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Chapter 1

Introduction

1.1 What is a compiler?

In order to reduce the complexity of designing and building computers,
nearly all of these are made to execute relatively simple commands (but
do so very quickly). A program for a computer must be built by com-
bining these very simple commands into a program in what is called
machine language. Since this is a tedious and error-prone process most
programming is, instead, done using a high-level programming language.
This language can be very di�erent from the machine language that the
computer can execute, so some means of bridging the gap is required.
This is where the compiler comes in.

A compiler translates (or compiles) a program written in a high-
level programming language that is suitable for human programmers into
the low-level machine language that is required by computers. During
this process, the compiler will also attempt to spot and report obvious
programmer mistakes.

Using a high-level language for programming has a large impact on
how fast programs can be developed. The main reasons for this are:

• Compared to machine language, the notation used by program-
ming languages is closer to the way humans think about problems.

• The compiler can spot some obvious programming mistakes.

• Programs written in a high-level language tend to be shorter than
equivalent programs written in machine language.

Another advantage of using a high-level level language is that the same

1



2 CHAPTER 1. INTRODUCTION

program can be compiled to many di�erent machine languages and,
hence, be brought to run on many di�erent machines.

On the other hand, programs that are written in a high-level language
and automatically translated to machine language may run somewhat
slower than programs that are hand-coded in machine language. Hence,
some time-critical programs are still written partly in machine language.
A good compiler will, however, be able to get very close to the speed of
hand-written machine code when translating well-structured programs.

1.2 The phases of a compiler

Since writing a compiler is a nontrivial task, it is a good idea to structure
the work. A typical way of doing this is to split the compilation into
several phases with well-de�ned interfaces. Conceptually, these phases
operate in sequence (though in practice, they are often interleaved), each
phase (except the �rst) taking the output from the previous phase as
its input. It is common to let each phase be handled by a separate
module. Some of these modules are written by hand, while others may
be generated from speci�cations. Often, some of the modules can be
shared between several compilers.

A common division into phases is described below. In some com-
pilers, the ordering of phases may di�er slightly, some phases may be
combined or split into several phases or some extra phases may be in-
serted between those mentioned below.

Lexical analysis This is the initial part of reading and analysing the
program text: The text is read and divided into tokens, each of
which corresponds to a symbol in the programming language, e.g.,
a variable name, keyword or number.

Syntax analysis This phase takes the list of tokens produced by the
lexical analysis and arranges these in a tree-structure (called the
syntax tree) that re�ects the structure of the program. This phase
is often called parsing.

Type checking This phase analyses the syntax tree to determine if
the program violates certain consistency requirements, e.g., if a
variable is used but not declared or if it is used in a context that
doesn't make sense given the type of the variable, such as trying
to use a boolean value as a function pointer.
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Intermediate code generation The program is translated to a sim-
ple machine-independent intermediate language.

Register allocation The symbolic variable names used in the interme-
diate code are translated to numbers, each of which corresponds
to a register in the target machine code.

Machine code generation The intermediate language is translated to
assembly language (a textual representation of machine code) for
a speci�c machine architecture.

Assembly and linking The assembly-language code is translated into
binary representation and addresses of variables, functions, etc.,
are determined.

The �rst three phases are collectively called the frontend of the compiler
and the last three phases are collectively called the backend. The middle
part of the compiler is in this context only the intermediate code gener-
ation, but this often includes various optimisations and transformations
on the intermediate code.

Each phase, through checking and transformation, establishes stronger
invariants on the things it passes on to the next, so that writing each
subsequent phase is easier than if these have to take all the preceding into
account. For example, the type checker can assume absence of syntax
errors and the code generation can assume absence of type errors.

Assembly and linking are typically done by programs supplied by
the machine or operating system vendor, and are hence not part of the
compiler itself, so we will not further discuss these phases in this book.

1.3 Interpreters

An interpreter is another way of implementing a programming language.
Interpretation shares many aspects with compiling. Lexing, parsing and
type-checking are in an interpreter done just as in a compiler. But
instead of generating code from the syntax tree, the syntax tree is pro-
cessed directly to evaluate expressions and execute statements, and so
on. An interpreter may need to process the same piece of the syntax tree
(for example, the body of a loop) many times and, hence, interpretation
is typically slower than executing a compiled program. But writing an
interpreter is often simpler than writing a compiler and the interpreter is
easier to move to a di�erent machine (see chapter 11), so for applications
where speed is not of essence, interpreters are often used.



4 CHAPTER 1. INTRODUCTION

Compilation and interpretation may be combined to implement a
programming language: The compiler may produce intermediate-level
code which is then interpreted rather than compiled to machine code. In
some systems, there may even be parts of a program that are compiled to
machine code, some parts that are compiled to intermediate code, which
is interpreted at runtime while other parts may be kept as a syntax tree
and interpreted directly. Each choice is a compromise between speed and
space: Compiled code tends to be bigger than intermediate code, which
tend to be bigger than syntax, but each step of translation improves
running speed.

Using an interpreter is also useful during program development, where
it is more important to be able to test a program modi�cation quickly
rather than run the program e�ciently. And since interpreters do less
work on the program before execution starts, they are able to start run-
ning the program more quickly. Furthermore, since an interpreter works
on a representation that is closer to the source code than is compiled
code, error messages can be more precise and informative.

We will not discuss interpreters in any detail in this book, except in
relation to bootstrapping in chapter 11. A good introduction to inter-
preters can be found in [2].

1.4 Why learn about compilers?

Few people will ever be required to write a compiler for a general-purpose
language like C, Pascal or SML. So why do most computer science in-
stitutions o�er compiler courses and often make these mandatory?

Some typical reasons are:

a) It is considered a topic that you should know in order to be �well-
cultured� in computer science.

b) A good craftsman should know his tools, and compilers are impor-
tant tools for programmers and computer scientists.

c) The techniques used for constructing a compiler are useful for other
purposes as well.

d) There is a good chance that a programmer or computer scientist
will need to write a compiler or interpreter for a domain-speci�c
language.
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The �rst of these reasons is somewhat dubious, though something can
be said for �knowing your roots�, even in such a hastily changing �eld as
computer science.

Reason �b� is more convincing: Understanding how a compiler is
built will allow programmers to get an intuition about what their high-
level programs will look like when compiled and use this intuition to
tune programs for better e�ciency. Furthermore, the error reports that
compilers provide are often easier to understand when one knows about
and understands the di�erent phases of compilation, such as knowing
the di�erence between lexical errors, syntax errors, type errors and so
on.

The third reason is also quite valid. In particular, the techniques used
for reading (lexing and parsing) the text of a program and converting this
into a form (abstract syntax) that is easily manipulated by a computer,
can be used to read and manipulate any kind of structured text such as
XML documents, address lists, etc..

Reason �d� is becoming more and more important as domain spe-
ci�c languages (DSLs) are gaining in popularity. A DSL is a (typically
small) language designed for a narrow class of problems. Examples are
data-base query languages, text-formatting languages, scene description
languages for ray-tracers and languages for setting up economic simula-
tions. The target language for a compiler for a DSL may be traditional
machine code, but it can also be another high-level language for which
compilers already exist, a sequence of control signals for a machine,
or formatted text and graphics in some printer-control language (e.g.
PostScript). Even so, all DSL compilers will share similar front-ends for
reading and analysing the program text.

Hence, the methods needed to make a compiler front-end are more
widely applicable than the methods needed to make a compiler back-
end, but the latter is more important for understanding how a program
is executed on a machine.

1.5 The structure of this book

The �rst part of the book describes the methods and tools required
to read program text and convert it into a form suitable for computer
manipulation. This process is made in two stages: A lexical analysis
stage that basically divides the input text into a list of �words�. This is
followed by a syntax analysis (or parsing) stage that analyses the way
these words form structures and converts the text into a data structure
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that re�ects the textual structure. Lexical analysis is covered in chapter
2 and syntactical analysis in chapter 3.

The second part of the book (chapters 4 � 9) covers the middle part
and back-end of the compiler, where the program is converted into ma-
chine language. Chapter 4 covers how de�nitions and uses of names
(identi�ers) are connected through symbol tables. In chapter 5, this is
used to type-check the program. In chapter 6, it is shown how expres-
sions and statements can be compiled into an intermediate language, a
language that is close to machine language but hides machine-speci�c
details. In chapter 7, it is discussed how the intermediate language can
be converted into �real� machine code. Doing this well requires that the
registers in the processor are used to store the values of variables, which
is achieved by a register allocation process, as described in chapter 8.
Up to this point, a �program� has been what corresponds to the body of
a single procedure. Procedure calls and nested procedure declarations
add some issues, which are discussed in chapter 9. Chapter 10 deals with
analysis and optimisation.

Finally, chapter 11 will discuss the process of bootstrapping a com-
piler, i.e., using a compiler to compile itself.

Chapter 10 (on analysis and optimisation) was not found in editions
before April 2008, which is why the latest editions are called �extended�

1.6 To the lecturer

This book was written for use in the introductory compiler course at
DIKU, the department of computer science at the University of Copen-
hagen, Denmark.

At DIKU, the compiler course was previously taught right after the
introductory programming course1, which is earlier than in most other
universities. Hence, existing textbooks tended either to be too advanced
for the level of the course or be too simplistic in their approach, for
example only describing a single very simple compiler without bothering
too much with the general picture.

This book was written as a response to this and aims at bridging the
gap: It is intended to convey the general picture without going into ex-
treme detail about such things as e�cient implementation or the newest
techniques. It should give the students an understanding of how compil-
ers work and the ability to make simple (but not simplistic) compilers

1It is now in the second year.
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for simple languages. It will also lay a foundation that can be used for
studying more advanced compilation techniques, as found e.g. in [30].

At times, standard techniques from compiler construction have been
simpli�ed for presentation in this book. In such cases references are
made to books or articles where the full version of the techniques can be
found.

The book aims at being �language neutral�. This means two things:

• Little detail is given about how the methods in the book can be
implemented in any speci�c language. Rather, the description of
the methods is given in the form of algorithm sketches and textual
suggestions of how these can be implemented in various types of
languages, in particular imperative and functional languages.

• There is no single through-going example of a language to be com-
piled. Instead, di�erent small (sub-)languages are used in various
places to cover exactly the points that the text needs. This is done
to avoid drowning in detail, hopefully allowing the readers to �see
the wood for the trees�.

Each chapter has a set of exercises. Few of these require access to a
computer, but can be solved on paper or black-board. In fact, many
of the exercises are based on exercises that have been used in written
exams at DIKU.

Teaching with this book can be supplemented with project work,
where students write simple compilers. Since the book is language neu-
tral, no speci�c project is given. Instead the teacher must choose relevant
tools and select a project that �ts the level of the students and the time
available. Suitable credit for a course that uses this book is from 5 to
10 ECTS points, depending on the amount of project work.

1.7 Acknowledgements

The author wishes to thank all people who have been helpful in making
this book a reality. This includes the students who have been exposed to
draft versions of the book at the compiler courses �Dat 1E� and �Over-
sættere� at DIKU, and who have found numerous typos and other errors
in the earlier versions. I would also like to thank the instructors at Dat
1E and Oversættere, who have pointed out places where things were not
as clear as they could be. I am extremely grateful to the people who in
2000 read parts of or all of the �rst draft and made helpful suggestions.
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1.8 Permission to use

Permission to copy and print for personal use is granted. If you, as a
lecturer, want to print the book and sell it to your students, you can do
so if you only charge the printing cost. If you want to print the book
and sell it at pro�t, please contact the author at torbenm@diku.dk and
we will �nd a suitable arrangement.

In all cases, if you �nd any misprints or other errors, please contact
the author at torbenm@diku.dk.

See also the book homepage: http://www.diku.dk/∼torbenm/Basics.



Chapter 2

Lexical Analysis

2.1 Introduction

The word �lexical� in the traditional sense means �pertaining to words�.
In terms of programming languages, words are objects like variable
names, numbers, keywords etc. Such words are traditionally called to-
kens.

A lexical analyser, or lexer for short, will as its input take a string
of individual letters and divide this string into tokens. Additionally, it
will �lter out whatever separates the tokens (the so-called white-space),
i.e., lay-out characters (spaces, newlines etc.) and comments.

The main purpose of lexical analysis is to make life easier for the
subsequent syntax analysis phase. In theory, the work that is done
during lexical analysis can be made an integral part of syntax analysis,
and in simple systems this is indeed often done. However, there are
reasons for keeping the phases separate:

• E�ciency: A lexer may do the simple parts of the work faster than
the more general parser can. Furthermore, the size of a system
that is split in two may be smaller than a combined system. This
may seem paradoxical but, as we shall see, there is a non-linear
factor involved which may make a separated system smaller than
a combined system.

• Modularity: The syntactical description of the language need not
be cluttered with small lexical details such as white-space and
comments.

• Tradition: Languages are often designed with separate lexical and
syntactical phases in mind, and the standard documents of such

9
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languages typically separate lexical and syntactical elements of the
languages.

It is usually not terribly di�cult to write a lexer by hand: You �rst read
past initial white-space, then you, in sequence, test to see if the next
token is a keyword, a number, a variable or whatnot. However, this is
not a very good way of handling the problem: You may read the same
part of the input repeatedly while testing each possible token and in
some cases it may not be clear where the next token ends. Furthermore,
a handwritten lexer may be complex and di�cult to maintain. Hence,
lexers are normally constructed by lexer generators, which transform
human-readable speci�cations of tokens and white-space into e�cient
programs.

We will see the same general strategy in the chapter about syntax
analysis: Speci�cations in a well-de�ned human-readable notation are
transformed into e�cient programs.

For lexical analysis, speci�cations are traditionally written using reg-
ular expressions: An algebraic notation for describing sets of strings.
The generated lexers are in a class of extremely simple programs called
�nite automata.

This chapter will describe regular expressions and �nite automata,
their properties and how regular expressions can be converted to �nite
automata. Finally, we discuss some practical aspects of lexer generators.

2.2 Regular expressions

The set of all integer constants or the set of all variable names are sets of
strings, where the individual letters are taken from a particular alphabet.
Such a set of strings is called a language. For integers, the alphabet
consists of the digits 0-9 and for variable names the alphabet contains
both letters and digits (and perhaps a few other characters, such as
underscore).

Given an alphabet, we will describe sets of strings by regular expres-
sions, an algebraic notation that is compact and easy for humans to
use and understand. The idea is that regular expressions that describe
simple sets of strings can be combined to form regular expressions that
describe more complex sets of strings.

When talking about regular expressions, we will use the letters (r, s
and t) in italics to denote unspeci�ed regular expressions. When letters
stand for themselves (i.e., in regular expressions that describe strings
using these letters) we will use typewriter font, e.g., a or b. Hence, when
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Regular
expression

Language (set of strings) Informal description

a {�a�} The set consisting of
the one-letter string
�a�.

ε {��} The set containing the
empty string.

s|t L(s) ∪ L(t) Strings from both lan-
guages

st {vw | v ∈ L(s),w ∈ L(t)} Strings constructed by
concatenating a string
from the �rst language
with a string from the
second language.
Note: In set-formulas,
�|� isn't a part of a
regular expression, but
part of the set-builder
notation and reads as
�where�.

s∗ {��} ∪ {vw | v ∈ L(s), w ∈ L(s∗)} Each string in the lan-
guage is a concatena-
tion of any number of
strings in the language
of s.

Figure 2.1: Regular expressions

we say, e.g., �The regular expression s� we mean the regular expression
that describes a single one-letter string �s�, but when we say �The regular
expression s�, we mean a regular expression of any form which we just
happen to call s. We use the notation L(s) to denote the language (i.e.,
set of strings) described by the regular expression s. For example, L(a)
is the set {�a�}.

Figure 2.1 shows the constructions used to build regular expressions
and the languages they describe:

• A single letter describes the language that has the one-letter string
consisting of that letter as its only element.
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• The symbol ε (the Greek letter epsilon) describes the language
that consists solely of the empty string. Note that this is not the
empty set of strings (see exercise 2.10).

• s|t (pronounced �s or t�) describes the union of the languages de-
scribed by s and t.

• st (pronounced �s t�) describes the concatenation of the languages
L(s) and L(t), i.e., the sets of strings obtained by taking a string
from L(s) and putting this in front of a string from L(t). For
example, if L(s) is {�a�, �b�} and L(t) is {�c�, �d�}, then L(st) is
the set {�ac�, �ad�, �bc�, �bd�}.

• The language for s∗ (pronounced �s star�) is described recursively:
It consists of the empty string plus whatever can be obtained by
concatenating a string from L(s) to a string from L(s∗). This
is equivalent to saying that L(s∗) consists of strings that can be
obtained by concatenating zero or more (possibly di�erent) strings
from L(s). If, for example, L(s) is {�a�, �b�} then L(s∗) is {��, �a�,
�b�, �aa�, �ab�, �ba�, �bb�, �aaa�, . . . }, i.e., any string (including
the empty) that consists entirely of as and bs.

Note that while we use the same notation for concrete strings and regular
expressions denoting one-string languages, the context will make it clear
which is meant. We will often show strings and sets of strings without
using quotation marks, e.g., write {a, bb} instead of {�a�, �bb�}. When
doing so, we will use ε to denote the empty string, so the example from
L(s∗) above is written as {ε, a, b, aa, ab, ba, bb, aaa, . . . }. The letters
u, v and w in italics will be used to denote unspeci�ed single strings,
i.e., members of some language. As an example, abw denotes any string
starting with ab.

Precedence rules

When we combine di�erent constructor symbols, e.g., in the regular
expression a|ab∗, it isn't a priori clear how the di�erent subexpressions
are grouped. We can use parentheses to make the grouping of symbols
clear. Additionally, we use precedence rules, similar to the algebraic
convention that 3 + 4 ∗ 5 means 3 added to the product of 4 and 5 and
not multiplying the sum of 3 and 4 by 5. For regular expressions, we
use the following conventions: ∗ binds tighter than concatenation, which
binds tighter than alternative (|). The example a|ab∗ from above, hence,
is equivalent to a|(a(b∗)).
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The | operator is associative and commutative (as it is based on set
union, which has these properties). Concatenation is associative (but
obviously not commutative) and distributes over |. Figure 2.2 shows
these and other algebraic properties of regular expressions, including
de�nitions of some shorthands introduced below.

2.2.1 Shorthands

While the constructions in �gure 2.1 su�ce to describe e.g., number
strings and variable names, we will often use extra shorthands for con-
venience. For example, if we want to describe non-negative integer con-
stants, we can do so by saying that it is one or more digits, which is
expressed by the regular expression

(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)∗

The large number of di�erent digits makes this expression rather ver-
bose. It gets even worse when we get to variable names, where we must
enumerate all alphabetic letters (in both upper and lower case).

Hence, we introduce a shorthand for sets of letters. Sequences of
letters within square brackets represent the set of these letters. For
example, we use [ab01] as a shorthand for a|b|0|1. Additionally, we
can use interval notation to abbreviate [0123456789] to [0-9]. We can
combine several intervals within one bracket and for example write [a-
zA-Z] to denote all alphabetic letters in both lower and upper case.

When using intervals, we must be aware of the ordering for the sym-
bols involved. For the digits and letters used above, there is usually no
confusion. However, if we write, e.g., [0-z] it is not immediately clear
what is meant. When using such notation in lexer generators, standard
ASCII or ISO 8859-1 character sets are usually used, with the hereby
implied ordering of symbols. To avoid confusion, we will use the interval
notation only for intervals of digits or alphabetic letters.

Getting back to the example of integer constants above, we can now
write this much shorter as [0-9][0-9]∗.

Since s∗ denotes zero or more occurrences of s, we needed to write the
set of digits twice to describe that one or more digits are allowed. Such
non-zero repetition is quite common, so we introduce another shorthand,
s+, to denote one or more occurrences of s. With this notation, we can
abbreviate our description of integers to [0-9]+. On a similar note, it is
common that we can have zero or one occurrence of something (e.g., an
optional sign to a number). Hence we introduce the shorthand s? for
s|ε. + and ? bind with the same precedence as ∗.
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(r |s)|t = r |s|t = r |(s|t)
s|t = t |s
s|s = s

s? = s|ε
(rs)t = rst = r(st)

sε = s = εs

r(s|t) = rs|rt
(r |s)t = rt |st

(s∗)∗ = s∗

s∗s∗ = s∗

ss∗ = s+ = s∗s

Figure 2.2: Some algebraic properties of regular expressions

We must stress that these shorthands are just that. They don't
add anything to the set of languages we can describe, they just make it
possible to describe a language more compactly. In the case of s+, it
can even make an exponential di�erence: If + is nested n deep, recursive
expansion of s+ to ss∗ yields 2n − 1 occurrences of ∗ in the expanded
regular expression.

2.2.2 Examples

We have already seen how we can describe non-negative integer constants
using regular expressions. Here are a few examples of other typical
programming language elements:

Keywords. A keyword like if is described by a regular expression that
looks exactly like that keyword, e.g., the regular expression if (which is
the concatenation of the two regular expressions i and f).

Variable names. In the programming language C, a variable name
consists of letters, digits and the underscore symbol and it must be-
gin with a letter or underscore. This can be described by the regular
expression [a-zA-Z_][a-zA-Z_0-9]∗.
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Integers. An integer constant is an optional sign followed by a non-
empty sequence of digits: [+-]?[0-9]+. In some languages, the sign is
a separate symbol and not part of the constant itself. This will allow
whitespace between the sign and the number, which is not possible with
the above.

Floats. A �oating-point constant can have an optional sign. After
this, the mantissa part is described as a sequence of digits followed by a
decimal point and then another sequence of digits. Either one (but not
both) of the digit sequences can be empty. Finally, there is an optional
exponent part, which is the letter e (in upper or lower case) followed by
an (optionally signed) integer constant. If there is an exponent part to
the constant, the mantissa part can be written as an integer constant
(i.e., without the decimal point). Some examples: 3.14 -3. .23 3e+4

11.22e-3.
This rather involved format can be described by the following regular

expression:

[+-]?((([0-9]+. [0-9]∗|. [0-9]+)([eE][+-]?[0-9]+)?)|[0-9]+[eE][+-]?[0-9]+)

This regular expression is complicated by the fact that the exponent is
optional if the mantissa contains a decimal point, but not if it doesn't
(as that would make the number an integer constant). We can make
the description simpler if we make the regular expression for �oats also
include integers, and instead use other means of distinguishing integers
from �oats (see section 2.9 for details). If we do this, the regular expres-
sion can be simpli�ed to

[+-]?(([0-9]+(. [0-9]∗)?|. [0-9]+)([eE][+-]?[0-9]+)?)

String constants. A string constant starts with a quotation mark
followed by a sequence of symbols and �nally another quotation mark.
There are usually some restrictions on the symbols allowed between the
quotation marks. For example, line-feed characters or quotes are typi-
cally not allowed, though these may be represented by special �escape�
sequences of other characters, such as "\n\n" for a string containing two
line-feeds. As a (much simpli�ed) example, we can by the following reg-
ular expression describe string constants where the allowed symbols are
alphanumeric characters and sequences consisting of the backslash sym-
bol followed by a letter (where each such pair is intended to represent a
non-alphanumeric symbol):
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"([a-zA-Z0-9]|\[a-zA-Z])∗"

2.3 Nondeterministic �nite automata

In our quest to transform regular expressions into e�cient programs,
we use a stepping stone: Nondeterministic �nite automata. By their
nondeterministic nature, these are not quite as close to �real machines�
as we would like, so we will later see how these can be transformed into
deterministic �nite automata, which are easily and e�ciently executable
on normal hardware.

A �nite automaton is, in the abstract sense, a machine that has a
�nite number of states and a �nite number of transitions between these.
A transition between states is usually labelled by a character from the
input alphabet, but we will also use transitions marked with ε, the so-
called epsilon transitions.

A �nite automaton can be used to decide if an input string is a
member in some particular set of strings. To do this, we select one of
the states of the automaton as the starting state. We start in this state
and in each step, we can do one of the following:

• Follow an epsilon transition to another state, or

• Read a character from the input and follow a transition labelled
by that character.

When all characters from the input are read, we see if the current state
is marked as being accepting. If so, the string we have read from the
input is in the language de�ned by the automaton.

We may have a choice of several actions at each step: We can choose
between either an epsilon transition or a transition on an alphabet char-
acter, and if there are several transitions with the same symbol, we can
choose between these. This makes the automaton nondeterministic, as
the choice of action is not determined solely by looking at the current
state and input. It may be that some choices lead to an accepting state
while others do not. This does, however, not mean that the string is
sometimes in the language and sometimes not: We will include a string
in the language if it is possible to make a sequence of choices that makes
the string lead to an accepting state.
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You can think of it as solving a maze with symbols written in the
corridors. If you can �nd the exit while walking over the letters of the
string in the correct order, the string is recognized by the maze.

We can formally de�ne a nondeterministic �nite automaton by:

De�nition 2.1 A nondeterministic �nite automaton consists of a set
S of states. One of these states, s0 ∈ S, is called the starting state of
the automaton and a subset F ⊆ S of the states are accepting states.
Additionally, we have a set T of transitions. Each transition t connects
a pair of states s1 and s2 and is labelled with a symbol, which is either
a character c from the alphabet Σ, or the symbol ε, which indicates an
epsilon-transition. A transition from state s to state t on the symbol c
is written as sct.

Starting states are sometimes called initial states and accepting states
can also be called �nal states (which is why we use the letter F to
denote the set of accepting states). We use the abbreviations FA for
�nite automaton, NFA for nondeterministic �nite automaton and (later
in this chapter) DFA for deterministic �nite automaton.

We will mostly use a graphical notation to describe �nite automata.
States are denoted by circles, possibly containing a number or name that
identi�es the state. This name or number has, however, no operational
signi�cance, it is solely used for identi�cation purposes. Accepting states
are denoted by using a double circle instead of a single circle. The initial
state is marked by an arrow pointing to it from outside the automaton.

A transition is denoted by an arrow connecting two states. Near its
midpoint, the arrow is labelled by the symbol (possibly ε) that triggers
the transition. Note that the arrow that marks the initial state is not a
transition and is, hence, not marked by a symbol.

Repeating the maze analogue, the circles (states) are rooms and the
arrows (transitions) are one-way corridors. The double circles (accepting
states) are exits, while the unmarked arrow to the starting state is the
entrance to the maze.

Figure 2.3 shows an example of a nondeterministic �nite automaton
having three states. State 1 is the starting state and state 3 is accepting.
There is an epsilon-transition from state 1 to state 2, transitions on the
symbol a from state 2 to states 1 and 3 and a transition on the symbol
b from state 1 to state 3. This NFA recognises the language described
by the regular expression a∗(a|b). As an example, the string aab is
recognised by the following sequence of transitions:
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from to by
1 2 ε
2 1 a

1 2 ε
2 1 a

1 3 b

At the end of the input we are in state 3, which is accepting. Hence, the
string is accepted by the NFA. You can check this by placing a coin at
the starting state and follow the transitions by moving the coin.

Note that we sometimes have a choice of several transitions. If we
are in state 2 and the next symbol is an a, we can, when reading this,
either go to state 1 or to state 3. Likewise, if we are in state 1 and the
next symbol is a b, we can either read this and go to state 3 or we can use
the epsilon transition to go directly to state 2 without reading anything.
If we in the example above had chosen to follow the a-transition to
state 3 instead of state 1, we would have been stuck: We would have
no legal transition and yet we would not be at the end of the input.
But, as previously stated, it is enough that there exists a path leading
to acceptance, so the string aab is still accepted.

A program that decides if a string is accepted by a given NFA will
have to check all possible paths to see if any of these accepts the string.
This requires either backtracking until a successful path found or si-
multaneously following all possible paths, both of which are too time-
consuming to make NFAs suitable for e�cient recognisers. We will,
hence, use NFAs only as a stepping stone between regular expressions
and the more e�cient DFAs. We use this stepping stone because it
makes the construction simpler than direct construction of a DFA from
a regular expression.

-��
��
1 -b

�ε

��
��
����
3

��
��
2

	

a

?

a

Figure 2.3: Example of an NFA
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2.4 Converting a regular expression to an NFA

We will construct an NFA compositionally from a regular expression,
i.e., we will construct the NFA for a composite regular expression from
the NFAs constructed from its subexpressions.

To be precise, we will from each subexpression construct an NFA
fragment and then combine these fragments into bigger fragments. A
fragment is not a complete NFA, so we complete the construction by
adding the necessary components to make a complete NFA.

An NFA fragment consists of a number of states with transitions
between these and additionally two incomplete transitions: One point-
ing into the fragment and one pointing out of the fragment. The in-
coming half-transition is not labelled by a symbol, but the outgoing
half-transition is labelled by either ε or an alphabet symbol. These half-
transitions are the entry and exit to the fragment and are used to connect
it to other fragments or additional �glue� states.

Construction of NFA fragments for regular expressions is shown in
�gure 2.4. The construction follows the structure of the regular expres-
sion by �rst making NFA fragments for the subexpressions and then
joining these to form an NFA fragment for the whole regular expres-
sion. The NFA fragments for the subexpressions are shown as dotted
ovals with the incoming half-transition on the left and the outgoing half-
transition on the right.

When an NFA fragment has been constructed for the whole regu-
lar expression, the construction is completed by connecting the outgo-
ing half-transition to an accepting state. The incoming half-transition
serves to identify the starting state of the completed NFA. Note that
even though we allow an NFA to have several accepting states, an NFA
constructed using this method will have only one: the one added at the
end of the construction.

An NFA constructed this way for the regular expression (a|b)∗ac is
shown in �gure 2.5. We have numbered the states for future reference.

2.4.1 Optimisations

We can use the construction in �gure 2.4 for any regular expression
by expanding out all shorthand, e.g. converting s+ to ss∗, [0-9] to
0|1|2| · · · |9 and s? to s|ε, etc. However, this will result in very large
NFAs for some expressions, so we use a few optimised constructions
for the shorthands. Additionally, we show an alternative construction
for the regular expression ε. This construction doesn't quite follow the
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Regular expression NFA fragment
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Figure 2.4: Constructing NFA fragments from regular expressions
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Figure 2.5: NFA for the regular expression (a|b)∗ac

formula used in �gure 2.4, as it doesn't have two half-transitions. Rather,
the line-segment notation is intended to indicate that the NFA fragment
for ε just connects the half-transitions of the NFA fragments that it is
combined with. In the construction for [0-9], the vertical ellipsis is meant
to indicate that there is a transition for each of the digits in [0-9]. This
construction generalises in the obvious way to other sets of characters,
e.g., [a-zA-Z0-9]. We have not shown a special construction for s? as
s|ε will do �ne if we use the optimised construction for ε.

The optimised constructions are shown in �gure 2.6. As an example,
an NFA for [0-9]+ is shown in �gure 2.7. Note that while this is opti-
mised, it is not optimal. You can make an NFA for this language using
only two states.

2.5 Deterministic �nite automata

Nondeterministic automata are, as mentioned earlier, not quite as close
to �the machine� as we would like. Hence, we now introduce a more
restricted form of �nite automaton: The deterministic �nite automaton,
or DFA for short. DFAs are NFAs, but obey a number of additional
restrictions:

• There are no epsilon-transitions.

• There may not be two identically labelled transitions out of the
same state.
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Regular expression NFA fragment

ε

[0-9]

-��
��R

0

�
9

.

.

. ��
��

ε

s+ -��
��

-

ε

��
��

ε� ε
�

s

Figure 2.6: Optimised NFA construction for regular expression short-
hands
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Figure 2.7: Optimised NFA for [0-9]+
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This means that we never have a choice of several next-states: The state
and the next input symbol uniquely determines the transition (or lack
of same). This is why these automata are called deterministic.

The transition relation is now a (partial) function, and we often write
it as such: move(s, c) is the state (if any) that is reached from state s by
a transition on the symbol c. If there is no such transition, move(s, c)
is unde�ned.

It is very easy to implement a DFA: A two-dimensional table can
be cross-indexed by state and symbol to yield the next state (or an
indication that there is no transition), essentially implementing the move
function by table lookup. Another (one-dimensional) table can indicate
which states are accepting.

DFAs have the same expressive power as NFAs: A DFA is a special
case of NFA and any NFA can (as we shall shortly see) be converted to
an equivalent DFA. However, this comes at a cost: The resulting DFA
can be exponentially larger than the NFA (see section 2.10). In practice
(i.e., when describing tokens for a programming language) the increase
in size is usually modest, which is why most lexical analysers are based
on DFAs.

2.6 Converting an NFA to a DFA

As promised, we will show how NFAs can be converted to DFAs such
that we, by combining this with the conversion of regular expressions
to NFAs shown in section 2.4, can convert any regular expression to a
DFA.

The conversion is done by simulating all possible paths in an NFA
at once. This means that we operate with sets of NFA states: When we
have several choices of a next state, we take all of the choices simultane-
ously and form a set of the possible next-states. The idea is that such a
set of NFA states will become a single DFA state. For any given symbol
we form the set of all possible next-states in the NFA, so we get a single
transition (labelled by that symbol) going from one set of NFA states
to another set. Hence, the transition becomes deterministic in the DFA
that is formed from the sets of NFA states.

Epsilon-transitions complicate the construction a bit: Whenever we
are in an NFA state we can always choose to follow an epsilon-transition
without reading any symbol. Hence, given a symbol, a next-state can
be found by either following a transition with that symbol or by �rst
doing any number of epsilon-transitions and then a transition with the
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symbol. We handle this in the construction by �rst closing the set of
NFA states under epsilon-transitions and then following transitions with
input symbols. We de�ne the epsilon-closure of a set of states as the set
extended with all states that can be reached from these using any number
of epsilon-transitions. More formally:

De�nition 2.2 Given a set M of NFA states, we de�ne ε-closure(M) to
be the least (in terms of the subset relation) solution to the set equation

ε-closure(M)
= M ∪ {t | s ∈ ε-closure(M) and sεt ∈ T}

Where T is the set of transitions in the NFA.

We will later on see several examples of set equations like the one
above, so we use some time to discuss how such equations can be solved.

2.6.1 Solving set equations

In general, a set equation over a single set-valued variable X has the
form

X = F (X)

where F is a function from sets to sets. Not all such equations are
solvable, so we will restrict ourselves to special cases, which we will
describe below. We will use calculation of epsilon-closure as the driving
example.

In de�nition 2.2, ε-closure(M) is the value we have to �nd, so we
replace this by X and get the equation:

X = M ∪ {t | s ∈ X and sεt ∈ T}

and hence

F (X) = M ∪ {t | s ∈ X and sεt ∈ T}

This function has a property that is essential to our solution method:
If X ⊆ Y then F (X) ⊆ F (Y ). We say that F is monotonic. Note
that F (X) is not ε-closure(X) and that F depends on M , so a new F is
required for each M that we want to �nd the epsilon-closure of.

There may be several solutions to this equation. For example, if the
NFA has a pair of states that connect to each other by epsilon transitions,
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adding this pair to a solution that does not already include the pair will
create a new solution. The epsilon-closure of M is the least solution to
the equation (i.e., the smallest set that satistifes the equation).

When we have an equation of the form X = F (X) and F is mono-
tonic, we can �nd the least solution to the equation in the following way:
We �rst guess that the solution is the empty set and check to see if we
are right: We compare ∅ with F (∅). If these are equal, we are done and
∅ is the solution. If not, we use the following properties:

• The least solution S to the equation satis�es S = F (S).

• ∅ ⊆ S implies that F (∅) ⊆ F (S).

to conclude that F (∅) ⊆ S. Hence, F (∅) is a new guess at S. We now
form the chain

∅ ⊆ F (∅) ⊆ F (F (∅)) ⊆ . . .

If at any point an element in the sequence is identical to the previous,
we have a �xed-point, i.e., a set S such that S = F (S). This �xed-point
of the sequence will be the least (in terms of set inclusion) solution to
the equation. This isn't di�cult to verify, but we will omit the details.
Since we are iterating a function until we reach a �xed-point, we call
this process �xed-point iteration.

If we are working with sets over a �nite domain (e.g., sets of NFA
states), we will eventually reach a �xed-point, as there can be no in�nite
chain of strictly increasing sets.

We can use this method for calculating the epsilon-closure of the set
{1} with respect to the NFA shown in �gure 2.5. We use a version of F
where M = {1}, so we start by calculating

F (∅) = {1} ∪ {t | s ∈ ∅ and sεt ∈ T}
= {1}

As ∅ 6= {1}, we continue.

F ({1}) = {1} ∪ {t | s ∈ {1} and sεt ∈ T}
= {1} ∪ {2, 5} = {1, 2, 5}

F ({1, 2, 5}) = {1} ∪ {t | s ∈ {1, 2, 5} and sεt ∈ T}
= {1} ∪ {2, 5, 6, 7} = {1, 2, 5, 6, 7}

F ({1, 2, 5, 6, 7}) = {1} ∪ {t | s ∈ {1, 2, 5, 6, 7} and sεt ∈ T}
= {1} ∪ {2, 5, 6, 7} = {1, 2, 5, 6, 7}
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We have now reached a �xed-point and found our solution. Hence, we
conclude that ε-closure({1}) = {1, 2, 5, 6, 7}.

We have done a good deal of repeated calculation in the iteration
above: We have calculated the epsilon-transitions from state 1 three
times and those from state 2 and 5 twice each. We can make an opti-
mised �xed-point iteration by exploiting that the function is not only
monotonic, but also distributive: F (X∪Y ) = F (X)∪F (Y ). This means
that, when we during the iteration add elements to our set, we in the
next iteration need only calculate F for the new elements and add the
result to the set. In the example above, we get

F (∅) = {1} ∪ {t | s ∈ ∅ and sεt ∈ T}
= {1}

F ({1}) = {1} ∪ {t | s ∈ {1} and sεt ∈ T}
= {1} ∪ {2, 5} = {1, 2, 5}

F ({1, 2, 5}) = F ({1}) ∪ F ({2, 5})
= {1, 2, 5} ∪ ({1} ∪ {t | s ∈ {2, 5} and sεt ∈ T})
= {1, 2, 5} ∪ ({1} ∪ {6, 7}) = {1, 2, 5, 6, 7}

F ({1, 2, 5, 6, 7}) = F ({1, 2, 5}) ∪ F ({6, 7})
= {1, 2, 5, 6, 7} ∪ ({1} ∪ {t | s ∈ {6, 7} and sεt ∈ T})
= {1, 2, 5, 6, 7} ∪ ({1} ∪ ∅) = {1, 2, 5, 6, 7}

We can use this principle to formulate a work-list algorithm for �nding
the least �xed-points for distributive functions. The idea is that we step-
by-step build a set that eventually becomes our solution. In the �rst
step we calculate F (∅). The elements in this initial set are unmarked.
In each subsequent step, we take an unmarked element x from the set,
mark it and add F ({x}) (unmarked) to the set. Note that if an element
already occurs in the set (marked or not), it is not added again. When,
eventually, all elements in the set are marked, we are done.

This is perhaps best illustrated by an example (the same as before).
We start by calculating F (∅) = {1}. The element 1 is unmarked, so we
pick this, mark it and calculate F ({1}) and add the new elements 2 and
5 to the set. As we continue, we get this sequence of sets:
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{1}

{
√

1 , 2, 5}

{
√

1 ,

√

2 , 5}

{
√

1 ,

√

2 ,

√

5 , 6, 7}

{
√

1 ,

√

2 ,

√

5 ,

√

6 , 7}

{
√

1 ,

√

2 ,

√

5 ,

√

6 ,

√

7 }

We will later also need to solve simultaneous equations over sets, i.e.,
several equations over several sets. These can also be solved by �xed-
point iteration in the same way as single equations, though the work-list
version of the algorithm becomes a bit more complicated.

2.6.2 The subset construction

After this brief detour into the realm of set equations, we are now ready
to continue with our construction of DFAs from NFAs. The construction
is called the subset construction, as each state in the DFA is a subset of
the states from the NFA.

Algorithm 2.3 (The subset construction) Given an NFA N with
states S, starting state s0 ∈ S, accepting states F ⊆ S, transitions
T and alphabet Σ, we construct an equivalent DFA D with states S′,
starting state s′0, accepting states F ′ and a transition function move by:

s′0 = ε-closure({s0})
move(s′, c) = ε-closure({t | s ∈ s′ and sct ∈ T})
S′ = {s′0} ∪ {move(s′, c) | s′ ∈ S′, c ∈ Σ}
F ′ = {s′ ∈ S′ | s′ ∩ F 6= ∅}

The DFA uses the same alphabet as the NFA.

A little explanation:

• The starting state of the DFA is the epsilon-closure of the set
containing just the starting state of the NFA, i.e., the states that
are reachable from the starting state by epsilon-transitions.
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• A transition in the DFA is done by �nding the set of NFA states
that comprise the DFA state, following all transitions (on the same
symbol) in the NFA from all these NFA states and �nally com-
bining the resulting sets of states and closing this under epsilon
transitions.

• The set S′ of states in the DFA is the set of DFA states that can
be reached from s′0 using the move function. S′ is de�ned as a set
equation which can be solved as described in section 2.6.1.

• A state in the DFA is an accepting state if at least one of the NFA
states it contains is accepting.

As an example, we will convert the NFA in �gure 2.5 to a DFA.

The initial state in the DFA is ε-closure({1}), which we have already
calculated to be s′0 = {1, 2, 5, 6, 7}. This is now entered into the set
S′ of DFA states as unmarked (following the work-list algorithm from
section 2.6.1).

We now pick an unmarked element from the uncompleted S′. We
have only one choice: s′0. We now mark this and calculate the transitions
for it. We get

move(s′0, a) = ε-closure({t | s ∈ {1, 2, 5, 6, 7} and sat ∈ T})
= ε-closure({3, 8})
= {3, 8, 1, 2, 5, 6, 7}
= s′1

move(s′0, b) = ε-closure({t | s ∈ {1, 2, 5, 6, 7} and sbt ∈ T})
= ε-closure({8})
= {8, 1, 2, 5, 6, 7}
= s′2

move(s′0, c) = ε-closure({t | s ∈ {1, 2, 5, 6, 7} and sct ∈ T})
= ε-closure({})
= {}

Note that the empy set of NFA states is not an DFA state, so there will
be no transition from s′0 on c.

We now add s′1 and s′2 to our incomplete S′, which now is {
√

s′0, s
′
1, s

′
2}.

We now pick s′1, mark it and calculate its transitions:
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move(s′1, a) = ε-closure({t | s ∈ {3, 8, 1, 2, 5, 6, 7} and sat ∈ T})
= ε-closure({3, 8})
= {3, 8, 1, 2, 5, 6, 7}
= s′1

move(s′1, b) = ε-closure({t | s ∈ {3, 8, 1, 2, 5, 6, 7} and sbt ∈ T})
= ε-closure({8})
= {8, 1, 2, 5, 6, 7}
= s′2

move(s′1, c) = ε-closure({t | s ∈ {3, 8, 1, 2, 5, 6, 7} and sct ∈ T})
= ε-closure({4})
= {4}
= s′3

We have seen s′1 and s′2 before, so only s′3 is added: {
√

s′0,

√

s′1, s
′
2, s

′
3}. We

next pick s′2:

move(s′2, a) = ε-closure({t | s ∈ {8, 1, 2, 5, 6, 7} and sat ∈ T})
= ε-closure({3, 8})
= {3, 8, 1, 2, 5, 6, 7}
= s′1

move(s′2, b) = ε-closure({t | s ∈ {8, 1, 2, 5, 6, 7} and sbt ∈ T})
= ε-closure({8})
= {8, 1, 2, 5, 6, 7}
= s′2

move(s′2, c) = ε-closure({t | s ∈ {8, 1, 2, 5, 6, 7} and sct ∈ T})
= ε-closure({})
= {}

No new elements are added, so we pick the remaining unmarked element
s′3:
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Figure 2.8: DFA constructed from the NFA in �gure 2.5

move(s′3, a) = ε-closure({t | s ∈ {4} and sat ∈ T})
= ε-closure({})
= {}

move(s′3, b) = ε-closure({t | s ∈ {4} and sbt ∈ T})
= ε-closure({})
= {}

move(s′3, c) = ε-closure({t | s ∈ {4} and sct ∈ T})
= ε-closure({})
= {}

Which now completes the construction of S′ = {s′0, s′1, s′2, s′3}. Only s′3
contains the accepting NFA state 4, so this is the only accepting state
of our DFA. Figure 2.8 shows the completed DFA.

2.7 Size versus speed

In the above example, we get a DFA with 4 states from an NFA with 8
states. However, as the states in the constructed DFA are (nonempty)
sets of states from the NFA there may potentially be 2n − 1 states in a
DFA constructed from an n-state NFA. It is not too di�cult to construct
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classes of NFAs that expand exponentially in this way when converted
to DFAs, as we shall see in section 2.10.1. Since we are mainly interested
in NFAs that are constructed from regular expressions as in section 2.4,
we might ask ourselves if these might not be in a suitably simple class
that do not risk exponential-sized DFAs. Alas, this is not the case. Just
as we can construct a class of NFAs that expand exponentially, we can
construct a class of regular expressions where the smallest equivalent
DFAs are exponentially larger. This happens rarely when we use regu-
lar expressions or NFAs to describe tokens in programming languages,
though.

