
Continuation Passing for C
A space-efficient implementation of concurrency

Juliusz Chroboczek
PPS

Universit́e de Paris 7
jch@pps.jussieu.fr

Abstract
Threads are a convenient abstraction for programming concurrent
systems. They are however expensive, which leads many program-
mers to use coarse-grained concurrency where a fine-grained struc-
ture would be preferable, or use more cumbersome implementation
techniques.

Cooperative threads can be easily implemented in a language
that providesfirst-class continuations. Unfortunately, CPS conver-
sion, the standard technique for adding continuations to a language,
is not natural for typical imperative languages. This paper defines a
notion of CPS conversion for the C programming language.

Continuation Passing C (CPC) is a concurrent extension of C
with very cheap threads. It is implemented as a series of source-to-
source transformations, including CPS conversion, that convert a
threaded program in direct style into a purely sequential C program.
In this paper, we describe CPC and the transformations that are
used in its implementation.

Introduction
Threads, or lightweight processes, are a convenient abstraction for
programming concurrent systems. Unfortunately, typical imple-
mentations use a fair amount of memory for every thread, causing
the programmer to either use a small number of complex threads
where a large number of simple ones would be a better way of
structuring his program, or use more cumbersome programming
techniques, such asevent loops.

The functional programming community has been usingfirst-
class continuationsto implement lightweight threads. In some
functional programming languages (notably Scheme [18, 11] and
SML/NJ [1]), first class continuations are a primitive construct; in
others, they may be implemented using a source-to-source trans-
formation calledconversion to Continuation Passing Style[19, 15]
(CPS conversionfor short).

Many imperative programming languages, however, including
C, do not contain enough of theλ-calculus for CPS conversion to
be natural, and this sort of techniques are therefore mostly confined
to the functional programming community.

This paper introducesContinuation Passing C(CPC), a con-
current extension to the C programming language [9] that provides

[copyright notice will appear here]

very cheap threads. CPC is implemented as a series of well-known
source-to-source transformations that start with a multi-threaded
program written in direct style and, after CPS conversion, end in
a pure C program. The major contributions of this work are the
definition of a direct notion of CPS conversion for a subset of the
C programming language, and the definition of series of transfor-
mations that convert an arbitrary C program into an equivalent pro-
gram in the CPS-convertible subset. Together, these two techniques
provide a notion of CPS conversion for the whole C language (see,
however, the limitations of this technique in Sec. 6.1).

This paper is structured as follows. In Sec. 1, we outline a
few of the known techniques used for implementing concurrency.
In Sec. 2, we introduce conversion to Continuation Passing Style
(CPS conversion), the fundamental program transformation tech-
nique used in CPC. In Sec. 3, we describe the syntax and main
features of CPC. Sections 4 and 5 describe the transformations per-
formed by CPC; the former shows CPS conversion itself, while the
latter shows the transformations that prepare for CPS. In Sec. 6, we
describe the limitations of our algorithms and some future direc-
tions; and in Sec. 7, we outline relationship between the techniques
used in CPC and event-loop programming, a manual technique for
writing highly efficient concurrent programs. Finally, in Sec. 8, we
give the results of a few benchmarks that measure the performance
of CPC.

1. Programming concurrent systems
Programming is sometimes seen as the task of writingbatchpro-
grams. A batch program proceeds by reading a finite amount of
input data, performing some computations thereon, then producing
a finite amount of result data and terminating.

Many programs, however, areconcurrentsystems — they inter-
act with their environment over multiple channels throughout their
execution. That may be because they need to interact with a human
user (perhaps through a graphical user interface), or because they
need to interact with other programs (perhaps through a network).

A number of techniques have been proposed for writing concur-
rent programs. The most common one is to divide a program into a
number of independent threads of control, usually calledprocesses
or simply threads, that communicate through message passing or
shared memory. Such threads can becooperatively scheduled, in
which case passing of control from one thread to another is explicit,
or preemptively scheduled, in which case passing of control is done
asynchronously, when some external agent (usually the operating
system) decides so.

Another technique is calledevent-loop programming. An event-
loop program interacts with its environment by reacting to a set of
stimuli calledevents. At any given point in time, to every event is
associated a piece of code known as thehandler for this event. A

1 2006/3/3



global scheduler, known as theevent loop, repeatedly waits for an
event to occur and invokes the associated handler.

Thread programming has the advantage of making the flow of
control of every thread explicit, which allows threaded programs
to have a relatively transparent structure. This is not the case for
event-loop programs, where any given activity that the program
must perform is distributed across a potentially large number of
event handlers.

Ideally, every thread in a threaded program would consist of a
small amount of code having a well-defined role and communi-
cating with just a few other threads. Typical implementations of
threads, however, use a distinct hardware stack for every thread,
which makes threads rather expensive. This cost causes threaded
programs to be written as a few large threads interacting with their
peers in complex and wonderful ways.

