Q2 (a)

word	$P($ word \| spam $) /$ $P($ word \| \neg spam $)$	$P(\neg$ word \| spam $) /$ $P(\neg$ word \| \neg spam $)$
w1	$0.8 / 0.2=4$	$0.2 / 0.8=1 / 4$
w2	$0.5 / 0.5=1$	$0.5 / 0.5=1$
w3	$0.1 / 0.4=1 / 4$	$0.9 / 0.6=3 / 2$

(b) An email containing w1 but not $w 3$ is maximally likely to be spam (LR 6). An email containing w3 but not $w 1$ is maximally likely to be non-spam (LR 1/16). The presence or absence of w 2 is immaterial.
If spam is 10 times more likely to occur than non-spam, then the first email is still predicted as spam ($10 * 6>1$) and the second is still predicted as non-spam ($10 * 1 / 16$ < 1).
(c) The worst feature to split on is w2: w2 present: (5 spam, 5 non-spam); w2 absent: (5 spam, 5 non-spam). Both subsets have entropy 1 , so clearly zero information gain. w1 present: (8 spam, 2 non-spam); w1 absent: (2 spam, 8 non-spam). Both subsets have the same entropy, say E .
w3 present: (1 spam, 4 non-spam), again entropy E; w3 absent: (9 spam, 6 non-spam), with an entropy higher than E .
So the best feature is presence/absence of w 1 .
(d) In general we could use this information to construct a new feature testing presence/absence of both w1 and w2. However, the numbers indicate that w1 and w2 are independent given the class (spam: $8 * 5 / 10=4$; non-spam: $2 * 5 / 10=1$), so this new feature would not change classification accuracy.