It is possible to avoid the blow-up in size by operating directly on
regular expressions or NFAs when testing strings for inclusion in the
languages these de�ne. However, there is a speed penalty for doing so.
A DFA can be run in time k ∗ |v|, where |v| is the length of the input
string v and k is a small constant that is independent of the size of
the DFA1. Regular expressions and NFAs can be run in time close to
c ∗ |N | ∗ |v|, where |N | is the size of the NFA (or regular expression)
and the constant c typically is larger than k. All in all, DFAs are a lot
faster to use than NFAs or regular expressions, so it is only when the
size of the DFA is a real problem that one should consider using NFAs
or regular expressions directly.

2.8 Minimisation of DFAs

Even though the DFA in �gure 2.8 has only four states, it is not mini-
mal. It is easy to see that states s′0 and s′2 are equivalent: Neither are
accepting and they have identical transitions. We can hence collapse
these states into a single state and get a three-state DFA.

DFAs constructed from regular expressions through NFAs are often
non-minimal, though they are rarely very far from being minimal. Nev-
ertheless, minimising a DFA is not terribly di�cult and can be done
fairly fast, so many lexer generators perform minimisation.

An interesting property of DFAs is that any regular language (a
language that can be expressed by a regular expression, NFA or DFA)
has a unique minimal DFA. Hence, we can decide equivalence of regular
expressions (or NFAs or DFAs) by converting both to minimal DFAs
and compare the results.

As hinted above, minimisation of DFAs is done by collapsing equiv-
alent states. However, deciding whether two states are equivalent is not

1If we don't consider the e�ects of cache-misses etc.
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just done by testing if their immediate transitions are identical, since
transitions to di�erent states may be equivalent if the target states turn
out to be equivalent. Hence, we use a strategy where we �rst assume
all states to be equivalent and then separate them only if we can prove
them di�erent. We use the following rules for this:

• An accepting state is not equivalent to a non-accepting state.

• If two states s1 and s2 have transitions on the same symbol c to
states t1 and t2 that we have already proven to be di�erent, then
s1 and s2 are di�erent. This also applies if only one of s1 or s2

have a de�ned transition on c.

This leads to the following algorithm.

Algorithm 2.4 (DFA minimisation) Given a DFA D over the al-
phabet Σ with states S where F ⊆ S is the set of the accepting states,
we construct a minimal DFA D′ where each state is a group of states
from D. The groups in the minimal DFA are consistent: For any pair
of states s1, s2 in the same group G and any symbol c, move(s1, c) is in
the same group G′ as move(s2, c) or both are unde�ned.

1) We start with two groups: F and S \ F . These are unmarked.

2) We pick any unmarked group G and check if it is consistent. If
it is, we mark it. If G is not consistent, we split it into maximal
consistent subgroups and replace G by these. All groups are then
unmarked.

3) If there are no unmarked groups left, we are done and the remaining
groups are the states of the minimal DFA. Otherwise, we go back
to step 2.

The starting state of the minimal DFA is the group that contains the
original starting state and any group of accepting states is an accepting
state in the minimal DFA.

The time needed for minimisation using algorithm 2.4 depends on the
strategy used for picking groups in step 2. With random choices, the
worst case is quadratic in the size of the DFA, but there exist strate-
gies for choosing groups and data structures for representing these that
guarantee a worst-case time that is O(n∗ log(n)), where n is the number
of states in the (non-minimal) DFA. In other words, the method can be
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Figure 2.9: Non-minimal DFA

implemented so it uses little more than linear time to do minimisation.
We will not here go into further detail but just refer to [3] for the optimal
algorithm.

We will, however, note that we can make a slight optimisation to
algorithm 2.4: A group that consists of a single state need never be
split, so we need never select such in step 2, and we can stop when all
unmarked groups are singletons.

2.8.1 Example

As an example of minimisation, take the DFA in �gure 2.9.
We now make the initial division into two groups: The accepting and

the non-accepting states.

G1 = {0, 6}
G2 = {1, 2, 3, 4, 5, 7}

These are both unmarked. We next pick any unmarked group, say G1.
To check if this is consistent, we make a table of its transitions:

G1 a b
0 G2 −
6 G2 −

This is consistent, so we just mark it and select the remaining unmarked
group G2 and make a table for this
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G2 a b
1 G2 G2

2 G2 G2

3 − G2

4 G1 G2

5 G2 G2

7 G1 G2

G2 is evidently not consistent, so we split it into maximal consistent
subgroups and erase all marks (including the one on G1):

G1 = {0, 6}
G3 = {1, 2, 5}
G4 = {3}
G5 = {4, 7}

We now pick G3 for consideration:

G3 a b
1 G5 G3

2 G4 G3

5 G5 G3

This isn't consistent either, so we split again and get

G1 = {0, 6}
G4 = {3}
G5 = {4, 7}
G6 = {1, 5}
G7 = {2}

We now pick G5 and check this:

G5 a b
4 G1 G6

7 G1 G6

This is consistent, so we mark it and pick another group, say, G6:

G6 a b
1 G5 G7

5 G5 G7
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Figure 2.10: Minimal DFA

This, also, is consistent, so we have only one unmarked non-singleton
group left: G1.

G1 a b
0 G6 −
6 G6 −

As we mark this, we see that there are no unmarked groups left (except
the singletons). Hence, the groups form a minimal DFA equivalent to
the one in �gure 2.9. The minimised DFA is shown in �gure 2.10.

2.8.2 Dead states

Algorithm 2.4 works under some, as yet, unstated assumptions:

• The move function is total, i.e., there are transitions on all symbols
from all states, or

• There are no dead states in the DFA.

A dead state is a state from which no accepting state can be reached.
Such do not occur in DFAs constructed from NFAs without dead states,
and NFAs with dead states can not be constructed from regular ex-
pressions by the method shown in section 2.4. Hence, as long as we
use minimisation only on DFAs constructed by this process, we are safe.
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However, if we get a DFA of unknown origin, we risk that it may contain
both dead states and unde�ned transitions.

A transition to a dead state should rightly be equivalent to an un-
de�ned transition, as neither can yield future acceptance. The only
di�erence is that we discover this earlier on an unde�ned transition than
when we make a transition to a dead state. However, algorithm 2.4 will
treat these di�erently and may hence decree a group to be inconsistent
even though it is not. This will make the algorithm split a group that
doesn't need to be split, hence producing a non-minimal DFA. Consider,
for example, the following DFA:

-start ��
��
����
1

s
a

��
��
����
2

k
a

-b ��
��
3

States 1 and 2 are, in fact, equivalent, as starting from either one, any
sequence of a's (and no other sequences) will lead to an accepting state.
A minimal equivalent DFA has only one accepting state with a transition
to itself on a.

But algorithm 2.4 will see a transition on b out of state 2 but no
transition on b out of state 1, so it will not keep states 1 and 2 in the
same group. As a result, no reduction in the DFA is made.

There are two solutions to this problem:

1) Make sure there are no dead states. This can be ensured by invari-
ant, as is the case for DFAs constructed by the methods shown in
this chapter, or by explicitly removing dead states before minimi-
sation. Dead states can be found by a simple reachability analysis
for directed graphs. In the above example, state 3 is dead and can
be removed (including the transition to it). This makes states 1
and 2 stay in the same group.

2) Make sure there are no unde�ned transitions. This can be achieved
by adding a new dead state (which has transitions to itself on all
symbols) and replacing all unde�ned transitions by transitions to
this dead state. After minimisation, the group that contains the
dead state will contain all dead states from the original DFA. This
group can now be removed from the minimal DFA (which will once
more have unde�ned transitions). In the above example, a new
(non-accepting) state 4 has to be added. State 1 has a transition
to state 4 on b and state 3 has a transition to state 4 on a. State
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4 has transitions to itself on both a and b. After minimisation,
state 1 and 2 will be joined, as will state 3 and 4. Since state 4 is
dead, all states joined with it are also dead, so we can remove the
combined state 3 and 4 from the resulting minimized automata.

2.9 Lexers and lexer generators

We have, in the previous sections, seen how we can convert a language
description written as a regular expression into an e�ciently executable
representation (a DFA). This is the heart of a lexer generator, but not
the full story. There are several additional issues, which we address
below:

• A lexer has to distinguish between several di�erent types of tokens,
e.g., numbers, variables and keywords. Each of these are described
by its own regular expression.

• A lexer does not check if its entire input is included in the lan-
guages de�ned by the regular expressions. Instead, it has to cut
the input into pieces (tokens), each of which is included in one of
the languages.

• If there are several ways to split the input into legal tokens, the
lexer has to decide which of these it should use.

We do not wish to scan the input repeatedly, once for every type of
token, as this can be quite slow. Hence, we wish to generate a DFA
that tests for all the token types simultaneously. This isn't too di�cult:
If the tokens are de�ned by regular expressions r1, r2, . . . , rn, then the
regular expression r1 | r2 | . . . | rn describes the union of the languages
and the DFA constructed from it will scan for all token types at the
same time.

However, we also wish to distinguish between di�erent token types,
so we must be able to know which of the many tokens was recognised by
the DFA. The easiest way to do this is:

1) Construct NFAs N1, N2, . . . , Nn for each of r1, r2, . . . , rn.

2) Mark the accepting states of the NFAs by the name of the tokens
they accept.
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3) Combine the NFAs to a single NFA by adding a new starting state
which has epsilon-transitions to each of the starting states of the
NFAs.

4 Convert the combined NFA to a DFA.

5) Each accepting state of the DFA consists of a set of NFA states,
some of which are accepting states which we marked by token type
in step 2. These marks are used to mark the accepting states of
the DFA so each of these will indicate the token types it accepts.

If the same accepting state in the DFA can accept several di�erent token
types, it is because these overlap. This is not unusual, as keywords
usually overlap with variable names and a description of �oating point
constants may include integer constants as well. In such cases, we can
do one of two things:

• Let the lexer generator generate an error and require the user to
make sure the tokens are disjoint.

• Let the user of the lexer generator choose which of the tokens is
preferred.

It can be quite di�cult (though always possible) with regular expres-
sions to de�ne, e.g., the set of names that are not keywords. Hence, it
is common to let the lexer choose according to a prioritised list. Nor-
mally, the order in which tokens are de�ned in the input to the lexer
generator indicates priority (earlier de�ned tokens take precedence over
later de�ned tokens). Hence, keywords are usually de�ned before vari-
able names, which means that, for example, the string �if� is recognised
as a keyword and not a variable name. When an accepting state in a
DFA contains accepting NFA states with di�erent marks, the mark cor-
responding to the highest priority (earliest de�ned) token is used. Hence,
we can simply erase all but one mark from each accepting state. This is
a very simple and e�ective solution to the problem.

When we described minimisation of DFAs, we used two initial groups:
One for the accepting states and one for the non-accepting states. As
there are now several kinds of accepting states (one for each token), we
must use one group for each token, so we will have a total of n+1 initial
groups when we have n di�erent tokens.

To illustrate the precedence rule, �gure 2.11 shows an NFA made
by combining NFAs for variable names, the keyword if, integers and
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Figure 2.11: Combined NFA for several tokens

�oats, as described by the regular expressions in section 2.2.2. The indi-
vidual NFAs are (simpli�ed versions of) what you get from the method
described in section 2.4. When a transition is labelled by a set of char-
acters, it is a shorthand for a set of transitions each labelled by a sin-
gle character. The accepting states are labelled with token names as
described above. The corresponding minimised DFA is shown in �g-
ure 2.12. Note that state G is a combination of states 9 and 12 from
the NFA, so it can accept both NUM and FLOAT, but since integers take
priority over �oats, we have marked G with NUM only.

Splitting the input stream

As mentioned, the lexer must cut the input into tokens. This may be
done in several ways. For example, the string if17 can be split in many
di�erent ways:
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• As one token, which is the variable name if17.

• As the variable name if1 followed by the number 7.

• As the keyword if followed by the number 17.

• As the keyword if followed by the numbers 1 and 7.

• As the variable name i followed by the variable name f17.

• And several more.

A common convention is that it is the longest pre�x of the input that
matches any token which will be chosen. Hence, the �rst of the above
possible splittings of if17 will be chosen. Note that the principle of the
longest match takes precedence over the order of de�nition of tokens,
so even though the string starts with the keyword if, which has higher
priority than variable names, the variable name is chosen because it is
longer.

Modern languages like C, Java or SML follow this convention, and
so do most lexer generators, but some (mostly older) languages like
FORTRAN do not. When other conventions are used, lexers must either
be written by hand to handle these conventions or the conventions used
by the lexer generator must be side-stepped. Some lexer generators allow
the user to have some control over the conventions used.

The principle of the longest matching pre�x is handled by letting the
DFA read as far as it can, until it either reaches the end of the input
or no transition is de�ned on the next input symbol. If the current
state at this point is accepting, we are in luck and can simply output
the corresponding token. If not, we must go back to the last time we
were in an accepting state and output the token indicated by this. The
characters read since then are put back in the input stream. The lexer
must hence retain the symbols it has read since the last accepting state
so it can re-insert these in the input in such situations. If we are not at
the end of the input stream, we restart the DFA (in it sinitial state) on
the remaining input to �nd the next tokens.

As an example, consider lexing of the string 3e-y with the DFA in
�gure 2.12. We get to the accepting state G after reading the digit 3.
However, we can continue making legal transitions to state I on e and
then to state J on - (as these could be the start of the exponent part
of a real number). It is only when we, in state J, �nd that there is no
transition on y that we realise that this isn't the case. We must now
go back to the last accepting state (G) and output the number 3 as the
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�rst token and re-insert - and e in the input stream, so we can continue
with e-y when we look for the subsequent tokens.

Lexical errors

If no pre�x of the input string forms a valid token, a lexical error has
occurred. When this happens, the lexer will usually report an error. At
this point, it may stop reading the input or it may attempt continued
lexical analysis by skipping characters until a valid pre�x is found. The
purpose of the latter approach is to try �nding further lexical errors in
the same input, so several of these can be corrected by the user before
re-running the lexer. Some of these subsequent errors may, however,
not be real errors but may be caused by the lexer not skipping enough
characters (or skipping too many) after the �rst error is found. If, for
example, the start of a comment is ill-formed, the lexer may try to
interpret the contents of the comment as individual tokens, and if the
end of a comment is ill-formed, the lexer will read until the end of the
next comment (if any) before continuig, hence skipping too much text.

When the lexer �nds an error, the consumer of the tokens that the
lexer produces (e.g., the rest of the compiler) can not usually itself pro-
duce a valid result. However, the compiler may try to �nd other errors in
the remaining input, again allowing the user to �nd several errors in one
edit-compile cycle. Again, some of the subsequent errors may really be
spurious errors caused by lexical error(s), so the user will have to guess
at the validity of every error message except the �rst, as only the �rst
error message is guaranteed to be a real error. Nevertheless, such error
recovery has, when the input is so large that restarting the lexer from
the start of input incurs a considerable time overhead, proven to be an
aid in productivity by locating more errors in less time. Less commonly,
the lexer may work interactively with a text editor and restart from the
point at which an error was spotted after the user has tried to �x the
error.

2.9.1 Lexer generators

A lexer generator will typically use a notation for regular expressions
similar to the one described in section 2.1, but may require alphabet-
characters to be quoted to distinguish them from the symbols used to
build regular expressions. For example, an * intended to match a multi-
plication symbol in the input is distinguished from an * used to denote
repetition by quoting the * symbol, e.g. as `*`. Additionally, some lexer
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generators extend regular expressions in various ways, e.g., allowing a
set of characters to be speci�ed by listing the characters that are not
in the set. This is useful, for example, to specify the symbols inside a
comment up to the terminating character(s).

The input to the lexer generator will normally contain a list of regular
expressions that each denote a token. Each of these regular expressions
has an associated action. The action describes what is passed on to
the consumer (e.g., the parser), typically an element from a token data
type, which describes the type of token (NUM, ID, etc.) and sometimes
additional information such as the value of a number token, the name
of an identi�er token and, perhaps, the position of the token in the
input �le. The information needed to construct such values is typically
provided by the lexer generator through library functions or variables
that can be used in the actions.

Normally, the lexer generator requires white-space and comments to
be de�ned by regular expressions. The actions for these regular expres-
sions are typically empty, meaning that white-space and comments are
just ignored.

An action can be more than just returning a token. If, for example,
a language has a large number of keywords, then a DFA that recognises
all of these individually can be fairly large. In such cases, the keywords
are not described as separate regular expressions in the lexer de�nition
but instead treated as special cases of the identi�er token. The action
for identi�ers will then look the name up in a table of keywords and
return the appropriate token type (or an identi�er token if the name is
not a keyword). A similar strategy can be used if the language allows
identi�ers to shadow keywords.

Another use of non-trivial lexer actions is for nested comments. In
principle, a regular expression (or �nite automaton) cannot recognise
arbitrarily nested comments (see section 2.10), but by using a global
counter, the actions for comment tokens can keep track of the nesting
level. If escape sequences (for de�ning, e.g., control characters) are
allowed in string constants, the actions for string tokens will, typically,
translate the string containing these sequences into a string where they
have been substituted by the characters they represent.

Sometimes lexer generators allow several di�erent starting points.
In the example in �gures 2.11 and 2.12, all regular expressions share
the same starting state. However, a single lexer may be used, e.g., for
both tokens in the programming language and for tokens in the input
to that language. Often, there will be a good deal of sharing between
these token sets (the tokens allowed in the input may, for example, be
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a subset of the tokens allowed in programs). Hence, it is useful to allow
these to share a NFA, as this will save space. The resulting DFA will
have several starting states. An accepting state may now have more than
one token name attached, as long as these come from di�erent token sets
(corresponding to di�erent starting points).

In addition to using this feature for several sources of text (program
and input), it can be used locally within a single text to read very
complex tokens. For example, nested comments and complex-format
strings (with nontrivial escape sequences) can be easier to handle if this
feature is used.

2.10 Properties of regular languages

We have talked about regular languages as the class of languages that
can be described by regular expressions or �nite automata, but this in
itself may not give a clear understanding of what is possible and what is
not possible to describe by a regular language. Hence, we will now state
a few properties of regular languages and give some examples of some
regular and non-regular languages and give informal rules of thumb that
can (sometimes) be used to decide if a language is regular.

2.10.1 Relative expressive power

First, we repeat that regular expressions, NFAs and DFAs have exactly
the same expressive power: They all can describe all regular languages
and only these. Some languages may, however, have much shorter de-
scriptions in one of these forms than in others.

We have already argued that we from a regular expression can con-
struct an NFA whose size is linear in the size of the regular expression,
and that converting an NFA to a DFA can potentially give an exponential
increase in size (see below for a concrete example of this). Since DFAs
are also NFAs, NFAs are clearly at least as compact as (and sometimes
much more compact than) DFAs. Similarly, we can see that NFAs are at
least as compact (up to a small constant factor) as regular expressions.
But we have not yet considered if the converse is true: Can an NFA be
converted to a regular expression of proportional size. The answer is,
unfortunately, no: There exist classes of NFAs (and even DFAs) that
need regular expressions that are exponentially larger to describe them.
This is, however, mainly of academic interest as we rarely have to make
conversions in this direction.
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If we are only interested in if a language is regular rather than the size
of its description, however, it doesn't matter which of the formalisms we
choose, so we can in each case choose the formalism that suits us best.
Sometimes it is easier to describe a regular language using a DFA or
NFA instead of a regular expression. For example, the set of binary
number strings that represent numbers that divide evenly by 5 can be
described by a 6-state DFA (see exercise 2.9), but it requires a very
complex regular expression to do so. For programming language tokens,
regular expression are typically quite suitable.

The subset construction (algorithm 2.3) maps sets of NFA states to
DFA states. Since there are 2n − 1 non-empty sets of n NFA states,
the resulting DFA can potentially have exponentially more states than
the NFA. But can this potential ever be realised? To answer this, it
isn't enough to �nd one n-state NFA that yields a DFA with 2n − 1
states. We need to �nd a family of ever bigger NFAs, all of which yield
exponentially-sized DFAs. We also need to argue that the resulting DFAs
are minimal. One construction that has these properties is the following:
For each integer n > 1, construct an n-state NFA in the following way:

1. State 0 is the starting state and state n− 1 is accepting.

2. If 0 ≤ i < n − 1, state i has a transition to state i + 1 on the
symbol a.

3. All states have transitions to themselves and to state 0 on the
symbol b.

We can represent a set of these states by an n-bit number: Bit i is 1 in
the number if and only if state i is in the set. The set that contains only
the initial NFA state is, hence, represented by the number 1. We shall
see that the way a transition maps a set of states to a new set of states
can be expressed as an operation on the number:

• A transition on a maps the number x to (2x mod (2n)).

• A transition on b maps the number x to (x or 1), using bit-wise
or.

This isn't hard to verify, so we leave this to the interested reader. It is
also easy to see that these two operations can generate any n-bit number
from the number 1. Hence, any subset can be reached by a sequence of
transitions, which means that the subset-construction will generate a
DFA state for every subset.
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But is the DFA minimal? If we look at the NFA, we can see that
an a leads from state i to i + 1 (if i < n − 1), so for each NFA state i
there is exactly one sequence of as that leads to the accepting state, and
that sequence has n−1−i as. Hence, a DFA state whose subset contains
the NFA state i will lead to acceptance on a string of n−1−i as, while
a DFA state whose subset does not contain i will not. Hence, for any
two di�erent DFA states, we can �nd an NFA state i that is in one of
the sets but not the other and use that to construct a string that will
distinguish the DFA states. Hence, all the DFA states are distinct, so
the DFA is minimal.

2.10.2 Limits to expressive power

The most basic property of a DFA is that it is �nite: It has a �nite
number of states and nowhere else to store information. This means, for
example, that any language that requires unbounded counting cannot
be regular. An example of this is the language {anbn | n ≥ 0}, that is,
any sequence of as followed by a sequence of the same number of bs. If
we must decide membership in this language by a DFA that reads the
input from left to right, we must, at the time we have read all the as,
know how many there were, so we can compare this to the number of bs.
But since a �nite automaton cannot count arbitrarily high, the language
isn't regular. A similar non-regular language is the language of matching
parentheses. However, if we limit the nesting depth of parentheses to a
constant n, we can recognise this language by a DFA that has n+1 states
(0 to n), where state i corresponds to i unmatched opening parentheses.
State 0 is both the starting state and the only accepting state.

Some surprisingly complex languages are regular. As all �nite sets
of strings are regular languages, the set of all legal Pascal programs of
less than a million pages is a regular language, though it is by no means
a simple one. While it can be argued that it would be an acceptable
limitation for a language to allow only programs of less than a million
pages, it isn't practical to describe a programming language as a regular
language: The description would be far too large. Even if we ignore such
absurdities, we can sometimes be surprised by the expressive power of
regular languages. As an example, given any integer constant n, the set
of numbers (written in binary or decimal notation) that divide evenly
by n is a regular language (see exercise 2.9).
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2.10.3 Closure properties

We can also look at closure properties of regular languages. It is clear
that regular languages are closed under set union: If we have regular
expressions s and t for two languages, the regular expression s|t describes
the union of these languages. Similarly, regular languages are closed
under concatenation and unbounded repetition, as these correspond to
basic operators of regular expressions.

Less obviously, regular languages are also closed under set di�erence
and set intersection. To see this, we �rst look at set complement: Given
a �xed alphabet Σ, the complement of the language L is the set of all
strings built from the alphabet Σ, except the strings found in L. We
write the complement of L as L. To get the complement of a regular
language L, we �rst construct a DFA for the language L and make sure
that all states have transitions on all characters from the alphabet (as
described in section 2.8.2). Now, we simply change every accepting state
to non-accepting and vice versa, and thus get a DFA for L.

We can now (by using the set-theoretic equivalent of De Morgan's

law) construct L1 ∩L2 as L1 ∪ L2. Given this intersection construction,
we can now get set di�erence by L1 \ L2 = L1 ∩ L2.

Regular sets are also closed under a number of common string op-
erations, such as pre�x, su�x, subsequence and reversal. The precise
meaning of these words in the present context is de�ned below.

Pre�x. A pre�x of a string w is any initial part of w, including the
empty string and all of w. The pre�xes of abc are hence ε, a, ab

and abc.

Su�x. A su�x of a string is what remains of the string after a pre�x
has been taken o�. The su�xes of abc are hence abc, bc, c and
ε.

Subsequence. A subsequence of a string is obtained by deleting any
number of symbols from anywhere in the string. The subsequences
of abc are hence abc, bc, ac, ab, c, b, a and ε.

Reversal. The reversal of a string is the string read backwards. The
reversal of abc is hence cba.

As with complement, these can be obtained by simple transformations
of the DFAs for the language.
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2.11 Further reading

There are many variants of the method shown in section 2.4. The version
presented here has been devised for use in this book in an attempt to
make the method easy to understand and manageable to do by hand.
Other variants can be found in [5] and [9].

It is possible to convert a regular expression to a DFA directly with-
out going through an NFA. One such method [26] [5] actually at one
stage during the calculation computes information equivalent to an NFA
(without epsilon-transitions), but more direct methods based on alge-
braic properties of regular expressions also exist [12]. These, unlike
NFA-based methods, generalise fairly easily to handle regular expres-
sions extended with explicit set-intersection and set-di�erence operators.

A good deal of theoretic information about regular expressions and
�nite automata can be found in [18]. An e�cient DFA minimization
algorithm can be found in [22].

Lexer generators can be found for most programming languages. For
C, the most common are Lex [24] and Flex [34]. The latter generates
the states of the DFA as program code instead of using table-lookup.
This makes the generated lexers fast, but can use much more space than
a table-driven program.

Finite automata and notation reminiscent of regular expressions are
also used to describe behaviour of concurrent systems [28]. In this set-
ting, a state represents the current state of a process and a transition
corresponds to an event to which the process reacts by changing state.

Exercises

Exercise 2.1

In the following, a number-string is a non-empty sequence of decimal
digits, i.e., something in the language de�ned by the regular expres-
sion [0-9]+. The value of a number-string is the usual interpretation
of a number-string as an integer number. Note that leading zeroes are
allowed.

Make for each of the following languages a regular expression that
describes that language.

a) All number-strings that have the value 42.

b) All number-strings that do not have the value 42.
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c) All number-strings that have a value that is strictly greater than
42.

Exercise 2.2

Given the regular expression a∗(a|b)aa:

a) Construct an equivalent NFA using the method in section 2.4.

b) convert this NFA to a DFA using algorithm 2.3.

Exercise 2.3

Given the regular expression ((a|b)(a|bb))∗:

a) Construct an equivalent NFA using the method in section 2.4.

b) convert this NFA to a DFA using algorithm 2.3.

Exercise 2.4

Make a DFA equivalent to the following NFA:

-start ����n0 -a ����
1 -a

Ib �b
����
2 -a ����

3
	

ε

Ia

Exercise 2.5

Minimise the following DFA:

?����n0
Q

Q
Q

QQs

aC
C
C
C
C
CW

b ����
1

�
��	
a

����
2�a����

3
�
�
�
�
�
��

b
�

a����
4

�
�

�
��3

b

-a
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Exercise 2.6

Minimise the following DFA:

-����
0 -b

?
a

����
1 -a

R
b

����
2

R
b

� �
�

a

����
3 -b ����n4 -b

I
a

����
5

K
b

� 
��

a

Exercise 2.7

Construct DFAs for each of the following regular languages. In all cases
the alphabet is {a, b}.

a) The set of strings that has exactly 3 bs (and any number of as).

b) The set of strings where the number of bs is a multiple of 3 (and
there can be any number of as).

c) The set of strings where the di�erence between the number of as
and the number of bs is a multiple of 3.

Exercise 2.8

Construct a DFA that recognises balanced sequences of parenthesis with
a maximal nesting depth of 3, e.g., ε, ()(), (()(())) or (()())()() but not
(((()))) or (()(()(()))).

Exercise 2.9

Given that binary number strings are read with the most signi�cant
bit �rst and may have leading zeroes, construct DFAs for each of the
following languages:

a) Binary number strings that represent numbers that are multiples
of 4, e.g., 0, 100 and 10100.

b) Binary number strings that represent numbers that are multiples
of 5, e.g., 0, 101, 10100 and 11001.

Hint: Make a state for each possible remainder after division by 5
and then add a state to avoid accepting the empty string.
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c) Given a number n, what is the minimal number of states needed
in a DFA that recognises binary numbers that are multiples of n?
Hint: write n as a ∗ 2b, where a is odd.

Exercise 2.10

The empty language, i.e., the language that contains no strings can be
recognised by a DFA (any DFA with no accepting states will accept this
language), but it can not be de�ned by any regular expression using
the constructions in section 2.2. Hence, the equivalence between DFAs
and regular expressions is not complete. To remedy this, a new regular
expression φ is introduced such that L(φ) = ∅.

a) Argue why each of the following algebraic rules, where s is an
arbitrary regular expression, is true:

φ|s = s
φs = φ
sφ = φ
φ∗ = ε

b) Extend the construction of NFAs from regular expressions to in-
clude a case for φ.

c) What consequence will this extension have for converting the NFA
to a minimal DFA? Hint: dead states.

Exercise 2.11

Show that regular languages are closed under pre�x, su�x, subsequence
and reversal, as postulated in section 2.10. Hint: show how an NFA N
for a regular language L can be transformed to an NFA Np for the set
of pre�xes of strings from L, and similarly for the other operations.

Exercise 2.12

Which of the following statements are true? Argue each answer infor-
mally.

a) Any subset of a regular language is itself a regular language.

b) Any superset of a regular language is itself a regular language.
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c) The set of anagrams of strings from a regular language forms a
regular language. (An anagram of a string is obtained by rear-
ranging the order of characters in the string, but without adding
or deleting any. The anagrams of the string abc are hence abc,

acb, bac, bca, cab and cba).

Exercise 2.13

In �gures 2.11 and 2.12 we used character sets on transitions as short-
hands for sets of transitions, each with one character. We can, instead,
extend the de�nition of NFAs and DFAs such that such character sets
are allowed on a single transition.

For a DFA (to be deterministic), we must require that transitions
out of the same state have disjoint character sets.

a) Sketch how algorithm 2.3 must be modi�ed to handle transitions
with sets in such a way that the disjointedness requirement for
DFAs are ensured.

b) Sketch how algorithm 2.4 must be modi�ed to handle character
sets. A new requirement for DFA minimality is that the number
of transitions as well as the number of states is minimal. How can
this be ensured?

Exercise 2.14

As mentioned in section 2.5, DFAs are often implemented by tables
where the current state is cross-indexed by the next symbol to �nd the
next state. If the alphabet is large, such a table can take up quite a lot
of room. If, for example, 16-bit UNI-code is used as the alphabet, there
are 216 = 65536 entries in each row of the table. Even if each entry in
the table is only one byte, each row will take up 64KB of memory, which
may be a problem.

A possible solution is to split each 16-bit UNI-code character c into
two 8-bit characters c1 and c2. In the regular expressions, each occur-
rence of a character c is hence replaced by the regular expression c1c2.
This regular expression is then converted to an NFA and then to a DFA
in the usual way. The DFA may (and probably will) have more states
than the DFA using 16-bit characters, but each state in the new DFA
use only 1/256th of the space used by the original DFA.

a) How much larger is the new NFA compared to the old?
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b) Estimate what the expected size (measured as number of states)
of the new DFA is compared to the old. Hint: Some states in the
NFA can be reached only after an even number of 8-bit characters
are read and the rest only after an odd number of 8-bit characters
are read. What does this imply for the sets constructed during the
subset construction?

c) Roughly, how much time does the new DFA require to analyse a
string compared to the old?

d) If space is a problem for a DFA over an 8-bit alphabet, do you
expect that a similar trick (splitting each 8-bit character into two
4-bit characters) will help reduce the space requirements? Justify
your answer.

Exercise 2.15

If L is a regular language, so is L \ {ε}, i.e., the set of all nonempty
strings in L.

So we should be able to transform a regular expression for L into
a regular expression for L \ {ε}. We want to do this with a function
nonempty that is recursive over the structure of the regular expression
for L, i.e., of the form:

nonempty(ε) = φ
nonempty(a) = . . . where a is an alphabet symbol
nonempty(s|t) = nonempty(s) |nonempty(t)
nonempty(s t) = . . .
nonempty(s?) = . . .
nonempty(s∗) = . . .
nonempty(s+) = . . .

where φ is the regular expression for the empty language (see exer-
cise 2.10).

a) Complete the de�nition of nonempty by replacing the occurrences
of �. . .� in the rules above by expressions similar to those shown in
the rules for ε and s|t.

b) Use this de�nition to �nd nonempty(a∗b∗).
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Exercise 2.16

If L is a regular language, so is the set of all pre�xes of strings in L (see
section 2.10.3).

So we should be able to transform a regular expression for L into a
regular expression for the set of all pre�xes of strings in L. We want to
do this with a function pre�xes that is recursive over the structure of the
regular expression for L, i.e., of the form:

pre�xes(ε) = ε
pre�xes(a) = a? where a is an alphabet symbol
pre�xes(s|t) = pre�xes(s) | pre�xes(t)
pre�xes(s t) = . . .
pre�xes(s∗) = . . .
pre�xes(s+) = . . .

a) Complete the de�nition of pre�xes by replacing the occurrences of
�. . .� in the rules above by expressions similar to those shown in
the rules for ε and s|t.

b) Use this de�nition to �nd pre�xes(ab∗c).



Chapter 3

Syntax Analysis

3.1 Introduction

Where lexical analysis splits the input into tokens, the purpose of syntax
analysis (also known as parsing) is to recombine these tokens. Not back
into a list of characters, but into something that re�ects the structure
of the text. This �something� is typically a data structure called the
syntax tree of the text. As the name indicates, this is a tree structure.
The leaves of this tree are the tokens found by the lexical analysis, and
if the leaves are read from left to right, the sequence is the same as
in the input text. Hence, what is important in the syntax tree is how
these leaves are combined to form the structure of the tree and how the
interior nodes of the tree are labelled.

In addition to �nding the structure of the input text, the syntax
analysis must also reject invalid texts by reporting syntax errors.

As syntax analysis is less local in nature than lexical analysis, more
advanced methods are required. We, however, use the same basic strat-
egy: A notation suitable for human understanding is transformed into
a machine-like low-level notation suitable for e�cient execution. This
process is called parser generation.

The notation we use for human manipulation is context-free gram-
mars1, which is a recursive notation for describing sets of strings and
imposing a structure on each such string. This notation can in some
cases be translated almost directly into recursive programs, but it is of-
ten more convenient to generate stack automata. These are similar to
the �nite automata used for lexical analysis but they can additionally
use a stack, which allows counting and non-local matching of symbols.

1The name refers to the fact that derivation is independent of context.

55
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We shall see two ways of generating such automata. The �rst of these,
LL(1), is relatively simple, but works only for a somewhat restricted
class of grammars. The SLR construction, which we present later, is
more complex but accepts a wider class of grammars. Sadly, neither of
these work for all context-free grammars. Tools that handle all context-
free grammars exist, but they can incur a severe speed penalty, which is
why most parser generators restrict the class of input grammars.

3.2 Context-free grammars

Like regular expressions, context-free grammars describe sets of strings,
i.e., languages. Additionally, a context-free grammar also de�nes struc-
ture on the strings in the language it de�nes. A language is de�ned over
some alphabet, for example the set of tokens produced by a lexer or the
set of alphanumeric characters. The symbols in the alphabet are called
terminals.

A context-free grammar recursively de�nes several sets of strings.
Each set is denoted by a name, which is called a nonterminal. The set
of nonterminals is disjoint from the set of terminals. One of the non-
terminals are chosen to denote the language described by the grammar.
This is called the start symbol of the grammar. The sets are described
by a number of productions. Each production describes some of the pos-
sible strings that are contained in the set denoted by a nonterminal. A
production has the form

N → X1 . . . Xn

where N is a nonterminal and X1 . . . Xn are zero or more symbols, each
of which is either a terminal or a nonterminal. The intended meaning of
this notation is to say that the set denoted by N contains strings that are
obtained by concatenating strings from the sets denoted by X1 . . . Xn.
In this setting, a terminal denotes a singleton set, just like alphabet
characters in regular expressions. We will, when no confusion is likely,
equate a nonterminal with the set of strings it denotes

Some examples:

A → a

says that the set denoted by the nonterminal A contains the one-character
string a.

A → aA
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says that the set denoted by A contains all strings formed by putting
an a in front of a string taken from the set denoted by A. Together,
these two productions indicate that A contains all non-empty sequences
of as and is hence (in the absence of other productions) equivalent to
the regular expression a+.

We can de�ne a grammar equivalent to the regular expression a∗ by
the two productions

B →
B → aB

where the �rst production indicates that the empty string is part of the
set B. Compare this grammar with the de�nition of s∗ in �gure 2.1.

Productions with empty right-hand sides are called empty produc-
tions. These are sometimes written with an ε on the right hand side
instead of leaving it empty.

So far, we have not described any set that could not just as well
have been described using regular expressions. Context-free grammars
are, however, capable of expressing much more complex languages. In
section 2.10, we noted that the language {anbn | n ≥ 0} is not regular.
It is, however, easily described by the grammar

S →
S → aSb

The second production ensures that the as and bs are paired symmetri-
cally around the middle of the string, ensuring that they occur in equal
number.

The examples above have used only one nonterminal per grammar.
When several nonterminals are used, we must make it clear which of
these is the start symbol. By convention (if nothing else is stated), the
nonterminal on the left-hand side of the �rst production is the start
symbol. As an example, the grammar

T → R
T → aTa
R → b

R → bR

has T as start symbol and denotes the set of strings that start with any
number of as followed by a non-zero number of bs and then the same
number of as with which it started.



58 CHAPTER 3. SYNTAX ANALYSIS

Form of si Productions for Ni

ε Ni →
a Ni → a

sjsk Ni → NjNk

sj |sk Ni → Nj

Ni → Nk

sj∗ Ni → NjNi

Ni →
sj+ Ni → NjNi

Ni → Nj

sj? Ni → Nj

Ni →

Each subexpression of the regular expression is numbered
and subexpression si is assigned a nonterminal Ni. The pro-
ductions for Ni depend on the shape of si as shown in the
table above.

Figure 3.1: From regular expressions to context free grammars

Sometimes, a shorthand notation is used where all the productions of
the same nonterminal are combined to a single rule, using the alternative
symbol (|) from regular expressions to separate the right-hand sides. In
this notation, the above grammar would read

T → R | aTa
R → b | bR

There are still four productions in the grammar, even though the arrow
symbol → is only used twice.

3.2.1 How to write context free grammars

As hinted above, a regular expression can systematically be rewritten as
a context free grammar by using a nonterminal for every subexpression
in the regular expression and using one or two productions for each non-
terminal. The construction is shown in �gure 3.1. So, if we can think of a
way of expressing a language as a regular expression, it is easy to make a
grammar for it. However, we will also want to use grammars to describe
non-regular languages. An example is the kind of arithmetic expressions
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Exp → Exp +Exp
Exp → Exp -Exp
Exp → Exp *Exp
Exp → Exp /Exp
Exp → num
Exp → (Exp )

Grammar 3.2: Simple expression grammar

that are part of most programming languages (and also found on elec-
tronic calculators). Such expressions can be described by grammar 3.2.
Note that, as mentioned in section 2.10, the matching parentheses can't
be described by regular expressions, as these can't �count� the number of
unmatched opening parentheses at a particular point in the string. How-
ever, if we didn't have parentheses in the language, it could be described
by the regular expression

num((+|-|*|/)num)∗

Even so, the regular description isn't useful if you want operators to have
di�erent precedence, as it treats the expression as a �at string rather
than as having structure. We will look at structure in sections 3.3.1
and 3.4.

Most constructions from programming languages are easily expressed
by context free grammars. In fact, most modern languages are designed
this way.

When writing a grammar for a programming language, one normally
starts by dividing the constructs of the language into di�erent syntac-
tic categories. A syntactic category is a sub-language that embodies a
particular concept. Examples of common syntactic categories in pro-
gramming languages are:

Expressions are used to express calculation of values.

Statements express actions that occur in a particular sequence.

Declarations express properties of names used in other parts of the
program.

Each syntactic category is denoted by a main nonterminal, e.g., Exp
from grammar 3.2. More nonterminals might be needed to describe a
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Stat → id := Exp
Stat → Stat ;Stat
Stat → if Exp then Stat else Stat
Stat → if Exp then Stat

Grammar 3.3: Simple statement grammar

syntactic category or provide structure to it, as we shall see, and pro-
ductions for one syntactic category can refer to nonterminals for other
syntactic categories. For example, statements may contain expressions,
so some of the productions for statements use the main nonterminal for
expressions. A simple grammar for statements might look like gram-
mar 3.3, which refers to the Exp nonterminal from grammar 3.2.

3.3 Derivation

So far, we have just appealed to intuitive notions of recursion when we
describe the set of strings that a grammar produces. Since the pro-
ductions are similar to recursive set equations, we might expect to use
the techniques from section 2.6.1 to �nd the set of strings denoted by
a grammar. However, though these methods in theory apply to in�nite
sets by considering limits of chains of sets, they are only practically use-
ful when the sets are �nite. Instead, we below introduce the concept of
derivation. An added advantage of this approach is, as we will later see,
that syntax analysis is closely related to derivation.

The basic idea of derivation is to consider productions as rewrite
rules: Whenever we have a nonterminal, we can replace this by the
right-hand side of any production in which the nonterminal appears on
the left-hand side. We can do this anywhere in a sequence of symbols
(terminals and nonterminals) and repeat doing so until we have only
terminals left. The resulting sequence of terminals is a string in the
language de�ned by the grammar. Formally, we de�ne the derivation
relation ⇒ by the three rules

1. αNβ ⇒ αγβ if there is a production N → γ
2. α ⇒ α
3. α ⇒ γ if there is a β such that α ⇒ β and β ⇒ γ

where α, β and γ are (possibly empty) sequences of grammar symbols
(terminals and nonterminals). The �rst rule states that using a pro-
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T → R
T → aTc
R →
R → RbR

Grammar 3.4: Example grammar

duction as a rewrite rule (anywhere in a sequence of grammar symbols)
is a derivation step. The second states that the derivation relation is
re�exive, i.e., that a sequence derives itself. The third rule describes
transitivity, i.e., that a sequence of derivations is in itself a derivation2.

We can use derivation to formally de�ne the language that a context-
free grammar generates:

De�nition 3.1 Given a context-free grammar G with start symbol S,
terminal symbols T and productions P , the language L(G) that G gen-
erates is de�ned to be the set of strings of terminal symbols that can
be obtained by derivation from S using the productions P , i.e., the set
{w ∈ T ∗ | S ⇒ w}.

As an example, we see that grammar 3.4 generates the string aabbbcc
by the derivation shown in �gure 3.5. We have, for clarity, in each
sequence of symbols underlined the nonterminal that is rewritten in the
following step.

In this derivation, we have applied derivation steps sometimes to the
leftmost nonterminal, sometimes to the rightmost and sometimes to a
nonterminal that was neither. However, since derivation steps are local,
the order doesn't matter. So, we might as well decide to always rewrite
the leftmost nonterminal, as shown in �gure 3.6.

A derivation that always rewrites the leftmost nonterminal is called
a leftmost derivation. Similarly, a derivation that always rewrites the
rightmost nonterminal is called a rightmost derivation.

3.3.1 Syntax trees and ambiguity

We can draw a derivation as a tree: The root of the tree is the start
symbol of the grammar, and whenever we rewrite a nonterminal we add

2The mathematically inclined will recognise that derivation is a preorder on se-
quences of grammar symbols.
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T
⇒ aTc
⇒ aaTcc
⇒ aaRcc

⇒ aaRbRcc

⇒ aaRbcc

⇒ aaRbRbcc

⇒ aaRbRbRbcc

⇒ aaRbbRbcc

⇒ aabbRbcc

⇒ aabbbcc

Figure 3.5: Derivation of the string aabbbcc using grammar 3.4

T
⇒ aTc
⇒ aaTcc
⇒ aaRcc

⇒ aaRbRcc

⇒ aaRbRbRcc

⇒ aabRbRcc

⇒ aabRbRbRcc

⇒ aabbRbRcc

⇒ aabbbRcc

⇒ aabbbcc

Figure 3.6: Leftmost derivation of the string aabbbcc using grammar 3.4
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Figure 3.7: Syntax tree for the string aabbbcc using grammar 3.4

T
�

�
@
@

a T
�

�
@
@

c

a T c

R
�

�
@
@

R b R
�

�
@
@

ε R b R
�

�
@
@

ε R b R

ε ε

Figure 3.8: Alternative syntax tree for the string aabbbcc using gram-
mar 3.4
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T → R
T → aTc
R →
R → bR

Grammar 3.9: Unambiguous version of grammar 3.4

as its children the symbols on the right-hand side of the production that
was used. The leaves of the tree are terminals which, when read from
left to right, form the derived string. If a nonterminal is rewritten using
an empty production, an ε is shown as its child. This is also a leaf node,
but is ignored when reading the string from the leaves of the tree.