1.1 Cheap cooperative user-space threads

This author believes that a convenient system for programming
concurrent systems should have the following properties:

1. be based on cooperatively scheduled contexts;

2. provide very cheap contexts;

3. not require the programmer to perform a complex transforma-
tion that hides the flow of control.

We will examine these properties in turn.

Cooperative scheduling The difference between programming
with preemptively and cooperatively scheduled contexts can be
summarised as follows: in a preemptive system, the programmer
must make all cases of mutual exclusion (critical sections) explicit;
to the contrary, in a cooperative system, it is points of coopera-
tion that have to be made explicit. In most concurrent systems,
cooperation happens mainly during I/O and when synchronising
between contexts (e.g. when waiting on a condition variable or a
message queue); given the right libraries, very few explicit cooper-
ation points need to be inserted. Additionally, we note that a miss-
ing critical section can lead to race conditions that are difficult to
reproduce; a missing cooperation primitive, on the other hand, re-
sults in an obvious deadlock or performance problem, which can
usually be reproduced in a deterministic manner and easily diag-
nosed. (See, however, Sec. 6.2 about cases where native threads
cannot be avoided.)

Cheap contexts Just like it is essential that function call should
be sufficiently cheap for the programmer to use functions as the
fundamental tool for structuring his programs and not merely as
a way to factor common code, execution contexts should be suffi-
ciently cheap for the programmer to create as many as he needs for
every context to play a well-defined role. Coarse-grained concur-
rency requires complex sharing of data between multiple contexts,
leading to complex protocols for modifying shared data structures.
With fine-grained contexts, every context manipulates at most two
or three pieces of data, which it shares with at most one other thread
each, leading to a dramatic simplification of the behaviour of the
program.

No complex transformations From the above two considera-
tions, it is sometimes concluded that threads should be avoided
as the main abstraction for concurrent programming, and an event
loop should be used instead [14]. Most of the arguments in favour
of event loops, however, are really arguments in favour of cooper-
ative scheduling and of cheap execution contexts [20]; not coinci-
dentally, just the arguments outlined above.

The use of an event loop imposes on the programmer a complex
code transformation which hides the control flow of individual
execution contexts in a maze of interaction between event handlers

(we discuss the transformations involved in Sec. 7). I believe that
such a transformation is better done by a computer program than
by hand.

Cooperatively scheduled threadsFrom this, it would seem that a
good abstraction that a concurrent programming system can offer to
the programmer are cooperatively scheduled threads. This should
not be taken to imply that these threads should have an actual
representation at runtime; and, in fact, CPC doesn’t keep such
thread information.

1.2 Implementation techniques

A number of researchers have been working on ways to provide
cheap cooperative threads. This section aims at outlining a few of
these techniques.

1.2.1 User-space thread libraries

The most common way of providing cooperative threads is with a
user-space thread library to be used by a stock compiler. Unfortu-
nately, such implementation do not provide cheap threads : as the
compiler is thread-agnostic, every thread needs to be equipped with
a hardware stack, leading to the usage of at the very least one page
of physical memory per thread, as well as vast swathes of virtual
space.

1.2.2 Ad hoc interpreters

The simplest way of providing cheap threads is to write an inter-
preter especially structured for making threads cheap [6]. In prac-
tice, this implies encapsulating all of the information specific to an
execution context in a single data structure, so that a context switch
requires saving and restoring a single pointer.

The trouble with this technique is that it only produces inter-
preters, and, because of the extra indirection required to access any
context-specific data, not very fast ones at that. Thus, a program
written in such a system will typically consist of two parts: the
concurrent part, which is written in thead hoclanguage, and the
compute-bound part, which is written in a traditional compiled se-
quential language.

1.2.3 Ad hoccompilation

A more recent trend is to compile code in a manner designed es-
pecially for concurrent programs. This approach holds the promise
to provide cheap threads while avoiding the inherent problems of
interpretative techniques.

Whole program transformation Concurrency is not parallelism,
and a concurrent program can be converted to a purely sequential
one by doing a whole program transformation. An interesting ex-
ample of this technique is the programming language Squeak [5]
(not to be confused with the Smalltalk dialect of the same name),
the expressivity of which is carefully limited so as to be possible to
translate into a finite-state automaton which is then used to generate
C code that is processed by a standard compiler.

Traditional thread libraries and static analysis At the other ex-
treme lies the idea to use a mostly standard thread library, but min-
imise the cost of threads by performing static analysis to conserva-
tively estimate the amount of space needed for stacks.

It is not clear to me how well this approach works. Static
analysis tends to be complex task and its results fragile, in the
sense that small changes to the analysed program may lead to
wide variation in the results of a conservative analysis. Still, this
is without doubt a promising direction.

