servers (such as PHP/Apache) that cannot perform middle-tier
connection pooling. Applications can scale as high as tens of thousands of
simultaneous connections with DRCP on a single commodity database server.

Building High Performance Drivers for Oracle Database 11g Page 11

OCI Session Pool provides support for integrating with DRCP. With minimal
changes, you can instruct an existing application using OCI Session Pool to also use
the server side pool. This can be done by setting the (SERVER=POOLED) option in
the connect string or the “: POOLED” option in the Easy Connect syntax. For more
details on making the best use of Oracle DRCP, refer to the DRCP white paper.?

PREPARING STATEMENTS

Once you have the connection pool going, you need to get ready to prepare
statements. Applications typically tend to issue the same statements repeatedly.
Creating a statement from scratch is an expensive operation. Hence, it makes a lot
of sense to keep statements around after preparing them, effectively pooling
prepared statements.

Although OCI allows users to explicitly cache statements on their own, OCI
furnishes built in statement caching functionality through the
ocIistmtPrepare?2 () call. The statement cache size can be specified after
obtaining a database connection:

or better, it can simply be set when the OCI Session Pool is created, which means
that every session in the pool gets to cache that many statements:

Building High Performance Drivers for Oracle Database 11g Page 12

Once you have done the appropriate statement cache setup, OCIStmtPrepare? ()
first looks for a prepared statement handle in the cache. If it finds a matching
handle in the cache, it just returns the cached handle. Otherwise, it prepares a new
statement handle. Once you are done with the statement handle, you can call
OCIStmtRelease () that returns that statement handle back into the cache.
Releasing the statement handle means that you are no longer actively using the
statement handle and the OCI Statement Cache can age it out, if required, to make
room for new statement handles in the cache.

If the statement text is known at compile time, as in this example, you could have
pre-computed the length at compile-time instead of calling strlen () at run-time.
However, for general-purpose drivers where strings are dynamic, you cither need to
compute the length at run-time or alternatively, you could expose an interface in
your driver that gets the statement length from the caller.

BINDING VARIABLES

Oracle recommends using bind variables in SQL statements instead of literal
values. The are several advantages with using Bind variables:

o Itis a mandatory step that you should take to secure the code from SQL
injection attacks

o The statement can be prepared once and executed several times with
different bind values

Building High Performance Drivers for Oracle Database 11g Page 13

o Both the Oracle backend and the client perform and scale better because

there are fewer parse calls

The process of “binding” involves associating a variable in your program to a bind
variable in the statement text. OCI provides the 0OCIBindByName () call that allows
you to identify the bind-variable in the statement text by name. You need to specify
the address of your program variable and its size and its datatype code. A detailed
treatment of Datatypes is beyond the scope of this whitepaper. For more details on
Oracle Datatypes, please see the section on Introduction to Oracle Datatypes? in
the Concepts Guide. Also, see the Datatypes* section in the OCI documentation.

You can optionally associate an indicator variable (that indicates whether the Bind
value is NULL). The indicator variable being set to —~1 means that the value is NULL.
For bind values whose size can vary, such as character strings, you can also pass in
a pointer to an actual length value. This value can be reset on every execution to be
the actual length. For more details, look-up the OCI documentation.

With 0CIBindByName (), you only need to specify the name of your bind variable
such as ":X" and all occurrences of ":X" in the statement will get bound to the
same value.

OClI also provides a position based 0CIBindByPos () call, which identifies the
bind variable in the statement text by its position as opposed to its name.
OCIBindByPos () allows you increased flexibility in terms of binding duplicate
bind-parameters separately, if you need it. You have the option of binding any of
the duplicate occurrences of a bind parameter separately. Any unbound duplicate
occurrences of a parameter inherit the value from the first occurrence of the bind
parameter with the same name. The first occurrence must be explicitly bound.

In the context of SQL statements, the position “n” indicates the bind parameter at

the nth position. Howevert, in the context of PL/SQL statements,

OCIBindByPos () has a different interpretation for the “position” parameter: the
({4

position “n” in the bind call indicates a binding for the n™ unique parameter name
in the statement when scanned left to right.