When we write such a syntax tree, the order of derivation is irrele-
vant: We get the same tree for left derivation, right derivation or any
other derivation order. Only the choice of production for rewriting each
nonterminal matters.

As an example, the derivations in �gures 3.5 and 3.6 yield the same
syntax tree, which is shown in �gure 3.7.

The syntax tree adds structure to the string that it derives. It is this
structure that we exploit in the later phases of the compiler.

For compilation, we do the derivation backwards: We start with a
string and want to produce a syntax tree. This process is called syntax
analysis or parsing.

Even though the order of derivation doesn't matter when construct-
ing a syntax tree, the choice of production for that nonterminal does.
Obviously, di�erent choices can lead to di�erent strings being derived,
but it may also happen that several di�erent syntax trees can be built for
the same string. As an example, �gure 3.8 shows an alternative syntax
tree for the same string that was derived in �gure 3.7.

When a grammar permits several di�erent syntax trees for some
strings we call the grammar ambiguous. If our only use of grammar is to
describe sets of strings, ambiguity isn't a problem. However, when we
want to use the grammar to impose structure on strings, the structure
had better be the same every time. Hence, it is a desireable feature for a
grammar to be unambiguous. In most (but not all) cases, an ambiguous
grammar can be rewritten to an unambiguous grammar that generates
the same set of strings, or external rules can be applied to decide which
of the many possible syntax trees is the �right one�. An unambiguous
version of grammar 3.4 is shown in �gure 3.9.
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How do we know if a grammar is ambiguous? If we can �nd a string
and show two alternative syntax trees for it, this is a proof of ambiguity.
It may, however, be hard to �nd such a string and, when the grammar
is unambiguous, even harder to show that this is the case. In fact, the
problem is formally undecidable, i.e., there is no method that for all
grammars can answer the question �Is this grammar ambiguous?�.

But in many cases it is not di�cult to detect and prove ambiguity.
For example, any grammar that has a production of the form

N → NαN

where α is any sequence of grammar symbols, is ambiguous. This is, for
example, the case with grammars 3.2 and 3.4.

We will, in sections 3.11 and 3.13, see methods for constructing
parsers from grammars. These methods have the property that they
only work on unambiguous grammars, so successful construction of a
parser is a proof of unambiguity. However, the methods may also fail
on certain unambiguous grammars, so they can not be used to prove
ambiguity.

In the next section, we will see ways of rewriting a grammar to get
rid of some sources of ambiguity. These transformations preserve the
language that the grammar generates. By using such transformations
(and others, which we will see later), we can create a large set of equiva-
lent grammars, i.e., grammars that generate the same language (though
they may impose di�erent structures on the strings of the language).

Given two grammars, it would be nice to be able to tell if they are
equivalent. Unfortunately, no known method is able to decide this in all
cases, but, unlike ambiguity, it is not (at the time of writing) known if
such a method may or may not theoretically exist. Sometimes, equiv-
alence can be proven e.g. by induction over the set of strings that the
grammars produce. The converse can be proven by �nding an example
of a string that one grammar can generate but the other not. But in
some cases, we just have to take claims of equivalence on faith or give
up on deciding the issue.

3.4 Operator precedence

As mentioned in section 3.2.1, we can describe traditional arithmetic
expressions by grammar 3.2. Note that num is a terminal that denotes
all integer constants and that, here, the parentheses are terminal symbols
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Figure 3.10: Preferred syntax tree for 2+3*4 using grammar 3.2

(unlike in regular expressions, where they are used to impose structure
on the regular expressions).

This grammar is ambiguous, as evidenced by, e.g., the production

Exp → Exp +Exp

which has the form that in section 3.3.1 was claimed to imply ambiguity.
This ambiguity is not surprising, as we are used to the fact that an
expression like 2+3*4 can be read in two ways: Either as multiplying
the sum of 2 and 3 by 4 or as adding 2 to the product of 3 and 4. Simple
electronic calculators will choose the �rst of these interpretations (as
they always calculate from left to right), whereas scienti�c calculators
and most programming languages will choose the second, as they use a
hierarchy of operator precedences which dictate that the product must be
calculated before the sum. The hierarchy can be overridden by explicit
parenthesisation, e.g., (2+3)*4.

Most programming languages use the same convention as scienti�c
calculators, so we want to make this explicit in the grammar. Ideally,
we would like the expression 2+3*4 to generate the syntax tree shown
in �gure 3.10, which re�ects the operator precedences by grouping of
subexpressions: When evaluating an expression, the subexpressions rep-
resented by subtrees of the syntax tree are evaluated before the topmost
operator is applied.

A possible way of resolving the ambiguity is to use precedence rules
during syntax analysis to select among the possible syntax trees. Many
parser generators allow this approach, as we shall see in section 3.15.
However, some parsing methods require the grammars to be unambigu-
ous, so we have to express the operator hierarchy in the grammar itself.
To clarify this, we �rst de�ne some concepts:

• An operator ⊕ is left-associative if the expression a ⊕ b ⊕ c must
be evaluated from left to right, i.e., as (a⊕ b)⊕ c.
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• An operator ⊕ is right-associative if the expression a⊕ b⊕ c must
be evaluated from right to left, i.e., as a⊕ (b⊕ c).

• An operator ⊕ is non-associative if expressions of the form a⊕b⊕c
are illegal.

By the usual convention, - and / are left-associative, as e.g., 2-3-4 is
calculated as (2-3)-4. + and * are associative in the mathematical
sense, meaning that it doesn't matter if we calculate from left to right
or from right to left. However, to avoid ambiguity we have to choose
one of these. By convention (and similarity to - and /) we choose to
let these be left-associative as well. Also, having a left-associative - and
right-associative + would not help resolving the ambiguity of 2-3+4, as
the operators so-to-speak �pull in di�erent directions�.

List construction operators in functional languages, e.g., :: and @

in SML, are typically right-associative, as are function arrows in types:
a -> b -> c is read as a -> (b -> c). The assignment operator in C
is also right-associative: a=b=c is read as a=(b=c).

In some languages (like Pascal), comparison operators (like < or >)
are non-associative, i.e., you are not allowed to write 2 < 3 < 4.

3.4.1 Rewriting ambiguous expression grammars

If we have an ambiguous grammar

E → E ⊕ E
E → num

we can rewrite this to an unambiguous grammar that generates the
correct structure. As this depends on the associativity of ⊕, we use
di�erent rewrite rules for di�erent associativities.

If ⊕ is left-associative, we make the grammar left-recursive by having
a recursive reference to the left only of the operator symbol:

E → E ⊕ E′

E → E′

E′ → num

Now, the expression 2⊕ 3⊕ 4 can only be parsed as
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We get a slightly more complex syntax tree than in �gure 3.10, but not
enormously so.

We handle right-associativity in a similar fashion: We make the of-
fending production right-recursive:

E → E′ ⊕ E
E → E′

E′ → num

Non-associative operators are handled by non-recursive productions:

E → E′ ⊕ E′

E → E′

E′ → num

Note that the latter transformation actually changes the language that
the grammar generates, as it makes expressions of the form num ⊕
num⊕ num illegal.

So far, we have handled only cases where an operator interacts with
itself. This is easily extended to the case where several operators with
the same precedence and associativity interact with each other, as for
example + and -:

E → E +E′

E → E -E′

E → E′

E′ → num

Operators with the same precedence must have the same associativity for
this to work, as mixing left-recursive and right-recursive productions for
the same nonterminal makes the grammar ambiguous. As an example,
the grammar
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Exp → Exp +Exp2
Exp → Exp -Exp2
Exp → Exp2
Exp2 → Exp2 *Exp3
Exp2 → Exp2 /Exp3
Exp2 → Exp3
Exp3 → num
Exp3 → (Exp )

Grammar 3.11: Unambiguous expression grammar

E → E +E′

E → E′ ⊕ E
E → E′

E′ → num

seems like an obvious generalisation of the principles used above, giv-
ing + and ⊕ the same precedence and di�erent associativity. But not
only is the grammar ambiguous, it doesn't even accept the intended lan-
guage. For example, the string num+num⊕num is not derivable by
this grammar.

In general, there is no obvious way to resolve ambiguity in an expres-
sion like 1+2⊕3, where + is left-associative and ⊕ is right-associative (or
vice-versa). Hence, most programming languages (and most parser gen-
erators) require operators at the same precedence level to have identical
associativity.

We also need to handle operators with di�erent precedences. This is
done by using a nonterminal for each precedence level. The idea is that
if an expression uses an operator of a certain precedence level, then its
subexpressions cannot use operators of lower precedence (unless these
are inside parentheses). Hence, the productions for a nonterminal cor-
responding to a particular precedence level refers only to nonterminals
that correspond to the same or higher precedence levels, unless paren-
theses or similar bracketing constructs disambiguate the use of these.
Grammar 3.11 shows how these rules are used to make an unambiguous
version of grammar 3.2. Figure 3.12 show the syntax tree for 2+3*4

using this grammar.
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Figure 3.12: Syntax tree for 2+3*4 using grammar 3.11

3.5 Other sources of ambiguity

Most of the potential ambiguity in grammars for programming languages
comes from expression syntax and can be handled by exploiting prece-
dence rules as shown in section 3.4. Another classical example of ambi-
guity is the �dangling-else� problem.

Imperative languages like Pascal or C often let the else-part of a
conditional be optional, like shown in grammar 3.3. The problem is that
it isn't clear how to parse, for example,

if p then if q then s1 else s2

According to the grammar, the else can equally well match either if.
The usual convention is that an else matches the closest not previously
matched if, which, in the example, will make the elsematch the second
if.

How do we make this clear in the grammar? We can treat if, then
and else as a kind of right-associative operators, as this would make
them group to the right, making an if-then match the closest else.
However, the grammar transformations shown in section 3.4 can't di-
rectly be applied to grammar 3.3, as the productions for conditionals
don't have the right form.

Instead we use the following observation: When an if and an else

match, all ifs that occur between these must have matching elses.
This can easily be proven by assuming otherwise and concluding that
this leads to a contradiction.

Hence, we make two nonterminals: One for matched (i.e. with else-
part) conditionals and one for unmatched (i.e. without else-part) con-
ditionals. The result is shown in grammar 3.13. This grammar also
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Stat → Stat2 ;Stat
Stat → Stat2
Stat2 → Matched
Stat2 → Unmatched
Matched → if Exp then Matched else Matched
Matched → id := Exp
Unmatched → if Exp then Matched else Unmatched
Unmatched → if Exp then Stat2

Grammar 3.13: Unambiguous grammar for statements

resolves the associativity of semicolon (right) and the precedence of if
over semicolon.

An alternative to rewriting grammars to resolve ambiguity is to use
an ambiguous grammar and resolve con�icts by using precedence rules
during parsing. We shall look into this in section 3.15.

All cases of ambiguity must be treated carefully: It is not enough
that we eliminate ambiguity, we must do so in a way that results in the
desired structure: The structure of arithmetic expressions is signi�cant,
and it makes a di�erence to which if an else is matched.

3.6 Syntax analysis

The syntax analysis phase of a compiler will take a string of tokens
produced by the lexer, and from this construct a syntax tree for the
string by �nding a derivation of the string from the start symbol of the
grammar.

This can be done by guessing derivations until the right one is found,
but random guessing is hardly an e�ective method. Even so, some pars-
ing techniques are based on �guessing� derivations. However, these make
sure, by looking at the string, that they will always guess right. These
are called predictive parsing methods. Predictive parsers always build
the syntax tree from the root down to the leaves and are hence also
called (deterministic) top-down parsers.

Other parsers go the other way: They search for parts of the input
string that matches right-hand sides of productions and rewrite these
to the left-hand nonterminals, at the same time building pieces of the
syntax tree. The syntax tree is eventually completed when the string has
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been rewritten (by inverse derivation) to the start symbol. Also here,
we wish to make sure that we always pick the �right� rewrites, so we
get deterministic parsing. Such methods are called bottom-up parsing
methods.

We will in the next sections �rst look at predictive parsing and later
at a bottom-up parsing method called SLR parsing.

3.7 Predictive parsing

If we look at the left-derivation in �gure 3.6, we see that, to the left of
the rewritten nonterminals, there are only terminals. These terminals
correspond to a pre�x of the string that is being parsed. In a parsing
situation, this pre�x will be the part of the input that has already been
read. The job of the parser is now to choose the production by which the
leftmost unexpanded nonterminal should be rewritten. Our aim is to be
able to make this choice deterministically based on the next unmatched
input symbol.

If we look at the third line in �gure 3.6, we have already read two
as and (if the input string is the one shown in the bottom line) the next
symbol is a b. Since the right-hand side of the production

T → aTc

starts with an a, we obviously can't use this. Hence, we can only rewrite
T using the production

T → R

We are not quite as lucky in the next step. None of the productions
for R start with a terminal symbol, so we can't immediately choose a
production based on this. As the grammar (grammar 3.4) is ambiguous,
it should not be a surprise that we can't always choose uniquely. If we
instead use the unambiguous grammar (grammar 3.9) we can immedi-
ately choose the second production for R. When all the bs are read and
we are at the following c, we choose the empty production for R and
match the remaining input with the rest of the derived string.

If we can always choose a unique production based on the next input
symbol, we are able to do this kind of predictive parsing.
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3.8 Nullable and FIRST

In simple cases, like the above, all but one of the productions for a
nonterminal start with distinct terminals and the remaining production
does not start with a terminal. However, the method can be applied
also for grammers that don't have this property: Even if several produc-
tions start with nonterminals, we can choose among these if the strings
these productions can derive begin with symbols from known disjoint
sets. Hence, we de�ne the function FIRST, which given a sequence of
grammar symbols (e.g. the right-hand side of a production) returns the
set of symbols with which strings derived from that sequence can begin:

De�nition 3.2 A symbol c is in FIRST(α) if and only if α ⇒ cβ for
some sequence β of grammar symbols.

To calculate FIRST, we need an auxiliary function Nullable, which for a
sequence α of grammar symbols indicates whether or not that sequence
can derive the empty string:

De�nition 3.3 A sequence α of grammar symbols is Nullable (we write
this as Nullable(α)) if and only if α ⇒ ε.

A production N → α is called nullable if Nullable(α). We describe cal-
culation of Nullable by case analysis over the possible forms of sequences
of grammar symbols:

Algorithm 3.4

Nullable(ε) = true
Nullable(a) = false
Nullable(α β) = Nullable(α) ∧ Nullable(β)
Nullable(N) = Nullable(α1) ∨ . . . ∨ Nullable(αn),

where the productions for N are
N → α1, . . . , N → αn

where a is a terminal, N is a nonterminal, α and β are sequences of
grammar symbols and ε represents the empty sequence of grammar sym-
bols.

The equations are quite natural: Any occurrence of a terminal on
a right-hand side makes Nullable false for that right-hand side, but a
nonterminal is nullable if any production has a nullable.
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Note that this is a recursive de�nition since Nullable for a nonter-
minal is de�ned in terms of Nullable for its right-hand sides, which may
contain that same nonterminal. We can solve this in much the same way
that we solved set equations in section 2.6.1. We have, however, now
booleans instead of sets and several equations instead of one. Still, the
method is essentially the same: We have a set of boolean equations:

X1 = F1(X1, . . . , Xn)
...

Xn = Fn(X1, . . . , Xn)

We initially assume X1, . . . , Xn to be all false. We then, in any order,
calculate the right-hand sides of the equations and update the variable
on the left-hand side by the calculated value. We continue until all
equations are satis�ed. In section 2.6.1, we required the functions to be
monotonic with respect to subset. Correspondingly, we now require the
boolean functions to be monotonic with respect to truth: If we make
more arguments true, the result will also be more true (i.e., it may stay
unchanged, change from false to true, but never change from true to
false).

If we look at grammar 3.9, we get these equations for nonterminals
and right-hand sides:

Nullable(T ) = Nullable(R) ∨ Nullable(aTc)
Nullable(R) = Nullable(ε) ∨ Nullable(bR)

Nullable(R) = Nullable(R)
Nullable(aTc) = Nullable(a) ∧ Nullable(T ) ∧ Nullable(c)
Nullable(ε) = true
Nullable(bR) = Nullable(b) ∧ Nullable(R)

In a �xed-point calculation, we initially assume that Nullable is false for
all nonterminals and use this as a basis for calculating Nullable for �rst
the right-hand sides and then the nonterminals. We repeat recalculating
these until there is no change between two iterations. Figure 3.14 shows
the �xed-point iteration for the above equations. In each iteration, we
�rst evaluate the formulae for the right-hand sides and then use the
results of this to evaluate the nonterminals. The right-most column
shows the �nal result.

We can calculate FIRST in a similar fashion to Nullable:
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Right-hand side Initialisation Iteration 1 Iteration 2 Iteration 3
R false false true true
aTc false false false false

ε false true true true
bR false false false false

Nonterminal
T false false true true
R false true true true

Figure 3.14: Fixed-point iteration for calculation of Nullable

Algorithm 3.5

FIRST(ε) = ∅
FIRST(a) = {a}

FIRST(α β) =
{

FIRST(α) ∪ FIRST(β) if Nullable(α)
FIRST(α) if not Nullable(α)

FIRST(N) = FIRST(α1) ∪ . . . ∪ FIRST(αn)
where the productions for N are
N → α1, . . . , N → αn

where a is a terminal, N is a nonterminal, α and β are sequences of
grammar symbols and ε represents the empty sequence of grammar sym-
bols.

The only nontrivial equation is that for αβ. Obviously, anything that
can start a string derivable from α can also start a string derivable from
αβ. However, if α is nullable, a derivation may proceed as αβ ⇒ β ⇒ · · ·,
so anything in FIRST(β) is also in FIRST(αβ).

The set-equations are solved in the same general way as the boolean
equations for Nullable, but since we work with sets, we initailly assume
every set to be empty. For grammar 3.9, we get the following equations:

FIRST(T ) = FIRST(R) ∪ FIRST(aTc)
FIRST(R) = FIRST(ε) ∪ FIRST(bR)

FIRST(R) = FIRST(R)
FIRST(aTc) = FIRST(a)
FIRST(ε) = ∅
FIRST(bR) = FIRST(b)
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Right-hand side Initialisation Iteration 1 Iteration 2 Iteration 3
R ∅ ∅ {b} {b}
aTc ∅ {a} {a} {a}

ε ∅ ∅ ∅ ∅
bR ∅ {b} {b} {b}

Nonterminal
T ∅ {a} {a, b} {a, b}
R ∅ {b} {b} {b}

Figure 3.15: Fixed-point iteration for calculation of FIRST

The �xed-point iteration is shown in �gure 3.15.

When working with grammars by hand, it is usually quite easy to
see for most productions if they are nullable and what their FIRST sets
are. For example, a production is not nullable if its right-hand side has
a terminal anywhere, and if the right-hand side starts with a terminal,
the FIRST set consists of only that symbol. Sometimes, however, it is
necessary to go through the motions of solving the equations. When
working by hand, it is often useful to simplify the equations before the
�xed-point iteration, e.g., reduce FIRST(aTc) to {a}.

3.9 Predictive parsing revisited

We are now ready to construct predictive parsers for a wider class of
grammars: If the right-hand sides of the productions for a nonterminal
have disjoint FIRST sets, we can use the next input symbol to choose
among the productions.

In section 3.7, we picked the empty production (if any) on any symbol
that was not in the FIRST sets of the non-empty productions for the
same nonterminal. We must actually do this for any production that
is Nullable. Hence, at most one production for a nonterminal may be
nullable, as otherwise we would not be able to choose deterministically
between the two.

We said in section 3.3.1 that our syntax analysis methods will detect
ambiguous grammars. However, this isn't true with the method as stated
above: We will get unique choice of production even for some ambiguous
grammars, including grammar 3.4. The syntax analysis will in this case
just choose one of several possible syntax trees for a given input string.
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In many cases, we do not consider such behaviour acceptable. In fact,
we would very much like our parser construction method to tell us if we
by mistake write an ambiguous grammar.

Even worse, the rules for predictive parsing as presented here might
for some unambiguous grammars give deterministic choice of produc-
tion, but reject strings that actually belong to the language described
by the grammar. If we, for example, change the second production in
grammar 3.9 to

T → aTb

this will not change the choices made by the predictive parser for non-
terminal R. However, always choosing the last production for R on a b

will lead to erroneous rejection of many strings, including ab.
Hence, we add to our construction of predictive parsers a test that

will reject ambiguous grammars and those unambiguous grammars that
can cause the parser to fail erroneously.

We have so far simply chosen a nullable production if and only if no
other choice is possible. However, we should extend this to say that we
choose a production N → α on symbol c if one of the two conditions
below are satis�ed:

1) c ∈ FIRST(α).

2) Nullable(α) and c can validly follow N in a derivation.

This makes us choose nullable productions more often than before. This,
in turn, leads to more cases where we can not choose uniquely, including
the example above with the modi�ed grammar 3.9 (since b can follow R
in valid derivations) and all ambiguous grammars that are not caught
by the original method.

3.10 FOLLOW

For the purpose of rejecting grammars that are problematical for pre-
dictive parsing, we introduce FOLLOW sets for nonterminals.

De�nition 3.6 A terminal symbol a is in FOLLOW(N) if and only if
there is a derivation from the start symbol S of the grammar such that
S ⇒ αNaβ, where α and β are (possibly empty) sequences of grammar
symbols.
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In other words, a terminal c is in FOLLOW(N) if c may follow N at
some point in a derivation.

To correctly handle end-of-string conditions, we want to detect if
S ⇒ αN , i.e., if there are derivations where N can be followed by the
end of input. It turns out to be easy to do this by adding an extra
production to the grammar:

S′ → S$

where S′ is a new nonterminal that replaces S as start symbol and $ is
a new terminal symbol representing the end of input. Hence, in the new
grammar, $ will be in FOLLOW(N) exactly if S′ ⇒ αN$ which is the
case exactly when S ⇒ αN .

The easiest way to calculate FOLLOW is to generate a collection of
set constraints, which are subsequently solved. A production

M → αNβ

generates the constraint FIRST(β) ⊆ FOLLOW(N), since β, obviously,
can follow N . Furthermore, if Nullable(β) the production also generates
the constraint
FOLLOW(M) ⊆ FOLLOW(N) (note the direction of the inclusion).
The reason is that, if a symbol c is in FOLLOW(M), then there (by
de�nition) is a derivation S′ ⇒ γMcδ. But since M → αNβ and β
is nullable, we can continue this by γMcδ ⇒ γαNcδ, so c is also in
FOLLOW(N).

If a right-hand side contains several occurrences of nonterminals, we
add constraints for all occurrences, i.e., splitting the right-hand side
into di�erent αs, Ns and βs. For example, the production A → BcB
generates the constraint {c} ⊆ FOLLOW (B) by splitting after the �rst
B and the constraint FOLLOW (A) ⊆ FOLLOW (B) by �splitting� after
the last B.

We solve the constraints in the following fashion:
We start by assuming empty FOLLOW sets for all nonterminals. We

then handle the constraints of the form FIRST (β) ⊆ FOLLOW (N): We
compute FIRST(β) and add this to FOLLOW(N). Thereafter, we han-
dle the second type of constraints: For each constraint FOLLOW(M) ⊆
FOLLOW (N), we add FOLLOW(M) to
FOLLOW(N). We iterate these last steps until no further changes hap-
pen.

The steps taken to calculate the follow sets of a grammar are, hence:
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1. Add a new nonterminal S′ → S$, where S is the start symbol
for the original grammar. S′ is the start symbol for the extended
grammar.

2. For each nonterminal N , locate all occurrences of N on the right-
hand sides of productions. For each occurrence do the following:

2.1 Let β be the rest of the right-hand side after the occurrence
of N . Note that β may be empty.

2.2 Let m = FIRST(β). Add the constraint m ⊆ FOLLOW(N)
to the set of constraints. If β is empty, you can omit the
constraint, as it doesn't add anything.

2.3 If Nullable(β), �nd the nonterminal M at the left-hand side
of the production and add the constraint FOLLOW(M) ⊆
FOLLOW(N). If M = N , you can omit the constraint, as it
doesn't add anything. Note that if β is empty, Nullable(β) is
true.

3. Solve the constraints using the following steps:

3.1 Start with empty sets for FOLLOW(N) for all nonterminals
N (not including S′).

3.2 For each constraint of the form m ⊆ FOLLOW(N) con-
structed in step 2.1, add the contents of m to FOLLOW(N).

3.3 Iterating until a �xed-point is reached, for each constraint of
the form FOLLOW(M) ⊆ FOLLOW(N), add the contents of
FOLLOW(M) to FOLLOW(N).

We can take grammar 3.4 as an example of this. We �rst add the
production

T ′ → T$

to the grammar to handle end-of-text conditions. The table below shows
the constraints generated by each production

Production Constraints
T ′ → T$ {$} ⊆ FOLLOW(T )
T → R FOLLOW(T ) ⊆ FOLLOW(R)
T → aTc {c} ⊆ FOLLOW(T )
R →
R → RbR {b} ⊆ FOLLOW(R), FOLLOW(R) ⊆ FOLLOW(R)
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In the above table, we have already calculated the required FIRST sets,
so they are shown as explicit lists of terminals. To initialise the FOL-
LOW sets, we use the constraints that involve these FIRST sets:

FOLLOW(T ) = {$, c}
FOLLOW(R) = {b}

and then iterate calculation of the subset constraints. The only nontriv-
ial constraint is FOLLOW(T ) ⊆ FOLLOW(R), so we get

FOLLOW(T ) = {$, c}
FOLLOW(R) = {$, c, b}

Which is the �nal values for the FOLLOW sets.
If we return to the question of predictive parsing of grammar 3.4, we

see that for the nonterminal R we should choose the empty production
on the symbols in FOLLOW(R), i.e., {$, c, b} and choose the non-empty
production on the symbols in FIRST(RbR), i.e., {b}. Since these sets
overlap (on the symbol b), we can not uniquely choose a production
for R based on the next input symbol. Hence, the revised construction
of predictive parsers (see below) will reject this grammar as possibly
ambiguous.

3.11 LL(1) parsing

We have, in the previous sections, looked at how we can choose produc-
tions based on FIRST and FOLLOW sets, i.e. using the rule that we
choose a production N → α on input symbol c if

• c ∈ FIRST (α), or

• Nullable(α) and c ∈ FOLLOW (N).

If we can always choose a production uniquely by using these rules, this
is called called LL(1) parsing � the �rst L indicates the reading direction
(left-to-right), the second L indicates the derivation order (left) and the
1 indicates that there is a one-symbol lookahead. A grammar that can
be parsed using LL(1) parsing is called an LL(1) grammar.

In the rest of this section, we shall see how we can implement LL(1)
parsers as programs. We look at two implementation methods: Recur-
sive descent, where grammar structure is directly translated into the
structure of a program, and a table-based approach that encodes the
decision process in a table.
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3.11.1 Recursive descent

As the name indicates, recursive descent uses recursive functions to im-
plement predictive parsing. The central idea is that each nonterminal in
the grammar is implemented by a function in the program.

Each such function looks at the next input symbol in order to choose
one of the productions for the nonterminal, using the criteria shown
in the beginning of section 3.11. The right-hand side of the chosen
production is then used for parsing in the following way:

A terminal on the right-hand side is matched against the next input
symbol. If they match, we move on to the following input symbol and
the next symbol on the right hand side, otherwise an error is reported.

A nonterminal on the right-hand side is handled by calling the corre-
sponding function and, after this call returns, continuing with the next
symbol on the right-hand side.

When there are no more symbols on the right-hand side, the function
returns.

As an example, �gure 3.16 shows pseudo-code for a recursive de-
scent parser for grammar 3.9. We have constructed this program by the
following process:

We have �rst added a production T ′ → T$ and calculated FIRST
and FOLLOW for all productions.

T ′ has only one production, so the choice is trivial. However, we
have added a check on the next input symbol anyway, so we can report
an error if it isn't in FIRST(T ′). This is shown in the function parseT'.

For the parseT function, we look at the productions for T . As
FIRST(R) = {b}, the production T → R is chosen on the symbol b.
Since R is also Nullable, we must choose this production also on sym-
bols in FOLLOW(T), i.e., c or $. FIRST(aTc) = {a}, so we select
T → aTc on an a. On all other symbols we report an error.

For parseR, we must choose the empty production on symbols in
FOLLOW(R) (c or $). The production R → bR is chosen on input b.
Again, all other symbols produce an error.

The function match takes as argument a symbol, which it tests for
equality with the next input symbol. If they are equal, the following
symbol is read into the variable next. We assume next is initialised to
the �rst input symbol before parseT' is called.

The program in �gure 3.16 only checks if the input is valid. It can
easily be extended to construct a syntax tree by letting the parse func-
tions return the sub-trees for the parts of input that they parse.
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function parseT'() =

if next = 'a' or next = 'b' or next = '$' then

parseT() ; match('$')

else reportError()

function parseT() =

if next = 'b' or next = 'c' or next = '$' then

parseR()

else if next = 'a' then

match('a') ; parseT() ; match('c')

else reportError()

function parseR() =

if next = 'c' or next = '$' then

(* do nothing *)

else if next = 'b' then

match('b') ; parseR()

else reportError()

Figure 3.16: Recursive descent parser for grammar 3.9

3.11.2 Table-driven LL(1) parsing

In table-driven LL(1) parsing, we encode the selection of productions
into a table instead of in the program text. A simple non-recursive
program uses this table and a stack to perform the parsing.

The table is cross-indexed by nonterminal and terminal and contains
for each such pair the production (if any) that is chosen for that non-
terminal when that terminal is the next input symbol. This decision is
made just as for recursive descent parsing: The production N → α is in
the table at (N ,a) if a is in FIRST(α) or if both Nullable(α) and a is in
FOLLOW(N).

For grammar 3.9 we get the table shown in �gure 3.17.

The program that uses this table is shown in �gure 3.18. It uses a
stack, which at any time (read from top to bottom) contains the part
of the current derivation that has not yet been matched to the input.
When this eventually becomes empty, the parse is �nished. If the stack
is non-empty, and the top of the stack contains a terminal, that terminal
is matched against the input and popped from the stack. Otherwise, the
top of the stack must be a nonterminal, which we cross-index in the table
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a b c $
T ′ T ′ → T$ T ′ → T$ T ′ → T$
T T → aTc T → R T → R T → R
R R → bR R → R →

Figure 3.17: LL(1) table for grammar 3.9

stack := empty ; push(T',stack)

while stack <> empty do

if top(stack) is a terminal then

match(top(stack)) ; pop(stack)

else if table(top(stack),next) = empty then

reportError

else

rhs := rightHandSide(table(top(stack),next)) ;

pop(stack) ;

pushList(rhs,stack)

Figure 3.18: Program for table-driven LL(1) parsing

with the next input symbol. If the table-entry is empty, we report an
error. If not, we pop the nonterminal from the stack and replace this
by the right-hand side of the production in the table entry. The list of
symbols on the right-hand side are pushed such that the �rst of these
will be at the top of the stack.

As an example, �gure 3.19 shows the input and stack at each step
during parsing of the string aabbbcc$ using the table in �gure 3.17. The
top of the stack is to the left.

The program in �gure 3.18, like the one in �gure 3.16, only checks if
the input is valid. It, too, can be extended to build a syntax tree. This
can be done by letting each nonterminal on the stack point to its node
in the partially built syntax tree. When the nonterminal is replaced by
one of its right-hand sides, nodes for the symbols on the right-hand side
are added as children to the node.

3.11.3 Con�icts

When a symbol a allows several choices of production for nonterminal
N we say that there is a con�ict on that symbol for that nonterminal.
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input stack
aabbbcc$ T ′

aabbbcc$ T$
aabbbcc$ aTc$
abbbcc$ Tc$
abbbcc$ aTcc$
bbbcc$ Tcc$
bbbcc$ Rcc$
bbbcc$ bRcc$
bbcc$ Rcc$
bbcc$ bRcc$
bcc$ Rcc$
bcc$ bRcc$
cc$ Rcc$
cc$ cc$
c$ c$
$ $

Figure 3.19: Input and stack during table-driven LL(1) parsing
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Con�icts may be caused by ambiguous grammars (indeed all ambiguous
grammars will cause con�icts) but there are also unambiguous grammars
that cause con�icts. An example of this is the unambiguous expression
grammar (grammar 3.11). We will in the next section see how we can
rewrite this grammar to avoid con�icts, but it must be noted that this
is not always possible: There are languages for which there exist unam-
biguous context-free grammars but where no grammar for the language
generates a con�ict-free LL(1) table. Such languages are said to be
non-LL(1). It is, however, important to note the di�erence between a
non-LL(1) language and a non-LL(1) grammar: A language may well be
LL(1) even though the grammar used to describe it isn't.

3.12 Rewriting a grammar for LL(1) parsing

In this section we will look at methods for rewriting grammars such that
they are more palatable for LL(1) parsing. In particular, we will look at
elimination of left-recursion and at left factorisation.

It must, however, be noted that not all grammars can be rewritten
to allow LL(1) parsing. In these cases stronger parsing techniques must
be used.

3.12.1 Eliminating left-recursion

As mentioned above, the unambiguous expression grammar (grammar 3.11)
is not LL(1). The reason is that all productions in Exp and Exp2 have
the same FIRST sets. Overlap like this will always happen when there
are left-recursive productions in the grammar, as the FIRST set of a left-
recursive production will include the FIRST set of the nonterminal itself
and hence be a superset of the FIRST sets of all the other productions
for that nonterminal. To solve this problem, we must avoid left-recursion
in the grammar. We start by looking at direct left-recursion.

When we have a nonterminal with some left-recursive and some non-
left-recursive productions, i.e.,

N → Nα1
...

N → Nαm

N → β1
...

N → βn
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where the βi do not start with N , we observe that this is equivalent to
the regular expression (β1 | . . . |βn)(α1 | . . . |αm)∗. We can generate the
same set of strings by the grammar

N → β1N
′

...
N → βnN ′

N ′ → α1N
′

...
N ′ → αmN ′

N ′ →

where N ′ is a new nonterminal.
Note that, since the βi do not start with N , there is no direct left-

recursion in this grammar. There may, however, still be instances of
indirect left-recursion. We will brie�y look at indirect left-recursion in
section 3.12.1.

Rewriting the grammar like above will change the syntax trees that
are built from the strings that are parsed. Hence, after parsing, the syn-
tax tree must be re-structured to obtain the structure that the original
grammar describe. We will return to this in section 3.16.

As an example of left-recursion removal, we take the unambiguous
expression grammar 3.11. This has left recursion in both Exp and Exp2,
so we apply the transformation to both of these to obtain grammar 3.20.
The resulting grammar 3.20 is now LL(1).

Indirect left-recursion

The transformation shown in section 3.12.1 only serves in the simple
case where there is no indirect left-recursion. Indirect left-recursion can
have several faces:

1. There are productions

N1 → N2α1

N2 → N3α2
...

Nk−1 → Nkαk−1

Nk → N1αk



3.12. REWRITING A GRAMMAR FOR LL(1) PARSING 87

Exp → Exp2 Exp′

Exp′ → + Exp2 Exp′

Exp′ → - Exp2 Exp′

Exp′ →
Exp2 → Exp3 Exp2′

Exp2′ → * Exp3 Exp2′

Exp2′ → / Exp3 Exp2′

Exp2′ →
Exp3 → num
Exp3 → ( Exp )

Grammar 3.20: Removing left-recursion from grammar 3.11

2. There is a production N → αNβ where α is Nullable.

or any combination of the two. More precisely, a grammar is (directly
or indirectly) left-recursive if there is a non-empty derivation sequence
N ⇒ Nα, i.e., if a nonterminal derives a sequence of grammar symbols
that start by that same nonterminal. If there is indirect left-recursion,
we must �rst rewrite the grammar to make the left-recursion direct and
then use the transformation above.

Rewriting a grammar to turn indirect left-recursion into direct left-
recursion can be done systematically, but the process is a bit compli-
cated. We will not go into this here, as in practise most cases of left-
recursion are direct left-recursion. Details can be found in [4].

3.12.2 Left-factorisation

If two productions for the same nonterminal begin with the same se-
quence of symbols, they obviously have overlapping FIRST sets. As an
example, in grammar 3.3 the two productions for if have overlapping
pre�xes. We rewrite this in such a way that the overlapping productions
are made into a single production that contains the common pre�x of
the productions and uses a new auxiliary nonterminal for the di�erent
su�xes. Seeleft-recursion-elimination grammar 3.21. In this grammar3,
we can uniquely choose one of the productions for Stat based on one
input token.

3We have omitted the production for semicolon, as that would only muddle the
issue by introducing more ambiguity.
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Stat → id := Exp
Stat → if Exp then Stat Elsepart

Elsepart → else Stat
Elsepart →

Grammar 3.21: Left-factorised grammar for conditionals

For most grammars, combining productions with common pre�x will
solve the problem. However, in this particular example the grammar still
isn't LL(1): We can't uniquely choose a production for the auxiliary
nonterminal Elsepart, since else is in FOLLOW(Elsepart) as well as in
the FIRST set of the �rst production for Elsepart. This shouldn't be a
surprise to us, since, after all, the grammar is ambiguous and ambigu-
ous grammars can't be LL(1). The equivalent unambiguous grammar
(grammar 3.13) can't easily be rewritten to a form suitable for LL(1), so
in practice grammar 3.21 is used anyway and the con�ict is handled by
choosing the non-empty production for Elsepart whenever the symbol
else is encountered, as this gives the desired behaviour of letting an
else match the nearest if. Very few LL(1) con�icts caused by ambi-
guity can be removed in this way, however, without also changing the
language recognized by the grammar. For example, operator precedence
ambiguity can not be resolved by deleting con�icting entries in the LL(1)
table.

3.12.3 Construction of LL(1) parsers summarized

1. Eliminate ambiguity

2. Eliminate left-recursion

3. Perform left factorisation where required

4. Add an extra start production S′ → S$ to the grammar.

5. Calculate FIRST for every production and FOLLOW for every
nonterminal.

6. For nonterminal N and input symbol c, choose production N → α
when:
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• c ∈ FIRST (α), or
• Nullable(α) and c ∈ FOLLOW (N).

This choice is encoded either in a table or a recursive-descent pro-
gram.

3.13 SLR parsing

A problem with LL(1) parsing is that most grammars need extensive
rewriting to get them into a form that allows unique choice of production.
Even though this rewriting can, to a large extent, be automated, there
are still a large number of grammars that can not be automatically
transformed into LL(1) grammars.

A class of bottom-up methods for parsing called LR parsers exist
which accept a much larger class of grammars (though still not all gram-
mars). The main advantage of LR parsing is that less rewriting is re-
quired to get a grammar in acceptable form, but there are also languages
for which there exist LR-acceptable grammars but no LL(1) grammars.
Furthermore, as we shall see in section 3.15, LR parsers allow external
declaration of operator precedences for resolving ambiguity instead of
requiring the grammar itself to be unambiguous.

We will look at a simple form of LR-parsing called SLR parsing.
While most parser generators use a somewhat more complex method
called LALR(1) parsing, we limit the discussion to SLR for the following
reasons:

• It is simpler.

• In practice, LALR(1) handles few grammars that are not also han-
dled by SLR.

• When a grammar is in the SLR class, the parse-tables produced
by SLR are identical to those produced by LALR(1).

• Understanding of SLR principles is su�cient to know how a gram-
mar should be rewritten when a LALR(1) parser generator rejects
it.

The letters �SLR� stand for �Simple�, �Left� and �Right�. �Left� indicates
that the input is read from left to right and the �Right� indicates that a
right-derivation is built.

LR parsers are table-driven bottom-up parsers and use two kinds of
�actions� involving the input stream and a stack:
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shift: A symbol is read from the input and pushed on the stack.

reduce: On the stack, a number of symbols that are identical to the
right-hand side of a production are replaced by the left-hand side
of that production. Contrary to LL parsers, the stack holds the
right-hand-side symbols such that the last symbol on the right-
hand side is at the top of the stack.

When all of the input is read, the stack will have a single element, which
will be the start symbol of the grammar.

LR parsers are also called shift-reduce parsers. As with LL(1), our
aim is to make the choice of action depend only on the next input symbol
and the symbol on top of the stack. To achieve this, we construct a DFA.
Conceptually, this DFA reads the contents of the stack, starting from the
bottom. If the DFA is in an accepting state when it reaches the top of the
stack, it will cause reduction by a production that is determined by the
state and the next input symbol. If the DFA is not in an accepting state,
it will cause a shift. Hence, at every step, the action can be determined
by letting the DFA read the stack from bottom to top.

Letting the DFA read the entire stack at every action is not very
e�cient, so, instead, we keep track of the DFA state every time we push
an element on the stack, storing the state as part of the stack element.

When the DFA has indicated a shift, the course of action is easy: We
get the state from the top of the stack and follow the transition marked
with the next input symbol to �nd the next DFA state.

If the DFA indicated a reduce, we pop the right-hand side of the
production o� the stack. We then read the DFA state from the new
stack top. When we push the nonterminal that is the left-hand side
of the production, we make a transition from this DFA state on the
nonterminal.

With these optimisations, the DFA only has to inspect a terminal or
nonterminal at the time it is pushed on the stack. At all other times, it
just need to read the DFA state that is stored with the stack element.
Hence, we can forget about what the actual symbols are as soon as the
DFA has made the transition. There is, thus, no reason to keep the
symbols on the stack, so we let a stack element just contain the DFA
state. We still use the DFA to determine the next action, but it now
only needs to look at the current state (stored at the top of the stack)
and the next input symbol (at a shift action) or nonterminal (at a reduce
action).

We represent the DFA as a table, where we cross-index a DFA state
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with a symbol (terminal or nonterminal) and �nd one of the following
actions:

shift n: Read next input symbol, push state n on the stack.
go n: Push state n on the stack.

reduce p: Reduce with the production numbered p.
accept: Parsing has completed successfully.
error: A syntax error has been detected.

Note that the current state is always found at the top of the stack.
Shift and reduce actions are found when a state is cross-indexed with
a terminal symbol. Go actions are found when a state is cross-indexed
with a nonterminal. Go actions are only used immediately after a reduce,
but we can't put them next to the reduce actions in the table, as the
destination state of a go depends on the state on top of the stack after
the right-hand side of the reduced production is popped o�: A reduce
in the current state is immediately followed by a go in the state that is
found when the stack is popped.

An example SLR table is shown in �gure 3.22. The table has been
produced from grammar 3.9 by the method shown below in section 3.14.
The actions have been abbreviated to their �rst letters and error is shown
as a blank entry.

The algorithm for parsing a string using the table is shown in �g-
ure 3.23. As written, the algorithm just determines if a string is in the
language generated by the grammar. It can, however, easily be extended
to build a syntax tree: Each stack element holds (in addition to the state
number) a portion of a syntax tree. When doing a reduce action, a new
(partial) syntax tree is built by using the nonterminal from the reduced
production as root and the syntax trees attached to the popped-o� stack
elements as children. The new tree is then attached to the stack element
that is pushed.

Figure 3.24 shows an example of parsing the string aabbbcc using
the table in �gure 3.22. The stack grows from left to right.

3.14 Constructing SLR parse tables

An SLR parse table has as its core a DFA. Constructing this DFA from
the grammar is not much di�erent from constructing a DFA from a
regular expression as shown in chapter 2: We �rst construct an NFA
using techniques similar to those in section 2.4 and then convert this
into a DFA using the construction shown in section 2.5.
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a b c $ T R
0 s3 s4 r3 r3 g1 g2
1 a
2 r1 r1
3 s3 s4 r3 r3 g5 g2
4 s4 r3 r3 g6
5 s7
6 r4 r4
7 r2 r2

Figure 3.22: SLR table for grammar 3.9

stack := empty ; push(0,stack) ; read(next)

loop

case table[top(stack),next] of

shift s: push(s,stack) ;

read(next)

reduce p: n := the left-hand side of production p ;

r := the number of symbols

on the right-hand side of p ;

pop r elements from the stack ;

push(s,stack) where table[top(stack),n] = go s

accept: terminate with success

error: reportError

endloop

Figure 3.23: Algorithm for SLR parsing
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input stack action
aabbbcc$ 0 s3
abbbcc$ 03 s3
bbbcc$ 033 s4
bbcc$ 0334 s4
bcc$ 03344 s4
cc$ 033444 r3 (R →) ; g6
cc$ 0334446 r4 (R → bR) ; g6
cc$ 033446 r4 (R → bR) ; g6
cc$ 03346 r4 (R → bR) ; g2
cc$ 0332 r1 (T → R) ; g5
cc$ 0335 s7
c$ 03357 r2 (T → aTc) ; g5
c$ 035 s7
$ 0357 r2 (T → aTc) ; g1
$ 01 accept

Figure 3.24: Example SLR parsing

0: T ′ → T
1: T → R
2: T → aTc
3: R →
4: R → bR

Grammar 3.25: Example grammar for SLR-table construction

However, before we do this, we extend the grammar with a new
starting production. Doing this to grammar 3.9 yields grammar 3.25.

The next step is to make an NFA for each production. This is done
exactly like in section 2.4, treating both terminals and nonterminals as
alphabet symbols. The accepting state of each NFA is labelled with
the number of the corresponding production. The result is shown in
�gure 3.26. Note that we have used the optimised construction for ε
(the empty production) as shown in �gure 2.6.