Building High Performance Drivers for Oracle Database 11g Page 14

OCIBindByName () has the advantage that if your program evolves to add more
bind variables in your statement text, you do not have to touch your existing bind
calls in order to update bind positions.

EXECUTING DMLS

Once you have a prepared and statement with all variables bound appropriately, the
next step would be to execute it. Let us first take the example of a simple DML.

Note: You must ensure that all program variables, indicators and lengths whose
addresses you pass into OCI bind calls remain in scope at least until the end of the
ocistmtExecute () call for DML statements. Oracle recommends keeping the
bind metadata information, such as the maximum length of the bind and its
datatype, stable across repeat executions for best performance in order to minimize
repeat bind processing overheads.

As an example, when statement caching is enabled, repeatedly executing
do_dml_statement () procedure above will repeatedly find the statement handle
in the OCI Statement Cache. The bound program variables are passed on the stack
and hence remain in scope until the OCIStmtExecute () call is done. The bind
metadata, such as the maximum size of the bind buffer (sizeof (sal)) and its
datatype (SOLT INT) do not change across executions but the actual bind

Building High Performance Drivers for Oracle Database 11g Page 15

addresses/values may change. When a prepared statement is found in the statement
cache and the bind metadata remains stable for repeat executions, OCI provides
best performance.

Array Executes of DML statements

In many cases, you need to bulk insert/update or delete several rows at once. For
such cases, we strongly recommend that you use the OCI Array DML capabilities
as it reduces the roundtrips to do the operation. Note that the bind variables are
arrays of values and the "iters" parameter in the OCIStmtExecute () is set
appropriately to indicate the size of the array. In this example, it is set to

NUM ITERATIONS.

EXECUTING QUERIES AND FETCHING RESULTS

Binding variables into queries is similar to DMLs. However, you have the
additional steps of defining output buffers and fetching from the result set.

Building High Performance Drivers for Oracle Database 11g Page 16

However, in many cases, such as the example above, you know the shape of the
SQL text and the types of the define buffers. In such cases, you can save one call
by bundling the execute and fetch calls together. In this case, the output buffers
need to be provided prior to execution as follows:

Building High Performance Drivers for Oracle Database 11g Page 17

In both of the above examples, we omitted the indicator vatiables in the OCI

define calls for simplicity. If you know that your column value cannot be NULL, you
too can omit the corresponding indicator. However, if there is a possibility that a
fetched column can be NULL, you should pass an indicator variable in the
OCIDefineByPos () call. The next example will illustrate this usage.

Note: The same scoping rules described earlier for bind addresses apply to define
addresses as well. You need to ensure that all program variables, indicators and
lengths whose addresses you pass into OCI bind and define calls remain in scope
all the way until the end of the last OCIStmtFetch () call that depends on those
bind/define buffers.

Building High Performance Drivers for Oracle Database 11g Page 18

Array Fetching

Oracle recommends using array fetching when the result set contains several rows.
Instead of fetching one row at a time, which results in many roundtrips to the

database, you can fetch the rows in batches using array fetches.

Building High Performance Drivers for Oracle Database 11g Page 19

CHARACTER SET CONVERSIONS

When doing OCI bind and define calls, you need to be aware that the data can
expand/contact due to character set conversions taking place as the data is
transferred between the client and server. Please see the section on Character
Conversion in OCI Binding and Defining® for more details.

OCI normally does all character set conversions for data transparently as data goes
back and forth between the client and server from the server character set to client
character set and vice versa. You can override the initialization time character set
(specified during OCIEnvNlsCreate () or picked up by OCIEnvCreate ()) for
bind/define buffers programmatically. This example shows a client
binding/defining Unicode data.

Building High Performance Drivers for Oracle Database 11g Page 20

TRANSACTION CONTROL

OCI provides interfaces for transaction commit and rollback. These operations,
OCITransCommit () and OCITransRollback () cause a roundtrip to the
database. Oracle recommends that you use OCI_COMMIT ON SUCCESS, where
possible, on the last OCIStmtExecute () in a transaction so that the commit gets
piggybacked with the same call to the Database.

ORACLE SECUREFILES

Oracle Database 11g SecurcFiles bring a significant leap in large objects
performance. With SecureFiles, Oracle has also improved the performance of
transporting large objects across the network. Some of these optimizations are
transparent and will benefit existing applications. Some others are not transparent
and require using new APIs.

OCI allows fetching LOB locators followed by explicit OCI lob read calls in order
to lookup the contents of the locator. This however requires you to perform
additional round-trips during the OCI LOB read calls in order to get to the
contents of the LOB. OCI provides two alternatives to deal with this:

e You can choose to implicitly convert the LOB to charactetr/raw data (for
CLOBS/BLOBS respectively) right when fetching the data from the
server. You can do this by setting the appropriate data type in the OCI
define call: instead of requesting the locator, request the datatype of the
undetlying contents. You also need to provide an appropriately sized
buffer. In such case, OCI call to fetch the data from the server returns the
data in the desired format and you do not need additional round-trips. For

more information, please see the section on Data Interface for Persistent
LOBs.¢

e On the other hand, it is possible that your application requires you to fetch
LLOB locators and you need to issue additional LOB read calls. In such
cases, if you set a prefetch size for LOBs, OCI can prefetch LOB data
along with the locator to improve performance of smaller LOBs. Setting a
LOB prefetch size can help eliminate network roundtrips, which can be a
large performance win. The OCILobGetLength2 (), OCILobRead2 (),
OCILobArrayRead ()and OCILobGetChunkSize () calls can be
processed locally with LOB prefetching.” This can be done at a session
level, the moment a session is checked out of a session pool or a new
connection is established. It can also be done at a statement column level,
if you desire to override the session level setting:

ub4 default lobprefetch size = 2000; /* set default size to 2K */

/* set lob prefetch attribute to session */
checkerr (errhp, OCIAttrSet (sesshp, OCI_HTYPE SESSION,
&default_ lobprefetch_size, /* attribute value */
0,
OCI_ATTR DEFAULT LOBPREFETCH SIZE, /* attr type */
errhp));

/* later .. */

Building High Performance Drivers for Oracle Database 11g Page 21

/* override the default prefetch size to 4K on define handle */
ub4 prefetch_size = 4000;
checkerr (errhp, OCIAttrSet (defhp, OCI_HTYPE DEFINE,

sprefetch _size, /* attribute value */
0,

OCI_ATTR LOBPREFETCH SIZE, /* attr type */
errhp));

RECEIVING DATABASE EVENTS

The Oracle Database publishes various events and sends them to clients. These
events are related to high availability, namely Fast Application Notification (FAN),
and scalability, namely Runtime LLoad Balancing (RLB) in RAC environments. OCI
clients can also receive Advanced Queue Notifications and Database Change
Notifications.

In order to receive and process these database events, you must initialize your
Environment handle in OCI EVENTS mode. Oracle suggests making the

OCI EVENTS initialization an option that is configurable when your driver is
deployed rather than having OCI EVENTS always on by default.

If oct EVENTS is set, FAN and RLB notifications are received and processed
transparently if you use OCI Session Pool APlIs (please refer to eatlier discussion
on “Pooling Database Connections”). On the other hand, if you build your own
pool, you can plug into OCI to receive FAN events (but not the RLB events). In
case you have your own custom pool, we strongly suggest that you consider using
the OCI Session Pool APIs as an alternative as it is pre-integrated with these events
as already described. However, if you must have your own custom pool, the next
section describes what you need to do to process FAN events.

Consuming FAN Events

You need to explicitly consume FAN Events only if you have a custom pool. You
can supply a callback that will enable you to clean up dead connections from your
pool data structure:

void evtcallback_ fn(void *evtctx, OCIEvent *eventhp);

where evtctx is the client context, which is opaque to the OCI library. The other
input argument is eventhp, the event handle: that captures the attributes
associated with an event.