The NFAs in �gure 3.26 make transitions both on terminals and non-
terminals. Transitions by terminal corresponds to shift actions and tran-
sitions on nonterminals correspond to go actions. A go action happens
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Production NFA

T ′ → T
-����

A -T ����nB 0

T → R
-����

C -R ����nD 1

T → aTc
-����

E -a ����
F -T ����

G -c ����nH 2

R → -����nI 3

R → bR
-����

J -b ����
K -R ����nL 4

Figure 3.26: NFAs for the productions in grammar 3.25

state epsilon-transitions
A C, E
C I, J
F C, E
K I, J

Figure 3.27: Epsilon-transitions added to �gure 3.26

after a reduction, whereby some elements of the stack (corresponding to
the right-hand side of a production) are replaced by a nonterminal (cor-
responding to the left-hand side of that production). However, before
we can do this, the symbols that form the right-hand side must be on
the stack.

To achieve this we must, whenever a transition by a nonterminal is
possible, also allow transitions on the symbols on the right-hand side of
a production for that nonterminal so these eventually can be reduced to
the nonterminal. We do this by adding epsilon-transitions to the NFAs
in �gure 3.26: Whenever there is a transition from state s to state t on
a nonterminal N , we add epsilon-transitions from s to the initial states
of all the NFAs for productions with N on the left-hand side. Adding
these graphically to �gure 3.26 would make a very cluttered picture, so
instead we simply note the transitions in a table, shown in �gure 3.27.

Together with these epsilon-transitions, the NFAs in �gure 3.26 form
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DFA NFA Transitions
state states a b c T R
0 A, C, E, I, J s3 s4 g1 g2
1 B
2 D
3 F, C, E, I, J s3 s4 g5 g2
4 K, I, J s4 g6
5 G s7
6 L
7 H

Figure 3.28: SLR DFA for grammar 3.9

a single, combined NFA. This NFA has the starting state A (the start-
ing state of the NFA for the added start production) and an accepting
state for each production in the grammar. We must now convert this
NFA into a DFA using the subset construction shown in section 2.5.
Instead of showing the resulting DFA graphically, we construct a table
where transitions on terminals are shown as shift actions and transitions
on nonterminals as go actions. This will make the table look similar
to �gure 3.22, except that no reduce or accept actions are present yet.
Figure 3.28 shows the DFA constructed from the NFA made by adding
epsilon-transitions in 3.27 to �gure 3.26. The set of NFA states that
forms each DFA state is shown in the second column of the table in �g-
ure 3.28. We will need these below for adding reduce and accept actions,
but once this is done we will not need then anymore, and we can remove
then from the �nal table.

To add reduce and accept actions, we �rst need to compute the FOL-
LOW sets for each nonterminal, as described in section 3.10. For pur-
pose of calculating FOLLOW, we add yet another extra start production:
T ′′ → T ′$, to handle end-of-text conditions as described in section 3.10.
This gives us the following result:

FOLLOW(T ′) = {$}
FOLLOW(T ) = {c, $}
FOLLOW(R) = {c, $}

We then add reduce actions by the following rule: If a DFA state s
contains the accepting NFA state for a production p : N → α, we
add reduce p as action to s on all symbols in FOLLOW(N). Reduc-
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tion on production 0 (the extra start production that was added before
constructing the NFA) is written as accept.

In �gure 3.28, state 0 contains NFA state I, which accepts production
3. Hence, we add r3 as actions at the symbols c and $ (as these are in
FOLLOW(R)). State 1 contains NFA state B, which accepts production
0. We add this at the symbol $ (FOLLOW(T ′)). As noted above, this is
written as accept (abbreviated to �a�). In the same way, we add reduce
actions to state 3, 4, 6 and 7. The result is shown in �gure 3.22.

Figure 3.29 summarises the SLR construction.

1. Add the production S′ → S, where S is the start symbol of the
grammar.

2. Make an NFA for the right-hand side of each production.

3. For each state s that has an outgoing transition on a nonterminal
N , add epsilon-transitions from s to the starting states of the NFAs
for the right-hand sides of the productions for N .

4. Convert the combined NFA to a DFA. Use the starting state of
the NFA for the production added in step 1 as the starting state
for the combined NFA.

5. Build a table cross-indexed by the DFA states and grammar sym-
bols (terminals including $ and nonterminals). Add shift actions
at transitions on terminals and go actions on transitions on non-
terminals.

6. Calculate FOLLOW for each nonterminal. For this purpose, we
add one more start production: S′′ → S′$.

7. When a DFA state contains an NFA state that accepts the right-
hand side of the production numbered p, add reduce p at all sym-
bols in FOLLOW(N), where N is the nonterminal on the left of
production p. If production p is the production added in step 1,
the action is accept instead of reduce p.

Figure 3.29: Summary of SLR parse-table construction
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3.14.1 Con�icts in SLR parse-tables

When reduce actions are added to SLR parse-tables, we might add one
to a place where there is already a shift action, or we may add reduce
actions for several di�erent productions to the same place. When either
of this happens, we no longer have a unique choice of action, i.e., we
have a con�ict. The �rst situation is called a shift-reduce con�ict and
the other case a reduce-reduce con�ict. Both may occur in the same
place.

Con�icts are often caused by ambiguous grammars, but (as is the
case for LL-parsers) even some non-ambiguous grammars may generate
con�icts. If a con�ict is caused by an ambiguous grammar, it is usually
(but not always) possible to �nd an equivalent unambiguous grammar.
Methods for eliminating ambiguity were discussed in sections 3.4 and 3.5.
Alternatively, operator precedence declarations may be used to disam-
biguate an ambiguous grammar, as we shall see in section 3.15.

But even unambiguous grammars may in some cases generate con-
�icts in SLR-tables. In some cases, it is still possible to rewrite the
grammar to get around the problem, but in a few cases the language
simply isn't SLR. Rewriting an unambiguous grammar to eliminate con-
�icts is somewhat of an art. Investigation of the NFA states that form
the problematic DFA state will often help identifying the exact nature
of the problem, which is the �rst step towards solving it. Sometimes,
changing a production from left-recursive to right-recursive may help,
even though left-recursion in general isn't a problem for SLR-parsers, as
it is for LL(1)-parsers.

3.15 Using precedence rules in LR parse tables

We saw in section 3.12.2, that the con�ict arising from the dangling-
else ambiguity could be removed by removing one of the entries in the
LL(1) parse table. Resolving ambiguity by deleting con�icting actions
can also be done in SLR-tables. In general, there are more cases where
this can be done successfully for SLR-parsers than for LL(1)-parsers. In
particular, ambiguity in expression grammars like grammar 3.2 can be
eliminated this way in an SLR table, but not in an LL(1) table. Most
LR-parser generators allow declarations of precedence and associativity
for tokens used as in�x-operators. These declarations are then used to
eliminate con�icts in the parse tables.

There are several advantages to this approach:
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• Ambiguous expression grammars are more compact and easier to
read than unambiguous grammars in the style of section 3.4.1.

• The parse tables constructed from ambiguous grammars are often
smaller than tables produced from equivalent unambiguous gram-
mars.

• Parsing using ambiguous grammars is (slightly) faster, as fewer
reductions of the form Exp2 → Exp3 etc. are required.

Using precedence rules to eliminate con�icts is very simple. Grammar 3.2
will generate several con�icts:

1) A con�ict between shifting on + and reducing by the production
Exp → Exp +Exp.

2) A con�ict between shifting on + and reducing by the production
Exp → Exp *Exp.

3) A con�ict between shifting on * and reducing by the production
Exp → Exp +Exp.

4) A con�ict between shifting on * and reducing by the production
Exp → Exp *Exp.

And several more of similar nature involving - and /, for a total of 16
con�icts. Let us take each of the four con�icts above in turn and see
how precedence rules can be used to eliminate them.

1) This con�ict arises from expressions like a+b+c. After having read
a+b, the next input symbol is a +. We can now either choose to
reduce a+b, grouping around the �rst addition before the second,
or shift on the plus, which will later lead to b+c being reduced
and hence grouping around the second addition before the �rst.
Since + is left-associative, we prefer the �rst of these options and
hence eliminate the shift-action from the table and keep the reduce-
action.

2) The o�ending expressions here have the form a*b+c. Since we want
multiplication to bind stronger than addition, we, again, prefer
reduction over shifting.

3) In expressions of the form a+b*c, we, as before, want multiplication
to group stronger, so we do a shift to avoid grouping around the +
operator and, hence, eliminate the reduce-action from the table.
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4) This case is identical to case 1, where a left-associative operator
con�icts with itself and is likewise handled by eliminating the shift.

In general, elimination of con�icts by operator precedence declarations
can be summarised into the following rules:

a) If the con�ict is between two operators of di�erent priority, elim-
inate the action with the lowest priority operator in favour of the
action with the highest priority. The operator associated with a
reduce-action is the operator used in the production that is re-
duced.

b) If the con�ict is between operators of the same priority, the asso-
ciativity (which must be the same, as noted in section 3.4.1) of the
operators is used: If the operators are left-associative, the shift-
action is eliminated and the reduce-action retained. If the opera-
tors are right-associative, the reduce-action is eliminated and the
shift-action retained. If the operators are non-associative, both
actions are eliminated.

c) If there are several operators with declared precedence in the pro-
duction that is used in a reduce-action, the last of these is used to
determine the precedence of the reduce-action.4

Pre�x and post�x operators can be handled similarly. Associativity only
applies to in�x operators, so only the precedence of pre�x and post�x
operators matters.

Note that only shift-reduce con�icts are eliminated by the above
rules. Some parser generators allow also reduce-reduce con�icts to be
eliminated by precedence rules (in which case the production with the
highest-precedence operator is preferred), but this is not as obviously
useful as the above.

The dangling-else ambiguity (section 3.5) can also be eliminated us-
ing precedence rules: Giving else a higher precedence than then or giv-
ing them the same precedence and making them right-associative will
handle the problem, as either of these will make the parser shift on else

instead of reducing Stat → if Exp then Stat when this is followed by
else.

Not all con�icts should be eliminated by precedence rules. Excessive
use of precedence rules may cause the parser to accept only a subset

4Using several operators with declared priorities in the same production should
be done with care.
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of the intended language (i.e., if a necessary action is eliminated by a
precedence rule). So, unless you know what you are doing, you should
limit the use of precedence declarations to operators in expressions.

3.16 Using LR-parser generators

Most LR-parser generators use an extended version of the SLR con-
struction called LALR(1). In practice, however, there is little di�erence
between these, so a LALR(1) parser generator can be used with knowl-
edge of SLR only.

Most LR-parser generators organise their input in several sections:

• Declarations of the terminals and nonterminals used.

• Declaration of the start symbol of the grammar.

• Declarations of operator precedence.

• The productions of the grammar.

• Declaration of various auxiliary functions and data-types used in
the actions (see below).

3.16.1 Declarations and actions

Each nonterminal and terminal is declared and associated with a data-
type. For a terminal, the data-type is used to hold the values that are
associated with the tokens that come from the lexer, e.g., the values of
numbers or names of identi�ers. For a nonterminal, the type is used
for the values that are built for the nonterminals during parsing (at
reduce-actions).

While, conceptually, parsing a string produces a syntax tree for that
string, parser generators usually allow more control over what is actually
produced. This is done by assigning an action to each production. The
action is a piece of program text that is used to calculate the value of
a reduced production by using the values associated with the symbols
on the right-hand side. For example, by putting appropriate actions on
each production, the numerical value of an expression may be calculated
as the result of parsing the expression. Indeed, compilers can be made
such that the value produced during parsing is the compiled code of a
program. For all but the simplest compilers it is, however, better to
build some kind of syntax representation during parsing and then later
operate on this representation.
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3.16.2 Abstract syntax

The syntax trees described in section 3.3.1 are not always optimally
suitable for compilation. They contain a lot of redundant information:
Parentheses, keywords used for grouping purposes only, and so on. They
also re�ect structures in the grammar that are only introduced to elim-
inate ambiguity or to get the grammar accepted by a parser generator
(such as left-factorisation or elimination of left-recursion). Hence, ab-
stract syntax is commonly used.

Abstract syntax keeps the essence of the structure of the text but
omits the irrelevant details. An abstract syntax tree is a tree structure
where each node corresponds to one or more nodes in the (concrete)
syntax tree. For example, the concrete syntax tree shown in �gure 3.12
may be represented by the following abstract syntax tree:

PlusExp
�

�
@
@

NumExp(2) MulExp
�

�
@
@

NumExp(3) NumExp(4)

Here the names PlusExp, MulExp and NumExp may be constructors in
a data-type or they may be elements from an enumerated type used as
tags in a union-type. The names indicate which production is chosen,
so there is no need to keep the subtrees that are implied by the choice
of production, such as the subtree from �gure refexpression-tree2 that
holds the symbol +. Likewise, the sequence of nodes Exp, Exp2, Exp3,
2 at the left of �gure refexpression-tree2 are combined to a single node
NumExp(2) that includes both the choice of productions for Exp, Exp2
and Exp3 and the value of the terminal node.

A compiler designer has much freedom in the choice of abstract syn-
tax. Some use abstract syntax that retain alls of the structure of the
concrete syntax trees plus additional positioning information used for
error-reporting. Others prefer abstract syntax that contains only the
information necessary for compilation, skipping parenthesis and other
(for this purpose) irrelevant structure.

Exactly how the abstract syntax tree is represented and built de-
pends on the parser generator used. Normally, the action assigned to a
production can access the values of the terminals and nonterminals on
the right-hand side of a production through specially named variables
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(often called $1, $2, etc.) and produces the value for the node corre-
sponding to the left-hand-side either by assigning it to a special variable
($0) or letting it be the return value of the action.

The data structures used for building abstract syntax trees depend
on the language. Most statically typed functional languages support
tree-structured datatypes with named constructors. In such languages,
it is natural to represent abstract syntax by one datatype per syntactic
category (e.g., Exp above) and one constructor for each instance of the
syntactic category (e.g., PlusExp, NumExp and MulExp above). In Pas-
cal, each syntactic category can be represented by a variant record type
and each instance as a variant of that. In C, a syntactic category can be
represented by a union of structs, each struct representing an instance
of the syntactic category and the union covering all possible instances.
In object-oriented languages such as Java, a syntactic category can be
represented as an abstract class or interface where each instance in a
syntactic category is a concrete class that implements the abstract class
or interface.

In most cases, it is fairly simple to build abstract syntax using the
actions for the productions in the grammar. It becomes complex only
when the abstract syntax tree must have a structure that di�ers non-
trivially from the concrete syntax tree.

One example of this is if left-recursion has been eliminated for the
purpose of making an LL(1) parser. The preferred abstract syntax tree
will in most cases be similar to the concrete syntax tree of the original
left-recursive grammar rather than that of the transformed grammar.
As an example, the left-recursive grammar

E → E + num
E → num

gets transformed by left-recursion elimination into

E → numE′

E′ → +numE′

E′ →

Which yields a completely di�erent syntax tree. We can use the actions
assigned to the productions in the transformed grammar to build an
abstract syntax tree that re�ects the structure in the original grammar.

In the transformed grammar, E′ should return an abstract syntax
tree with a hole. The intention is that this hole will eventually be �lled
by another abstract syntax tree:
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• The second production for E′ returns just a hole.

• In the �rst production for E′, the + and num terminals are used
to produce a tree for a plus-expression (i.e., a PlusExp node) with
a hole in place of the �rst subtree. This tree is used to �ll the
hole in the tree returned by the recursive use of E′, so the abstract
syntax tree is essentially built outside-in. The result is a new tree
with a hole.

• In the production for E, the hole in the tree returned by the E′

nonterminal is �lled by a NumExp node with the number that is
the value of the num terminal.

The best way of building trees with holes depends on the type of language
used to implement the actions. Let us �rst look at the case where a
functional language is used.

The actions shown below for the original grammar will build an ab-
stract syntax tree similar to the one shown in the beginning of this
section.

E → E + num { PlusExp($1,NumExp($3)) }
E → num { NumExp($1) }

We now want to make actions for the transformed grammar that will
produce the same abstract syntax trees as this will.

In functional languages, an abstract syntax tree with a hole can be
represented by a function. The function takes as argument what should
be put into the hole and returns a syntax tree where the hole is �lled
with this argument. The hole is represented by the argument variable of
the function. We can write this as actions to the transformed grammar:

E → numE′ { $2(NumExp($1)) }
E′ → +numE′ { λx.$3(PlusExp(x,NumExp($2))) }
E′ → { λx.x }

where λx.e is a nameless function that takes x as argument and returns
the value of the expression e. The empty production returns the identity
function, which works like a top-level hole. The non-empty production
for E′ applies the function $3 returned by the E′ on the right-hand side
to a subtree, hence �lling the hole in $3 by this subtree. The subtree
itself has a hole x, which is �lled when applying the function returned
by the right-hand side. The production for E applies the function $2
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returned by E′ to a subtree that has no holes and, hence, returns a tree
with no holes.

In SML, λx.e is written as fn x => e, in Haskell as \x -> e and in
Scheme as (lambda (x) e).

The imperative version of the actions in the original grammar is

E → E + num { $0 = PlusExp($1,NumExp($3)) }
E → num { $0 = NumExp($1) }

In this setting, NumExp and PlusExp aren't constructors but functions
that allocate and build node and return pointers to these. Unnamed
functions of the kind used in the above solution for functional languages
can not be built in most imperative languages, so holes must be an
explicit part of the data-type that is used to represent abstract syntax.
These holes will be overwritten when the values are supplied. E′ will,
hence, return a record holding both an abstract syntax tree (in a �eld
named tree) and a pointer to the hole that should be overwritten (in a
�eld named hole). As actions (using C-style notation), this becomes

E → numE′ { $2->hole = NumExp($1);

$0 = $2.tree }
E′ → +numE′ { $0.hole = makeHole();

$3->hole = PlusExp($0.hole,NumExp($2));

$0.tree = $3.tree }
E′ → { $0.hole = makeHole();

$0.tree = $0.hole }

This may look bad, but when using LR-parser generators, left-recursion
removal is rarely needed, and parser generators based on LL(1) often do
left-recursion removal automatically and transform the actions appro-
priately.

An alternative approach is to let the parser build an intermediate
(semi-abstract) syntax tree from the transformed grammar, and then
let a separate pass restructure the intermediate syntax tree to produce
the intended abstract syntax.

3.16.3 Con�ict handling in parser generators

For all but the simplest grammars, the user of a parser generator should
expect con�icts to be reported when the grammar is �rst presented to
the parser generator. These con�icts can be caused by ambiguity or by
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NFA-state Textual representation
A T' -> . T

B T' -> T .

C T -> . R

D T -> R .

E T -> . aTc

F T -> a . Tc

G T -> aT . c

H T -> aTc .

I R -> .

J R -> . bR

K R -> b . R

L R -> bR .

Figure 3.30: Textual representation of NFA states

the limitations of the parsing method. In any case, the con�icts can nor-
mally be eliminated by rewriting the grammar or by adding precedence
declarations.

Most parser generators can provide information that is useful to lo-
cate where in the grammar the problems are. When a parser generator
reports con�icts, it will tell in which state in the table these occur. This
state can be written out in a (barely) human-readable form as a set of
NFA-states. Since most parser generators rely on pure ASCII, they can
not actually draw the NFAs as diagrams. Instead, they rely on the fact
that each state in the NFA corresponds to a position in a production in
the grammar. If we, for example, look at the NFA states in �gure 3.26,
these would be written as shown in �gure 3.30. Note that a `.' is used
to indicate the position of the state in the production. State 4 of the
table in �gure 3.28 will hence be written as

R -> b . R

R -> .

R -> . bR

The set of NFA states, combined with information about on which sym-
bols a con�ict occurs, can be used to �nd a remedy, e.g. by adding
precedence declarations.

If all e�orts to get a grammar through a parser generator fails, a
practical solution may be to change the grammar so it accepts a larger
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language than the intended language and then post-process the syntax
tree to reject �false positives�. This elimination can be done at the same
time as type-checking (which, too, may reject programs).

Some languages allow programs to declare precedence and associa-
tivity for user-de�ned operators. This can make it di�cult to handle
precedence during parsing, as the precedences are not known when the
parser is generated. A typical solution is to parse all operators using the
same precedence and then restructure the syntax tree afterwards, but
see also exercise 3.20.

3.17 Properties of context-free languages

In section 2.10, we described some properties of regular languages. Con-
text-free languages share some, but not all, of these.

For regular languages, deterministic (�nite) automata cover exactly
the same class of languages as nondeterministic automata. This is not
the case for context-free languages: Nondeterministic stack automata
do indeed cover all context-free languages, but deterministic stack au-
tomata cover only a strict subset. The subset of context-free languages
that can be recognised by deterministic stack automata are called de-
terministic context-free languages. Deterministic context-free languages
can be recognised by LR parsers.

We have noted that the basic limitation of regular languages is �nite-
ness: A �nite automaton can not count unboundedly and hence can not
keep track of matching parentheses or similar properties. Context-free
languages are capable of such counting, essentially using the stack for
this purpose. Even so, there are limitations: A context-free language
can only keep count of one thing at a time, so while it is possible (even
trivial) to describe the language {anbn | n ≥ 0} by a context-free gram-
mar, the language {anbncn | n ≥ 0} is not a context-free language. The
information kept on the stack follows a strict LIFO order, which further
restricts the languages that can be described. It is, for example, trivial
to represent the language of palindromes (strings that read the same
forwards and backwards) by a context-free grammar, but the language
of strings that can be constructed by repeating a string twice is not
context-free.

Context-free languages are, as regular languages, closed under union:
It is easy to construct a grammar for the union of two languages given
grammars for each of these. Context-free languages are also closed un-
der pre�x, su�x, subsequence and reversal. Indeed, the language con-
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sisting of all subsequences of a context-free language is actually reg-
ular. However, context-free languages are not closed under intersec-
tion or complement. For example, the languages {anbncm | m,n ≥ 0}
and {ambncn | m,n ≥ 0} are both context-free while their intersection
{anbncn | n ≥ 0} is not.

3.18 Further reading

Context-free grammars were �rst proposed as a notation for describing
natural languages (e.g., English or French) by the linguist Noam Chom-
sky [13], who de�ned this as one of three grammar notations for this pur-
pose. The quali�er �context-free� distinguishes this notation from the
other two grammar notations, which were called �context-sensitive� and
�unconstrained�. In context-free grammars, derivation of a nonterminal
is independent of the context in which the terminal occurs, whereas the
context can restrict the set of derivations in a context-sensitive grammar.
Unrestricted grammars can use the full power of a universal computer,
so these represent all computable languages.

Context-free grammars are actually too weak to describe natural
languages, but were adopted for de�ning the Algol60 programming lan-
guage [15]. Since then, variants of this notation has been used for de�n-
ing or describing almost all programming languages.

Some languages have been designed with speci�c parsing methods in
mind: Pascal [19] has been designed for LL(1) parsing while C [23] was
originally designed to �t LALR(1) parsing, but this property was lost in
subsequent versions of the language.

Most parser generators are based on LALR(1) parsing, but a few use
LL(1) parsing. An example of this is ANTLR (http://www.antlr.org/).

�The Dragon Book� [4] tells more about parsing methods than the
present book.

Several textbooks exist that describe properties of context-free lan-
guages, e.g., [18].

The methods presented here for rewriting grammars based on oper-
ator precedence uses only in�x operators. If pre�x or post�x operators
have higher precedence than all in�x operators, the method presented
here will work (with trivial modi�cations), but if there are in�x opera-
tors that have higher precedence than some pre�x or post�x operators,
it breaks down. A method for handling arbitrary precedences of in�x,
pre�x and post�x operators is presented in [1].
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Exercises

Exercise 3.1

Figures 3.7 and 3.8 show two di�erent syntax trees for the string
aabbbcc using grammar 3.4. Draw a third, di�erent syntax tree for
aabbbcc using the same grammar and show the left-derivation that cor-
responds to this syntax tree.

Exercise 3.2

Draw the syntax tree for the string aabbbcc using grammar 3.9.

Exercise 3.3

Write an unambiguous grammar for the language of balanced parenthe-
ses, i.e. the language that contains (among other) the sequences

ε (i.e. the empty string)
()
(())
()()

(()(()))

but none of the following

(
)
)(
(()
()())

Exercise 3.4

Write grammars for each of the following languages:

a) All sequences of as and bs that contain the same number of as and
bs (in any order).

b) All sequences of as and bs that contain strictly more as than bs.

c) All sequences of as and bs that contain a di�erent number of as
and bs.
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d) All sequences of as and bs that contain twice as many as as bs.

Exercise 3.5

We extend the language of balanced parentheses from exercise 3.3 with
two symbols: [ and ]. [ corresponds to exactly two normal opening
parentheses and ] corresponds to exactly two normal closing parentheses.
A string of mixed parentheses is legal if and only if the string produced
by replacing [ by (( and ] by )) is a balanced parentheses sequence.
Examples of legal strings are

ε
()()

((]

[]

[)(]

[(])

a) Write a grammar that recognises this language.

b) Draw the syntax trees for [)(] and [(]).

Exercise 3.6

Show that the grammar

A → −A
A → A− id
A → id

is ambiguous by �nding a string that has two di�erent syntax trees.

Now make two di�erent unambiguous grammars for the same lan-
guage:

a) One where pre�x minus binds stronger than in�x minus.

b) One where in�x minus binds stronger than pre�x minus.

Show the syntax trees using the new grammars for the string you used
to prove the original grammar ambiguous.
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Exercise 3.7

In grammar 3.2, replace the operators − and / by < and :. These have
the following precedence rules:

< is non-associative and binds less tightly than + but more tightly
than :.

: is right-associative and binds less tightly than any other operator.

Write an unambiguous grammar for this modi�ed grammar using the
method shown in section 3.4.1. Show the syntax tree for 2 : 3 < 4 + 5 :
6 ∗ 7 using the unambiguous grammar.

Exercise 3.8

Extend grammar 3.13 with the productions

Exp → id
Matched →

then calculate Nullable and FIRST for every production in the grammar.
Add an extra start production as described in section 3.10 and cal-

culate FOLLOW for every nonterminal in the grammar.

Exercise 3.9

Calculate Nullable, FIRST and FOLLOW for the nonterminals A and B
in the grammar

A → BAa
A →
B → bBc
B → AA

Remember to extend the grammar with an extra start production when
calculating FOLLOW.

Exercise 3.10

Eliminate left-recursion from grammar 3.2.

Exercise 3.11

Calculate Nullable and FIRST for every production in grammar 3.20.
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Exercise 3.12

Add a new start production Exp′ → Exp $ to the grammar produced in
exercise 3.10 and calculate FOLLOW for all nonterminals in the resulting
grammar.

Exercise 3.13

Make a LL(1) parser-table for the grammar produced in exercise 3.12.

Exercise 3.14

Consider the following grammar for post�x expressions:

E → E E +
E → E E ∗
E → num

a) Eliminate left-recursion in the grammar.

b) Do left-factorisation of the grammar produced in question a.

c) Calculate Nullable, FIRST for every production and FOLLOW for
every nonterminal in the grammar produced in question b.

d) Make a LL(1) parse-table for the grammar produced in question
b.

Exercise 3.15

Extend grammar 3.11 with a new start production as shown in sec-
tion 3.14 and calculate FOLLOW for every nonterminal. Remember to
add an extra start production for the purpose of calculating FOLLOW
as described in section 3.10.

Exercise 3.16

Make NFAs (as in �gure 3.26) for the productions in grammar 3.11 (after
extending it as shown in section 3.14) and show the epsilon-transitions
as in �gure 3.27. Convert the combined NFA into an SLR DFA like the
one in �gure 3.28. Finally, add reduce and accept actions based on the
FOLLOW sets calculated in exercise 3.15.
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Exercise 3.17

Extend grammar 3.2 with a new start production as shown in sec-
tion 3.14 and calculate FOLLOW for every nonterminal. Remember to
add an extra start production for the purpose of calculating FOLLOW
as described in section 3.10.

Exercise 3.18

Make NFAs (as in �gure 3.26) for the productions in grammar 3.2 (after
extending it as shown in section 3.14) and show the epsilon-transitions
as in �gure 3.27. Convert the combined NFA into an SLR DFA like
the one in �gure 3.28. Add reduce actions based on the FOLLOW sets
calculated in exercise 3.17. Eliminate the con�icts in the table by using
operator precedence rules as described in section 3.15. Compare the size
of the table to that from exercise 3.16.

Exercise 3.19

Consider the grammar

T → T -> T
T → T * T
T → int

where -> is considered a single terminal symbol.

a) Add a new start production as shown in section 3.14.

b) Calculate FOLLOW(T). Remember to add an extra start produc-
tion.

c) Construct an SLR parser-table for the grammar.

d) Eliminate con�icts using the following precedence rules:

� * binds tighter than ->.

� * is left-associative.

� -> is right-associative.
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Exercise 3.20

In section 3.16.3 it is mentioned that user-de�ned operator precedences
in programming languages can be handled by parsing all operators with
a single �xed precedence and associativity and then using a separate
pass to restructure the syntax tree to re�ect the declared precedences.
Below are two other methods that have been used for this purpose:

a) An ambiguous grammar is used and con�icts exist in the SLR ta-
ble. Whenever a con�ict arises during parsing, the parser consults
a table of precedences to resolve this con�ict. The precedence table
is extended whenever a precedence declaration is read.

b) A terminal symbol is made for every possible precedence and as-
sociativity combination. A con�ict-free parse table is made either
by writing an unambiguous grammar or by eliminating con�icts in
the usual way. The lexical analyser uses a table of precedences to
assign the correct terminal symbol to each operator it reads.

Compare all three methods. What are the advantages and disadvantages
of each method?.

Exercise 3.21

Consider the grammar

A → a A a
A → b A b
A →

a) Describe the language that the grammar de�nes.

b) Is the grammar ambiguous? Justify your answer.

c) Construct a SLR parse table for the grammar.

d) Can the con�icts in the table be eliminated?

Exercise 3.22

The following ambiguous grammar describes boolean expressions:
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B → true
B → false
B → B ∨ B
B → B ∧ B
B → ¬ B

a) Given that negation (¬) binds tighter than conjunction (∧) which
binds tighter than disjunction (∨) and that conjunction and dis-
junction are both right-associative, rewrite the grammar to be un-
ambiguous.

b) Write a grammar that generates only true boolean expressions.
Hint: Use the answer from question a) and add an additional non-
terminal for false boolean expressions.



Chapter 4

Symbol Tables

4.1 Introduction

An important concept in programming languages is the ability to name
objects such as variables, functions and types. Each such named object
will have a declaration, where the name is de�ned as a synonym for the
object. This is called binding. Each name will also have a number of
uses, where the name is used as a reference to the object to which it is
bound.

Often, the declaration of a name has a limited scope: a portion of the
program where the name will be visible. Such declarations are called local
declarations, whereas a declaration that makes the declared name visible
in the entire program is called global. It may happen that the same name
is declared in several nested scopes. In this case, it is normal that the
declaration closest to a use of the name will be the one that de�nes that
particular use. In this context closest is related to the syntax tree of the
program: The scope of a declaration will be a sub-tree of the syntax tree
and nested declarations will give rise to scopes that are nested sub-trees.
The closest declaration of a name is hence the declaration corresponding
to the smallest sub-tree that encloses the use of the name.

Scoping based in this way on the structure of the syntax tree is
called static or lexical binding and is the most common scoping rule in
modern programming languages. We will in the rest of this chapter
(indeed, the rest of this book) assume that static binding is used. A few
languages have dynamic binding, where the declaration that was most
recently encountered during execution of the program de�nes the current
use of the name. By its nature, dynamic binding can not be resolved
at compile-time, so the techniques that in the rest of this chapter are

115
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described as being used in a compiler will have to be used at run-time
if the language uses dynamic binding.

A compiler will need to keep track of names and the objects these are
bound to, so that any use of a name will be attributed correctly to its
declaration. This is typically done using a symbol table (or environment,
as it is sometimes called).

4.2 Symbol tables

A symbol table is a table that binds names to objects. We need a number
of operations on symbol tables to accomplish this:

• We need an empty symbol table, in which no name is de�ned.

• We need to be able to bind a name to an object. In case the
name is already de�ned in the symbol table, the new binding takes
precedence over the old.

• We need to be able to look up a name in a symbol table to �nd
the object the name is bound to. If the name is not de�ned in the
symbol table, we need to be told that.

• We need to be able to enter a new scope.

• We need to be able to exit a scope, reestablishing the symbol table
to what it was before the scope was entered.

4.2.1 Implementation of symbol tables

There are many ways to implement symbol tables, but the most impor-
tant distinction between these is how scopes are handled. This may be
done using a persistent (or functional) data structure, or it may be done
using an imperative (or destructively-updated) data structure.

A persistent data structure has the property that no operation on
the structure will destroy it. Conceptually, a new copy is made of the
data structure whenever an operation updates it, hence preserving the
old structure unchanged. This means that it is trivial to reestablish the
old symbol table when exiting a scope, as it has been preserved by the
persistent nature of the data structure. In practice, only a small portion
of the data structure is copied, most is shared with the previous version.

In the imperative approach, only one copy of the symbol table exists,
so explicit actions are required to store the information needed to restore
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the symbol table to a previous state. This can be done by using a stack.
When an update is made, the old binding of a name that is overwritten is
recorded (pushed) on the stack. When a new scope is entered, a marker
is pushed on the stack. When the scope is exited, the bindings on the
stack (down to the marker) are used to reestablish the old symbol table.
The bindings and the marker are popped o� the stack in the process,
returning the stack to the state it was in before the scope was entered.

Below, we will look at simple implementations of both approaches
and discuss how more advanced approaches can overcome some of the
e�ciency problems with the simple approaches.

4.2.2 Simple persistent symbol tables

In functional languages like SML, Scheme or Haskell, persistent data
structures are the norm rather than the exception (which is why per-
sistent data structures are sometimes called functional). For example,
when a new element is added to a list or an element is taken o� the head
of the list, the old list still exists and can be used elsewhere. A list is
a natural way to implement a symbol table in a functional language: A
binding is a pair of a name and its associated object, and a symbol table
is a list of such pairs. The operations are implemented in the following
way:

empty: An empty symbol table is an empty list.

binding: A new binding (name/object pair) is added (cons'ed) to the
front of the list.

lookup: The list is searched until a matching name is found. The object
paired with the name is then returned. If the end of the list is
reached, an indication that this happened is returned instead. This
indication can be made by raising an exception or by letting the
lookup function return a type that can hold both objects and error-
indications, i.e., a sum-type.

enter: The old list is remembered, i.e., a reference is made to it.

exit: The old list is recalled, i.e., the above reference is used.

The latter two operations are not really explicit operations. Entering
and exiting a scope is done by binding a symbol table to a name before
entering a new scope and then referring to this name again after the
scope is exited.
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As new bindings are added to the front of the list, these will auto-
matically take precedence over old bindings as the list is searched from
the front to the back.

Another functional approach to symbol tables is using functions: A
symbol table is quite naturally seen as a function from names to objects.
The operations are:

empty: An empty symbol table is a function that returns an error in-
dication (or raises an exception) no matter what its argument is.

binding: Adding a binding of the name n to the object o in a symbol
table t is done by de�ning a new symbol-table function t′ in terms
t and the new binding. When t′ is called with a name n1 as argu-
ment, it compares n1 to n. If they are equal, t′ returns the object
o. Otherwise, t′ calls t with n1 as argument and returns the result
that this call yields.

lookup: The symbol-table function is called with the name as argu-
ment.

enter: The old function is remembered (referenced).

exit: The old function is recalled (by using a reference).

Again, the latter two operations are mostly implicit.

4.2.3 A simple imperative symbol table

Imperative symbol tables are natural to use if the compiler is written
in an imperative language. A simple imperative symbol table can be
implemented as a stack, which works in a way similar to the list-based
functional implementation:

empty: An empty symbol table is an empty stack.

binding: A new binding (name/object pair) is pushed on top of the
stack.

lookup: The stack is searched top-to-bottom until a matching name
is found. The object paired with the name is then returned. If
the bottom of the stack is reached, we instead return an error-
indication.

enter: The top-of-stack pointer is remembered.
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exit: The old top-of-stack pointer is recalled and becomes the current.

This is not quite a persistent data structure, as leaving a scope will
destroy its symbol table. For most languages, this won't matter, as a
scope isn't needed again after it is exited. If this is not the case, a real
persistent symbol table must be used, or the needed parts of the symbol
table must be stored for later retrieval before exiting a scope.

4.2.4 E�ciency issues

While all of the above implementations are simple, they all share the
same e�ciency problem: Lookup is done by linear search, so the worst-
case time for lookup is proportional to the size of the symbol table.
This is mostly a problem in relation to libraries: It is quite common for
a program to use libraries that de�ne literally hundreds of names.

A common solution to this problem is hashing: Names are hashed
(processed) into integers, which are used to index an array. Each array
element is then a linear list of the bindings of names that share the same
hash code. Given a large enough hash table, these lists will typically be
very short, so lookup time is basically constant.

Using hash tables complicates entering and exiting scopes somewhat.
While each element of the hash table is a list that can be handled like
in the simple cases, doing this for all the array-elements at every entry
and exit imposes a major overhead. Instead, it is typical for imperative
implementations to use a single stack to record all updates to the table
such that they can be undone in time proportional to the number of
updates that were done in the local scope. Functional implementations
typically use persistent hash-tables, which eliminates the problem.

4.2.5 Shared or separate name spaces

In some languages (like C) a variable and a function in the same scope
may have the same name, as the context of use will make it clear whether
a variable or a function is used. We say that functions and variables
have separate name spaces, which means that de�ning a name in one
space doesn't a�ect the other. In other languages (e.g. Pascal or SML)
the context can not (easily) distinguish variables from functions. Hence,
declaring a local variable might hide a function declared in an outer scope
or vice versa. These languages have a shared name space for variables
and functions.

Name spaces may be shared or separate for all the kinds of names
that can appear in a program, e.g., variables, functions, types, excep-
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tions, constructors, classes, �eld selectors etc. Sharing can exist between
any subsets of these name spaces, and which name spaces are shared is
language-dependent.

Separate name spaces are easily implemented using a symbol table
per name space, whereas shared name spaces naturally share a single
symbol table. However, it is sometimes convenient to use a single symbol
table even if there are separate name spaces. This can be done fairly
easily by adding name-space indicators to the names. A name-space
indicator can be a textual pre�x to the name or it may be a tag that
is paired with the name. In either case, a lookup in the symbol table
must match both name and name-space indicator of the symbol that is
looked up with the entry in the table.

4.3 Further reading

Most algorithms-and-data-structures textbooks include descriptions of
methods for hashing strings and implementing hash tables. A description
of e�cient persistent data structures for functional languages can be
found in [32].

Exercises

Exercise 4.1

Pick some programming language that you know well and determine
which of the following objects share name spaces: Variables, functions,
procedures and types. If there are more kinds of named objects (labels,
data constructors, modules, etc.) in the language, include these in the
investigation.

Exercise 4.2

Implement, in a programming language of your choice, data structures
and operations (empty, binding, lookup, enter and exit) for simple sym-
bol tables.

Exercise 4.3

In some programming languages, identi�ers are case-insensitive so, e.g.,
size and SiZe refer to the same identi�er. Describe how symbol tables
can be made case-insensitive.



Chapter 5

Type Checking

5.1 Introduction

Lexing and parsing will reject many texts as not being correct programs.
However, many languages have well-formedness requirements that can
not be handled exclusively by the techniques seen so far. These require-
ments can, for example, be static type correctness or a requirement that
pattern-matching or case-statements are exhaustive.

These properties are most often not context-free, i.e., they can not be
checked by membership of a context-free language. Consequently, they
are checked by a phase that (conceptually) comes after syntax analysis
(though it may be interleaved with it). These checks may happen in a
phase that does nothing else, or they may be combined with the actual
translation. Often, the translator may exploit or depend on type infor-
mation, which makes it natural to combine calculation of types with the
actual translation. We will here, for the sake of exposition, assume that
a separate phase is used for type checking and related checks, and simi-
larly assume that any information gathered by this phase is available in
subsequent phases.

5.2 Attributes

The checking phase operates on the abstract syntax tree of the pro-
gram and may make several passes over this. Typically, each pass is
a recursive walk over the syntax tree, gathering information or using
information gathered in earlier passes. Such information is often called
attributes of the syntax tree. Typically, we distinguish between two types
of attributes: Synthesised attributes are passed upwards in the syntax
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tree, from the leaves up to the root. Inherited attributes are, conversely,
passed downwards in the syntax tree. Note, however, that information
that is synthesised in one subtree may be inherited by another subtree
or, in a later pass, by the same subtree. An example of this is a symbol
table: This is synthesised by a declaration and inherited by the scope of
the declaration. When declarations are recursive, the scope may be the
same syntax tree as the declaration itself, in which case one pass over
this tree will build the symbol table as a synthesised attribute while a
second pass will use it as an inherited attribute.

Typically, each syntactical category (represented by a type in the
data structure for the abstract syntax tree or by a group of related
nonterminals in the grammar) will have its own set of attributes. When
we write a checker as a set of mutually recursive functions, there will be
one or more such functions for each syntactical category. Each of these
functions will take inherited attributes (including the syntax tree itself)
as arguments and return synthesised attributes as results.

We will, in this chapter, focus on type checking, and only brie�y
mention other properties that can be checked. The methods used for
type checking can in most cases easily be modi�ed to handle such other
checks.

5.3 A small example language

We will use a small (somewhat contrived) language to show the principles
of type checking. The language is a �rst-order functional language with
recursive de�nitions. The syntax is given in grammar 5.1. The shown
grammar is clearly ambiguous, but that doesn't matter since we operate
on the abstract syntax, where such ambiguities have been resolved.

In the example language, a program is a list of function declarations.
The functions are all mutually recursive, and no function may be de-
clared more than once. Each function declares its result type and the
types and names of its arguments. There may not be repetitions in the
list of parameters for a function. Functions and variables have separate
name spaces. The body of a function is an expression, which may be
an integer constant, a variable name, a sum-expression, a comparison,
a conditional, a function call or an expression with a local declaration.
Comparison is de�ned both on booleans and integers, but addition only
on integers.
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Program → Funs

Funs → Fun
Funs → Fun Funs

Fun → TypeId ( TypeIds ) = Exp

TypeId → int id
TypeId → bool id

TypeIds → TypeId
TypeIds → TypeId , TypeIds

Exp → num
Exp → id
Exp → Exp + Exp
Exp → Exp = Exp
Exp → if Exp then Exp else Exp
Exp → id ( Exps )
Exp → let id = Exp in Exp

Exps → Exp
Exps → Exp , Exps

Grammar 5.1: Example language for type checking
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5.4 Environments for type checking

In order to type check the program, we need symbol tables that bind
variables and functions to their types. Since there are separate name
spaces for variables and functions, we will use two symbol tables, one
for variables and one for functions. A variable is bound to one of the
two types int or bool. A function is bound to its type, which consists
of the types of its arguments and the type of its result. Function types
are written as a parenthesised list of the argument types, an arrow and
the result type, e.g., (int,bool) → int for a function taking two pa-
rameters (of type int and bool, respectively) and returning an integer.

5.5 Type checking expressions

When we type check expressions, the symbol tables for variables and
functions are inherited attributes. The type (int or bool) of the expres-
sion is returned as a synthesised attribute. To make the presentation
independent of any speci�c data structure for abstract syntax, we will
let the type checker function use a notation similar to the concrete syn-
tax for pattern-matching purposes. But you should still think of it as
abstract syntax, so all issues of ambiguity etc. have been resolved.

For terminals (variable names and numeric constants) with attributes,
we assume that there are prede�ned functions for extracting these. Hence,
id has an associated function name, that extracts the name of the iden-
ti�er. Similarly, num has a function value, that returns the value of the
number. The latter is not required for type checking, though, but we
will use it in chapter 6.

For each nonterminal, we de�ne one or more functions that take
an abstract syntax subtree and inherited attributes as arguments and
return the synthesised attributes.

In �gure 5.2, we show the type-checking function for expressions. The
function for type checking expressions is called CheckExp. The symbol
table for variables is given by the parameter vtable, and the symbol table
for functions by the parameter ftable. The function error reports a type
error. To allow the type checker to continue and report more than one
error, we let the error-reporting function return. After reporting a type
error, the type checker can make a guess at what the type should have
been and return this guess, allowing the type checking to continue. This
guess might, however, be wrong, which can cause spurious type errors to
be reported later on. Hence, all but the �rst type error message should
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CheckExp(Exp, vtable, ftable) = case Exp of

num int

id t = lookup(vtable, name(id))
if t = unbound
then error(); int
else t

Exp1 + Exp2 t1 = CheckExp(Exp1, vtable, ftable)
t2 = CheckExp(Exp2, vtable, ftable)
if t1 = int and t2 = int

then int

else error(); int
Exp1 = Exp2 t1 = CheckExp(Exp1, vtable, ftable)

t2 = CheckExp(Exp2, vtable, ftable)
if t1 = t2
then bool

else error(); bool
if Exp1 t1 = CheckExp(Exp1, vtable, ftable)
then Exp2 t2 = CheckExp(Exp2, vtable, ftable)
else Exp3 t3 = CheckExp(Exp3, vtable, ftable)

if t1 = bool and t2 = t3
then t2
else error(); t2

id ( Exps ) t = lookup(ftable, name(id))
if t = unbound
then error(); int
else

((t1, . . . , tn) → t0) = t
[t′1, . . . , t

′
m] = CheckExps(Exps, vtable, ftable)

if m = n and t1 = t′1, . . . , tn = t′n
then t0
else error(); t0

let id = Exp1 t1 = CheckExp(Exp1, vtable, ftable)
in Exp2 vtable′ = bind(vtable, name(id), t1)

CheckExp(Exp2, vtable′, ftable)

CheckExps(Exps, vtable, ftable) = case Exps of

Exp [CheckExp(Exp, vtable, ftable)]
Exp , Exps CheckExp(Exp, vtable, ftable)

:: CheckExps(Exps, vtable, ftable)

Figure 5.2: Type checking of expressions
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be taken with a grain of salt.
We will brie�y explain each of the cases handled by CheckExp.

• A number has type int.

• The type of a variable is found by looking its name up in the
symbol table for variables. If the variable is not found in the sym-
bol table, the lookup-function returns the special value unbound.
When this happens, an error is reported and the type checker ar-
bitrarily guesses that the type is int. Otherwise, it returns the
type returned by lookup.

• A plus-expression requires both arguments to be integers and has
an integer result.

• Comparison requires that the arguments have the same type. In
either case, the result is a boolean.

• In a conditional expression, the condition must be of type bool

and the two branches must have identical types. The result of a
condition is the value of one of the branches, so it has the same
type as these. If the branches have di�erent types, the type checker
reports an error and arbitrarily chooses the type of the then-branch
as its guess for the type of the whole expression.

• At a function call, the function name is looked up in the function
environment to �nd the number and types of the arguments as
well as the return type. The number of arguments to the call must
coincide with the expected number and their types must match
the declared types. The resulting type is the return-type of the
function. If the function name isn't found in ftable, an error is
reported and the type checker arbitrarily guesses the result type
to be int.

• A let-expression declares a new variable, the type of which is
that of the expression that de�nes the value of the variable. The
symbol table for variables is extended using the function bind, and
the extended table is used for checking the body-expression and
�nding its type, which in turn is the type of the whole expression.
A let-expression can not in itself be the cause of a type error
(though its parts may), so no testing is done.

Since CheckExp mentions the nonterminal Exps and its related type-
checking function CheckExps, we have included CheckExps in �gure 5.2.
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CheckExps builds a list of the types of the expressions in the expres-
sion list. The notation is taken from SML: A list is written in square
brackets with commas between the elements. The operator :: adds an
element to the front of a list.

5.6 Type checking of function declarations

A function declaration explicitly declares the types of the arguments.
This information is used to build a symbol table for variables, which is
used when type checking the body of the function. The type of the body
must match the declared result type of the function. The type check
function for functions, CheckFun, has as inherited attribute the symbol
table for functions, which is passed down to the type check function for
expressions. CheckFun returns no information, it just checks for internal
errors. CheckFun is shown in �gure 5.3, along with the functions for
TypeId and TypeIds, which it uses. The function GetTypeId just returns
a pair of the declared name and type, and CheckTypeIds builds a symbol
table from such pairs. CheckTypeIds also checks if all parameters have
di�erent names. emptytable is an empty symbol table. Looking any
name up in the empty symbol table returns unbound.

5.7 Type checking a program

A program is a list of functions and is deemed type correct if all the
functions are type correct, and there are no two function de�nitions
de�ning the same function name. Since all functions are mutually recur-
sive, each of these must be type checked using a symbol table where all
functions are bound to their type. This requires two passes over the list
of functions: One to build the symbol table and one to check the func-
tion de�nitions using this table. Hence, we need two functions operating
over Funs and two functions operating over Fun. We have already seen
one of the latter, CheckFun. The other, GetFun, returns the pair of
the function's declared name and type, which consists of the types of
the arguments and the type of the result. It uses an auxiliary function
GetTypes to �nd the types of the arguments. The two functions for the
syntactic category Funs are GetFuns, which builds the symbol table and
checks for duplicate de�nitions, and CheckFuns, which calls CheckFun

for all functions. These functions and the main function CheckProgram,
which ties the loose ends, are shown in �gure 5.4.

This completes type checking of our small example language.
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CheckFun(Fun, ftable) = case Fun of

TypeId ( TypeIds ) = Exp (x, t0) = GetTypeId(TypeId)
vtable = CheckTypeIds(TypeIds)
t1 = CheckExp(Exp, vtable, ftable)
if t0 6= t1
then error()

GetTypeId(TypeId) = case TypeId of

int id (name(id), int)
bool id (name(id), bool)

CheckTypeIds(TypeIds) = case TypeIds of

TypeId (x, t) = GetTypeId(TypeId)
bind(emptytable, x, t)

TypeId , TypeIds (x, t) = GetTypeId(TypeId)
vtable = CheckTypeIds(TypeIds)
if lookup(vtable, x) = unbound
then bind(vtable, x, t)
else error(); vtable

Figure 5.3: Type checking a function declaration
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CheckProgram(Program) = case Program of

Funs ftable = GetFuns(Funs)
CheckFuns(Funs, ftable)

GetFuns(Funs) = case Funs of

Fun (f, t) = GetFun(Fun)
bind(emptytable, f, t)

Fun Funs (f, t) = GetFun(Fun)
ftable = GetFuns(Funs)
if lookup(ftable, f) = unbound
then bind(ftable, f, t)
else error(); ftable

GetFun(Fun) = case Fun of

TypeId ( TypeIds ) = Exp (f, t0) = GetTypeId(TypeId)
[t1, . . . , tn] = GetTypes(TypeIds)
(f, (t1, . . . , tn) → t0)

GetTypes(TypeIds) = case TypeIds of

TypeId (x, t) = GetTypeId(TypeId)
[t]

TypeId TypeIds (x1, t1) = GetTypeId(TypeId)
[t2, . . . , tn] = GetTypes(TypeIds)
[t1, t2, . . . , tn]

CheckFuns(Funs, ftable) = case Funs of

Fun CheckFun(Fun, ftable)
Fun Funs CheckFun(Fun, ftable)

CheckFuns(Funs, ftable)

Figure 5.4: Type checking a program
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5.8 Advanced type checking

Our example language is very simple and obviously doesn't cover all
aspects of type checking. A few examples of other features and brief
explanations of how they can be handled are listed below.

Assignments. When a variable is given a value by an assignment, it
must be veri�ed that the type of the value is the same as the declared
type of the variable. Some compilers may check if a variable is potentially
used before it is given a value, or if a variable is not used after its
assignment. While not exactly type errors, such behaviour is likely to be
undesirable. Testing for such behaviour does, however, require somewhat
more complicated analysis than the simple type checking presented in
this chapter, as it relies on non-structural information.

Data structures. A data structure may de�ne a value with several
components (e.g., a struct, tuple or record), or a value that may be of
di�erent types at di�erent times (e.g., a union, variant or sum). To type
check such structures, the type checker must be able to represent their
types. Hence, the type checker may need a data structure that describes
complex types. This may be similar to the data structure used for the
abstract syntax trees of declarations. Operations that build or take apart
structured data need to be tested for correctness. If each operation on
structured data has well-de�ned types for its arguments and a type for
its result, this can be done in a way similar to how function calls are
tested.

Overloading. Overloading means that the same name is used for sev-
eral di�erent operations over several di�erent types. We saw a simple
example of this in the example language, where = was used both for com-
paring integers and booleans. In many languages, arithmetic operators
like + and − are de�ned both over integers and �oating point numbers,
and possibly other types as well. If these operators are prede�ned, and
there is only a �nite number of cases they cover, all the possible cases
may be tried in turn, just like in our example.

This, however, requires that the di�erent instances of the operator
have disjoint argument types. If, for example, there is a function read
that reads a value from a text stream and this is de�ned to read either
integers or �oating point numbers, the argument (the text stream) alone
can not be used to select the right operator. Hence, the type checker
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must pass the expected type of each expression down as an inherited at-
tribute, so this (possibly in combination with the types of the arguments)
can be used to pick the correct instance of the overloaded operator.

It may not always be possible to send down an expected type due
to lack of information. In our example language, this is the case for
the arguments to = (as these may be either int or bool) and the �rst
expression in a let-expression ( since the variable bound in the let-
expression is not declared to be a speci�c type). If the type checker for
this or some other reason is unable to pick a unique operator, it may
report �unresolved overloading� as a type error, or it may pick a default
instance.

Type conversion. A language may have operators for converting a
value of one type to a value of another type, e.g. an integer to a �oating
point number. Sometimes these operators are explicit in the program
and hence easy to check. However, many languages allow implicit con-
version of integers to �oats, such that, for example, 3+3.12 is well-typed
with the implicit assumption that the integer 3 is converted to a �oat
before the addition. This can be handled as follows: If the type checker
discovers that the arguments to an operator do not have the correct type,
it can try to convert one or both arguments to see if this helps. If there
is a small number of prede�ned legal conversions, this is no major prob-
lem. However, a combination of user-de�ned overloaded operators and
user-de�ned types with conversions can make the type-checking process
quite di�cult, as the information needed to choose correctly may not be
available at compile-time. This is typically the case in object-oriented
languages, where method selection is often done at run-time. We will
not go into details of how this can be done.

Polymorphism / Generic types. Some languages allow a function
to be polymorphic or generic, that is, to be de�ned over a large class
of similar types, e.g. over all arrays no matter what the types of the
elements are. A function can explicitly declare which parts of the type
is generic/polymorphic or this can be implicit (see below). The type
checker can insert the actual types at every use of the generic/polymorphic
function to create instances of the generic/polymorphic type. This mech-
anism is di�erent from overloading as the instances will be related by a
common generic type and because a polymorphic/generic function can
be instantiated by any type, not just by a limited list of declared alter-
natives as is the case with overloading.
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Implicit types. Some languages (like Standard ML and Haskell) re-
quire programs to be well-typed, but do not require explicit type dec-
larations for variables or functions. For such to work, a type inference
algorithm is used. A type inference algorithm gathers information about
uses of functions and variables and uses this information to infer the
types of these. If there are inconsistent uses of a variable, a type error
is reported.

5.9 Further reading

Overloading of operators and functions is described in section 6.5 of [5].
Section 6.7 of same describes how polymorphism can be handled.

Some theory and a more detailed algorithm for inferring types in a
language with implicit types and polymorphism can be found in [27].

Exercises

Exercise 5.1

Add the productions

Exp → floatconst

TypeId → float id

to grammar 5.1. This introduces �oating-point numbers to the language.
The operator + is overloaded so it can do integer addition or �oating-
point addition, and = is extended so it can also compare �oating point
numbers for equality.

a) Extend the type checking functions in �gures 5.2-5.4 to handle
these extensions.

b) We now add implicit conversion of integers to �oats to the lan-
guage, using the rules: Whenever an operator has one integer ar-
gument and one �oating-point argument, the integer is converted
to a �oat. Similarly, if an if-then-else expression has one in-
teger branch and one �oating-point branch, the integer branch is
converted to �oating-point. Extend the type checking functions
from question a) above to handle this.
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Exercise 5.2

The type check function in �gure 5.2 tries to guess the correct type when
there is a type error. In some cases, the guess is arbitrarily chosen to
be int, which may lead to spurious type errors later on. A way around
this is to have an extra type: unknown, which is only used during type
checking. If there is a type error and there is no basis for guessing a
correct type, unknown is returned (the error is still reported, though). If
an argument to an operator is of type unknown, the type checker should
not report this as a type error but continue as if the type is correct.
The use of an unknown argument to an operator may make the result
unknown as well, so these can be propagated arbitrarily far.

Change �gure 5.2 to use the unknown type as described above.

Exercise 5.3

We look at a simple language with an exception mechanism:

S → throw id
S → S catch id ⇒ S
S → S or S
S → other

A throw statement throws a named exception. This is caught by the
nearest enclosing catch statement (i.e., where the throw statement is
in the left sub-statement of the catch statement) using the same name,
whereby the statement after the arrow in the catch statement is exe-
cuted. An or statement is a non-deterministic choice between the two
statements, so either one can be executed. other is a statement that
don't throw any exceptions.

We want the type checker to ensure that all possible exceptions are
caught and that no catch statement is super�uous, i.e., that the excep-
tion it catches can, in fact, be thrown by its left sub-statement.

Write type-check functions that implement these checks. Hint: Let
the type of a statement be the set of possible exceptions it can throw.
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Chapter 6

Intermediate-Code

Generation

6.1 Introduction

The �nal goal of a compiler is to get programs written in a high-level
language to run on a computer. This means that, eventually, the pro-
gram will have to be expressed as machine code which can run on the
computer. This doesn't mean that we need to translate directly from
the high-level abstract syntax to machine code. Many compilers use a
medium-level language as a stepping-stone between the high-level lan-
guage and the very low-level machine code. Such stepping-stone lan-
guages are called intermediate code.

Apart from structuring the compiler into smaller jobs, using an in-
termediate language has other advantages:

• If the compiler needs to generate code for several di�erent machine-
architectures, only one translation to intermediate code is needed.
Only the translation from intermediate code to machine language
(i.e., the back-end) needs to be written in several versions.

• If several high-level languages need to be compiled, only the trans-
lation to intermediate code need to be written for each language.
They can all share the back-end, i.e., the translation from inter-
mediate code to machine code.

• Instead of translating the intermediate language to machine code,
it can be interpreted by a small program written in machine code
or a language for which a compiler already exists.

135
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The advantage of using an intermediate language is most obvious if many
languages are to be compiled to many machines. If translation is done
directly, the number of compilers is equal to the product of the number
of languages and the number of machines. If a common intermediate
language is used, one front-end (i.e., compiler to intermediate code) is
needed for every language and one back-end is needed for each machine,
making the total equal to the sum of the number of languages and the
number of machines.

If an interpreter for the intermediate language is written in a lan-
guage for which there already exist compilers on the target machines,
the interpreter can be compiled on each of these. This way, there is no
need to write a separate back-end for each machine. The advantages of
this approach are:

• No actual back-end needs to be written for each new machine.

• A compiled program can be distributed in a single intermediate
form for all machines, as opposed to shipping separate binaries for
each machine.

• The intermediate form may be more compact than machine code.
This saves space both in distribution and on the machine that
executes the programs (though the latter is somewhat o�set by
requiring the interpreter to be kept in memory during execution).

The disadvantage is speed: Interpreting the intermediate form will in
most cases be a lot slower than executing translated code directly. Nev-
ertheless, the approach has seen some success, e.g., with Java.

Some of the speed penalty can be eliminated by translating the inter-
mediate code to machine code immediately before or during execution
of the program. This hybrid form is called just-in-time compilation and
is often used for executing the intermediate code for Java.

We will in this book, however, focus mainly on using the intermediate
code for traditional compilation, where the intermediate form will be
translated to machine code by a the back-end of the compiler.

6.2 Choosing an intermediate language

An intermediate language should, ideally, have the following properties:

• It should be easy to translate from a high-level language to the
intermediate language. This should be the case for a wide range
of di�erent source languages.
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• It should be easy to translate from the intermediate language to
machine code. This should be true for a wide range of di�erent
target architectures.

• The intermediate format should be suitable for optimisations.

The �rst two of these properties can be somewhat hard to reconcile.
A language that is intended as target for translation from a high-level
language should be fairly close to this. However, this may be hard to
achieve for more than a small number of similar languages. Furthermore,
a high-level intermediate language puts more burden on the back-ends.
A low-level intermediate language may make it easy to write back-ends,
but puts more burden on the front-ends. A low-level intermediate lan-
guage, also, may not �t all machines equally well, though this is usually
less of a problem than the similar problem for front-ends, as machines
typically are more similar than high-level languages.

A solution that may reduce the translation burden, though it doesn't
address the other problems, is to have two intermediate levels: One,
which is fairly high-level, is used for the front-ends and the other, which
is fairly low-level, is used for the back-ends. A single shared translator
is then used to translate between these two intermediate formats.

When the intermediate format is shared between many compilers,
it makes sense to do as many optimisations as possible on the interme-
diate format. This way, the (often substantial) e�ort of writing good
optimisations is done only once instead of in every compiler.

Another thing to consider when choosing an intermediate language
is the �granularity�: Should an operation in the intermediate language
correspond to a large amount of work or to a small amount of work?

The �rst of these approaches is often used when the intermediate
language is interpreted, as the overhead of decoding instructions is amor-
tised over more actual work, but it can also be used for compiling. In
this case, each intermediate-code operation is typically translated into
a sequence of machine-code instructions. When coarse-grained interme-
diate code is used, there is typically a fairly large number of di�erent
intermediate-code operations.

The opposite approach is to let each intermediate-code operation be
as small as possible. This means that each intermediate-code operation
is typically translated into a single machine-code instruction or that
several intermediate-code operations can be combined into one machine-
code operation. The latter can, to some degree, be automated as each
machine-code instruction can be described as a sequence of intermediate-
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Program → [ Instructions ]

Instructions → Instruction
Instructions → Instruction , Instructions

Instruction → LABEL labelid
Instruction → id := Atom
Instruction → id := unop Atom
Instruction → id := id binop Atom
Instruction → id := M [Atom]
Instruction → M [Atom] := id
Instruction → GOTO labelid
Instruction → IF id relop Atom THEN labelid ELSE labelid
Instruction → id := CALL functionid(Args)

Atom → id
Atom → num

Args → id
Args → id , Args

Grammar 6.1: The intermediate language

code instructions. When intermediate-code is translated to machine-
code, the code generator can look for sequences that match machine-
code operations. By assigning cost to each machine-code operation, this
can be turned into a combinatorial optimisation problem, where the
least-cost solution is found. We will return to this in chapter 7.

6.3 The intermediate language

In this chapter we have chosen a fairly low-level �ne-grained intermediate
language, as it is best suited to convey the techniques we want to cover.

We will not treat translation of function calls until chapter 9, so a
�program� in our intermediate language will, for the time being, corre-
spond to the body of a function or procedure in a real program. For the
same reason, function calls are initially treated as primitive operations
in the intermediate language.
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The grammar for the intermediate language is shown in grammar 6.1.
A program is a sequence of instructions. The instructions are:

• A label. This has no e�ect but serves only to mark the position in
the program as a target for jumps.

• An assignment of an atomic expression (constant or variable) to a
variable.

• A unary operator applied to an atomic expression, with the result
stored in a variable.

• A binary operator applied to a variable and an atomic expression,
with the result stored in a variable.

• A transfer from memory to a variable. The memory location is an
atomic expression.

• A transfer from a variable to memory. The memory location is an
atomic expression.

• A jump to a label.

• A conditional selection between jumps to two labels. The condition
is found by comparing a variable with an atomic expression by
using a relational operator (=, 6=, <, >, ≤ or ≥).

• A function call. The arguments to the function call are variables
and the result is assigned to a variable. This instruction is used
even if there is no actual result (i.e, if a procedure is called in-
stead of a function), in which case the result variable is a dummy
variable.

An atomic expression is either a variable or a constant.

We have not speci�ed the set of unary and binary operations, but
we expect these to include normal integer arithmetic and bitwise logical
operations.

We assume that all values are integers. Adding �oating-point num-
bers and other primitive types isn't di�cult, though.
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Exp → num
Exp → id
Exp → unop Exp
Exp → Exp binop Exp
Exp → id(Exps)

Exps → Exp
Exps → Exp , Exps

Grammar 6.2: A simple expression language

6.4 Generating code from expressions

Grammar 6.2 shows a simple language of expressions, which we will use
as our initial example for translation. Again, we have let the set of unary
and binary operators be unspeci�ed but assume that the intermediate
language includes all those used by the expression language. We assume
that there is a function transop that translates the name of an operator
in the expression language into the name of the corresponding operator
in the intermediate language. The tokens unop and binop have the
names of the actual operators as attributes, accessed by the function
opname.

When writing a compiler, we must decide what needs to be done at
compile-time and what needs to be done at run-time. Ideally, as much
as possible should be done at compile-time, but some things need to be
postponed until run-time, as they need the actual values of variables,
etc., which aren't known at compile-time. When we, below, explain
the workings of the translation functions, we might use phrasing like
�the expression is evaluated and the result stored in the variable�. This
describes actions that are performed at run-time by the code that is
generated at compile-time. At times, the textual description may not
be 100% clear as to what happens at which time, but the notation used
in the translation functions make this clear: The code that is written
between the square brackets is executed at run-time, the rest is done at
compile-time.

When we want to translate the expression language to the interme-
diate language, the main complication is that the expression language
is tree-structured while the intermediate language is �at, requiring the
result of every operation to be stored in a variable and every (non-
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constant) argument to be in one. We use a function newvar to generate
new variables in the intermediate language. Whenever newvar is called,
it returns a previously unused variable name.

We will describe translation of expressions by a translation function
using a notation similar to the notation we used for type-checking func-
tions in chapter 5.

Some attributes for the translation function are obvious: It must re-
turn the code as a synthesised attribute. Furthermore, it must translate
variables and functions used in the expression language to the names
these correspond to in the intermediate language. This can be done by
symbol tables vtable and ftable that bind variable and function names
in the expression language into the corresponding names in the inter-
mediate language. The symbol tables are passed as inherited attributes
to the translation function. In addition to these attributes, the transla-
tion function must use attributes to decide where to put the values of
sub-expressions. This can be done in two ways:

1) The location of the values of a sub-expression can be passed up as
a synthesised attribute to the parent expression, which decides on
a position for its own value.

2) The parent expression can decide where it wants to �nd the values
of its sub-expressions and pass this information down to these as
inherited attributes.

Neither of these is obviously superior to the other. Method 1 has a slight
advantage when generating code for a variable access, as it doesn't have
to generate any code, but can simply return the name of the variable
that holds the value. This, however, only works under the assumption
that the variable isn't updated before the value is used by the parent
expression. If expressions can have side e�ects, this isn't always the case,
as the C expression �x+(x=3)� shows. Our expression language doesn't
have assignment, but it does have function calls, which may have side
e�ects.

Method 2 doesn't have this problem: Since the value of the expression
is created immediately before the assignment is executed, there is no risk
of other side e�ects between these two points in time. Method 2 also has
a slight advantage when we later extend the language to have assignment
statements, as we can then generate code that calculates the expression
result directly into the desired variable instead of having to copy it from
a temporary variable.
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Hence, we will choose method 2 for our translation function TransExp,
which is shown in �gure 6.3.

The inherited attribute place is the intermediate-language variable
that the result of the expression must be stored in.

If the expression is just a number, the value of that number is stored
in the place.

If the expression is a variable, the intermediate-language equivalent
of this variable is found in vtable and an assignment copies it into the
intended place.

A unary operation is translated by �rst generating a new intermediate-
language variable to hold the value of the argument of the operation.
Then the argument is translated using the newly generated variable for
the place attribute. We then use an unop operation in the intermediate
language to assign the result to the inherited place. The operator ++

concatenates two lists of instructions.
A binary operation is translated in a similar way. Two new intermedi-

ate-language variables are generated to hold the values of the arguments,
then the arguments are translated and �nally a binary operation in the
intermediate language assigns the �nal result to the inherited place.

A function call is translated by �rst translating the arguments, using
the auxiliary function TransExps. Then a function call is generated using
the argument variables returned by TransExps, with the result assigned
to the inherited place. The name of the function is looked-up in ftable
to �nd the corresponding intermediate-language name.

TransExps generates code for each argument expression, storing the
results into new variables. These variables are returned along with the
code, so they can be put into the argument list of the call instruction.

6.4.1 Examples of translation

Translation of expressions is always relative to symbol tables and a place
for storing the result. In the examples below, we assume a variable
symbol table that binds x, y and z to v0, v1 and v2, respectively and a
function table that binds f to _f. The place for the result is t0 and we
assume that calls to newvar() return, in sequence, the variables t1, t2,
t3, . . . .

We start by the simple expression x-3. This is a binop-expression,
so the �rst we do is to call newvar() twice, giving place1 the value t1

and place2 the value t2. We then call TransExp recursively with the
expression x. When translating this, we �rst look up x in the variable
symbol table, yielding v0, and then return the code [t1 := v0]. Back
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TransExp(Exp, vtable, ftable, place) = case Exp of

num v = value(num)
[place := v]

id x = lookup(vtable, name(id))
[place := x]

unop Exp1 place1 = newvar()
code1 = TransExp(Exp1, vtable, ftable, place1)
op = transop(opname(unop))
code1++[place := op place1]

Exp1 binop Exp2 place1 = newvar()
place2 = newvar()
code1 = TransExp(Exp1, vtable, ftable, place1)
code2 = TransExp(Exp2, vtable, ftable, place2)
op = transop(opname(binop))
code1++code2++[place := place1 op place2]

id(Exps) (code1, [a1, . . . , an])
= TransExps(Exps, vtable, ftable)

fname = lookup(ftable, name(id))
code1++[place := CALL fname(a1, . . . , an)]

TransExps(Exps, vtable, ftable) = case Exps of

Exp place = newvar()
code1 = TransExp(Exp, vtable, ftable, place)
(code1, [place])

Exp , Exps place = newvar()
code1 = TransExp(Exp, vtable, ftable, place)
(code2, args) = TransExps(Exps, vtable, ftable)
code3 = code1++code2

args1 = place :: args
(code3, args1)

Figure 6.3: Translating an expression
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in the translation of the subtraction expression, we assign this code
to code1 and once more call TransExp recursively, this time with the
expression 3. This is translated to the code [t2 := 3], which we assign
to code2. The �nal result is produced by code1++code2++[t0 := t1− t2]
which yields [t1 := v0, t2 := 3, t0 := t1− t2]. We have translated the
source-language operator - to the intermediate-language operator -.

The resulting code looks quite suboptimal, and could, indeed, be
shortened to [t0 := v0− 3]. When we generate intermediate code, we
want, for simplicity, to treat each subexpression independently of its
context. This may lead to super�uous assignments. We will look at
ways of getting rid of these when we treat machine code generation and
register allocation in chapters 7 and 8.

A more complex expression is 3+f(x-y,z). Using the same assump-
tions as above, this yields the code

t1 := 3
t4 := v0
t5 := v1

t3 := t4− t5
t6 := v2

t2 := CALL _f(t3, t6)
t0 := t1 + t2

We have, for readability, laid the code out on separate lines rather than
using a comma-separated list. The indentation indicates the depth of
calls to TransExp that produced the code in each line.

6.5 Translating statements

We now extend the expression language in �gure 6.2 with statements.
The extensions are shown in grammar 6.4.

When translating statements, we will need the symbol table for vari-
ables (for translating assignment), and since statements contain expres-
sions, we also need ftable so we can pass it on to TransExp.

Just like we use newvar to generate new unused variables, we use a
similar function newlabel to generate new unused labels. The transla-
tion function for statements is shown in �gure 6.5. It uses an auxiliary
translation function for conditions shown in �gure 6.6.

A sequence of two statements are translated by putting the code for
these in sequence.
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Stat → Stat ; Stat
Stat → id := Exp
Stat → if Cond then Stat
Stat → if Cond then Stat else Stat
Stat → while Cond do Stat
Stat → repeat Stat until Cond

Cond → Exp relop Exp

Grammar 6.4: Statement language

An assignment is translated by translating the right-hand-side ex-
pression using the left-hand-side variable as target location (place).

When translating statements that use conditions, we use an aux-
iliary function TransCond. TransCond translates the arguments to the
condition and generates an IF-THEN-ELSE instruction using the same re-
lational operator as the condition. The target labels of this instruction
are inherited attributes to TransCond.

An if-then statement is translated by �rst generating two labels:
One for the then-branch and one for the code following the if-then

statement. The condition is translated by TransCond, which is given
the two labels as attributes. When (at run-time) the condition is true,
the �rst of these are selected, and when false, the second is chosen.
Hence, when the condition is true, the then-branch is executed followed
by the code after the if-then statement. When the condition is false,
we jump directly to the code following the if-then statement, hence
bypassing the then-branch.

An if-then-else statement is treated similarly, but now the con-
dition must choose between jumping to the then-branch or the else-
branch. At the end of the then-branch, a jump bypasses the code for
the else-branch by jumping to the label at the end. Hence, there is
need for three labels: One for the then-branch, one for the else-branch
and one for the code following the if-then-else statement.

If the condition in a while-do loop is true, the body must be ex-
ecuted, otherwise the body is by-passed and the code after the loop is
executed. Hence, the condition is translated with attributes that pro-
vide the label for the start of the body and the label for the code after
the loop. When the body of the loop has been executed, the condition
must be re-tested for further passes through the loop. Hence, a jump is
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TransStat(Stat, vtable, ftable) = case Stat of
Stat1 ; Stat2 code1 = TransStat(Stat1, vtable, ftable)

code2 = TransStat(Stat2, vtable, ftable)
code1++code2

id := Exp place = lookup(vtable, name(id))
TransExp(Exp, vtable, ftable, place)

if Cond label1 = newlabel()
then Stat1 label2 = newlabel()

code1 = TransCond(Cond, label1, label2, vtable, ftable)
code2 = TransStat(Stat1, vtable, ftable)
code1++[LABEL label1]++code2

++[LABEL label2]
if Cond label1 = newlabel()
then Stat1 label2 = newlabel()
else Stat2 label3 = newlabel()

code1 = TransCond(Cond, label1, label2, vtable, ftable)
code2 = TransStat(Stat1, vtable, ftable)
code3 = TransStat(Stat2, vtable, ftable)
code1++[LABEL label1]++code2

++[GOTO label3, LABEL label2]
++code3++[LABEL label3]

while Cond label1 = newlabel()
do Stat1 label2 = newlabel()

label3 = newlabel()
code1 = TransCond(Cond, label2, label3, vtable, ftable)
code2 = TransStat(Stat1, vtable, ftable)
[LABEL label1]++code1

++[LABEL label2]++code2

++[GOTO label1, LABEL label3]
repeat Stat1 label1 = newlabel()
until Cond label2 = newlabel()

code1 = TransStat(Stat1, vtable, ftable)
code2 = TransCond(Cond, label2, label1, vtable, ftable)
[LABEL label1]++code1

++code2++[LABEL label2]

Figure 6.5: Translation of statements
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TransCond(Cond, labelt, labelf , vtable, ftable) = case Cond of

Exp1 relop Exp2 t1 = newvar()
t2 = newvar()
code1 = TransExp(Exp1, vtable, ftable, t1)
code2 = TransExp(Exp2, vtable, ftable, t2)
op = transop(opname(relop))
code1++code2++[IF t1 op t2 THEN labelt ELSE labelf ]

Figure 6.6: Translation of simple conditions

made to the start of the code for the condition. A total of three labels
are thus required: One for the start of the loop, one for the loop body
and one for the end of the loop.

A repeat-until loop is slightly simpler. The body precedes the
condition, so there is always at least one pass through the loop. If the
condition is true, the loop is terminated and we continue with the code
after the loop. If the condition is false, we jump to the start of the loop.
Hence, only two labels are needed: One for the start of the loop and one
for the code after the loop.

6.6 Logical operators

Logical conjunction, disjunction and negation are often available for con-
ditions, so we can write, e.g., x = y or y = z, where or is a logical
disjunction operator. There are typically two ways to treat logical op-
erators in programming languages:

1) Logical operators are similar to arithmetic operators: The argu-
ments are evaluated and the operator is applied to �nd the result.

2) The second operand of a logical operator is not evaluated if the
�rst operand is su�cient to determine the result. This means
that a logical and will not evaluate its second operand if the �rst
evaluates to false, and a logical or will not evaluate the second
operand if the �rst is true.

The �rst variant is typically implemented by using bitwise logical oper-
ators and uses 0 to represent false and a nonzero value (typically 1 or
−1) to represent true. In C, there is no separate boolean type. The
integer 1 is used for logical truth1 and 0 for falsehood. Bitwise logical

1Actually, any non-zero value is treated as logical truth.
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operators & (bitwise and) and | (bitwise or) are used to implement the
corresponding logical operations. Logical negation is not handled by
bitwise negation, as the bitwise negation of 1 isn't 0. Instead, a special
logical negation operator ! is used. This maps any non-zero value to 0
and 0 to 1.

The second variant is called sequential logical operators. In C, these
are called && (logical and) and || (logical or).

Adding non-sequential logical operators to our language isn't too dif-
�cult. Since we haven't said exactly which binary and unary operators
exist in the intermediate language, we can simply assume these include
relational operators, bitwise logical operations and logical negation. We
can now simply allow any expression2 as a condition by adding the pro-
duction

Cond → Exp

to grammar 6.4. We then extend the translation function for conditions
as follows:

TransCond(Cond, labelt, labelf , vtable, ftable) = case Cond of

Exp1 relop Exp2 t1 = newvar()
t2 = newvar()
code1 = TransExp(Exp1, vtable, ftable, t1)
code2 = TransExp(Exp2, vtable, ftable, t2)
op = transop(opname(relop))
code1++code2++[IF t1 op t2 THEN labelt ELSE labelf ]

Exp t = newvar()
code1 = TransExp(Exp, vtable, ftable, t)
code1++[IF t 6= 0 THEN labelt ELSE labelf ]

We need to convert the numerical value returned by TransExp into a
choice between two labels, so we generate an IF instruction that does
just that.

The rule for relational operators is now actually super�uous, as the
case it handles is covered by the second rule (since relational operators
are assumed to be included in the set of binary arithmetic operators).
However, we can consider it an optimisation, as the code it generates
is shorter than the equivalent code generated by the second rule. It
will also be natural to keep it separate when we add sequential logical
operators.

2If it of boolean type, which we assume has been checked by the type checker.
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Exp → num
Exp → id
Exp → unop Exp
Exp → Exp binop Exp
Exp → id(Exps)
Exp → true
Exp → false
Exp → Cond

Exps → Exp
Exps → Exp , Exps

Cond → Exp relop Exp
Cond → true
Cond → false
Cond → ! Cond
Cond → Cond && Cond
Cond → Cond || Cond
Cond → Exp

Grammar 6.7: Example language with logical operators

6.6.1 Sequential logical operators

We will use the same names for sequential logical operators as C, i.e., &&
for logical and, || for logical or and ! for logical negation. The extended
language is shown in �gure 6.7. Note that we allow an expression to be
a condition as well as a condition to be an expression. This grammar is
highly ambiguous (not least because binop overlaps relop). As before,
we assume such ambiguity to be resolved by the parser before code
generation. We also assume that the last productions of Exp and Cond
are used as little as possible, as this will yield the best code.

The revised translation functions for Exp and Cond are shown in
�gure 6.8. Only the new cases for Exp are shown.

As expressions, true and false are the numbers 1 and 0.
A condition Cond is translated into code that chooses between two

labels. When we want to use a condition as an expression, we must
convert this choice into a number. We do this by �rst assuming that
the condition is false and hence assign 0 to the target location. We
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TransExp(Exp, vtable, ftable, place) = case Exp of
...

true [place := 1]
false [place := 0]
Cond label1 = newlabel()

label2 = newlabel()
code1 = TransCond(Cond, label1, label2, vtable, ftable)
[place := 0]++code1

++[LABEL label1, place := 1]
++[LABEL label2]

TransCond(Cond, labelt, labelf , vtable, ftable) = case Cond of

Exp1 relopExp2 t1 = newvar()
t2 = newvar()
code1 = TransExp(Exp1, vtable, ftable, t1)
code2 = TransExp(Exp2, vtable, ftable, t2)
op = transop(opname(relop))
code1++code2++[IF t1 op t2 THEN labelt ELSE labelf ]

true [GOTO labelt]
false [GOTO labelf ]
! Cond1 TransCond(Cond1, labelf , labelt, vtable, ftable)
Cond1 && Cond2 arg2 = newlabel()

code1=TransCond(Cond1, arg2, labelf , vtable, ftable)
code2=TransCond(Cond2, labelt, labelf , vtable, ftable)
code1++[LABEL arg2]++code2

Cond1 || Cond2 arg2 = newlabel()
code1=TransCond(Cond1, labelt, arg2, vtable, ftable)
code2=TransCond(Cond2, labelt, labelf , vtable, ftable)
code1++[LABEL arg2]++code2

Exp t = newvar()
code1 = TransExp(Exp, vtable, ftable, t)
code1++[IF t 6= 0 THEN labelt ELSE labelf ]

Figure 6.8: Translation of sequential logical operators
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then, if the condition is true, jump to code that assigns 1 to the target
location. If the condition is false, we jump around this code, so the
value remains 0. We could equally well have done things the other way
around, i.e., �rst assign 1 to the target location and modify this to 0
when the condition is false.

It gets a bit more interesting in TransCond, where we translate con-
ditions. We have already seen how comparisons and expressions are
translated, so we move directly to the new cases.

The constant true condition just generates a jump to the label for
true conditions, and, similarly, false generates a jump to the label for
false conditions.

Logical negation generates no code by itself, it just swaps the attribute-
labels for true and false when translating its argument. This negates the
e�ect of the argument condition.

Sequential logical and is translated as follows: The code for the �rst
operand is translated such that if it is false, the second condition is not
tested. This is done by jumping straight to the label for false conditions
when the �rst operand is false. If the �rst operand is true, a jump to
the code for the second operand is made. This is handled by using the
appropriate labels as arguments to the call to TransCond. The call to
TransCond for the second operand uses the original labels for true and
false. Hence, both conditions have to be true for the combined condition
to be true.

Sequential or is similar: If the �rst operand is true, we jump directly
to the label for true conditions without testing the second operand, but
if it is false, we jump to the code for the second operand. Again, the
second operand uses the original labels for true and false.

Note that the translation functions now work even if binop and
unop do not contain relational operators or logical negation, as we can
just choose the last rule for expressions whenever the binop rules don't
match. However, we can not in the same way omit non-sequential (e.g.,
bitwise) and and or, as these have a di�erent e�ect (i.e., they always
evaluate both arguments).

We have, in the above, used two di�erent nonterminals for condi-
tions and expressions, with some overlap between these and consequently
ambiguity in the grammar. It is possible to resolve this ambiguity by
rewriting the grammar and get two non-overlapping syntactic categories
in the abstract syntax. Another solution is to join the two nontermi-
nals into one, e.g., Exp and use two di�erent translation functions for
this: Whenever an expression is translated, the translation function most
appropriate for the context is chosen. For example, if-then-else will
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choose a translation function similar to TransCond while assignment will
choose a one similar to the current TransExp.

6.7 Advanced control statements

We have, so far, shown translation of simple conditional statements and
loops, but some languages have more advanced control features. We will
brie�y discuss how such can be implemented.

Goto and labels. Labels are stored in a symbol table that binds each
to a corresponding label in the intermediate language. A jump to a
label will generate a GOTO statement to the corresponding intermediate-
language label. Unless labels are declared before use, an extra pass
may be needed to build the symbol table before the actual translation.
Alternatively, an intermediate-language label can be chosen and an entry
in the symbol table be created at the �rst occurrence of the label even if it
is in a jump rather than a declaration. Subsequent jumps or declarations
of that label will use the intermediate-language label that was chosen
at the �rst occurrence. By setting a mark in the symbol-table entry
when the label is declared, it can be checked that all labels are declared
exactly once.

The scope of labels can be controlled by the symbol table, so labels
can be local to a procedure or block.

Break/exit. Some languages allow exiting loops from the middle of
the loop-body by a break or exit statement. To handle these, the trans-
lation function for statements must have an extra inherited parameter
which is the label that a break or exit statement must jump to. This
attribute is changed whenever a new loop is entered. Before the �rst
loop is entered, this attribute is unde�ned. The translation function
should check for this, so it can report an error if a break or exit occurs
outside loops. This should, rightly, be done during type-checking (see
chapter 5), though.

C's continue statement, which jumps to the start of the current
loop, can be handled similarly.

Case-statements. A case-statement evaluates an expression and sel-
ects one of several branches (statements) based on the value of the ex-
pression. In most languages, the case-statement will be exited at the
end of each of these statements. In this case, the case-statement can
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be translated as an assignment that stores the value of the expression
followed by a nested if-then-else statement, where each branch of
the case-statement becomes a then-branch of one of the if-then-else
statements (or, in case of the default branch, the �nal else-branch).

In C, the default is that all case-branches following the selected
branch are executed unless the case-expression (called switch in C) is
explicitly terminated with a break statement (see above) at the end of
the branch. In this case, the case-statement can still be translated to
a nested if-then-else, but the branches of these are now GOTO's to
the code for each case-branch. The code for the branches is placed in
sequence after the nested if-then-else, with break handled by GOTO's
as described above. Hence, if no explicit jump is made, one branch will
fall through to the next.

6.8 Translating structured data

So far, the only values we have used are integers and booleans. However,
most programming languages provide �oating-point numbers and struc-
tured values like arrays, records (structs), unions, lists or tree-structures.
We will now look at how these can be translated. We will �rst look at
�oats, then at one-dimensional arrays, multi-dimensional arrays and �-
nally other data structures.

6.8.1 Floating-point values

Floating-point values are, in a computer, typically stored in a di�erent
set of registers than integers. Apart from this, they are treated the same
way we treat integer values: We use temporary variables to store in-
termediate expression results and assume the intermediate language has
binary operators for �oating-point numbers. The register allocator will
have to make sure that the temporary variables used for �oating-point
values are mapped to �oating-point registers. For this reason, it may
be a good idea to let the intermediate code indicate which temporary
variables hold �oats. This can be done by giving them special names or
by using a symbol table to hold type information.

6.8.2 Arrays

We extend our example language with one-dimensional arrays by adding
the following productions:
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TransExp(Exp, vtable, ftable, place) = case Exp of

Index (code1, address) = TransIndex(Index, vtable, ftable)
code1++[place := M [address]]

TransStat(Stat, vtable, ftable) = case Stat of
Index := Exp (code1, address) =TransIndex(Index, vtable, ftable)

t = newvar()
code2 = TransExp(Exp, vtable, ftable, t)
code1++code2++[M [address] := t]

TransIndex(Index, vtable, ftable) = case Index of

id[Exp] base = lookup(vtable, name(id))
t = newvar()
code1 = TransExp(Exp, vtable, ftable, t)
code2 = code1++[t := t ∗ 4, t := t + base]
(code2, t)

Figure 6.9: Translation for one-dimensional arrays

Exp → Index
Stat → Index := Exp
Index → id[Exp]

Index is an array element, which can be used the same way as a variable,
either as an expression or as the left part of an assignment statement.

We will initially assume that arrays are zero-based (i.e.. the lowest
index is 0).

Arrays can be allocated statically, i.e., at compile-time, or dynam-
ically, i.e., at run-time. In the �rst case, the base address of the array
(the address at which index 0 is stored) is a compile-time constant. In
the latter case, a variable will contain the base address of the array. In
either case, we assume that the symbol table for variables binds an array
name to the constant or variable that holds its base address.

Most modern computers are byte-addressed, while integers typically
are 32 or 64 bits long. This means that the index used to access array
elements must be multiplied by the size of the elements (measured in
bytes), e.g., 4 or 8, to �nd the actual o�set from the base address. In
the translation shown in �gure 6.9, we use 4 for the size of integers. We
show only the new parts of the translation functions for Exp and Stat.
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We use a translation function TransIndex for array elements. This
returns a pair consisting of the code that evaluates the address of the
array element and the variable that holds this address. When an array
element is used in an expression, the contents of the address is transferred
to the target variable using a memory-load instruction. When an array
element is used on the left-hand side of an assignment, the right-hand
side is evaluated, and the value of this is stored at the address using a
memory-store instruction.

The address of an array element is calculated by multiplying the
index by the size of the elements and adding this to the base address
of the array. Note that base can be either a variable or a constant
(depending on how the array is allocated, see below), but since both are
allowed as the second operator to a binop in the intermediate language,
this is no problem.

Allocating arrays

So far, we have only hinted at how arrays are allocated. As mentioned,
one possibility is static allocation, where the base-address and the size
of the array are known at compile-time. The compiler, typically, has
a large address space where it can allocate statically allocated objects.
When it does so, the new object is simply allocated after the end of the
previously allocated objects.

Dynamic allocation can be done in several ways. One is allocation
local to a procedure or function, such that the array is allocated when
the function is entered and deallocated when it is exited. This typically
means that the array is allocated on a stack and popped from the stack
when the procedure is exited. If the sizes of locally allocated arrays are
�xed at compile-time, their base addresses are constant o�sets from the
stack top (or from the frame pointer, see chapter 9) and can be calculated
from this at every array-lookup. However, this doesn't work if the sizes of
these arrays are given at run-time. In this case, we need to use a variable
to hold the base address of each array. The address is calculated when
the array is allocated and then stored in the corresponding variable.
This can subsequently be used as described in TransIndex above. At
compile-time, the array-name will in the symbol table be bound to the
variable that at runtime will hold the base-address.

Dynamic allocation can also be done globally, so the array will sur-
vive until the end of the program or until it is explicitly deallocated. In
this case, there must be a global address space available for run-time
allocation. Often, this is handled by the operating system which han-
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1st column 2nd column 3rd column · · ·
1st row a[0][0] a[0][1] a[0][2] · · ·
2nd row a[1][0] a[1][1] a[1][2] · · ·
3rd row a[2][0] a[2][1] a[2][2] · · ·
...