If registered, this function will be called once for each event. In the case of RAC
FAN events, this callback will be invoked after the affected connections have been
disconnected. The following environment handle attributes are used to register an
event callback and context, respectively:

OCI ATTR EVTCBK is of datatype OCIEventCallback *.
OCI_ATTR EVTCTX is of datatype void *.

static char *myctx = (char *) "dummy context"; /* context passed to callback */

Building High Performance Drivers for Oracle Database 11g Page 22

Within the OCI Event callback, the list of affected server handles is encapsulated in
the oCIEvent handle. For RAC High Availability (HA) DOWN events, client
applications can iterate over a list of server handles that are affected by the event by
using OCIAttrGet () with attribute types OCI ATTR HA SVRFIRST and

OCI ATTR HA SVRNEXT:

The work done in the callback should be kept to a minimum in order to process
the event very quickly. The application should avoid doing extensive processing in
the callback. For more details on the callback approach, please see the High
Availability Event Notification® section in the OCI docs.

An alternative approach for custom connection pool implementations, starting with
OCI 11g, is to not register the callback at all. Instead, just before giving out a
connection, the pool can check OCI ATTR SERVER STATUS. This attribute is
sensitive to FAN events and tells you if the connection is alive.

OCI ATTR SERVER STATUS is an attribute on the OCI Server Handle (which can
be obtained from the OCI Service Context). If the attribute does indicate that the
connection is dead, the custom connection pool can remove the dead connection

from the pool and continue to look for a different connection, until it finds one
that is alive.

Building High Performance Drivers for Oracle Database 11g Page 23

Note that this attribute isn’t an absolute guarantee of connection validity. There are
various reasons why a connection may become invalid, e.g. a DBA could kill the
server process, of the network may go down, thus making the corresponding
connection invalid. In such cases, this attribute will not detect that the connection
is invalid; you will know that the connection is dead only when you attempt the
next OCI call to the server. However, this attribute is sensitive to high availability
events on the database that result in dead connections from the client (e.g. a
database instance going down) and to some of the specific errors (such as ORA-
3113) that are known to drop connections.

END-TO-END DIAGNOSTIC ATTRIBUTES

In many circumstances, system administrators need to retrace incidents on the
database (such as a trace file or a runaway query) back to some application, module,
driver and end-user in the middle-tier. This can help narrow the cause of the
problem, such as potentially unsupported/uncertified versions of drivers or missing
patches on clients. Any identification of end user information also can help in
establishing contact with the end user responsible for the sequence of application
steps leading to the problem.

Starting with Oracle Database 11g, OCI exposes an attribute that allows the driver
to specify its name using the OCI_ATTR DRIVER NAME attribute that may be set

before creating a session:

This driver name attribute is passed to the server and the server tracks this for

diagnostic purposes and also displays it in the CLIENT DRIVER column in
V$SESSION CONNECT INFO and GVSSESSION CONNECT INFO. Oracle
encourages OCl-based drivers to pass this attribute during connection
establishment. There are other columns of interest in the same view that are
populated by default. They are:

CLIENT CHARSET — Shows the client side character set

CLIENT OCI LIBRARY — Whether home-based or instant client

Building High Performance Drivers for Oracle Database 11g Page 24

CLIENT VERSION — Version of the client library, for 11¢ Release 1, it is 11.1.0.6.0.

OCI also exposes attributes called OCI_ATTR CLIENT IDENTIFIER,

OCI ATTR MODULE and OCI_ATTR ACTION that can be set on the session handle
(which is obtained from the service context, as shown in the example below) before
any call is made to the database. This is also useful for diagnostic purposes in
correlating SQL statements issued in the database back to the end-user, module-

names in the middle tier code and also to specific actions within a given module.

This information appears in V$SESSION:

Building High Performance Drivers for Oracle Database 11g Page 25

This information can also appear in oracle traces files and is very useful for
diagnosing and correlating database side issues back to a particular end user and
also to a certain module/action issued by the middle tier:

*%% SESSION ID: (86.1903) 2008-04-15 14:01:19.382

*%% CLIENT ID: (mary.smith) 2008-04-15 14:01:19.382

*** SERVICE NAME: (sales.us.acme.com) 2008-04-15 14:01:19.382

*** MODULE NAME: (array fetch) 2008-04-15 14:01:19.382
*** ACTION NAME: (execute query) 2008-04-15 14:01:19.382

Starting with Oracle Database 11g, the OCI client is also integrated into the
Automatic Diagnostic Repository (ADR)? framework. An occurrence of a problem
(such as a crash) on the OCI client is captured without user intervention in the
form of diagnostic data in trace files. The trace files go into the ADR BASE location
specified in sqlnet.ora. Lookup Fault Diagnosability 1 in the OCI documentation

for details on the location of the trace files.