...
...

...
. . .

Figure 6.10: A two-dimensional array

dles memory-allocation requests from all programs that are running at
any given time. Such allocation may fail due to lack of memory, in
which case the program must terminate with an error or release memory
enough elsewhere to make room. The allocation can also be controlled by
the program itself, which initially asks the operating system for a large
amount of memory and then administrates this itself. This can make al-
location of arrays faster than if an operating system call is needed every
time an array is allocated. Furthermore, it can allow the program to use
garbage collection to automatically reclaim arrays that are no longer in
use. Garbage collection is, however, beyond the scope of this book.

Multi-dimensional arrays

Multi-dimensional arrays can be laid out in memory in two ways: row-
major and column-major. The di�erence is best illustrated by two-
dimensional arrays, as shown i Figure 6.10. A two-dimensional array
is addressed by two indices, e.g., (using C-style notation) as a[i][j].
The �rst index, i, indicates the row of the element and the second
index, j, indicates the column. The �rst row of the array is, hence,
the elements a[0][0], a[0][1], a[0][2], . . . and the �rst column is
a[0][0], a[1][0], a[2][0], . . . .3

In row-major form, the array is laid out one row at a time and in
column-major form it is laid out one column at a time. In a 3× 2 array,
the ordering for row-major is

a[0][0], a[0][1], a[1][0], a[1][1], a[2][0], a[2][1]

For column-major the ordering is

a[0][0], a[1][0], a[2][0], a[0][1], a[1][1], a[2][1]

3Note that the coordinate system, following computer-science tradition, is rotated
90◦ clockwise compared to mathematical tradition.
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If the size of an element is size and the sizes of the dimensions in an
n-dimensional array are dim0, dim1, . . . , dimn−2, dimn−1, then in row-
major format an element at index [i0][i1] . . . [in−2][in−1] has the address

base + ((. . . (i0 ∗ dim1 + i1) ∗ dim2 . . . + in−2) ∗ dimn−1 + in−1) ∗ size

In column-major format the address is

base + ((. . . (in−1 ∗ dimn−2 + in−2) ∗ dimn−3 . . . + i1) ∗ dim0 + i0) ∗ size

Note that column-major format corresponds to reversing the order of
the indices of a row-major array. i.e., replacing i0 and dim0 by in−1 and
dimn−1, i1 and dim1 by in−2 and dimn−2, and so on.

We extend the grammar for array-elements to accommodate multi-
dimensional arrays:

Index → id[Exp]
Index → Index[Exp]

and extend the translation functions as shown in �gure 6.11. This trans-
lation is for row-major arrays. We leave column-major arrays as an
exercise.

With these extensions, the symbol table must return both the base-
address of the array and a list of the sizes of the dimensions. Like the
base-address, the dimension sizes can either be compile-time constants
or variables that at run-time will hold the sizes. We use an auxiliary
translation function CalcIndex to calculate the position of an element.
In TransIndex we multiply this position by the element size and add the
base address. As before, we assume the size of elements is 4.

In some cases, the sizes of the dimensions of an array are not stored
in separate variables, but in memory next to the space allocated for the
elements of the array. This uses fewer variables (which may be an issue
when these need to be allocated to registers, see chapter 8) and makes
it easier to return an array as the result of an expression or function,
as only the base-address needs to be returned. The size information is
normally stored just before the base-address so, for example, the size of
the �rst dimension can be at address base − 4, the size of the second
dimension at base − 8 and so on. Hence, the base-address will always
point to the �rst element of the array no matter how many dimensions
the array has. If this strategy is used, the necessary dimension-sizes
must be loaded into variables when an index is calculated. Since this
adds several extra (somewhat costly) loads, optimising compilers often
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TransExp(Exp, vtable, ftable, place) = case Exp of

Index (code1, address) = TransIndex(Index, vtable, ftable)
code1++[place := M [address]]

TransStat(Stat, vtable, ftable) = case Stat of
Index := Exp (code1, address) = TransIndex(Index, vtable, ftable)

t = newvar()
code2 = TransExp(Exp2, vtable, ftable, t)
code1++code2++[M [address] := t]

TransIndex(Index, vtable, ftable) =
(code1, t, base, []) = CalcIndex(Index, vtable, ftable)
code2 = code1++[t := t ∗ 4, t := t + base]
(code2, t)

CalcIndex(Index, vtable, ftable) = case Index of

id[Exp] (base, dims) = lookup(vtable, name(id))
t = newvar()
code = TransExp(Exp, vtable, ftable, t)
(code, t, base, tail(dims))

Index[Exp] (code1, t1, base, dims) = CalcIndex(Index, vtable, ftable)
dim1 = head(dims)
t2 = newvar()
code2 = TransExp(Exp, vtable, ftable, t2)
code3 = code1++code2++[t1 := t1 ∗ dim1, t1 := t1 + t2]
(code3, t1, base, tail(dims))

Figure 6.11: Translation of multi-dimensional arrays
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try to re-use the values of previous loads, e.g., by doing the loading once
outside a loop and referring to variables holding the values inside the
loop.

Index checks

The translations shown so far do not test if an index is within the bounds
of the array. Index checks are fairly easy to generate: Each index must
be compared to the size of (the dimension of) the array and if the index
is too big, a jump to some error-producing code is made. Hence, a single
conditional jump is inserted at every index calculation.

This is still fairly expensive, but various methods can be used to
eliminate some of these tests. For example, if the array-lookup occurs
within a for-loop, the bounds of the loop-counter may guarantee that
array accesses using this variable will be within bounds. In general, it
is possible to make an analysis that �nds cases where the index-check
condition is subsumed by previous tests, such as the exit test for a loop,
the test in an if-then-else statement or previous index checks.

Non-zero-based arrays

We have assumed our arrays to be zero-based, i.e., that the indices
start from 0. Some languages allow indices to be arbitrary intervals,
e.g., −10 to 10 or 10 to 20. If such are used, the starting-index must
be subtracted from each index when the address is calculated. In a
one-dimensional array with known size and base-address, the starting-
index can be subtracted (at compile-time) from base-address instead. In
a multi-dimensional array with known dimensions, the starting-indices
can be multiplied by the sizes of the dimensions and added together to
form a single constant that is subtracted from the base-address instead
of subtracting each starting-index from each index.

6.8.3 Strings

Strings are usually implemented in a fashion similar to one-dimensional
arrays. In some languages (e.g. C or pre-ISO-standard Pascal), strings
are just arrays of characters.

However, strings often di�er from arrays in that the length is not
static, but can vary at run-time. This leads to an implementation similar
to the kind of arrays where the length is stored in memory, as explained
in section 6.8.2. Another di�erence is that the size of a character is
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typically one byte (unless 16-bit Unicode characters are used), so the
index calculation does not multiply the index by the size (as this is 1).

Operations on strings, e.g., concatenation and substring extraction,
are typically implemented by calling library functions.

6.8.4 Records/structs and unions

Records (structs) have many properties in common with arrays. They
are typically allocated in a similar way (with a similar choice of possible
allocation strategies), and the �elds of a record are typically accessed by
adding an o�set to the base-address of the record. The di�erences are:

• The types (and hence sizes) of the �elds may be di�erent.

• The �eld-selector is known at compile-time, so the o�set from the
base address can be calculated at this time.

The o�set for a �eld is simply the sum of the sizes of all �elds that occur
before it. For a record-variable, the symbol table for variables must hold
the base-address and the o�sets for each �eld in the record. The symbol
table for types must hold the o�sets for every record type, such that
these can be inserted into the symbol table for variables when a record
of this type is declared.

In a union (sum) type, the �elds are not consecutive, but are stored
at the same address, i.e., the base-address of the union. The size of an
union is the maximum of the sizes of its �elds.

In some languages, union types include a tag, which identi�es which
variant of the union is stored in the variable. This tag is stored as a
separate �eld before the union-�elds. Some languages (e.g. Standard
ML) enforce that the tag is tested when the union is accessed, others
(e.g. Pascal) leave this as an option to the programmer.

6.9 Translating declarations

In the translation functions used in this chapter, we have several times
required that �The symbol table must contain . . . �. It is the job of
the compiler to ensure that the symbol tables contain the information
necessary for translation. When a name (variable, label, type, etc.) is
declared, the compiler must keep in the symbol-table entry for that name
the information necessary for compiling any use of that name. For scalar
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variables (e.g., integers), the required information is the intermediate-
language variable that holds the value of the variable. For array vari-
ables, the information includes the base-address and dimensions of the
array. For records, it is the o�sets for each �eld and the total size. If
a type is given a name, the symbol table must for that name provide a
description of the type, such that variables that are declared to be that
type can be given the information they need for their own symbol-table
entries.

The exact nature of the information that is put into the symbol
tables will depend on the translation functions that use these tables, so
it is usually a good idea to write �rst the translation functions for uses
of names and then translation functions for their declarations.

Translation of function declarations will be treated in chapter 9.

6.9.1 Example: Simple local declarations

We extend the statement language by the following productions:

Stat → Decl ; Stat
Decl → int id
Decl → int id[num]

We can, hence, declare integer variables and one-dimensional integer
arrays for use in the following statement. An integer variable should
be bound to a location in the symbol table, so this declaration should
add such a binding to vtable. An array should be bound to a variable
containing its base address. Furthermore, code must be generated for
allocating space for the array. We assume arrays are heap allocated and
that the intermediate-code variable HP points to the �rst free element
of the (upwards growing) heap. Figure 6.12 shows the translation of
these declarations. When allocating arrays, no check for heap over�ow
is done.

6.10 Further reading

A comprehensive discussion about intermediate languages can be found
in [30].

Functional and logic languages often use high-level intermediate lan-
guages, which are in many cases translated to lower-level intermediate
code before emitting actual machine code. Examples of such intermedi-
ate languages can be found in [21], [8] and [6].
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TransStat(Stat, vtable, ftable) = case Stat of
Decl ; Stat1 (code1, vtable1) = TransDecl(Decl, vtable)

code2 = TransStat(Stat1, vtable1, ftable)
code1++code2

TransDecl(Decl, vtable) = case Decl of
int id t1 = newvar()

vtable1 = bind(vtable, name(id), t1)
([], vtable1)

int id[num] t1 = newvar()
vtable1 = bind(vtable, name(id), t1)
([t1 := HP, HP := HP + (4 ∗ value(num))], vtable1)

Figure 6.12: Translation of simple declarations

Another high-level intermediate language is the Java Virtual Ma-
chine [25]. This language has single instructions for such complex things
as calling virtual methods and creating new objects. The high-level
nature of JVM was chosen for several reasons:

• By letting common complex operations be done by single instruc-
tions, the code is smaller, which reduces transmission time when
sending the code over the Internet.

• JVM was originally intended for interpretation, and the complex
operations also helped reduce the overhead of interpretation.

• A program in JVM is validated (essentially type-checked) before
interpretation or further translation. This is easier when the code
is high-level.

Exercises

Exercise 6.1

Use the translation functions in �gure 6.3 to generate code for the ex-
pression 2+g(x+y,x*y). Use a vtable that binds x to t0 and y to t1 and
an ftable that binds g to _g. The result of the expression should be put
in the intermediate-code variable r (so the place attribute in the initial
call to TransExp is r).



6.10. FURTHER READING 163

Exercise 6.2

Use the translation functions in �gures 6.5 and 6.6 to generate code for
the statement

x:=2+y;

if x<y then x:=x+y;

repeat

y:=y*2;

while x>10 do x:=x/2

until x<y

use the same vtable as in exercise 6.1.

Exercise 6.3

Use the translation functions in �gures 6.5 and 6.8 to translate the fol-
lowing statement

if x<=y && !(x=y || x=1)

then x:=3

else x:=5

use the same vtable as in exercise 6.1.

Exercise 6.4

De Morgan's law tells us that !(p || q) is equivalent to (!p) && (!q).
Show that these generate identical code when compiled with TransCond

from �gure 6.8.

Exercise 6.5

Show that, in any code generated by the functions in �gures 6.5 and 6.8,
every IF-THEN-ELSE instruction will be followed by one of the target
labels.
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Exercise 6.6

Extend �gure 6.5 to include a break-statement for exiting loops, as
described in section 6.7, i.e., extend the statement syntax by

Stat → break

and add a rule for this to TransStat. Add whatever extra attributes you
may need to do this.

Exercise 6.7

We extend the statement language with the following statements:

Stat → labelid :
Stat → goto labelid

for de�ning and jumping to labels.
Extend �gure 6.5 to handle these as described in section 6.7. Labels

have scope over the entire program (statement) and need not be de�ned
before use. You can assume that there is exactly one de�nition for each
used label.

Exercise 6.8

Show translation functions for multi-dimensional arrays in column-major
format. Hint: Starting from �gure 6.11, it may be a good idea to
rewrite the productions for Index so they are right-recursive instead of
left-recursive, as the address formula for column-major arrays groups to
the right. Similarly, it is a good idea to reverse the list of dimension
sizes, so the size of the rightmost dimension comes �rst in the list.

Exercise 6.9

When statements are translated using the functions in �gure 6.5, it will
often be the case that the statement immediately following a label is a
GOTO statement, i.e., we have the following situation:

LABEL label1
GOTO label2

It is clear that any jump to label1 can be replaced by a jump to label2,
and that this will result in faster code. Hence, it is desirable to do so.
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This is called jump-to-jump optimisation, and can be done after code-
generation by a post-process that looks for these situations. However,
it is also possible to avoid most of these situations by modifying the
translation function.

This can be done by adding an extra inherited attribute endlabel,
which holds the name of a label that can be used as the target of a jump
to the end of the code that is being translated. If the code is immediately
followed by a GOTO statement, endlabel will hold the target of this GOTO
rather than a label immediately preceding this.

a) Add the endlabel attribute to TransStat from �gure 6.5 and modify
the rules so endlabel is exploited for jump-to-jump optimisation.
Remember to set endlabel correctly in recursive calls to TransStat.

b) Use the modi�ed TransStat to translate the following statement:

while x>0 do {

x := x-1;

if x>10 then x := x/2

}

The curly braces are used as disambiguators, though they are not
part of grammar 6.4.

Use the same vtable as exercise 6.1 and use endlab as the endlabel
for the whole statement.

Exercise 6.10

In �gure 6.5, while statements are translated in such a way that every
iteration of the loop executes an unconditional jump (GOTO in addition
to the conditional jumps in the loop condition.

Modify the translation so each iteration only executes the conditional
jumps in the loop condition, i.e., so an unconditional jump is saved in
every iteration. You may have to add an unconditional jump outside
the loop.

Exercise 6.11

Logical conjunction is associative: p ∧ (q ∧ r) ⇔ (p ∧ q) ∧ r.
Show that this also applies to the sequential conjunction operator

&& when translated as in �gure 6.8, i.e., that p && (q && r) generates the
same code (up to renaming of labels) as (p && q) && r.
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Exercise 6.12

Figure 6.11 shows translation of multi-dimensional arrays in row-major
layout, where the address of each element is found through multipli-
cation and addition. On machines with fast memory access but slow
multiplication, an alternative implementation of multi-dimensional ar-
rays is sometimes used: An array with dimensions dim0, dim1, . . . , dimn

is implemented as a one-dimensional array of size dim0 with pointers to
dim0 di�erent arrays each of dimension dim1, . . . , dimn, which again are
implemented in the same way (until the last dimension, which is imple-
mented as a normal one-dimensional array of values). This takes up
more room, as the pointer arrays need to be stored as well as the ele-
ments. But array-lookup can be done using only addition and memory
accesses.

a) Assuming pointers and array elements both need four bytes each,
what is the total number of bytes required to store an array of
dimensions dim0, dim1, . . . , dimn?

b) Write translation functions for array-access in the style of �g-
ure 6.11 using this representation of arrays. Use addition to mul-
tiply numbers by 4 for scaling indices by the size of pointers and
array elements.



Chapter 7

Machine-Code Generation

7.1 Introduction

The intermediate language we have used in chapter 6 is quite low-level
and not unlike the type of machine code you can �nd on modern RISC
processors, with a few exceptions:

• We have used an unbounded number of variables, where a proces-
sor will have a bounded number of registers.

• We have used a complex CALL instruction for function calls.

• In the intermediate language, the IF-THEN-ELSE instruction has
two target labels, where, on most processors, the conditional jump
instruction has only one target label, and simply falls through to
the next instruction when the condition is false.

• We have assumed any constant can be an operand to an arithmetic
instruction. Typically, RISC processors allow only small constants
as operands.

The problem of mapping a large set of variables to a small number of
registers is handled by register allocation, as explained in chapter 8.
Function calls are treated in chapter 9. We will look at the remaining
two problems below.

The simplest solution for generating machine code from intermediate
code is to translate each intermediate-language instruction into one or
more machine-code instructions. However, it is often possible to �nd a
machine-code instruction that covers two or more intermediate-language
instructions. We will see how we can exploit the instruction set this way.

Additionally, we will brie�y discuss other optimisations.
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7.2 Conditional jumps

Conditional jumps come in many shapes on di�erent machines. Some
conditional jump instructions embody a relational comparison between
two registers (or a register and a constant) and are, hence, similar to the
IF-THEN-ELSE instruction in our intermediate language. Other types
of conditional jump instruction require the condition to be already re-
solved and stored in special condition registers or �ags. However, it is
almost universal that conditional jump instructions specify only one tar-
get label (or address), typically used when the condition is true. When
the condition is false, execution simply continues with the instructions
immediately following the conditional jump instruction.

This isn't terribly di�cult to handle: IF c THEN lt ELSE lf can be
translated to

branch_if_c lt
jump lf

where branch_if_c is a conditional jump instruction on the condition
c.

It will, however, often be the case that an IF-THEN-ELSE instruction
is immediately followed by one of its target labels. In fact, this will
always be the case if the intermediate code is generated by the translation
functions shown in chapter 6 (see exercise 6.5). If this label happens
to be lf (the label taken for false conditions), we can simply omit the
unconditional jump from the code shown above. If the following label
is lt, we can negate the condition of the conditional jump and make it
jump to lf , i.e., as

branch_if_not_c lf

Hence, the code generator should test which (if any) of the target labels
follow an IF-THEN-ELSE instruction and translate it accordingly. Alter-
natively, a pass can be made over the generated machine-code to remove
super�uous jumps.

It is possible to extend the translation function for conditionals to
use extra inherited attributes that tell which of the target labels (if any)
immediately follow the condition code and use this to generate code such
that the false-labels of IF-THEN-ELSE instructions immediately follow
these (inserting GOTO instructions if necessary).

If the conditional jump instructions in the target machine do not
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allow conditions as complex as those used in the intermediate language,
code must be generated to calculate the condition and put the result
somewhere where it can be tested by the conditional jump instruction.
In some machine architectures (e.g., MIPS and Alpha), this �somewhere�
can be a general-purpose register. Other machines (e.g. PowerPC or In-
tel's IA-64) use special condition registers, while yet others (e.g. IA-32,
Sparc, PA-RISC and ARM) use a single set of arithmetic �ags that can
be set by comparison or arithmetic instructions. A conditional jump
may test various combinations of the �ags, so the same comparison
instruction can, in combination with di�erent conditions, be used for
testing equality, signed or unsigned less-than, over�ow and several other
properties. Usually, an IF-THEN-ELSE instruction can be translated to
two instructions: One that does the comparison and one that does the
conditional jump.

7.3 Constants

The intermediate language allows arbitrary constants as operands to
binary or unary operators. This is not always the case in machine code.

For example, MIPS allows only 16-bit constants in operands even
though integers are 32 bits (64 bits in some versions of the MIPS ar-
chitecture). To build larger constants, MIPS includes instructions to
load 16-bit constants into the upper portions (most signi�cant bits) of a
register. With help of these, an arbitrary 32-bit integer can be entered
into a register using two instructions. On the ARM, a constant can be
any 8-bit number positioned at any even bit-boundary. It may take up
to four instructions to build a 32-bit number using these.

When an intermediate-language instruction uses a constant, the code
generator must check if it �ts into the constant �eld (if any) of the
equivalent machine-code instruction. If it does, a single machine-code
instruction is generated. If not, a sequence of instructions are generated
that builds the constant in a register, followed by an instruction that
uses this register in place of the constant. If a complex constant is used
inside a loop, it may be a good idea to move the code for generating
this outside the loop and keep it in a register inside the loop. This can
be done as part of a general optimisation to move code out of loops, see
section 7.5.
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7.4 Exploiting complex instructions

Most instructions in our intermediate language are atomic, in the sense
that they each correspond to a single operation and can not sensibly
be split into several smaller steps. The exceptions to this rule are
IF-THEN-ELSE, which is described above, and CALL, which will be de-
tailed in chapter 9.

While the philosophy behind RISC (Reduced Instruction Set Com-
puter) processors advocates that machine-code instructions should be
atomic, most RISC processors include a few non-atomic instructions.
CISC (Complex Instruction Set Computer) processors have composite
(i.e., non-atomic) instructions in abundance.

To exploit these composite instructions, several intermediate-language
instructions must be grouped together and translated into a single machine-
code instruction. For example, the instruction sequence

[t2 := t1 + 116, t3 := M [t2]]

can be translated into the single MIPS instruction

lw r3, 116(r1)

where r1 and r3 are the registers chosen for t1 and t3, respectively.
However, this is only possible if the value of t2 isn't required later, as
the combined instruction doesn't store this intermediate value anywhere.

We will, hence, need to know if the contents of a variable is required
for later use, or if it is dead after a particular use. When generating
intermediate code, most of the temporary variables introduced by the
compiler will be single-use and can be marked as such. Any use of
a single-use variable will, by de�nition, be the last use. Alternatively,
last-use information can be obtained by analysing the intermediate code,
as we shall see in chapter 8. For now, we will just assume that the last
use of any variable is marked in the intermediate code.

Our next step is to describe each machine-code instruction in terms
of one or more intermediate-language instructions. For example, the
MIPS instruction lw rt, k(rs) can be described by the pattern

[t := rs + k, rt := M [tlast]]

where tlast indicates that t can't be used afterwards. A pattern can only
be used to replace a piece of intermediate code if all last annotations in
the pattern are matched by last annotations in the intermediate code.



7.4. EXPLOITING COMPLEX INSTRUCTIONS 171

The converse, however, isn't true: It is not harmful to store a value even
if it isn't used later, so a last annotation in the intermediate language
need not be matched by a last annotation in the pattern.

The list of patterns that describe the machine-code instruction set
must cover all of the intermediate language. In particular, each single
intermediate-language instruction must be covered by a pattern. This
means that we must include the MIPS instruction lw rt, 0(rs) to cover
the intermediate-code sequence [rt := M [rs]], even though we have
already listed a more general form for lw. If there are intermediate-
language instructions for which there are no equivalent machine-code
instruction, a sequence of machine-code instructions must be given for
these. Hence, an instruction-set description is a list of pairs, where each
pair consists of a pattern (a sequence of intermediate-language instruc-
tions) and a replacement (a sequence of machine-code instructions).

When translating a sequence of intermediate-code instructions, the
code generator can look at the patterns and pick the replacement that
covers the largest pre�x of the intermediate code. A simple way of
achieving this is to list the pairs in order of preference (e.g., longest
pattern �rst) and pick the �rst pattern that matches a pre�x of the
intermediate code.

This kind of algorithm is called greedy, because it always picks the
choice that is best for immediate pro�t. It will, however, not always yield
the optimal solution for the total sequence of intermediate-language in-
structions. If costs are given for each machine-code instruction sequence
in the code-pairs, optimal (i.e., least-cost) solutions can be found for
straight-line (i.e., jump-free) code sequences. The least-cost sequence
that covers the intermediate code can be found, e.g., using a dynamic-
programming algorithm. We will not go into detail about optimal so-
lutions, though. For RISC processors, a greedy algorithm will typically
get close to optimal solutions, so the gain by using a better algorithm is
small.

As an example, �gure 7.1 describes a subset of the instructions for the
MIPS microprocessor architecture in terms of the intermediate language.
Note that we exploit the fact that register 0 is hard-wired to be the
value 0 to, e.g., get the addi instruction to generate a constant. We
assume we, at this point, have already handled the problem of too-large
constants, so any constant remaining in the intermediate code can be
used as an immediate constant in an instruction. Note that we make
special cases for IF-THEN-ELSE when one of the labels follow the test.
Note, also, that we need (at least) two instructions from our MIPS subset
to implement an IF-THEN-ELSE instruction that uses less-than as the
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relational operator, while we need only one for comparison by equal.
Figure 7.1 does not cover all of the intermediate language, nor does it
cover the full MIPS instruction set, but it can be extended to do either
or both.

The instructions in �gure 7.1 are listed in order of priority. This is
only important when the pattern for one instruction sequence is a pre�x
of a pattern for another instruction sequence, as is the case with addi

and lw/sw and for the di�erent instances of beq/bne and slt.
We can try to use �gure 7.1 to select instructions for the following

code sequence:

a := a + blast,
d := c + 8,
M [dlast] := a,
IF a = c THEN label1 ELSE label2,
LABEL label2

Only one pattern (for the add instruction) in �gure 7.1 matches a pre�x
of this code, so we generate an add instruction for the �rst intermediate
instruction. We now have two matches for pre�xes of the remaining
code: sw and addi. Since sw is listed �rst, we choose this to replace
the next two intermediate-language instructions. Finally, beq match the
last two instructions. Hence, we generate the code

add a, a, b
sw a, 8(c)
beq a, c, label1

label2 :

Note that we retain label2 even though the resulting sequence doesn't
refer to it, as some other part of the code might jump to it. We could
include single-use annotations for labels like we use for variables, but it
is hardly worth the e�ort, as labels don't generate actual code and hence
cost nothing1.

7.4.1 Two-address instructions

In the above we have assumed that the machine code is three-address
code, i.e., that the destination register of an instruction can be distinct
from the two operand registers. It is, however, not uncommon that

1This is, strictly speaking, not entirely true, as super�uous labels might inhibit
later optimisations.
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lw rt, k(rs) t := rs + k,
rt := M [tlast]

lw rt, 0(rs) rt := M [rs]
lw rt, k(R0) rt := M [k]
sw rt, k(rs) t := rs + k,

M [tlast] := rt

sw rt, 0(rs) M [rs] := rt

sw rt, k(R0) M [k] := rt

add rd, rs, rt rd := rs + rt

add rd, R0, rt rd := rt

addi rd, rs, k rd := rs + k
addi rd, R0, k rd := k
j label GOTO label
beq rs, rt, labelt IF rs = rt THEN labelt ELSE labelf ,

labelf : LABEL labelf
bne rs, rt, labelf IF rs = rt THEN labelt ELSE labelf ,

labelt: LABEL labelt
beq rs, rt, labelt IF rs = rt THEN labelt ELSE labelf
j labelf
slt rd, rs, rt IF rs < rt THEN labelt ELSE labelf ,
bne rd, R0, labelt LABEL labelf

labelf :
slt rd, rs, rt IF rs < rt THEN labelt ELSE labelf ,
beq rd, R0, labelf LABEL labelt

labelt:
slt rd, rs, rt IF rs < rt THEN labelt ELSE labelf
bne rd, R0, labelt
j labelf

label: LABEL label

Figure 7.1: A subset of the MIPS instruction set
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processors use two-address code, where the destination register is the
same as the �rst operand register. To handle this, we use patterns like

mov rt, rs rt := rs

add rt, rs rt := rt + rs

move rd, rs rd := rs + rt

add rd, rt

that use an extra copy-instruction in the case where the destination reg-
ister is not the same as the �rst operand. As we will see in chapter 8, the
register allocator will often be able to remove the extra copy-instruction
by allocating rd and rs in the same register.

7.5 Optimisations

Optimisations can be done by a compiler in three places: In the source
code (i.e., on the abstract syntax), in the intermediate code and in the
machine code. Some optimisations can be speci�c to the source language
or the machine language, but it makes sense to perform optimisations
mainly in the intermediate language, as the optimisations hence can be
shared among all the compilers that use the same intermediate language.
Also, the intermediate language is typically simpler than both the source
language and the machine language, making the e�ort of doing optimi-
sations smaller.

Optimising compilers have a wide array of optimisations that they
can employ, but we will mention only a few and just hint at how they
can be implemented.

Common subexpression elimination. In the statement a[i] :=

a[i]+2, the address for a[i] is calculated twice. This double calcula-
tion can be eliminated by storing the address in a temporary variable
when the address is �rst calculated, and then use this variable instead of
calculating the address again. Simple methods for common subexpres-
sion elimination work on basic blocks, i.e., straight-line code without
jumps or labels, but more advanced methods can eliminate duplicated
calculations even across jumps.

Code hoisting. If part of the computation inside a loop is independent
of the variables that change inside the loop, it can be moved outside the
loop and only calculated once. For example, in the loop
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while (j<k) {

sum = sum + a[i][j];

j++;

}

a large part of the address calculation for a[i][j] can be done without
knowing j. This part can be moved out to before the loop so it will
only be calculated once. Note that this optimisation can't be done on
source-code level, as the address calculations aren't visible there. For
the same reason, the optimised version isn't shown here.

If k may be less than or equal to j, the loop body may never be
entered and we may, hence, unnecessarily execute the code that was
moved out of the loop. This might even generate a run-time error.
Hence, we can unroll the loop once to

if (j<k) {

sum = sum + a[i][j];

j++;

while (j<k) {

sum = sum + a[i][j];

j++;

}

}

The loop-independent part(s) may now without risk be calculated in the
unrolled part and reused in the non-unrolled part. Again, this optimi-
sation isn't shown.

Constant propagation. Some variables may, at some points in the
program, have values that are always equal to some constant. If these
variables are used in calculations, these calculations may be done at
compile-time. Furthermore, the variables that hold the results of these
computations may now also become constant, which may enable even
more compile-time calculations. Constant propagation algorithms �rst
trace the �ow of constant values through the program and then eliminate
calculations. The more advanced methods look at conditions, so they
can exploit that after a test on, e.g., x==0, x is indeed the constant 0.

Index-check elimination. As mentioned in chapter 6, some com-
pilers insert run-time checks to catch cases when an index is outside
the bounds of the array. Some of these checks can be removed by the
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compiler. One way of doing this is to see if the tests on the index are
subsumed by earlier tests or ensured by assignments. For example, as-
sume that, in the loop shown above, a is declared to be a k × k array.
This means that the entry-test for the loop will ensure that j is always
less than the upper bound on the array, so this part of the index test
can be eliminated. If j is initialised to 0 before entering the loop, we
can use this to conclude that we don't need to check the lower bound
either.

7.6 Further reading

Code selection by pattern matching normally uses a tree-structured in-
termediate language instead of the linear instruction sequences we use
in this book. This can avoid some problems where the order of unre-
lated instructions a�ect the quality of code generation. For example,
if the two �rst instructions in the example at the end of section 7.4
are interchanged, our simple pre�x-matching algorithm can not include
the address calculation in the sw instruction, and would hence need one
more instruction. If the intermediate code is tree-structured, the order
of independent instructions is left unspeci�ed, and the code generator
can choose whichever ordering gives the best code. See [30] or [9] for
more details.

Descriptions of and methods for a large number of di�erent optimi-
sations can be found in [5], [30] and [9].

The instruction set of one version of the MIPS microprocessor archi-
tecture is described in [33].

Exercises

Exercise 7.1

Add extra inherited attributes to TransCond in �gure 6.8 that, for each
of the target labels, indicate if this immediately follows the code for the
condition. Use this to make sure that the false-labels of IF-THEN-ELSE
instructions immediately follow these. You can use the function negate
to negate relational operators. Make sure the new attributes are main-
tained in recursive calls and modify TransStat in �gure 6.5 so it sets
these attributes when calling TransCond.
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Exercise 7.2

Use �gure 7.1 and the method described in section 7.4 to generate code
for the following intermediate code sequence:

[d := c + 8,
a := a + blast,
M [dlast] := a,
IF a < c THEN label1 ELSE label2,
LABEL label1 ]

Compare this to the example in section 7.4.

Exercise 7.3

In �gures 6.3 and 6.5, identify guaranteed last-uses of temporary vari-
ables, i.e., places where last-annotations can safely be inserted.

Exercise 7.4

Choose an instruction set (other than MIPS) and make patterns for the
same subset of the intermediate language as covered by �gure 7.1. Use
this to translate the intermediate-code example from section 7.4.

Exercise 7.5

In some microprocessors, aritmetic instructions use only two registers,
as the destination register is the same as one of the argument registers.
As an example, copy and addition instructions of such a processor can
be as follows (using notation like in �gure 7.1):

MOV rd, rt rd := rt

ADD rd, rt rd := rd + rt

ADDI rd, k rd := rd + k

As in MIPS, register 0 (R0) is hardwired to the value 0.
Add patterns to the above table for the following intermediate code

instructions:

rd := k
rd := rs + rt

rd := rs + k

Use only sequences of the MOV, ADD and ADDI instructions to implement
the intermediate code instructions. Note that neither rs nor rt have the
last annotation, so their values must be preserved.
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Chapter 8

Register Allocation

8.1 Introduction

When generating intermediate code in chapter 6, we have freely used as
many variables as we found convenient. In chapter 7, we have simply
translated variables in the intermediate language one-to-one into reg-
isters in the machine language. Processors, however, do not have an
unlimited number of registers, so something is missing in this picture.
That thing is register allocation. Register allocation must map a large
number of variables into a small(ish) number of registers. This can often
be done by letting several variables share a single register, but sometimes
there simply aren't registers enough in the processor. In this case, some
of the variables must be temporarily stored in memory. This is called
spilling.

Register allocation can be done in the intermediate language prior to
machine-code generation, or it can be done in the machine language. In
the latter case, the machine code initially uses symbolic names for reg-
isters, which the register allocation turns into register numbers. Doing
register allocation in the intermediate language has the advantage that
the same register allocator can easily be used for several target machines
(it just needs to be parameterised with the set of available registers).

However, there may be advantages to postponing register allocation
to after machine code has been generated. In chapter 7, we saw that
several instructions may be combined to a single instruction, and in the
process a variable may disappear. There is no need to allocate a regis-
ter to this variable, but if we do register allocation in the intermediate
language we will do so. Furthermore, when an intermediate-language
instruction needs to be translated to a sequence of machine-code in-
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structions, the machine code may need an extra register (or two) for
storing temporary values. Hence, the register allocator must make sure
that there is always a spare register for temporary storage.

The techniques are, however, the same regardless of when register
allocation is done, so we will just describe the register allocation in
terms of the intermediate language introduced in chapter 6.

As in chapter 6, we operate on the body of a single procedure or
function, so when we below use the term �program�, we mean it to be
such a body.

8.2 Liveness

In order to answer the question �When can two variables share a regis-
ter?�, we must �rst de�ne the concept of liveness:

De�nition 8.1 A variable is live at some point in the program if the
value it contains at that point might conceivably be used in future com-
putations. Conversely, it is dead if there is no way its value can be used
in the future.

We have already hinted at this concept in chapter 7, when we talked
about last-uses of variables.

Loosely speaking, two variables may share a register if there is no
point in the program where they are both live. We will make a more
precise de�nition later.

We can use some rules to determine when a variable is live:

1) If an instruction uses the contents of a variable, that variable is
live at the start of that instruction.

2) If a variable is assigned a value in an instruction, and the same
variable is not used as an operand in that instruction, then the
variable is dead at the start of the instruction, as the value it has
at that time isn't used.

3) If a variable is live at the start of an instruction, it is alive at the
end of the immediately preceding instructions.

4) If a variable is live at the end of an instruction and that instruction
doesn't assign a value to the variable, then the variable is also live
at the start of the instruction.

Rule 1 tells how liveness is generated, rule 2 how liveness is killed and
rules 3 and 4 how it is propagated.
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8.3 Liveness analysis

We can formalise the above rules into equations. The process of solving
these equations is called liveness analysis, and will for all points in the
program determine which variables are live at this point. To better speak
of points in a program, we number all instructions as in �gure 8.2

For every instruction in the program, we have a set of successors,
i.e., instructions that may immediately follow the instruction during
execution. We denote the set of successors to the instruction numbered
i as succ[i]. We use the following rules to �nd succ[i]:

1) The instruction numbered j (if any) that is listed just after in-
struction number i is in succ[i], unless i is a GOTO or IF-THEN-ELSE
instruction. If instructions are numbered consecutively, j = i + 1.

2) If the instruction numbered i is GOTO l, (the number of) the in-
struction LABEL l is in succ[i].

3) If instruction i is IF p THEN lt ELSE lf , (the numbers of) the in-
structions LABEL lt and LABEL lf are in succ[i].

Note that we assume that both outcomes of an IF-THEN-ELSE instruction
are possible. If this happens not to be the case (i.e., if the condition
is always true or always false), our liveness analysis may claim that a
variable is live when it is in fact dead. This is no major problem, as
the worst that can happen is that we use a register for a variable that
isn't going to be used. The converse (claiming a variable dead when it
is in fact live) is worse, as we may overwrite a value that may actually
be used later, and hence get wrong results from the program. Precise
liveness is not computable, so it is quite reasonable to allow imprecise
results, as long as we err on the side of safety.

For every instruction i, we have a set gen[i]. gen[i] lists the variables
that may be read by instruction i and hence are live at the start of the
instruction, i.e., the variables that i generate liveness for. We also have
a set kill[i] that lists the variables that may be assigned a value by the
instruction. Figure 8.1 shows which variables are in gen[i] and kill[i]
for the types of instruction found in intermediate code. x, y and z are
(possibly identical) variables and k denotes a constant.

For each instruction i, we use two sets to hold the actual liveness
information : in[i] holds the variables that are live at the start of i, and
out[i] holds the variables that are live at the end of i. We de�ne these
by the following equations:
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Instruction i gen[i] kill[i]
LABEL l ∅ ∅
x := y {y} {x}
x := k ∅ {x}
x := unop y {y} {x}
x := unop k ∅ {x}
x := y binop z {y, z} {x}
x := y binop k {y} {x}
x := M [y] {y} {x}
x := M [k] ∅ {x}
M [x] := y {x, y} ∅
M [k] := y {y} ∅
GOTO l ∅ ∅
IF x relop y THEN lt ELSE lf {x, y} ∅
x := CALL f(args) args {x}

Figure 8.1: Gen and kill sets

in[i] = gen[i] ∪ (out[i] \ kill[i]) (8.1)

out[i] =
⋃

j∈succ[i]

in[j] (8.2)

These equations are recursive. We solve these by �xed-point iteration,
as shown in section 2.6.1: We initialise all in[i] and out[i] to the empty
set and repeatedly calculate new values for these until no changes occur.

This works under the assumption that all variables are dead at the
end of the program. If a variable contains, e.g., the output of the pro-
gram, it isn't dead at the end of the program, so we must ensure that
the analysis knows this. This can be done by letting out[i], where i is
the last instruction in the program, contain all variables that are live at
the end of the program. This de�nition of out[i] replaces (for the last
instruction only) equation 8.2.

Figure 8.2 shows a small program that we will calculate liveness
for. Figure 8.3 shows succ, gen and kill sets for the instructions in the
program.

We assume that a contains the result of the program (i.e., is live at
the end of it), so we set out[13] = {a}. The other out sets are de�ned
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1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n = z THEN end ELSE body
6: LABEL body
7: t := a + b
8: a := b
9: b := t

10: n := n− 1
11: z := 0
12: GOTO loop
13: LABEL end

Figure 8.2: Example program for liveness analysis

i succ[i] gen[i] kill[i]
1 2 a
2 3 b
3 4 z
4 5
5 6, 13 n, z
6 7
7 8 a, b t
8 9 b a
9 10 t b

10 11 n n
11 12 z
12 4
13

Figure 8.3: succ, gen and kill for the program in �gure 8.2
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Initial Iteration 1 Iteration 2 Iteration 3
i out[i] in[i] out[i] in[i] out[i] in[i] out[i] in[i]
1 n, a n n, a n n, a n
2 n, a, b n, a n, a, b n, a n, a, b n, a
3 n, z, a, b n, a, b n, z, a, b n, a, b n, z, a, b n, a, b
4 n, z, a, b n, z, a, b n, z, a, b n, z, a, b n, z, a, b n, z, a, b
5 a, b, n n, z, a, b a, b, n n, z, a, b a, b, n n, z, a, b
6 a, b, n a, b, n a, b, n a, b, n a, b, n a, b, n
7 b, t, n a, b, n b, t, n a, b, n b, t, n a, b, n
8 t, n b, t, n t, n, a b, t, n t, n, a b, t, n
9 n t, n n, a, b t, n, a n, a, b t, n, a

10 n n, a, b n, a, b n, a, b n, a, b
11 n, z, a, b n, a, b n, z, a, b n, a, b
12 n, z, a, b n, z, a, b n, z, a, b n, z, a, b
13 a a a a a a

Figure 8.4: Fixed-point iteration for liveness analysis

by equation 8.2 and all in sets are de�ned by equation 8.1. We initialise
all in and out sets to the empty set and iterate.

The order in which we treat the instructions doesn't matter for the
�nal result of the iteration, but it may in�uence how quickly we reach
the �xed-point. Since the information in equations 8.1 and 8.2 �ow
backwards through the program, it is a good idea to do the evaluation
in reverse instruction order and to calculate out[i] before in[i]. In the
example, this means that we will calculate in the order

out[13], in[13], out[12], in[12], . . . , out[1], in[1]

Figure 8.4 shows the �xed-point iteration using this backwards evalua-
tion order. Note that the most recent values are used when calculating
the right-hand sides of equations 8.1 and 8.2, so, when a value comes
from a higher instruction number, the value from the same column in
�gure 8.4 is used.

We see that the result after iteration 3 is the same as after iteration
2, so we have reached a �xed-point. We note that n is live at the start
of the program, which means that n may be used before it is given a
value. In this example, n is a parameter to the program (which calculates
the n'th Fibonacci number) so it will be initialised before running the
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program. In other cases, a variable that is live at the start of a program
may be used before it is initialised, which may lead to unpredictable
results. Some compilers issue warnings in such situations.

8.4 Interference

We can now de�ne precisely the condition needed for two variables to
share a register. We �rst de�ne interference:

De�nition 8.2 A variable x interferes with a variable y if x 6= y and
there is an instruction i such that x ∈ kill[i], y ∈ out[i] and the instruc-
tion isn't of the form x := y.

Two di�erent variables can share a register precisely if neither interferes
with the other. This is almost the same as saying that they should not
be live at the same time, but there are small di�erences:

• After x := y, x and y may be live simultaneously, but as they
contain the same value, they can still share a register.

• It may happen that x isn't used after an instruction that kills x. In
this case x is not technically live afterwards, but it still interferes
with any y that is live after the instruction, as the instruction will
overwrite the register that contains x.

The �rst of these di�erences is essentially an optimisation that allows
more sharing than otherwise, but the latter is important for preserving
correctness. In some cases, assignments to dead variables can be elimi-
nated, but in other cases the instruction may have another visible e�ect
(e.g., setting condition �ags or accessing memory) and hence can't be
eliminated.

We will do global register allocation, i.e., �nd for each variable a reg-
ister that it can stay in at all points in the program (procedure, actually,
since a �program� in terms of our intermediate language corresponds to
a procedure in a high-level language). This means that, for the purpose
of register allocation, two variables interfere if they do so at any point
in the program.

We can draw interference as a graph, where each node in the graph
is a variable, and there is an edge between nodes x and y if x interferes
with y or y interferes with x. The interference graph for the program in
�gure 8.2 is shown in �gure 8.5. This interference is generated by the
assignments in �gure 8.2 as follows:
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Figure 8.5: Interference graph for the program in �gure 8.2

Instruction Left-hand side Interferes with
1 a n
2 b n, a
3 z n, a, b
7 t b, n
8 a t, n
9 b n, a

10 n a, b
11 z n, a, b

8.5 Register allocation by graph colouring

In the interference graph, two variables can share a register if they aren't
connected by an edge. Hence, we must assign to each node in the graph
a register number such that

1) Two nodes that share an edge have di�erent register numbers.

2) The total number of di�erent register numbers is no higher than
the number of available registers.

This problem is well-known in graph theory, where it is called graph
colouring (in this context a �colour� is a register number). It is known to
be NP-complete, which means that no e�ective (i.e., polynomial-time)
method for doing this optimally is known, nor is one likely to exist. In
practice, this means that we need to use a heuristic method, which will
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often �nd a solution but may give up in some cases even when a solution
does exist. This is no great disaster, as we must deal with non-colour-
able graphs anyway, so at worst we get slightly slower programs than we
would get if we could colour the graph optimally.

The basic idea of the heuristic method we use is simple: If a node in
the graph has strictly fewer than N neighbours, where N is the number
of available colours (i.e., registers), we can set this node aside and colour
the rest of the graph. When this is done, the less-than-N neighbours of
the selected node can't possibly use all N colours, so we can always pick
a colour for the selected node from the remaining colours.

We can use this method to four-colour the interference graph from
�gure 8.5:

1) z has three neighbours, which is strictly less than four. Hence, we
remove z from the graph.