CACHING QUERY RESULTS ON THE CLIENT

If your driver has a requirement to cache query results for frequently issued queries
on read-only or read-mostly tables, you should consider using the 11g OCI
Consistent Client Cache.

OCI creates and manages the cache in process memory and the cache is shared by
all the sessions/threads in a process. OCI also does all of the cache memory
management and concurrency control. Using a combination of Oracle’s unique
Snapshot based Read consistency and Database Change Notification technologies,
OCI maintains the cache consistency transparently by detecting all updates to

cached objects and invalidating them as necessary.

When the cache is enabled, all queries with the hint /*+ result cache */ begin
to get cached on the client side. If the query result is found on the client, the
OCIStmtExecute () and subsequent OCIStmtFetch () calls on the client are
purely local calls and eliminate the round-trip and any related computation on the
database tier.

The OCI client cache can be enabled at a particular deployment by setting the
CLIENT RESULT CACHE SIZE (default 0, cache disabled) in your init.ora on the
database. You can also specify CLIENT RESULT CACHE LAG (optional, 3000ms
default), which sets an upper bound on how far back the client cache can lag
behind the database in terms of time. There are also additional client cache
parameters you can set in sqlnet.ora on the client tier to override the database
setting: OCT_RESULT CACHE MAX SIZE, OCI_RESULT CACHE MAX RSET SIZE
and OCI_RESULT CACHE MAX RSET ROWS.

Building High Performance Drivers for Oracle Database 11g Page 26

Using the OCI Consistent Client Cache allows you and your users to focus on your
business problems instead of spending development effort on building caching and
invalidation infrastructure. The OCI cache is certified with Oracle supplied drivers

such as JDBC-OCI, ODBC, ODP.Net and OCCIL.

PREFERED PROGRAMMING MODELS

How many Environment Handles should I have?

In general, if you are using OCI Session Pool you should have one environment
handle being used by all threads that need to share the same OCI Session Pool.

If your driver or application needs to support different client character sets
simultaneously, you may need to go with a separate OCIEnv handle per character

set.

How many Error Handles should I have?

The main consideration is that if a thread does an OCIXYZ () call with an error
handle and if the 0CIXYZ () call returns a certain error, the thread should have sole
access to the error handle in order to do a following OCIErrorGet () call to
retrieve the error code and error message. If some other thread gets to use the error
handle for a different concurrent call in the meantime, before the first thread can
do the OCIErrorGet () call, the second thread could end up overwriting the error
code intended for the first thread.

In order to avoid such race conditions, Oracle recommends that you have one
error handle per thread. Alternatively, you could also keep error handles that could
be shared between threads (e.g. one per connection) but you need to serialize

access to these handles appropriately to avoid the race condition described above.

Should I perform Defines before or after Execute?

We recommend that if the shape of the SQL statement is known in advance, it is
more cfficient to perform the OCIDefine calls before doing the
OoCIStmtExecute (). Also, the OCIStmtExecute () call could specify the
number of rows to be fetched and that avoids calling OCIStmtFetch () altogether.

On the other hand, if the driver deals with arbitrary SQL statements whose shape is
not known in advance and if it needs to describe the statement before allocating
and assigning OCIDefine buffers, then there is no choice but to do the
OCIDefine calls after OCIStmtExecute ().

Should I pre-fetch or should I array-fetch?

If the application cannot bundle an execute and fetch together as described in the
earlier section, then it makes sense to set OCI_ATTR PREFETCH SIZE and

OCI ATTR PREFETCH ROWCNT when executing the statement for the very first
time. OCI will prefetch the rows during execution and some or all of the following
fetch calls can be dealt with locally. This reduces roundtrips to the database.

Building High Performance Drivers for Oracle Database 11g Page 27

However, once you have described the SELECT list and performed the
OCIDefine calls, we recommend that you rely on Array Fetching instead of
prefetching. This is because Array Fetching also gives you the benefits of reduced
roundtrips and doesn't require an additional data copy from OCI prefetch buffers
into the OCIDefine buffers.