2) Now, a has less than four neighbours, so we remove this.

3) Only three nodes are now left (b, t and n), so we give each of these
a number, e.g., b = 1, t = 2 and n = 3.

4) Since a neighbours b, t and n, we must choose a fourth colour for
a, i.e., a = 4.

5) z has a, b and n as neighbours, so we choose a colour that is
di�erent from 4, 1 and 3, i.e., z = 2.

this is easy enough. The problem comes if there are no nodes that have
less than N neighbours. This in itself is no guarantee that the graph
isn't colour-able. As an example, a graph with four nodes arranged and
connected as the corners of a square can, even though all nodes have two
neighbours, be coloured with two colours by giving opposite corners the
same colour. This leads to the following so-called �optimistic� colouring
heuristics:

Algorithm 8.3

initialise Start with an empty stack.

simplify If there is a node with less than N neighbours, put this along
with a list of its neighbours on the stack and remove it and its edges
from the graph.
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If there is no node with less than N neighbours, pick any node and
do as above.

If there are more nodes left in the graph, continue with simplify,
otherwise go to select.

select Take a node and its neighbour-list from the stack. If possible, give
the node a colour that is di�erent from the colours of its neighbours.
If this is not possible, colouring fails and we mark the node for
spilling (see below).

If there are more nodes on the stack, continue with select.

The point of this heuristics is that, even though a node has N or
more neighbours, some of these may be given identical colours, so it
may, in select, be possible to �nd a colour for the node anyway.

There are several things left unspeci�ed by algorithm 8.3: Which
node to choose in simplify when none have less than N neighbours,
and which colour to choose in select if there are several choices. If
an oracle chooses perfectly in both cases, algorithm 8.3 will do optimal
colouring. In practice, we will have to make do with quali�ed guesses.
We will, in section 8.7, look at some possibilities for doing this. For now,
we just make arbitrary choices.

8.6 Spilling

If select can not �nd a colour for a node, algorithm 8.3 can not colour
the graph. If this is the case, we must give up on keeping all variables in
registers at all times. We must hence select some variables that (most of
the time) reside in memory. This is called spilling. Obvious candidates
for spilling are variables at nodes that can not be given colours by select.
We simply mark these as spilled and continue doing select on the rest
of the stack, ignoring spilled neighbours when selecting colours for the
remaining nodes. When we �nish algorithm 8.3, several variables may
be marked as spilled.

When we have chosen one or more variables for spilling, we change
the program so these are kept in memory. To be precise, for each spilled
variable x we:

1) Choose a memory address addressx where the value of x is stored.

2) In every instruction i that reads or assigns x, we rename x to xi.
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3) Before an instruction i that reads xi, insert the instruction xi :=
M [addressx].

4) After an instruction i that assigns xi, insert the instruction
M [addressx] := xi.

5) If x is live at the start of the program, add an instruction M [addressx] :=
x to the start of the program. Note that we use the original name
for x here.

6) If x is live at the end of the program, add an instruction x :=
M [addressx] to the end of the program. Note that we use the
original name for x here.

After this rewrite of the program, we do register allocation again. This
includes re-doing the liveness analysis, since the xi have di�erent liveness
than the x they replace. We may optimise this a bit by doing liveness
analysis only on the spilled variables, as the other variables have un-
changed liveness.

It may happen that the new register allocation too will fail and gen-
erate more spill. There are several reasons why this may be:

• We have ignored spilled variables when selecting colours for the
other nodes, but the spilled variables are replaced by new ones that
may still interfere with some of these nodes and cause colouring of
these to fail.

• The order in which we select nodes for simpli�cation and colouring
has changed, and we might be less lucky in our choices, so we get
more spills.

If we have at least as many registers as the number of variables used in a
single instruction, all variables can be loaded just before the instruction
and the result can be saved immediately afterwards, so we will eventually
be able to �nd a colouring by repeated spilling. If we ignore the CALL

instruction, no instruction uses more than two variables, so this is the
minimum number of registers that we need. A CALL instruction can use
an unbounded number of variables as arguments, possibly even more
than the total number of registers available, so it needs special treatment.
We will look at this in chapter 9.

If we take our example from �gure 8.2, we can attempt to colour
its interference graph (�gure 8.5) with only three colours. The stack
built by the simplify phase of algorithm 8.3 and the colours chosen
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Node Neighbours Colour
n 1
t n 2
b t, n 3
a b, n, t spill
z a, b, n 2

Figure 8.6: Algorithm 8.3 applied to the graph in �gure 8.5

for these nodes in the select phase are shown in �gure 8.6. The stack
grows upwards, so the �rst node chosen by simplify is at the bottom.
The colours (numbers) are, conversely, chosen top-down as the stack is
popped. We can choose no colour for a, as all three available colours
are in use by the neighbours b, n and t. Hence, we mark a as spilled.
Figure 8.7 shows the program after spill-code has been inserted. Note
that, since a is live at the end of the program, we have inserted a load
instruction at the end of the program. Figure 8.8 shows the new inter-
ference graph and �gure 8.9 shows the stack used by algorithm 8.3 for
colouring this graph.

8.7 Heuristics

When the simplify phase of algorithm 8.3 can't �nd a node with less
than N neighbours, some other node is chosen. So far, we have chosen
arbitrarily, but we may apply some heuristics (quali�ed guessing) to the
choice in order to make colouring more likely or reduce the number of
spilled variables:

• We may choose a node with close to N neighbours, as this is likely
to be colour-able in the select phase anyway. For example, if a
node has exactly N neighbours, it will be colour-able if just two
of its neighbours get the same colour.

• We may choose a node with many neighbours that have close to
N neighbours of their own, as spilling this node may allow many
of these neighbours to be coloured.

• We may look at the program and select a variable that doesn't
cost so much to spill, e.g., a variable that is not used inside a loop.
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1: a1 := 0
M [addressa] := a1

2: b := 1
3: z := 0
4: LABEL loop
5: IF n = z THEN end ELSE body
6: LABEL body

a2 := M [addressa]
7: t := a2 + b
8: a3 := b

M [addressa] := a3

9: b := t
10: n := n− 1
11: z := 0
12: GOTO loop
13: LABEL end

a := M [addressa]

Figure 8.7: Program from �gure 8.2 after spilling variable a
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Figure 8.8: Interference graph for the program in �gure 8.7
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Node Neighbours Colour
n 1
t n 2
a3 t, n 3
b t, n 3
a2 b, n 2
z b, n 2
a1 n 2
a 1

Figure 8.9: Colouring of the graph in �gure 8.8

These criteria (and maybe others as well) may be combined into a single
heuristic by giving numeric values describing how well a variable �ts
each criteria, and then add these values to give a weighted sum.

The other place where we have made arbitrary choices, is when we
pick colours for nodes in the select phase.

We can try to make it more likely that the rest of the graph can be
coloured by choosing a colour that is already used elsewhere in the graph
instead of picking a new colour. This will use a smaller total number of
colours and, hence, make it more likely that the neighbours of an as yet
uncoloured node will share colours. We can re�ne this a bit by looking
at the uncoloured neighbours of the selected node and for each of these
look at their already coloured neighbours. If we can pick a colour that
occurs often among these, this increases the likelihood that we will be
able to colour the uncoloured neighbours.

8.7.1 Removing redundant moves

An assignment of the form x := y can be removed if x and y use the same
register. Most register allocators do this, and some even try to increase
the number of such removed assignments by increasing the chance that
x and y use the same register.

If x has already been given a colour by the time we need to select a
colour for y (or vice versa), we can choose the same colour for y, as long
as it isn't used by any of y's neighbours (including, possibly, x). This is
called biased colouring.

Another method of achieving the same goal is to combine x and y (if
they don't interfere) into a single node before colouring the graph, and
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only split the combined node if the simplify phase can't otherwise �nd
a node with less than N neighbours. This is called coalescing.

The converse of coalescing (called live-range splitting) can be used as
well: Instead of spilling a variable, we can split its node by giving each
occurrence of the variable a di�erent name and inserting assignments
between these when necessary. This is not quite as e�ective at increasing
the chance of colouring as spilling, but the cost of the extra assignments
is likely to be less than the cost of the loads and stores inserted by
spilling.

8.8 Further reading

Preston Briggs' Ph.D. thesis [11] shows several variants of the regis-
ter allocation algorithm shown here, including many optimisations and
heuristics as well as considerations about how the various phases can be
implemented e�ciently. The compiler textbooks [30] and [9] show some
other variants and a few newer developments. A completely di�erent
approach that exploits the structure of a program is suggested in [35].

Exercises

Exercise 8.1

Given the following program:

1: LABEL start
2: IF a < b THEN next ELSE swap
3: LABEL swap
4: t := a
5: a := b
6: b := t
7: LABEL next
8: z := 0
9: b := b mod a

10: IF b = z THEN end ELSE start
11: LABEL end

a) Show succ, gen and kill for every instruction in the program.

b) Assuming a is live at the end of the program, i.e., out[11] = {a},
calculate in and out for every instruction in the program. Show
the iteration as in �gure 8.4.
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c) Draw the interference graph for a, b, t and z.

d) Make a three-colouring of the interference graph. Show the stack
as in �gure 8.6.

e) Attempt, instead, a two-colouring of the graph. Select variables
for spill, do the spill-transformation as shown in section 8.6 and
redo the complete register allocation process on the transformed
program. If necessary, repeat the process until register allocation
is successful.

Exercise 8.2

Three-colour the following graph. Show the stack as in �gure 8.6. The
graph is three-colour-able, so try making di�erent choices if you get spill.

a
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Exercise 8.3

Combine the heuristics suggested in section 8.7 for selecting nodes in
the simplify phase of algorithm 8.3 into a formula that gives a single
numerical score for each node, such that a higher score implies a stronger
candidate for spill.

Exercise 8.4

Some processors (such as Motorola 68000) have two types of registers:
data registers and address registers. Some instructions (such as load
and store) expect their arguments or put their results in address registers
while other instructions (such as multiplication and division) expect their
arguments or put their results in address registers. Some operations
(like addition and subtraction) can use either type of register. There are
instructions for moving between address and data registers.

By adding the registers as nodes in the interference graph, a variable
can be prevented from being allocated in a speci�c register by making
it interfere with it.
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a) Describe how instructions that require argument or result vari-
ables to be in a speci�c type of register can ensure this by adding
interference for its argument and result variables.

b) The answer above is likely to cause spilling of variables that are
used as both address and data (as they interfere with all registers).
Describe how this can be avoided by taking care of this situation
in the spill phase. Hint: Add register-to-register move instructions
to the program.

c) If there are not enough registers of one type, but there are still
available registers of the other type, describe how you can spill a
variable to a register of the other type instead of to memory.

Exercise 8.5

Some processors have instructions that operate on values that require
two registers to hold. Such processors usually require these values to be
held in pairs of adjacent registers, so the instructions only need specify
one register number per value (as the other part of the value is implicitly
stored in the following register).

We will now look at register allocation where some values must be al-
loacetd in register pairs. We note that live-ness analysis is una�ected, so
only colouring and spill is a�ected. Hence, we start with an interference
graph where some nodes are marked as requiring register pairs.

a) Modify algorithm 8.3 to take register pairs into account. Focus on
correctness, not e�ciency. You can assume �colours� are numbers,
so you can talk about adjacent colours, the next colour, etc.

b) Describe for the simplify phase of algorithm 8.3 heuristics that
take into account that some nodes require two registers.

c) Describe for the select phase of algorithm 8.3 heuristics that take
into account that some nodes require two registers.
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Chapter 9

Function calls

9.1 Introduction

In chapter 6 we have shown how to translate the body of a single func-
tion. Function calls were left (mostly) untranslated by using the CALL

instruction in the intermediate code. Nor did we in chapter 7 show how
the CALL instruction should be translated.

We will, in this chapter, remedy these omissions. We will initially
assume that all variables are local to the procedure or function that
access them and that parameters are call-by-value, meaning that the
value of an argument expression is passed to the called function. This
is the default parameter-passing mechanism in most languages, and in
many languages (e.g., C or SML) it is the only one.

9.1.1 The call stack

A single procedure body uses (in most languages) a �nite number of
variables. We have seen in chapter 8 that we can map these variables
into a (possibly smaller) set of registers. A program that uses recursive
procedures or functions may, however, use an unbounded number of
variables, as each recursive invocation of the function has its own set
of variables, and there is no bound on the recursion depth. We can't
hope to keep all these variables in registers, so we will use memory for
some of these. The basic idea is that only variables that are local to the
active (most recently called) function will be kept in registers. All other
variables will be kept in memory.

When a function is called, all the live variables of the calling function
(which we will refer to as the caller) will be stored in memory so the

197
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registers will be free for use by the called function (the callee). When
the callee returns, the stored variables are loaded back into registers. It
is convenient to use a stack for this storing and loading, pushing register
contents on the stack when they must be saved and popping them back
into registers when they must be restored. Since a stack is (in principle)
unbounded, this �ts well with the idea of unbounded recursion.

The stack can also be used for other purposes:

• Space can be set aside on the stack for variables that need to
be spilled to memory. In chapter 8, we used a constant address
(addressx) for spilling a variable x. When a stack is used, addressx

is actually an o�set relative to a stack-pointer. This makes the
spill-code slightly more complex, but has the advantage that spilled
registers are already saved on the stack when or if a function is
called, so they don't need to be stored again.

• Parameters to function calls can be passed on the stack, i.e., writ-
ten to the top of the stack by the caller and read therefrom by the
callee.

• The address of the instruction where execution must be resumed
after the call returns (the return address) can be stored on the
stack.

• Since we decided to keep only local variables in registers, variables
that are in scope in a function but not declared locally in that
function must reside in memory. It is convenient to access these
through the stack.

• Arrays and records that are allocated locally in a function can be
allocated on the stack, as hinted in section 6.8.2.

We shall look at each of these in more detail later on.

9.2 Activation records

Each function invocation will allocate a chunk of memory on the stack
to cover all of the function's needs for storing values on the stack. This
chunk is called the activation record or frame for the function invocation.
We will use these two names interchangeably. Activation records will
typically have the same overall structure for all functions in a program,
though the sizes of the various �elds in the records may di�er. Often,
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· · ·
Next activation records
Space for storing local variables for spill
or preservation across function calls
Remaining incoming parameters
First incoming parameter / return
value

FP −→ Return address
Previous activation records
· · ·

Figure 9.1: Simple activation record layout

the machine architecture (or operating system) will dictate a calling
convention that standardises the layout of activation records. This allows
a program to call functions that are compiled with another compiler or
even written in a di�erent language, as long as both compilers follow the
same calling convention.

We will start by de�ning very simple activation records and then
extend and re�ne these later on. Our �rst model uses the assumption
that all information is stored in memory when a function is called. This
includes parameters, return address and the contents of registers that
need to be preserved. A possible layout for such an activation record is
shown in �gure 9.1.

FP is shorthand for �Frame pointer� and points to the �rst word of
the activation record. In this layout, the �rst word holds the return
address. Above this, the incoming parameters are stored. The function
will typically move the parameters to registers (except for parameters
that have been spilled by the register allocator) before executing its
body. The space used for the �rst incoming parameter is also used
for storing the return value of the function call (if any). Above the
incoming parameters, the activation record has space for storing other
local variables, e.g., for spilling or for preserving across later function
calls.

9.3 Prologues, epilogues and call-sequences

In front of the code generated (as shown in chapter 6) for a function body,
we need to put some code that reads parameters from the activation
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Prologue


LABEL function-name
parameter1 := M [FP + 4]
· · ·
parametern := M [FP + 4 ∗ n]

code for the function body

Epilogue

{
M [FP + 4] := result
GOTO M [FP ]

Figure 9.2: Prologue and epilogue for the frame layout shown in �g-
ure 9.1

record into registers. This code is called the prologue of the function.
Likewise, after the function body, we need code to store the calculated
return value in the activation record and jump to the return address
that was stored in the activation record by the caller. For the activation
record layout shown in �gure 9.1, a suitable prologue and epilogue is
shown in �gure 9.2. Note that, though we have used a notation similar
to the intermediate language introduced in chapter 6, we have extended
this a bit: We have used M [] and GOTO with general expressions as
arguments.

We use the names parameter1, . . . , parametern for the intermediate-
language variables used in the function body for the n parameters. result
is the intermediate-language variable that holds the result of the function
after the body have been executed.

A function call is translated into a call-sequence of instructions that
will save registers, set up parameters, etc. A call-sequence suitable for
the activation record layout shown in �gure 9.1 is shown in �gure 9.3.
The code is an elaboration of the intermediate-language instruction
x := CALL f(a1, . . . , an). First, all registers that can be used to hold
variables are stored in the frame. In �gure 9.3, R0-Rk are assumed to
hold variables. These are stored in the activation record just above the
calling functions own m incoming parameters. Then, the frame-pointer
is advanced to point to the new frame and the parameters and the return
address are stored in the prescribed locations in the new frame. Finally,
a jump to the function is made. When the function call returns, the
result is read from the frame into the variable x, FP is restored to its
former value and the saved registers are read back from the old frame.
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M [FP + 4 ∗m + 4] := R0
· · ·
M [FP + 4 ∗m + 4 ∗ (k + 1)] := Rk
FP := FP + framesize
M [FP + 4] := a1

· · ·
M [FP + 4 ∗ n] := an

M [FP ] := returnaddress
GOTO f
LABEL returnaddress
x := M [FP + 4]
FP := FP − framesize
R0 := M [FP + 4 ∗m + 4]
· · ·
Rk := M [FP + 4 ∗m + 4 ∗ (k + 1)]

Figure 9.3: Call sequence for x := CALL f(a1, . . . , an) using the frame
layout shown in �gure 9.1

Keeping all the parameters in register-allocated variables until just
before the call, and only then storing them in the frame can require a
lot of registers to hold the parameters (as these are all live up to the
point where they are stored). An alternative is to store each parame-
ter in the frame as soon as it is evaluated. This way, only one of the
variables a1, . . . , an will be live at any one time. However, this can go
wrong if a later parameter-expression contains a function call, as the
parameters to this call will overwrite the parameters of the outer call.
Hence, this optimisation must only be used if no parameter-expressions
contain function calls or if nested calls use stack-locations di�erent from
those used by the outer call.

In this simple call-sequence, we save on the stack all registers that
can potentially hold variables, so these are preserved across the function
call. This may save more registers than needed, as not all registers will
hold values that are required after the call (i.e., they may be dead). We
will return to this issue in section 9.6.
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· · ·
Next activation records
Space for storing local variables for spill
Space for storing registers that need to
be preserved
Remaining incoming parameters
First incoming parameter / return
value

FP −→ Return address
Previous activation records
· · ·

Figure 9.4: Activation record layout for callee-saves

9.4 Caller-saves versus callee-saves

The convention used by the activation record layout in �gure 9.1 is that,
before a function is called, the caller saves all registers that must be
preserved. Hence, this strategy is called caller-saves. An alternative
strategy is that the called function saves the contents of the registers
that need to be preserved and restores these immediately before the
function returns. This strategy is called callee-saves.

Stack-layout, prologue/epilogue and call sequence for the callee-saves
strategy are shown in �gures 9.4, 9.5 and 9.6.

Note that it may not be necessary to store all registers that may po-
tentially be used to hold variables, only those that the function actually
uses to hold its local variables. We will return to this issue in section 9.6.

So far, the only di�erence between caller-saves and callee-saves is
when registers are saved. However, once we re�ne the strategies to save
only a subset of the registers that may potentially hold variables, other
di�erences emerge: Caller-saves need only save the registers that hold
live variables and callee-saves need only save the registers that the func-
tion actually uses. We will in section 9.6 return to how this can be
achieved, but at the moment just assume these optimisations are made.

Caller-saves and callee-saves each have their advantages (described
above) and disadvantages: When caller-saves is used, we might save a
live variable in the frame even though the callee doesn't use the register
that holds this variable. On the other hand, with callee-saves we might
save some registers that don't actually hold live values. We can't avoid
these unnecessary saves, as each function is compiled independently and



9.4. CALLER-SAVES VERSUS CALLEE-SAVES 203

Prologue



LABEL function-name
M [FP + 4 ∗ n + 4] := R0
· · ·
M [FP + 4 ∗ n + 4 ∗ (k + 1)] := Rk
parameter1 := M [FP + 4]
· · ·
parametern := M [FP + 4 ∗ n]

code for the function body

Epilogue



M [FP + 4] := result
R0 := M [FP + 4 ∗ n + 4]
· · ·
Rk := M [FP + 4 ∗ n + 4 ∗ (k + 1)]
GOTO M [FP ]

Figure 9.5: Prologue and epilogue for callee-saves

FP := FP + framesize
M [FP + 4] := a1

· · ·
M [FP + 4 ∗ n] := an

M [FP ] := returnaddress
GOTO f
LABEL returnaddress
x := M [FP + 4]
FP := FP − framesize

Figure 9.6: Call sequence for x := CALL f(a1, . . . , an) for callee-saves
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hence don't know the register usage of their callers/callees. We can,
however, try to reduce unnecessary saving of registers by using a mixed
caller-saves and callee-saves strategy:

Some registers are designated caller-saves and the rest as callee-saves.
If any live variables are held in caller-saves registers, it is the caller that
must save these to its own frame (as in �gure 9.3, though only registers
that are both designated caller-saves and hold live variables are saved).
If a function uses any callee-saves registers in its body, it must save these
�rst, as in �gure 9.5 (though only callee-saves registers that are actually
used in the body are saved).

Calling conventions typically specify which registers are caller-saves
and which are callee-saves, as well as the layout of the activation records.

9.5 Using registers to pass parameters

In both call sequences shown (in �gures 9.3 and 9.6), parameters are
stored in the frame, and in both prologues (�gures 9.2 and 9.5) most
of these are immediately loaded back into registers. It will save a good
deal of memory tra�c if we pass the parameters in registers instead of
memory.

Normally, only a few (4-8) registers are used for parameter passing.
These are used for the �rst parameters of a function, while the remain-
ing parameters are passed on the stack, as we have done above. Since
most functions have fairly short parameter lists, most parameters will
normally be passed in registers. The registers used for parameter passing
are typically a subset of the caller-saves registers, as parameters aren't
live after the call and hence don't have to be preserved.

A possible division of registers for a 16-register architecture is shown
in �gure 9.7. Note that the return address is also passed in a reg-
ister. Most RISC architectures have jump-and-link (function-call) in-
structions, which leaves the return address in a register, so this is only
natural. However, if a further call is made, this register is overwritten,
so the return address must be saved in the activation record before this
happens. The return-address register is marked as callee-saves in �g-
ure 9.7. In this manner, the return-address register is just like any other
variable that must be preserved in the frame if it is used in the body
(which it is if a function call is made). Strictly speaking, we don't need
the return address after the call has returned, so we can also argue that
R15 is a caller-saves register. If so, the caller must save R15 prior to any
call, e.g., by spilling it.
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Register Saved by Used for
0 caller parameter 1 / result / local variable
1-3 caller parameters 2 - 4 / local variables
4-12 callee local variables
13 caller temporary storage (unused by register allocator)
14 callee FP
15 callee return address

Figure 9.7: Possible division of registers for 16-register architecture

· · ·
Next activation records
Space for storing local variables for spill
and for storing live variables allocated
to caller-saves registers across function
calls
Space for storing callee-saves registers
that are used in the body
Incoming parameters in excess of four

FP −→ Return address
Previous activation records
· · ·

Figure 9.8: Activation record layout for the register division shown in
�gure 9.7
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Prologue



LABEL function-name
M [FP + o�setR4] := R4 (if used in body)
· · ·
M [FP + o�setR12] := R12 (if used in body)
M [FP ] := R15 (if used in body)
parameter1 := R0
parameter2 := R1
parameter3 := R2
parameter4 := R3
parameter5 := M [FP + 4]
· · ·
parametern := M [FP + 4 ∗ (n− 4)]

code for the function body

Epilogue



R0 := result
R4 := M [FP + o�setR4] (if used in body)
· · ·
R12 := M [FP + o�setR12] (if used in body)
R15 := M [FP ] (if used in body)
GOTO R15

Figure 9.9: Prologue and epilogue for the register division shown in
�gure 9.7
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M [FP + o�setlive1
] := live1 (if allocated to a caller-saves register)

· · ·
M [FP + o�setlivek

] := livek (if allocated to a caller-saves register)
FP := FP + framesize
R0 := a1

· · ·
R3 := a4

M [FP + 4] := a5

· · ·
M [FP + 4 ∗ (n− 4)] := an

R15 := returnaddress
GOTO f
LABEL returnaddress
x := R0
FP := FP − framesize
live1 := M [FP + o�setlive1

] (if allocated to a caller-saves register)
· · ·
livek := M [FP + o�setlivek

] (if allocated to a caller-saves register)

Figure 9.10: Call sequence for x := CALL f(a1, . . . , an) for the register
division shown in �gure 9.7
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Activation record layout, prologue/epilogue and call sequence for a
calling convention using the register division in �gure 9.7 are shown in
�gures 9.8, 9.9 and 9.10.

Note that the o�sets for storing registers are not simple functions of
their register numbers, as only a subset of the registers need to be saved.
R15 (which holds the return address) is treated as any other callee-saves
register. Its o�set is 0, as the return address is stored at o�set 0 in the
frame.

In a call-sequence, the instructions

R15 := returnaddress
GOTO f
LABEL returnaddress

can on most RISC processors be implemented by a jump-and-link in-
struction.

9.6 Interaction with the register allocator

As we have hinted above, the register allocator can be used to optimise
function calls, as it can provide information about which registers need
to be saved.

The register allocator can tell which variables are live after the func-
tion call. In a caller-saves strategy (or for caller-saves registers in a mixed
strategy), only the (caller-saves) registers that hold such variables need
to be saved before the function call.

Likewise, the register allocator can return information about which
variables are used by the function body, so only these need to be saved
in a callee-saves strategy.

If a mixed strategy is used, variables that are live across a function
call should, if possible, be allocated to callee-saves registers. This way,
the caller doesn't have to save these and, with luck, they don't have to
be saved by the callee either (if the callee doesn't use these registers in
its body). If all variables that are live across function calls are made to
interfere with all caller-saves registers, the register allocator will not al-
locate these variables in caller-saves registers, which achieves the desired
e�ect. If no callee-saves register is available, the variable will be spilled
and hence, e�ectively, be saved across the function call. This way, the
call sequence will not need to worry about saving caller-saves registers,
this is all done by the register allocator.
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As spilling may be somewhat more costly than local save/restore
around a function call, it is a good idea to have plenty of callee-saves
registers for holding variables that are live across function calls. Hence,
most calling conventions specify more callee-saves registers than caller-
saves registers.

Note that, though the prologues shown in �gures 9.2, 9.5 and 9.9
load all stack-passed parameters into registers, this should actually only
be done for parameters that aren't spilled. Likewise, a register-passed
parameter that needs to be spilled should in the prologue be transferred
to a stack location instead of to a symbolic register (parameteri).

In �gures 9.2, 9.5 and 9.9, we have moved register-passed parame-
ters from the numbered registers or stack locations to named registers,
to which the register allocator must assign numbers. Similarly, in the
epilogue we move the function result from a named variable to R0. This
means that these parts of the prologue and epilogue must be included
in the body when the register allocator is called (so the named vari-
ables will be replaced by numbers). This will also automatically handle
the issue about spilled parameters mentioned above, as spill-code is in-
serted immediately after the parameters are (temporarily) transferred to
registers. This may cause some extra memory transfers when a spilled
stack-passed parameter is �rst loaded into a register and then immedi-
ately stored back again. This problem is, however, usually handled by
later optimisations.

It may seem odd that we move register-passed parameters to named
registers instead of just letting them stay in the registers they are passed
in. But these registers may be needed for other function calls, which
gives problems if a parameter allocated to one of these needs to be
preserved across the call (as mentioned above, variables that are live
across function calls shouldn't be allocated to caller-saves registers). By
moving the parameters to named registers, the register allocator is free to
allocate these to callee-saves registers if needed. If this is not needed, the
register allocator may allocate the named variable to the same register
as the parameter was passed in and eliminate the (super�uous) register-
to-register move. As mentioned in section 8.7, modern register allocators
will eliminate most such moves anyway, so we might as well exploit this.

In summary, given a good register allocator, the compiler needs to
do the following to compile a function:

1) Generate code for the body of the function, using symbolic names
(except for parameter-passing in call sequences).

2) Add code for moving parameters from numbered registers and
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stack locations into the named variables used for accessing the pa-
rameters in the body of the function, and for moving the function-
result from a named register to the register used for function re-
sults.

3) Call the register allocator with this extended function body. The
register allocator should be aware of the register division (caller-
saves/callee-saves split) and allocate variables that are live across
function calls only to callee-saves registers.

4) To the register-allocated code, add code for saving and restoring
the callee-saves registers that the register allocator says have been
used in the extended function body and for updating the frame
pointer with the size of the frame (including the space for saved
registers).

5) Add a function label at the beginning of the code and a return
jump at the end.

9.7 Accessing non-local variables

We have up to now assumed that all variables used in a function are local
to that function, but most high-level languages also allow functions to
access variables that are not declared locally in the functions themselves.

9.7.1 Global variables

In C, variables are either global or local to a function. Local variables are
treated exactly as we have described, i.e., typically stored in a register.
Global variables will, on the other hand, be stored in memory. The
location of each global variable will be known at compile-time or link-
time. Hence, a use of a global variable x generates the code

t := M [addressx]
instruction that uses t

The global variable is loaded into a (register-allocated) temporary vari-
able and this will be used in place of the global variable in the instruction
that needs the value of the global variable.

An assignment to a global variable x is implemented as

t := the value to be stored in x
M [addressx] := t
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Note that global variables are treated almost like spilled variables: Their
value is loaded from memory into a register immediately before any use
and stored from a register into memory immediately after an assignment.

If a global variable is used often within a function, it can be loaded
into a local variable at the beginning of the function and stored back
again when the function returns. However, a few extra considerations
need to be made:

• The variable must be stored back to memory whenever a function
is called, as the called function may read or change the global
variable. Likewise, the global variable must be read back from
memory after the function call, so any changes will be registered
in the local copy. Hence, it is best to allocate local copies of global
variables in caller-saves registers.

• If the language allows call-by-reference parameters (see below) or
pointers to global variables, there may be more than one way to
access a global variable: Either through its name or via a call-by-
reference parameter or pointer. If we cannot exclude the possibility
that a call-by-reference parameter or pointer can access a global
variable, it must be stored/retrieved before/after any access to a
call-by-reference parameter or any access through a pointer. It is
possible to make a global alias analysis that determines if global
variables, call-by-reference parameters or pointers may point to
the same location (i.e., may be aliased). However, this is a fairly
complex analysis, so many compilers simply assume that a global
variable may be aliased with any call-by-reference parameter or
pointer and that any two of the latter may be aliased.

The above tells us that accessing local variables (including call-by-value
parameters) is faster than accessing global variables. Hence, good pro-
grammers will use global variables sparingly.

9.7.2 Call-by-reference parameters

Some languages, e.g., Pascal (which uses the term var-parameters), al-
low parameters to be passed by call-by-reference. A parameter passed
by call-by-reference must be a variable, an array element, a �eld in a
record or, in general, anything that is allowed at the left-hand-side of an
assignment statement. Inside the function that has a call-by-reference
parameter, values can be assigned to the parameter and these assign-
ments actually update the variable, array element or record-�eld that
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was passed as parameter such that the changes are visible to the caller.
This di�ers from assignments to call-by-value parameters in that these
update only a local copy.

Call-by-reference is implemented by passing the address of the vari-
able, array element or whatever that is given as parameter. Any access
(use or de�nition) to the call-by-reference parameter must be through
this address.

In C, there are no explicit call-by-reference parameters, but it is
possible to explicitly pass pointers to variables, array-elements, etc. as
parameters to a function by using the & (address-of) operator. When the
value of the variable is used or updated, this pointer must be explicitly
followed, using the * (de-reference) operator. So, apart from notation
and a higher potential for programming errors, this isn't signi�cantly
di�erent from �real� call-by-reference parameters.

In any case, a variable that is passed as a call-by-reference parameter
or has its address passed via a & operator, must reside in memory. This
means that it must be spilled at the time of the call or allocated to
a caller-saves register, so it will be stored before the call and restored
afterwards.

It also means that passing a result back to the caller by call-by-
reference or pointer parameters can be slower than using the function's
return value, as the return value can be passed in a register. registers.
Hence, like global variables, call-by-reference and pointer parameters
should be used sparingly.

Either of these on their own have the same aliasing problems as when
combined with global variables.

9.7.3 Nested scopes

Some languages, e.g., Pascal and SML, allow functions to be declared
locally within other functions. A local function typically has access to
variables declared in the function in which it itself is declared. For
example, �gure 9.11 shows a fragment of a Pascal program. In this
program, g can access x and y (which are declared in f) as well as its
own local variables p and q.

Note that, since f and g are recursive, there can be many instances
of their variables in di�erent activation records at any one time.

When g is called, its own local variables (p and q) are held in regis-
ters, as we have described above. All other variables (i.e., x and y) reside
in the activation records of the procedures/functions in which they are
declared (in this case f). It is no problem for g to know the o�sets for
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procedure f (x : integer);

var y : integer;

function g(p : integer);

var q : integer;

begin

if p<10 then y := g(p+y)

else q := p+y;

if (y<20) then f(y);

g := q;

end;

begin

y := x+x;

writeln(g(y),y)

end;

Figure 9.11: Example of nested scopes in Pascal

x and y in the activation record for f, as f can be compiled before g,
so full information about f's activation record layout is available for the
compiler when it compiles g. However, we will not at compile-time know
the position of f's activation record on the stack. f's activation record
will not always be directly below that of g, since there may be several
recursive invocations of g (each with its own activation record) above
the last activation record for f. Hence, a pointer to f's activation record
will be given as parameter to g when it is called. When f calls g, this
pointer is just the contents of FP, as this, by de�nition, points to the
activation record of the active function (i.e., f). When g is called recur-
sively from g itself, the incoming parameter that points to f's activation
record is passed on as a parameter to the new call, so every instance of
g will have its own copy of this pointer.

To illustrate this, we have in �gure 9.12 added this extra parameter
explicitly to the program from �gure 9.11. Now, g accesses all non-
local variables through the fFrame parameter, so it no longer needs to
be declared locally inside f. Hence, we have moved it out. We have
used record-�eld-selection syntax in g for accessing f's variables through
fFrame. Note that fFrame is a call-by-reference parameter (indicated by
the var keyword), as g can update f's variables (i.e., y). In f, we have
used FP to refer to the current activation record. Normally, a function
in a Pascal program will not have access to its own frame, so this is not
quite standard Pascal.
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function g(var fFrame : fRecord, p : integer);

var q : integer;

begin

if p<10 then fFrame.y := g(fFrame,p+fFrame.y)

else q := p+fFrame.y;

if (fFrame.y<20) then f(fFrame.y);

g := q;

end;

procedure f (x : integer);

var y : integer;

begin

y := x+x;

writeln(g(FP,y),y)

end;

Figure 9.12: Adding an explicit frame-pointer to the program from �g-
ure 9.11

It is sometimes possible to make the transformation entirely in the
source language (e.g., Pascal), but the extra parameters are usually not
added until the intermediate code, where FP is made explicit, has been
generated. Hence, �gure 9.12 mainly serves to illustrate the idea, not as
a suggestion for implementation.

Note that all variables that can be accessed in inner scopes need
to be stored in memory when a function is called. This is the same
requirement as was made for call-by-reference parameters, and for the
same reason. This can, in the same way, be handled by allocating such
variables in caller-saves registers.

Static links

If there are more than two nested scopes, pointers to all outer scopes need
to be passed as parameters to locally declared functions. If, for example,
g declared a local function h, h would need pointers to both f's and g's
activation records. If there are many nested scopes, this list of extra
parameters can be quite long. Typically, a single parameter is instead
used to hold a linked list of the frame pointers for the outer scopes. This
is normally implemented by putting the links in the activation records
themselves. Hence, the �rst �eld of an activation record (the �eld that
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· · ·
Next activation records
Space for storing local variables for spill
and for storing live variables allocated
to caller-saves registers across function
calls
Space for storing callee-saves registers
that are used in the body
Incoming parameters in excess of four
Return address

FP −→ Static link (SL)
Previous activation records
· · ·

Figure 9.13: Activation record with static link

f:

· · ·
y

x

Return address
FP → SL

· · ·

g:

· · ·
q

p

Return address
FP → SL

· · ·

Figure 9.14: Activation records for f and g from �gure 9.11

FP points to) will point to the activation record of the next outer scope.
This is shown in �gure 9.13. The pointer to the next outer scope is
called the static link, as the scope-nesting is static as opposed to the
actual sequence of run-time calls that determine the stacking-order of
activation records1. The layout of the activation records for f and g

from �gure 9.11 is shown in �gure 9.14.
g's static link will point to the most recent activation record for f.

To read y, g will use the code

FPf := M [FP ] Follow g's static link
address := FPf + 12 Calculate address of y
y := M [address] Get y's value

where y afterwards holds the value of y. To write y, g will use the code

1Sometimes, the return address is referred to as the dynamic link.
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FPf := M [FP ] Follow g's static link
address := FPf + 12 Calculate address of y
M [address] := y Write to y

where y holds the value that is written to y. If a function h was declared
locally inside g, it would need to follow two links to �nd y:

FPg := M [FP ] Follow h's static link
FPf := M [FPg] Follow g's static link
address := FPf + 12 Calculate address of y
y := M [address] Get y's value

This example shows why the static link is put in the �rst element of the
activation record: It makes following a chain of links easier, as no o�sets
have to be added in each step.

Again, we can see that a programmer should keep variables as local
as possible, as non-local variables take more time to access.

9.8 Variants

We have so far seen �xed-size activation records on stacks that grow
upwards in memory, and where FP points to the �rst element of the
frame. There are, however, reasons why you sometimes may want to
change this.

9.8.1 Variable-sized frames

If arrays are allocated on the stack, the size of the activation record
depends on the size of the arrays. If these sizes are not known at compile-
time, neither will the size of the activation records. Hence, we need a
run-time variable to point to the end of the frame. This is typically
called the stack pointer, because the end of the frame is also the top
of the stack. When setting up parameters to a new call, these are put
at places relative to SP rather than relative to FP. When a function is
called, the new FP takes the value of the old SP, but we now need to
store the old value of FP, as we no longer can restore it by subtracting a
constant from the current FP. Hence, the old FP is passed as a parameter
(in a register or in the frame) to the new function, which restores FP to
this value just before returning.
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If arrays are allocated on a separate stack, frames can be of �xed size,
but a separate stack-pointer is now needed for allocating/deallocating
arrays.

If two stacks are used, it is customary to let one grow upwards and
the other downwards, such that they grow towards each other. This
way, stack-over�ow tests on both stacks can be replaced by a single test
on whether the stack-tops meet. It also gives a more �exible division of
memory between the two stacks than if each stack is allocated its own
�xed-size memory segment.

9.8.2 Variable number of parameters

Some languages (e.g., C and LISP) allow a function to have a variable
number of parameters. This means that the function can be called with
a di�erent number of parameters at each call. In C, the printf function
is an example of this.

The layouts we have shown in this chapter all assume that there is
a �xed number of arguments, so the o�sets to, e.g., local variables are
known. If the number of parameters can vary, this is no longer true.

One possible solution is to have two frame pointers: One that shows
the position of the �rst parameter and one that points to the part of
the frame that comes after the parameters. However, manipulating two
FP's is somewhat costly, so normally another trick is used: The FP
points to the part of the frame that comes after the parameters, Below
this, the parameters are stored at negative o�sets from FP, while the
other parts of the frame are accessed with (�xed) positive o�sets. The
parameters are stored such that the �rst parameter is closest to FP and
later parameters further down the stack. This way, parameter number
k will be a �xed o�set (−4 ∗ k) from FP.

When a function call is made, the number of arguments to the call
is known to the caller, so the o�sets (from the old FP) needed to store
the parameters in the new frame will be �xed at this point.

Alternatively, FP can point to the top of the frame and all �elds can
be accessed by �xed negative o�sets. If this is the case, FP is sometimes
called SP, as it points to the top of the stack.

9.8.3 Direction of stack-growth and position of FP

There is no particular reason why a stack has to grow upwards in mem-
ory. It is, in fact, more common that call stacks grow downwards in
memory. Sometimes the choice is arbitrary, but at other times there is
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an advantage to have the stack growing in a particular direction. Some
instruction sets have memory-access instructions that include a constant
o�set from a register-based address. If this o�set is unsigned (as it is
on, e.g., IBM System/370), it is an advantage that all �elds in the ac-
tivation record are at non-negative o�sets. This means that either FP
must point to the bottom of the frame and the stack grow upwards, or
FP must point to the top of the frame and the stack grow downwards.

If, on the other hand, o�sets are signed but have a small range (as
on Digital's Vax, where the range is -128 � +127), it is an advantage to
use both positive and negative o�sets. This can be done, as suggested
in section 9.8.2, by placing FP after the parameters but before the rest
of the frame, so parameters are addressed by negative o�sets and the
rest by positive. Alternatively, FP can be positioned k bytes above the
bottom of the frame, where −k is the largest negative o�set.

9.8.4 Register stacks

Some processors, e.g., Suns Sparc and Intels IA-64 have on-chip stacks of
registers. The intention is that frames are kept in registers rather than
on a stack in memory. At call or return of a function, the register stack is
adjusted. Since the register stack has a �nite size, which is often smaller
than the total size of the call stack, it may over�ow. This is trapped
by the operating system which stores part of the stack in memory and
shifts the rest down (or up) to make room for new elements. If the stack
under�ows (at a pop from an empty register stack), the OS will restore
earlier saved parts of the stack.

9.9 Further reading

Calling conventions for various architectures are usually documented in
the manuals provided by the vendors of these architectures. Addition-
ally, the calling convention for the MIPS microprocessor is shown in [33].

In �gure 9.12, we showed in source-language terms how an extra
parameter can be added for accessing non-local parameters, but stated
that this was for illustrative purposes only, and that the extra parame-
ters aren't normally added at source-level. However, [8] argues that it
is, actually, a good idea to do this, and goes on to show how many ad-
vanced features regarding nested scopes, higher-order functions and even
register allocation can be implemented mostly by source-level transfor-
mations.
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Exercises

Exercise 9.1

In section 9.3 an optimisation is mentioned whereby parameters are
stored in the new frame as soon as they are evaluated instead of just
before the call. It is warned that this will go wrong if any of the
parameter-expressions themselves contain function calls. Argue that the
�rst parameter-expression of a function call can contain other function
calls without causing the described problem.

Exercise 9.2

Section 9.8.2 suggests that a variable number of arguments can be han-
dled by storing parameters at negative o�sets from FP and the rest of the
frame at non-negative o�sets from FP. Modify �gures 9.8, 9.9 and 9.10
to follow this convention.

Exercise 9.3

Find documentation for the calling convention of a processor of your
choice and modify �gures 9.7, 9.8, 9.9 and 9.10 to follow this convention.

Exercise 9.4

Many functions have a body consisting of an if-then-else statement (or
expression), where one or both branches use only a subset of the variables
used in the body as a whole. As an example, assume the body is of the
form

IF cond THEN label1 ELSE label2
LABEL label1
code1

GOTO label3
LABEL label2
code2

LABEL label3

The condition cond is a simple comparison between variables (which
may or may not be callee-saves).

A normal callee-saves strategy will in the prologue save (and in the
epilogue restore) all callee-saves registers used in the body. But since
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only one branch of the if-then-else is taken, some registers are saved and
restored unnecessarily.

We can, as usual, get information about variable use in the di�erent
parts of the body (i.e., cond, code1 and code2) from the register allocator.

Vi vil nu prøve at kombinere prolog og epilog med en krop af form
som et if-then-else udtryk, sådan at man mindsker antallet af gemte
callee-saves registre.

Replace in �gure 9.9 the text �code for function body� by the above
body. Then modify the combined code so parts of saving and restoring
registers R4 � R12 and R15 is moved into the branches of the if-then-
else structure. Be precise about which registers are saved and restored
where. You can use clauses like �if used in code1�.



Chapter 10

Analysis and optimisation

In chapter 7, we brie�y mentioned optimisations without going into de-
tail about how they are done. We will remedy this in this chapter.

An optimisation is, generally, is about recognising instructions that
form a speci�c pattern that can be replaced by a smaller or faster pattern
of new instructions. In the simplest case, the pattern is just a short
sequence of instructions that can be replaced by a another short sequence
of instructions. In chapter 7, we replaced sequences of intermediate-code
instructions by sequences of machine-code instructions, but the same
idea can be applied to replacing sequences of machine-code instructions
by sequences of machine-code instructions or sequences of intermediate-
code instructions by other sequences of intermediate-code instructions.
This kind of optimisation is called peephole optimisation, because we
look at the code through a small hole that just allows is to see short
sequences of instructions.

Another thing to note about the patterns we used in chapter 7 is
that they sometimes required some of the variables involved to have
no subsequent uses. This is a non-local property that requires looking
at an arbitrarily large context of the instructions, sometimes the entire
procedure or function in which the instructions appear. A variable hav-
ing possible subsequent uses is called live. In chapter 8 we looked at
how liveness analysis could determine which variables are live at each
instructions. We used this to determine interference between variables,
but the same information can also be used to enable optimisations, such
as replacing a sequence of instructions by a simpler sequence.