Should I use non-blocking OCI?

Oracle discourages using non-blocking OCI in favor of using blocking connections
in conjunction with multi-threading. In a multi-threaded application or in a driver
capable of multithreading, Oracle recommends sticking to the default (blocking)
mode for connections. In such cases, any task that needs to be done when you are
blocked on a database connection for network i/o can be designated to a different
thread.

Usage of non-blocking OCI should only be considered in single threaded programs
if the sole thread of execution absolutely has to do the multitasking all by itself and
hence cannot afford to block on a connection.

How do I interrupt an OCI call?

Many drivers have the need to interrupt calls to the Database if a timeout expires.
Our recommendation is to create a monitor thread that is responsible for keeping
track of active connections on which a request has been initiated and if the timeout
expires, it should initiate an OCIBreak () on that connection. Once the

OCIBreak () is done, the blocked thread is woken up and the OCI call that was in
progress at that time gets an ORA-1013.

How do I handle connection failures?

FAN helps minimize application exposure to dead connections. However, even
with FAN enabled, you could still get a connection failure right when your database
call is in flight. In that case, you need to return the dead connection back to the
pool so that the connection pool can reclaim any resources associated with that
connection.

Whether the application can recover from the error depends on the semantics of
the operation in progress. If the operation being performed on the database is
idempotent (e.g. a set of queries on the database), then the operation might be safe
to retry. On the other hand, if the operation being done is not idempotent (e.g. if it
involves transactions), then the application may need to do further checks before
determining that the operation is safe to retry.

BUILDING YOUR OCI PROGRAM

For compiling the above examples, you will need to include the following header
files:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

Building High Performance Drivers for Oracle Database 11g Page 28

Add to this list based on your requirements. You can use the demo_rdbms.mk
makefile to build your program. If you are on Windows, you can follow the build

process in the OCI Windows Documentation!!.

Many drivers have a requirement to build for different Oracle client releases but at
the same time need to leverage newer calls and functionality specific to later
releases. Instead of resorting to maintaining different code bases for each release of
the client, we recommend that you consider using conditionally compiled code
based on OCI MAJOR VERSION and OCI MINOR VERSION. As an example:

#if ((OCI_MAJOR VERSION > 10) || ((OCI_MAJOR VERSION == 10) &&
(OCI_MINOR VERSION >= 2))) /* OCIXYZ available */
Do OCIXYZ call
#else
Do older call
#endif

INSTANT CLIENT

The Instant Client feature makes it extremely easy to deploy OCI based
applications by climinating the need for an ORACLE HOME. The installation involves
copying just three libraries. You can download the OCI Instant Client for free from
OTN.!2 For more details, please look up the Instant Client Documentation.!3

UPGRADING THE CLIENT

OCI applications that are dynamically linked with the client shared library from 10g
and later releases are drop-in compatible with the current release. That is, the
current Oracle client-side shared library is compatible with the previous version of
the library in terms of preserving the documented behavior of all the OCI calls.
Starting with Oracle Database 11g, the Oracle Installer creates a symbolic link for
the previous version of the library that resolves to the current version. Therefore,
an application that is dynamically linked with the previous version of the Oracle
client-side dynamic library (from 10g and later) does not need to be re-linked to

operate with the current version of the Oracle client-side library.

With each release of the Database, OCI introduces newer interfaces that provide
access to the latest Oracle Database functionality. You are encouraged to leverage
these enhancements in the latest release of your application/driver. For more

details, please see Upgrading Your Applications.'*

Building High Performance Drivers for Oracle Database 11g Page 29

UPGRADING THE SERVER

Oracle recommends that you upgrade your client software to match the current
server software. For example, if you upgrade your server to Oracle Database 11g
Release 1 (11.1), then Oracle recommends upgrading the client software to Oracle
Database 11g Release 1 (11.1) as well. Keeping the server and client software at the
same release number ensures the maximum stability for your applications. In
addition, the latest Oracle Database client software might provide added features,

performance enhancements and fixes that were not available with previous releases.