Many optimisations are like this: We have a pattern of instructions
and some requirements about the context in which the pattern appears.
These contextual requirements are often �nd by analysis similar to live-
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ness analysis, collectively called data-�ow analyses.
We will now look at optimisations that can be enabled by such anal-

yses. We will later present a few other types of optimisations.

10.1 Data-�ow analysis

As the name indicates, data-�ow analysis attempts to discover how infor-
mation �ows through a program. We already discussed liveness analysis,
where the information that a variable is live �ows through the program
in the opposite order of the �ow of values: A value �ows from an as-
signment to a variable to its uses, but liveness information �ows from
a use of a variable back to its assignments. Liveness analysis is, hence,
called a backwards analysis. In other analyses information �ows in the
same order as values. For example, an analysis might try to approximate
the set of possible values that a variable can hold, and here the �ow is
naturally from assignments to uses.

The liveness analysis presented in chapter 8 consisted of four things:

1. Information about which instructions can follow others, i.e., the
successors of each instruction.

2. For each instruction gen and kill sets that describe how data-�ow
information is created and destroyed by the instruction.

3. Equations that de�ne in and out sets by describing how data-�ow
information �ow between instructions.

4. Initialisation of the in and out sets for a �xed-point iteration that
solve the data-�ow equations.

We will use the same template for other data-�ow analyses, but the
details might di�er. For example:

1. Forwards analyses require information about the predecessors of
an instruction instead of its successors.

2. Where liveness analysis uses sets of variables, other analyses might
use sets of instructions or sets of variable/value pairs.

3. The equations for in and out sets might di�er. For example, they
may use intersection instead of union to combine information from
several successors or predecessors of an instruction.
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4. Where liveness analysis initialises all in and out sets to empty sets
(except for the out set of the last instruction in the function, which
is initialised to the set of variables live at the exit of the function),
other analyses might initialise the sets to, for example, the set of
all instructions in the function.

We will in the following sections show some examples of optimisations
and the data-�ow analyses required to �nd the contextual information
required to determine if the optimisation is applicable. As the opti-
misations we show are not speci�c to any particular processor, we will
show them in terms of intermediate code, but the same principles can
be applied to analysis and optimisations of machine-code.

10.2 Common subexpression elimination

After translation to intermediate code, there might be several occur-
rences of the same calculations, even when this is not the case in the
source program. For example, the assignment a[i] := a[i]+1 can in
many languages not be simpli�ed at the source level, but the assignment
might be translated to the following intermediate-code sequence:

t1 := 4*i

t2 := a+t1

t3 := M[t2]

t4 := t3+1

t5 := 4*i

t6 := a+t5

M[t6] := t4

Note that both the multiplication by 4 and the addition of a is repeated,
but that while we can see that the expressions a+t1 and a+t5 have the
same value, they are not textually identical.

Our ultimate goal is to eliminate both of these redundancies, but we
will start by a simpler analysis that only catches the second occurrence
of 4*i and then discuss how it can be extended to also eliminate a+t5.

10.2.1 Available assignments

If we want to replace an expression by a variable that holds the value
of the expression, we need to keep track of which expressions we have
available and which variables hold their values. So we want at each
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program point a set of pairs of variables and expressions. Since each
such pair originates in an assignment of the expression to the variable,
we can, equivalently, use a set of assignment instructions that occur in
the program. This makes things slightly simpler later on. We call this
analysis available assignments

It is clear that information �ows from assignment forwards, so for
each instruction in the program, the in set is the set of available as-
signments before the instruction is executed and the out set is the set of
assignments available afterwards. The gen and kill sets should, hence, de-
scribe which new assignments become available and which are no longer
available. An assignment makes itself available, unless the variable on
the left-hand side also occurs on the right-hand side (because the assign-
ment would make a new occurrence of the expression have a di�erent
value). All other assignments where the variable on the left-hand side
of the instruction occurs (on either side) are invalidated: If the vari-
able occurs on the left-hand side on another assignment, the variable no
longer holds the value of the expression on the right-hand side, and if
the variable occurs in an expression, the expression changes value, so the
left-hand-side variable no longer holds the current value of the expres-
sion. Figure 10.1 shows the gen and kill sets for each kind of instruction
in the intermediate language.

Note that a copy instruction x := y doesn't generate any available
assignment, as nothing is gained by replacing an occurrence of y by x.
Note, also, that any store of a value to memory kills all instructions that
load from memory. We need to make this rather conservative assumption
because we don't know where in memory loads and stores go.

The next step is to de�ne the equations for in and out sets:

out[i] = gen[i] ∪ (in[i] \ kill[i]) (10.1)

in[i] =
⋂

j∈pred[i]

out[j] (10.2)

As mentioned above, the assignments that are available after an instruc-
tion (i.e., in the out set) are those that are generated by the instruction
and those that were available before, except for those that are killed by
the instruction. The available assignments before an instruction (i.e., in
the in set) are those that are available at all predecessors, so we take the
intersection of the sets available at the predecessors.

The predecessors pred[i] of instruction i is {i−1}, except when i is a
LABEL instruction, in which case we also add all GOTO and IF instructions
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Instruction i gen[i] kill[i]
LABEL l ∅ ∅
x := y ∅ assg(x)
x := k {x := k} assg(x)
x := unop y {x := unop y} assg(x)
where x 6= y
x := unop x ∅ assg(x)
x := unop k {x := unop k} assg(x)
x := y binop z {x := y binop z} assg(x)
where x 6= y and x 6= z
x := y binop z ∅ assg(x)
where x = y or x = z
x := y binop k {x := y binop k} assg(x)
where x 6= y
x := x binop k ∅ assg(x)
x := M [y] {x := M [y]} assg(x)
x := M [k] {x := M [k]} assg(x)
M [x] := y ∅ loads
M [k] := y ∅ loads
GOTO l ∅ ∅
IF x relop y THEN lt ELSE lf ∅ ∅
x := CALL f(args) ∅ ∅

where assg(x) is the set of all assignments in which x occurs on either
left-hand or right-hand side, and loads is the set of all assignments of
the form x := M [·].

Figure 10.1: Gen and kill sets for available assignments
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that can jump to i, or when i is the �rst instruction in the program (i.e.,
when i = 1), in which case i− 1 is not in the predecessors of i.

We need to initialise the in and out sets for the �xed-point iteration.
The most immediate choice would be to initialise all to the empty set, but
that would not give a useful result. Consider a loop, where an assignment
is available before the loop and no variable in the assignment is changed
inside the loop. We would want the assignment to be available inside the
loop, but if we initialise the out set of the jump from the end of the loop
to its beginning to the empty set, the intersection of the assignments
available before the loop and those available at the end of the loop will
be empty, and remain that way throughout the iteration. So, instead we
initialise the in and out sets for all instructions except the �rst to the
set of all assignments in the program. The in set for the �rst instruction
remains empty, as no assignments is available at the beginning of the
program.

When an analysis takes the intersection of the values for the prede-
cessors, we will always initialise sets (except for the �rst instruction) to
the largest possible, so we don't get overly conservative results for loops.

10.2.2 Example of available-assignments analysis

Figure 10.2 shows a program that doubles elements of an array p
Figure 10.3 shows pred, gen and kill sets for each instruction in this

program. We represent an assignment by the number of the assignment
instruction, so gen and kill sets are sets of numbers. We will, however,
identity identical assignments with the same number, so both the assign-
ment in instruction 2 and the assignment in instruction 13 are identi�ed
with the number 2, as can be seen in the gen set of instruction 13.

Note that each assignment kills itself, but since it also (in most cases)
generates itself, the net e�ect is to remove all con�icting assignments
(including itself) and then adding itself. Assignment 12 (i := i+1) does
not generate itself, since i also occurs on the right-hand side. Note, also,
that the write to memory in instruction 11 kills instruction 7, as this
loads from memory.

For the �xed-point iteration we initialise the in set of instruction 1 to
the empty set and all other in and out sets to the set of all assignments.
We need only the assignments that area actually generated by some
instructions, i.e., {1, 2, 5, 6, 7, 8, 9, 10}. We then iterate equations 10.2
and 10.1 as assignments until we reach a �xed-point. Since information
�ow is forwards, we process the instructions by increasing number and
calculate in[i] before out[i]. The iteration is shown in �gure 10.4. For
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1: i := 0
2: a := n ∗ 3
3: IF i < a THEN loop ELSE end
4: LABEL loop
5: b := i ∗ 4
6: c := p + b
7: d := M [c]
8: e := d ∗ 2
9: f := i ∗ 4

10: g := p + f
11: M [g] := e
12: i := i + 1
13: a := n ∗ 3
14: IF i < a THEN loop ELSE end
15: LABEL end

Figure 10.2: Example program for available-assignments analysis

i pred[i] gen[i] kill[i]
1 1 1, 5, 8, 11
2 1 2 2
3 2
4 3, 14
5 4 5 5, 6
6 5 6 6, 7
7 6 7 7, 8
8 7 8 8
9 8 9 9, 10

10 9 10 10
11 10 7
12 11 1, 5, 9
13 12 2 2
14 13
15 3, 14

Figure 10.3: pred, gen and kill for the program in �gure 10.2
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space reasons, the table is shown sideways and the �nal iteration (which
is identical to iteration 2) is not shown.

10.2.3 Using available assignments for common subex-
pression elimination

If instruction i is of the form x := e for some expression e and in[i]
contains an assignment y := e, then we can replace x := e by x := y.

If we apply this idea to the program in �gure 10.2, we see that at
instruction 9 (f := i ∗ 4), we have assignment 5 (b := i ∗ 4) available, so
we can replace instruction 9 by (f := b). At instruction 13 (a := n ∗ 3),
we have assignment 2 (a := n∗3) available, so we can replace instruction
13 by a := a, which we can omit entirely as it is a no-operation. The
optimised program is shown in �gure 10.5.
Note that while we could eliminate identical expressions, we could not
eliminate the expression p + f in instruction 10 even though it has the
same value as the right-hand side of the available assignment 6 (c :=
p+b), since b = f . A way of achieving this is to �rst replace all uses of f
by b (which we can do since the only assignment to f is f := b) and then
repeat common subexpression elimination on the resulting program. If
a large expression has two occurrences, we might have to repeat this a
large number of times to get the optimal result. An alternative is to
keep track of sets of variables that have the same value (a technique
called value numbering), which allows large common subexpressions to
be eliminated in one pass.

Another limitation of the available assignment analysis is when two
di�erent predecessors to an instruction have the same expression avail-
able but in di�erent variables, e.g., if one predecessor of instruction i has
the available assignments {x := a+b} and the other predecessor has the
available assignments {y := a+b}. These have an empty intersection, so
the analysis would have no available assignments at the entry of instruc-
tion i. It is possible to make common subexpression elimination make
the expression a + b available in this situation, but this makes analysis
and transformation more complex.

10.3 Jump-to-jump elimination

When we have an instruction sequence like

LABEL l1
GOTO l2
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1: i := 0
2: a := n ∗ 3
3: IF i < a THEN loop ELSE end
4: LABEL loop
5: b := i ∗ 4
6: c := p + b
7: d := M [c]
8: e := d ∗ 2
9: f := b

10: g := p + f
11: M [g] := e
12: i := i + 1
14: IF i < a THEN loop ELSE end
15: LABEL end

Figure 10.5: The program in �gure 10.2 after common subexpression
elimination.

we would like to replace all jumps to l1 by jumps to l2. However, there
might be chains of such jumps, e.g.,

LABEL l1
GOTO l2
. . .
LABEL l2
GOTO l3
. . .
LABEL l3
GOTO l4

We want, in this example, to replace a jump to l1 with a call to l4
directly. To do this, we make a data-�ow analysis that for each jump
�nds its ultimate destination. The analysis is a backwards analysis, as
information �ows from a label back to the instruction that jumps to it.
The gen and kill sets are quite simple:

instruction gen kill
LABEL l {l} ∅
GOTO l ∅ ∅
IF c THEN l1 ELSE l2 ∅ ∅
any other ∅ the set of all labels
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The equations for in and out are:

in[i] =
{

gen[i] \ kill[i] if out[i] is empty
out[i] \ kill[i] if out[i] is non-empty

(10.3)

out[i] =
⋂

j∈succ[i]

in[j] (10.4)

We initialise all out sets to the set of all labels, except the out set of the
last instruction (which has no successors), which is initialised to empty.

Note that, after the �xed-point iteration, in[i] can only have more
than one element if i is part of or jumps to a loop consisting entirely
of GOTO instructions and labels. Such in�nite loops can occur in valid
programs (e.g., as an idle-loop that waits for an interrupt), so we allow
this.

When we have reached a �xed-point, we can do the following opti-
misations:

• At GOTO i, we can replace i by any element in in[i].

• If instruction i is LABEL l and l /∈ in[i], there will be no jumps
to l after the optimisation, so we can remove instruction i and
all following instructions up to just before the next label. This is
called dead code elimination.

• At IF c THEN i ELSE j, we can replace i by any element in in[i] and j
by any element in in[j]. If in[i] = in[j], the test is redundant, and
we can replace IF c THEN i ELSE j by GOTO l, where l is any element
in in[i].

10.4 Index-check elimination

When a language requires bounds-checking of array accesses, the com-
piler must insert tests before each array access to verify that the index
is in range. Index-check elimination aims to remove these checks when
they are redundant.

To �nd this, we collect for each program point a set of inequalities
that hold at this point. If a bounds check is implied by these inequalities,
we can eliminate it.

We will use the conditions in IF-THEN-ELSE instructions as our source
for inequalities. Note that, since bounds checks are translated into such
instructions, this set of conditions includes all bounds checks.
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Conditions all have the form x relop p, where x is a variable and p
is either a constant or a variable. We only care about inequalities, i.e.,
conditions of the form p < q or p ≤ q, where p and q are either variables
or constants (but they can not both be constants). Each condition that
occurs in the program is translated into a set of inequalities of this
form. For example x = y is translated into x ≤ y and y ≤ x. We also
generate inequalities for the negation of each condition in the program,
so a condition like x < 10 generates the inequalities x < 10 and 10 ≤ x.
A condition x = y generates no inequalities for its negation, as x 6= y
can not be expressed as a conjunction of inequalities. This gives us a
universe Q of inequalities that we work on. At each point in the program,
we want to �nd which of these inequalities are guaranteed to hold at this
point, i.e., a subset of Q.

The idea is that, after executing the instruction IF c THEN l1 ELSE l2,
the conditions derived from c will be true at l1 and the conditions derived
from the negation of c will be true at l2, assuming there are no other
jumps to l1 or l2. To ensure this assumption, we insert extra labels and
jumps in the program: each instruction of the form IF c THEN l1 ELSE l2
is replaced by the sequence

IF c THEN t ELSE f
LABEL t
GOTO l1
LABEL f
GOTO l2

where t and f are new labels that do not occur anywhere else.
This way, if a label has more than one predecessor, these will all be

GOTO statements (that do not alter the set of valid inequalities). We can
later remove the added code by jump-to-jump elimination as described
in section 10.3.

We don't use out sets, but write the equation for in sets in terms
of the in sets of the predecessors and the type of instruction that the
predecessor is shown in �gure 10.6. We use the following auxiliary de�-
nitions:

• when(c) is the set of inequalities implied by the condition c. These
will be elements of Q (the universe of inequalities), since Q was
constructed to include all these.

• whennot(c) is the set of inequalities implied by the negation of the
condition c. These will, likewise, be elements of Q.
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in[i] =



⋂
j∈pred[i] in[j]

if pred[i] has more than one element
in[pred[i]] ∪ when(c)

if pred[i] is IF c THEN i ELSE j
in[pred[i]] ∪ whennot(c)

if pred[i] is IF c THEN j ELSE i
(in[pred[i]] \ conds(Q, x)) ∪ equal(Q, x, p)

if pred[i] is of the form x := p
in[pred[i]] \ upper(Q, x)

if pred[i] is of the form x := x + k where k ≥ 0
in[pred[i]] \ lower(Q, x)

if pred[i] is of the form x := x− k where k ≥ 0
in[pred[i]] \ conds(Q, x)

if pred[i] is of a form x := e not covered above
in[pred[i]]

otherwise

Figure 10.6: Equations for index-check elimination

• conds(Q, x) is the set of inequalities from Q that involve x.

• equal(Q, x, p), where p is a variable or a constant, is the set of in-
equalities from Q that are implied by the equality x = p. For exam-
ple, if Q = {x < 10, 10 ≤ x, 0 < x, x ≤ 0} then equal(Q, x, 7) =
{x < 10, 0 < x}.

• upper(Q, x) is the set of inequalities from Q that have the form
p < x or p ≤ x, where p is a variable or a constant.

• lower(Q, x) is the set of inequalities from Q have the form x < p
or x ≤ p, where p is a variable or a constant.

Normally, any assignment to a variable invalidates all inequalities in-
volving that variable, but we have made some exceptions: If we assign a
constant or variable to a variable, we check all the possible inequalities
and add those that are implied by the assignment. Also, if x increases,
we invalidate all inequalities that bound x from above but keep those
that bound x from below, and if x decreases, we invalidate the inequali-
ties that bound x from below but keep those that bound x from above.
We can add more special cases to make the analysis more precise, but
the above are su�cient for the most common cases.
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1: i := 0
2: LABEL for1
3: IF i ≤ 9 THEN for2 ELSE for3
4: LABEL for2
5: IF i < 0 THEN error ELSE ok1
6: LABEL ok1
7: IF i > 10 THEN error ELSE ok2
8: LABEL ok2
9: t := i ∗ 4

10: M [t] := 0
11: i := i + 1
12: GOTO for1
13: LABEL for3

Figure 10.7: Intermediate code for for-loop with index check

We initialise all in sets to Q, except the in set for the �rst instruction,
which is initialised to the empty set.

After the data-�ow analysis reaches a �xed-point, the inequalities in
in[i] are guaranteed to hold at instruction i. So, if we have an instruction
i of the form IF c THEN lt ELSE lf and c is implied by the inequalities in
in[i], we can replace the instruction by GOTO lt. If the negation of c is
implied by the inequalities in in[i], we can replace the instruction by
GOTO lf .

We illustrate the analysis by an example. Consider the following
for-loop and assume that the array a is declared to go from 0 to 10.

for i:=0 to 9 do

a[i] := 0;

This loop can be translated (with index check) into the intermediate
code shown in �gure 10.7.

The set Q of possible inequalities in the program are derived from the
conditions in the three IF-THEN-ELSE instructions and their negations,
i.e., Q = {i ≤ 9, i > 9, i < 0, i ≥ 0, i > 10, i ≤ 10}.

We leave the �xed-point iteration and check elimination as an exer-
cise to the reader, but note that the assignment i := 0 in instruction 1
implies the inequalities {i ≤ 9, i ≥ 0, i ≤ 10} and that the assignment
i := i + 1 in instruction 11 preserves i ≥ 0 but invalidates i ≤ 9 and
i ≤ 10.
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10.5 Limitations of data-�ow analyses

All of the data-�ow analyses we have seen above are approximations:
They will not always accurately re�ect what happens at runtime: The
index-check analysis may fail to remove a redundant index check, and
the available assignment analysis may say an assignment is unavailable
when, in fact, it is available.

In all cases, the approximations err on the safe side: It is better to
miss an opportunity for optimisation than to make an incorrect optimi-
sation. For liveness analysis, this means that if you are in doubt about
a variable being live, you had better say that it is, as assuming it dead
might cause its value to be overwritten. When available assignment
analysis is used for common subexpression elimination, saying that an
assigning is available when it isn't may make the optimisation replace
an expression by a variable that does not always hold the same value as
the expression, so it is better to leave an assignment out of the set if you
are in doubt.

It can be shown that no compile-time analysis that seeks to uncover
nontrivial information about the run-time behaviour of programs can
ever be completely exact. You can make more and more complex analy-
ses that get closer and closer to the exact result, but there will always be
programs where the analysis isn't precise. So a compiler writer will have
to be satis�ed with analyses that �nd most cases where an optimisation
can be applied, but misses some.

10.6 Loop optimisations

Since many programs spend most of their time in loops, it is worthwhile
to study optimisations speci�c for loops.

10.6.1 code hoisting

One such optimisation is recognising computations that are repeated in
every iteration of the loop without changing the values involved, i.e.,
loop-invariant computations. We want to lift such computations outside
the loop, so they are performed only once. This is called code hoisting.

We saw an example of this in section 10.2.3, where calculation of
n ∗ 3 was done once before the loop and subsequent re-computations
were replaced by a reference to the variable a that holds the value of
n ∗ 3 computed before the loop. However, it is only because there was
an explicit computation of n ∗ 3 before the loop, that we could avoid
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re-computation inside the loop: Otherwise, the occurrence of n∗3 inside
the loop would not have any available assignment that can replace the
calculation.

So our aim is to move or copy loop-invariant assignments to before
the loop, so their result can be reused inside the loop. Moving a com-
putation to before the loop may, however, cause it to be computed even
when the loop is not entered. In addition to causing unnecessary compu-
tation (which goes against the wish for optimisation), such computations
can cause errors when the precondition (the loop condition) is not satis-
�ed. For example, if the invariant computation is a memory access, the
address may be valid only if the loop is entered.

A common solution to this problem is to unroll the loop once: A
loop of the form (using C-like syntax):

while (cond) {

body
}

is transformed to

if (cond) then {

body
while (cond) {

body
}

}

Similarly, a test-at-bottom loop of the form

do

body
while (cond)

can be unrolled to

body
while (cond) {

body
}

Now, we can safely calculate the invariant parts in the �rst copy of the
body and reuse the results in the loop. If the compiler does common
subexpression elimination, this unrolling is all that is required to do code
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hoisting � assuming the unrolling is done before common-subexpression
elimination. Unrolling of loops is most easily done at source-code level
(i.e., on the abstract syntax tree), so this is no problem. This unrolling
will, of course, increase the size of the compiled program, so it should
be done with care if the loop body is large.

10.6.2 Memory prefetching

If a loop goes through a large array, it is likely that parts of the array
will not be in the cache of the processor. Since access to non-cached
memory is much slower than access to cached memory, we would like to
avoid this.

Many modern processors have memory prefetch instructions that tell
the processor to load the contents of an address into cache, but unlike
a normal load, a memory prefetch doesn't cause errors if the address
is invalid, and it returns immediately without waiting for the load to
complete. So a way to ensure that an array element is in the cache is to
issue a prefetch of the array element well in advance of its use, but not
so well in advance that it is likely that it will be evicted from the cache
between the prefetch and the use. Given modern cache sizes and timings,
25 to 10000 cycles ahead of the use is a reasonable time for prefetching �
less than 25 increases the risk that the prefects is not completed before
the use, and more than 10000 increases the chance that the value will
be evicted from the cache before use.

A prefetch instruction usually loads an entire cache line, which is
typically four or eight words, so we don't have to explicitly prefetch
every array element � every fourth element is enough.

So, assume we have a loop that adds the elements of an array:

sum = 0;

for (i=0; i<100000; i++)

sum += a[i];

}

we can rewrite this to

sum = 0;

for (i=0; i<100000; i++) {

if (i&3 == 0) prefetch a[i+32];

sum += a[i];

}
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where prefetch a[i+32] prefetches the element of a that is 32 places
after the current element. The number 32 is rather arbitrary, but makes
the number of cycles between prefetch and use lie in the interval men-
tioned above. Note that we used the test i&3==0, which is equivalent to
i%4==0, but somewhat faster.

We don't have to worry about prefetching past the end of the array
� prefetching will never cause runtime errors, so at worst we prefetch
something that we don't need.

While this transformation adds a test (that takes time), the potential
savings by having all array elements in cache before use are much larger.
The overhead of testing can be reduced by unrolling the loop body:

sum = 0;

for (i=0; i<100000; i++) {

prefetch a[i+32];

sum += a[i];

i++;

sum += a[i];

i++;

sum += a[i];

i++;

sum += a[i];

}

This should, of course, only be done if the loop body is small. We have
exploited that the number of iterations is a multiple of 4, so the exit test
is not needed at every increment of i. If we don't know this, the exit
test must be replicated after each increase of i, like shown here:

sum = 0;

for (i=0; i<n; i++) {

prefetch a[i+32];

sum += a[i];

if (++i < n) {

sum += a[i];

if (++i < n) {

sum += a[i];

if (++i < n) {

sum += a[i];

}

}

}

}
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In a nested loop that accesses a multi-dimensional array, you can prefetch
the next row while processing the current. For example, the loop

sum = 0;

for (i=0; i<1000; i++)

for (j=0; j<1000; i++)

sum += a[i][j];

}

}

can be transformed to

sum = 0;

for (i=0; i<1000; i++)

for (j=0; j<1000; i++)

if (j&3 == 0) prefetch a[i+1][j];

sum += a[i][j];

}

}

Again, we can unroll the body of the inner loop to reduce the overhead.

10.7 Optimisations for function calls

Modern coding styles use frequent function (or method) calls, so opti-
mising function calls is as worthwhile as optimising loops.

Basically, optimisation of function calls attempt to reduce the over-
head associated with call sequences, prologues and epilogues (see chap-
ter 9). We will see a few ways of doing this below.

10.7.1 Inlining

Inlining means replacing a function call by a copy of the body of the
function, with some glue code to replace parameter and result passing.

If we have a call (using C-style syntax)

x = f(exp1,...,expn);

and the function f is de�ned as
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type0 f(type1 x1,...,typen xn)

{

body
return(exp);

}

where body represents the body of the function (apart from the return
statement) and the shown return statement is the only exit point of the
function, we can replace the call by the block

{

type1 x1 = exp1;

...

typen xn = expn;

body
x = exp;

}

Note that if, say, expn refers to a variable with the same name as x1,
it will refer to a di�erent instance of x1 after the transformation. So
we need to avoid variables in the inlined function shadowing variables
used in the function call statement. We can achieve this by renaming
the variables in the inlined function to new, previously unused, names
before it is inlined.

Note that, unless the body of the inlined function is very small,
inlining causes the program to grow in size. Hence, it is common to
put a limit on the size of functions that are inlined. What the limit is
depends on the desired balance between speed and size.

Care must be taken if you inline calls recursively: If the inlined body
contains a call that is also inlined, and this again contains a call that is
inlined, and so on, we might continue inlining forever. So it is common to
limit inlining to only one or two levels deep or treat (mutually) recursive
functions as special cases.

10.7.2 Tail call optimisation

A tail call is a call that happens just before a return.
As an example, assume we in a function f have (using C-style no-

tation) a statement return(g(x,y));. Clearly, f returns just after g

returns, and the result of f is the result of g. We want to combine the
call sequence for the call to g with the epilogue of f. We call this tail
call optimisation.

We will exploit the following observations:
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• No variables in f are live after the call to g (since there aren't any
uses of variables after the call), so there will be no need to save
and restore caller-saves variables around the call.

• If we can eliminate all of the epilogue of f except for the return-
jump to f's caller, we can instead make g return directly to f's
caller, hence skipping f's epilogue entirely.

• If f's frame holds no useful information at the time we call g (or
we can be sure that g does not overwrite any useful information in
the frame), we can reuse the frame for f as the frame for g.

We will look at more detail at this below.

If we assume a simple stack-based caller-saves strategy like the one
shown in �gures 9.2 and 9.3, the combined call sequence of the call to g

and the epilogue of f becomes:

M [FP + 4 ∗m + 4] := R0
· · ·
M [FP + 4 ∗m + 4 ∗ (k + 1)] := Rk
FP := FP + framesize
M [FP + 4] := a1

· · ·
M [FP + 4 ∗ n] := an

M [FP ] := returnaddress
GOTO g
LABEL returnaddress
result := M [FP + 4]
FP := FP − framesize
R0 := M [FP + 4 ∗m + 4]
· · ·
Rk := M [FP + 4 ∗m + 4 ∗ (k + 1)]
M [FP + 4] := result
GOTO M [FP ]

Since there are no live variables after the call to g, we can eliminate
the saving and restoring of R0, . . . , Rk, yielding the following simpli�ed
code:
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FP := FP + framesize
M [FP + 4] := a1

· · ·
M [FP + 4 ∗ n] := an

M [FP ] := returnaddress
GOTO g
LABEL returnaddress
result := M [FP + 4]
FP := FP − framesize
M [FP + 4] := result
GOTO M [FP ]

We now see that all that happens after we return is an adjustment of
FP , a copy of the result from g's frame to f's frame and a jump to the
return address stored in f's frame.

What we now want is to reuse f's frame for g's frame. We do this by
not adding and subtracting framesize from FP , so we get the following
simpli�ed code:

M [FP + 4] := a1

· · ·
M [FP + 4 ∗ n] := an

M [FP ] := returnaddress
GOTO g
LABEL returnaddress
result := M [FP + 4]
M [FP + 4] := result
GOTO M [FP ]

It is immediately evident that the two instructions that copy the result
from and to the frame cancel out, so we can simplify further to

M [FP + 4] := a1

· · ·
M [FP + 4 ∗ n] := an

M [FP ] := returnaddress
GOTO g
LABEL returnaddress
GOTO M [FP ]

We also see an unfortunate problem: Just before the call to g, we over-
write f's return address in M [FP ] by g's return address, so we won't
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correctly return to f's caller (we will, instead, get an in�nite loop). How-
ever, since all that happens after we return from g is a return from f,
we can make g return directly to f's caller. We do this simply by not
overwriting f's return address. This makes the instructions after the
jump to g unreachable, so we can just delete them. This results in the
following code:

M [FP + 4] := a1

· · ·
M [FP + 4 ∗ n] := an

GOTO g

By doing this, we have eliminated the potential ill e�ects of reusing f's
frame for g. Not only have we shortened the combined call sequence
for g and epilogue for f considerably, we have also saved stack space.
Functional programming languages rely on this space saving, as they
often use recursive tail-calls where imperative languages use loops. By
doing tail-call optimisation, an arbitrarily long sequence of recursive tail
calls can share the same stack frame, so only a constant amount of stack
space is used.

In the above, we relied on a pure caller-saves strategy, since the ab-
sence of live variables after the call meant that there would be no saving
and restoring of caller-saves registers around the call. If a callee-saves
strategy or a mixed caller-saves/callee-saves strategy is used, there will
still be no saving and restoring around the call, but f's epilogue would
restore the callee-saves registers that f saved in its own prologue. This
makes tail-call optimisation a bit more complicated, but it is normally
possible (with a bit of care) to move the restoring of callee-saves registers
to before the call to g instead of waiting until after g returns. This allows
g to overwrite f's frame, which no longer holds any useful information
(except the return address, which we explicitly avoid overwriting).

Exercise 9.4 asks you to do such tail-call optimisation for a mixed
caller-saves/callee-saves strategy.

10.8 Specialisation

Modern programs consist mainly of calls to prede�ned library functions
(or procedures or methods). Calls to such library functions often �x
some of the parameters to constants, as the function is written more
generally than needed for the particular call. For example, a function
that raises a number to a power is often called with a constant as the
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power, say, power(x,5) which raises x to its �fth power. In such cases,
the generality of the library function is wasted, and speed can be gained
by using a more speci�c function, say, one that raises its argument to
the �fth power.

A possible implementation of the general power function (in C) is:

double power(double x, int n)

{

double p=1.0;

while (n>0)

if (n%2 == 0) {

x = x*x;

n = n/2;

} else {

p = p*x;

n = n-1;

}

return(p);

}

If we have a call power(x,5), we can replace this by a call power5(x) to
a specialised function. We now need to add a de�nition of this specialised
function to the program. The most obvious idea would be to take the
above code for the power function and replace all occurrences of n by 5,
but this won't work, as n changes value inside the body of power. What
we do instead is to observe the following:

1. The loop condition depends only on n.

2. Every change to n depends only on n.

So it is safe to unroll the loop at compile-time, doing all the computations
on n, but leaving the computations on p and x for run-time. This yields
the following specialised de�nition:

double power5(double x)

{

double p=1.0;

p = p*x;

x = x*x;

x = x*x;

p = p*x;

return(p);

}
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Executing power5(x) is, obviously, a lot faster than executing power(x,5).
Since power5 is fairly small, we can additionally inline the call, as de-
scribed in section 10.7.1.

This kind of specialisation may not always be applicable, even if a
function call has constant parameters, for example if the call was
power(3.14159,p), where p is not a constant, but when the method is
applicable, the speedup can be dramatic.

Similar specialisation techniques are used in C++ compilers for com-
piling templates: When a call speci�es template parameters, the de�ni-
tion of the template is specialised with respect to the actual template
parameters. Since templates in C++ can be recursively de�ned, an
in�nite number of specialised versions might be required. Most C++
compilers put a limit on the recursion level of template instantiations
and stop with an error message when this limit is exceeded.

10.9 Further reading

We have covered only a small portion of the optimisations that are found
in optimising compilers. More examples of optimisations (including
value numbering) can be found in advanced compiler textbooks, such
as [4, 7, 9, 30].

A detailed treatment of program analysis can be found in [31]. Spe-
cialisation techniques like those mentioned in section 10.8 are covered in
more detail in [16, 20]. The book [29] has good articles on both program
analysis and transformation.

Additionally, the conferences �Compiler Construction� (CC), �Pro-
gramming Language Design and Implementation� (PLDI) and other pro-
gramming-language-oriented conferences often present new optimisation
techniques, so past proceedings from these is a good source for advanced
optimisation methods.

Exercises

Exercise 10.1

In the program in �gure 10.2, replace instructions 13 and 14 by

13: h := n ∗ 3
14: IF i < h THEN loop ELSE end



246 CHAPTER 10. ANALYSIS AND OPTIMISATION

a) Repeat common subexpression elimination on this modi�ed pro-
gram.

b) Repeat, again, common subexpression elimination on the modi�ed
program, but, prior to the �xed-point iteration, initialise all sets
to the empty set instead of the set of all assignments.

What di�erences does this make to the �nal result of �xed-point
iteration, and what consequences do these di�erences have for the
optimisation?

Exercise 10.2

Write a program that has jumps to jumps and perform jump-to-jump
optimisation of it as described in section 10.3. Try to make the program
cover all the three optimisation cases described at the end of section 10.3.

Exercise 10.3

a) As described in the beginning of section 10.4, add extra labels and
gotos for each IF-THEN-ELSE in the program in �gure 10.7.

b) Do the �xed-point iteration for index-check elimination on the re-
sult.

c) Eliminate the redundant tests.

d) Do jump-to-jump elimination as described in section 10.3 on the
result to remove the extra labels and gotos introduced in question
a.

Exercise 10.4

Section 10.7.2 describes tail-call optimisation for a pure caller-saves
strategy. Things become somewhat more complicated when you use
a mixed caller-saves/callee-saves strategy.

Using the call sequence from �gure 9.10 and the epilogue from �g-
ure 9.9, describe how the combined sequence can be rewritten to get
some degree of tail-call optimisation. Your main focus should be on
reusing stack space, and secondarily on saving time.

Exercise 10.5

Specialise the power function in section 10.8 to n = 12.



Chapter 11

Bootstrapping a compiler

11.1 Introduction

When writing a compiler, one will usually prefer to write it in a high-
level language. A possible choice is to use a language that is already
available on the machine where the compiler should eventually run. It
is, however, quite common to be in the following situation:

You have a completely new processor for which no compilers exist
yet. Nevertheless, you want to have a compiler that not only targets
this processor, but also runs on it. In other words, you want to write a
compiler for a language A, targeting language B (the machine language)
and written in language B.

The most obvious approach is to write the compiler in language B.
But if B is machine language, it is a horrible job to write any non-trivial
compiler in this language. Instead, it is customary to use a process called
�bootstrapping�, referring to the seemingly impossible task of pulling
oneself up by the bootstraps.

The idea of bootstrapping is simple: You write your compiler in
language A (but still let it target B) and then let it compile itself. The
result is a compiler from A to B written in B.

It may sound a bit paradoxical to let the compiler compile itself: In
order to use the compiler to compile a program, we must already have
compiled it, and to do this we must use the compiler. In a way, it is a bit
like the chicken-and-egg paradox. We shall shortly see how this apparent
paradox is resolved, but �rst we will introduce some useful notation.

247
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11.2 Notation

We will use a notation designed by H. Bratman [10]. The notation
is hence called �Bratman diagrams� or, because of their shape, �T-
diagrams�.

In this notation, a compiler written in language C, compiling from the
language A and targeting the language B is represented by the diagram

C

A B

In order to use this compiler, it must �stand� on a solid foundation,
i.e., something capable of executing programs written in the language
C. This �something� can be a machine that executes C as machine-code
or an interpreter for C running on some other machine or interpreter.
Any number of interpreters can be put on top of each other, but at the
bottom of it all, we need a �real� machine.

An interpreter written in the language D and interpreting the lan-
guage C, is represented by the diagram

C

D

A machine that directly executes language D is written as

JJ 


D

The pointed bottom indicates that a machine need not stand on any-
thing; it is itself the foundation that other things must stand on.

When we want to represent an unspeci�ed program (which can be a
compiler, an interpreter or something else entirely) written in language
D, we write it as

D

These �gures can be combined to represent executions of programs. For
example, running a program on a machine D is written as



11.2. NOTATION 249

D

JJ 


D

Note that the languages must match: The program must be written in
the language that the machine executes.

We can insert an interpreter into this picture:

C

C

D

JJ 


D

Note that, also here, the languages must match: The interpreter can
only interpret programs written in the language that it interprets.

We can run a compiler and use this to compile a program:

A B

C

A B

JJ 


C

The input to the compiler (i.e., the source program) is shown at the left
of the compiler, and the resulting output (i.e., the target program) is
shown on the right. Note that the languages match at every connection
and that the source and target program aren't �standing� on anything,
as they aren't executed in this diagram.

We can insert an interpreter in the above diagram:
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A B

C

A B

C

D

JJ 


D

11.3 Compiling compilers

The basic idea in bootstrapping is to use compilers to compile themselves
or other compilers. We do, however, need a solid foundation in form of
a machine to run the compilers on.

It often happens that a compiler does exist for the desired source
language, it just doesn't run on the desired machine. Let us, for example,
assume we want a compiler for ML to Pentium machine code and want
this to run on a Pentium. We have access to an ML-compiler that
generates HP PA-RISC machine code and runs on an HP machine, which
we also have access to. One way of obtaining the desired compiler would
be to do binary translation, i.e., to write a compiler from HP machine
code to Pentium machine code. This will allow the translated compiler
to run on a Pentium, but it will still generate HP code. We can use the
HP-to-Pentium compiler to translate this into Pentium code afterwards,
but this introduces several problems:

• Adding an extra pass makes the compilation process take longer.

• Some e�ciency will be lost in the translation.

• We still need to make the HP-to-Pentium compiler run on the
Pentium machine.

A better solution is to write an ML-to-Pentium compiler in ML. We can
compile this using the ML compiler on the HP:
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ML

ML P

HP

ML P

HP

ML HP

JJ 


HP

where �P� is short for Pentium.
Now, we can run the ML-to-Pentium compiler on the HP and let it

compile itself1:

ML

ML P

P

ML P

HP

ML P

JJ 


HP

We have now obtained the desired compiler. Note that the compiler
can now be used to compile itself directly on the Pentium platform.
This can be useful if the compiler is later extended or, simply, as a
partial test of correctness: If the compiler, when compiling itself, yields
a di�erent object code than the one obtained with the above process, it
must contain an error. The converse isn't true: Even if the same target
is obtained, there may still be errors in the compiler.

It is possible to combine the two above diagrams to a single diagram
that covers both executions:

ML

ML P ML

ML P

P

ML P

HP

ML P

JJ 


HP

HP

ML HP

JJ 


HP

In this diagram, the ML-to-Pentium compiler written in HP has two
roles: It is the output of the �rst compilation and the compiler that
runs the second compilation. Such combinations can, however, be a bit
confusing: The compiler that is the input to the second compilation
step looks like it is also the output of the leftmost compiler. In this case,

1When a program is compiled and hence, strictly speaking, isn't textually the
same, we still regard it as the same program.
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the confusion is avoided because the leftmost compiler isn't running
and because the languages doesn't match. Still, diagrams that combine
several executions should be used with care.

11.3.1 Full bootstrap

The above bootstrapping process relies on an existing compiler for the
desired language, albeit running on a di�erent machine. It is, hence,
often called �half bootstrapping�. When no existing compiler is available,
e.g., when a new language has been designed, we need to use a more
complicated process called �full bootstrapping�.

A common method is to write a QAD (�quick and dirty�) compiler
using an existing language. This compiler needs not generate code for
the desired target machine (as long as the generated code can be made to
run on some existing platform), nor does it have to generate good code.
The important thing is that it allows programs in the new language
to be executed. Additionally, the �real� compiler is written in the new
language and will be bootstrapped using the QAD compiler.

As an example, let us assume we design a new language �M+�. We,
initially, write a compiler from M+ to ML in ML. The �rst step is to
compile this, so it can run on some machine:

ML

M+ ML

HP

M+ ML

HP

ML HP

JJ 


HP

The QAD compiler can now be used to compile the �real� compiler:

M+

M+ HP

ML

M+ HP

HP

M+ ML

JJ 


HP

The result is an ML program, which we need to compile:
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The result of this is a compiler with the desired functionality, but it will
probably run slowly. The reason is that it has been compiled by using
the QAD compiler (in combination with the ML compiler). A better
result can be obtained by letting the generated compiler compile itself:

M+

M+ HP

HP

M+ HP

HP

M+ HP

JJ 


HP

This yields a compiler with the same functionality as the above, i.e., it
will generate the same code, but, since the �real� compiler has been used
to compile it, it will run faster.

The need for this extra step might be a bit clearer if we had let
the �real� compiler generate Pentium code instead, as it would then be
obvious that the last step is required to get the compiler to run on the
same machine that it targets. We chose the target language to make a
point: Bootstrapping might not be complete even if a compiler with the
right functionality has been obtained.

Using an interpreter

Instead of writing a QAD compiler, we can write a QAD interpreter. In
our example, we could write an M+ interpreter in ML. We would �rst
need to compile this:

M+

ML

M+

HP

HP

ML HP

JJ 


HP

We can then use this to run the M+ compiler directly:
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Since the �real� compiler has been used to do the compilation, nothing
will be gained by using the generated compiler to compile itself, though
this step can still be used as a test and for extensions.

Though using an interpreter requires fewer steps, this shouldn't really
be a consideration, as the computer(s) will do all the work in these
steps. What is important is the amount of code that needs to be written
by hand. For some languages, a QAD compiler will be easier to write
than an interpreter, and for other languages an interpreter is easier.
The relative ease/di�culty may also depend on the language used to
implement the QAD interpreter/compiler.

Incremental bootstrapping

It is also possible to build the new language and its compiler incremen-
tally. The �rst step is to write a compiler for a small subset of the
language, using that same subset to write it. This �rst compiler must
be bootstrapped in one of the ways described earlier, but thereafter the
following process is done repeatedly:

1) Extend the language subset slightly.

2) Extend the compiler so it compiles the extended subset, but with-
out using the new features.

3) Use the previous compiler to compile the new.

In each step, the features introduced in the previous step can be used in
the compiler. Even when the full language is compiled, the process can
be continued to improve the quality of the compiler.
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11.4 Further reading

Bratman's original article, [10], only describes the T-shaped diagrams.
The notation for interpreters, machines and unspeci�ed programs was
added later in [14].

The �rst Pascal compiler [36] was made using incremental bootstrap-
ping.

Though we in section 11.3 dismissed binary translation as unsuitable
for porting a compiler to a new machine, it is occasionally used. The
advantage of this approach is that a single binary translator can port
any number of programs, not just compilers. It was used by Digital
Equipment Corporation in their FX!32 software [17] to enable programs
compiled for Windows on a Pentium-platform to run on their Alpha
RISC processor.

Exercises

Exercise 11.1

You have a machine that can execute Alpha machine code and the fol-
lowing programs:

1: A compiler from C to Alphamachine code written in Alphamachine
code.

2: An interpreter for ML written in C.

3: A compiler from ML to C written in ML.

Now do the following:

a) Describe the above programs and machine as diagrams.

b) Show how a compiler from ML to C written in Alpha machine code
can be generated from the above components. The generated pro-
gram must be stand-alone, i.e., it may not consist of an interpreter
and an interpreted program.

c) Show how the compiler generated in question b can be used in a
process that compiles ML programs to Alpha machine code.
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Exercise 11.2

A source-code optimiser is a program that can optimise programs at
source-code level, i.e., a program O that reads a program P and outputs
another program P ′, which is equivalent to P , but may be faster.

A source-code optimiser is like a compiler, except the source and
target languages are the same. Hence, we can describe a source-code
optimizer for C written in C with the diagram

C

C

C

Assume that you additionally have the following components:

• A compiler, written in ARM code, from C to ARM code.

• A machine that can execute ARM code.

• Some unspeci�ed program P written in C.

Now do the following:

a) Describe the above components as diagrams.

b) Show, using Bratman diagrams, the steps required to optimise P
to P ′ and then execute P ′.
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