However, Oracle also supports a mixed client/server environment as well. If your
client and server do not share the ORACLE HOME, and you upgrade the database,
you are not required to re-code, re-compile or re-link your OCI applications. Look
up note 207303.1 for the cutrently supported client/server interopetability matrix at
MetaLink.!>

CONCLUSION

This paper has provided a wide range of pointers on making the best use of the
Oracle Call Interface for building the best possible drivers for emerging dynamic
languages and environments for the Oracle Database. Our hope is that the reader
would have benefited from the tips and techniques presented in the paper. These
touch upon a wide range of topics and questions that we at Oracle have seen
vatious driver developers repeatedly encounter and for which we have, over time,
established clear guidelines and best practices. It is our hope that the pointers can
be made use of by driver maintainers and designers as they plan and implement the

future versions of such drivers.

! Oracle Database 11g Globalization Support Guide:
http://download.oracle.com/docs/cd/B28359 01/server.111/b28298/applocaledata.
htm#i635016

2 DRCP white paper:
http://www.oracle.com/technology/tech/oci/pdf/oracledrepllg.pdf

3 Introduction to Oracle Datatypes

http://download.oracle.com/docs/cd/B28359 01/server.111/b28318/datatype.htm#
CNCPT113

* Datatypes in OCI

http://download.oracle.com/docs/cd/B28359 01/appdev.111/b28395/0ci03typ.htm
#LNOCI030

5 Character Conversion in OCI Binding and Defining
http://download.oracle.com/docs/cd/B28359 01/appdev.111/b28395/0ci05bnd.htm
Hsthref657

Building High Performance Drivers for Oracle Database 11g Page 30

6 Data Interface for Persistent LOBs

http://download.oracle.com/docs/cd/B28359 01/appdev.111/b28393/adlob data i
aterface.htm#¢1029381

7 Prefetching of LOB Data, Length and Chunk Size
http://download.oracle.com/docs/cd/B28359 01/appdev.111/b28395/0ci07lob.htm
#INOCI07100

8 HA Event Notification

http://download.oracle.com/docs/cd/B28359 01/appdev.111/b28395/0ci09adv.htm
#CJGDCEFG

 Automatic Diagnostic Repository

http://download.oracle.com/docs/cd/B28359 01/server.111/b28310/diag001.htm#
ADMIN11261

10 Fault Diagnosability in OCI:

http://download.oracle.com/docs/cd/B28359 01/appdev.111/b28395/0cilOnew.ht
m#LNOCI1020

" Compiling OCI Applications for Windows:
http://download.oracle.com/docs/cd/B28359 01/appdev.111/b28395/ociadwin.htm
#sthref5771

12 Instant Client on Oracle Technology Network:
http://www.oracle.com/technology/tech/oci/instantclient/index.html

13 Instant Client Documentation:

http://download.oracle.com/docs/cd/B28359 01/appdev.111/b28395/0ci0lint.htm
#INOCI019

14 Upgrading Your Applications:

http://download.oracle.com/docs/cd/B28359 01/server.111/b28300/app.htm#UPG
RD006

15 MetalLink:

http://metalink.oracle.com

USEFUL POINTERS

OCI Documentation:

http://download.oracle.com/docs/cd/B28359 01/appdev.111/b28395/toc.htm
OCI OTN Page:

http://www.oracle.com/technologv/tech/oci/index.html
OCI Forum:
http://forums.oracle.com/forums/forum.jspaforumID=67

Instant Client OTN Page:

http://www.oracle.com/technologv/tech/oci/instantclient/index.html

Instant Client Forum:

http://forums.oracle.com/forums/forum.jspa?forumID=190

Building High Performance Drivers for Oracle Database 11g Page 31

ORACLE

Building High Performance Drivers for Oracle Database 11g: OCI Tips and Techniques

[April] 2008

Author: Luxi Chidambaran

Contributors: Santanu Datta, Christopher Jones, Srinath Krishnaswamy, Kuassi Mensah, Krishna Mohan, Kevin Neel

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2007, Oracle. All rights reserved.

This document is provided for information purposes only and the
contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any

other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations

are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