Continuation passing The standard hardware implementation of
call stacks being the problem, it is natural to want to represent the

2 2006/3/3



dynamic chain information in a more compact form. Continuation
Passing (Sec. 2) is a technique that encapsulates this information
in an abstract data structure, the continuation; and, with a suitably
designed language, continuation passing can be implemented as a
purely local transformation. Depending on the extent to which their
expressivity is restricted, continuations can cost as little as a few
bytes.

One example of this kind of technique is the Cilk programming
language. The initial version of Cilk [8] used fully general contin-
uations, but required the programmer to perform a complex trans-
formation to make continuations explicit himself. Cilk 5 [7] uses a
different technique, based on call-by-name invocation of processes,
which allows writing natural code but severely restricts the contexts
in which process creation can happen.

CPC is a concurrent programming system based on continuation
passing. By using a fully general transformation into continuation-
passing style, CPC allows arbitrary concurrent code to be compiled
efficiently.

2. CPS conversion
Conversion into Continuation Passing Style[19, 15], orCPS con-
versionfor short, is a program transformation technique that makes
the flow of control of a program completely explicit.

Intuitively, thecontinuationof a fragment of code is an abstrac-
tion of the action to perform after its execution. CPS conversion
consists in replacing every functionf in a program with a function
f∗ taking an extra argument, itscontinuation. Wheref would re-
turn with valuev, f∗ invokes orresumesits continuation with the
argumentv.

A CPS-converted function therefore never returns, but makes
a call to a continuation. As all of these calls are in tail position, a
converted program doesn’t use the native call stack; the information
that would normally be in the call stack (the dynamic chain) is
encoded within the continuation.

The usual presentation of the CPS conversion [15] is as follows:

a∗ = λk.ka

x∗ = λk.kx

(λx.M)∗ = λk.k(λx.M∗)

(MN)∗ = λk.M∗(λm.N∗(λn.mnk))

wherea is a constant,x a variable, andM and N are arbitrary
λ-terms.

In a first order language, such as C only constants and variables
can appear on the left hand side of an application. With this simpli-
fying hypothesis, the call-by-value CPS conversion becomes (up to
β-reduction):

a∗ = λk.ka

x∗ = λk.kx

(λx.M)∗ = λk.k(λx.M∗)

(fN)∗ = λk.N∗(λn.fnk)

wheref is a constant or a variable.
This translation has three interesting properties, which are part

of the continuation-passing folklore.

CPS conversion need not be globalThe above definition would
seem to imply that CPS conversion is an “all or nothing” deal, and
that the complete program must be converted. This is in fact not the
case: there is nothing preventing a converted function from calling a
function that has not been converted. On the other hand, a function
that has not been converted cannot call a function that has, as it does
not have a handle to its own continuation. (This kind of restriction is
present in all constructs based on monadic translations, for example

the IO monad of the Haskell programming language or thecilk
monad of Cilk [7].)

It is therefore possible to perform CPS conversion on just a sub-
set of the functions constituting a program, as long as the above
restriction is obeyed. This allows CPS-converted code to call na-
tive code, for example system calls or standard library functions.
Additionally, at least in the case of CPC, a CPS function call is
much slower than a native function call; being able to only convert
the functions that need the full flexibility of continuations avoids
this overhead most of the time.

Continuation transformers are linear Continuations are manip-
ulated linearly [2]: when a CPS-converted function receives a con-
tinuation, it will use it exactly once, and never duplicate or discard
it.

This property is essential for memory management in CPC:
as CPC uses the C allocator (malloc and free) rather than a
garbage collector for managing continuations, it allows reliable
reclaiming of continuations without the need for costly devices
such as reference counting.

Continuations are abstract data structuresAt first sight, contin-
uations are functions. Careful examination of the CPS conversion
process shows, however, that the only operations that are ever per-
formed on continuations are calling a continuation, which we call
resume, and prepending a function application to the body of a
continuation, which we callpush. Thus, continuations are abstract
data structures, of which functions are one particular concrete rep-
resentation. In that representation, the two operations have the fol-
lowing form:

resume(k, x) = kx

push(m, k) = λn.mnk

This property is not really surprising: as continuations are
merely a representation for the dynamic chain, it is only natural
that the operations that are performed on a continuation should
roughly correspond to those that can be performed on a stack.

As C doesn’t have full first-class functions (closures), CPC uses
this property to implement continuations as arrays.

3. The CPC language
CPC is a conservative extension of the C programming language
[9]. In other words, every C program is a CPC program, and has the
same meaning in the two languages; additionally, there is nothing
a CPC program can do with a pure C function that cannot be done
by a C program.

At the centre of the implementation is the CPC scheduler. The
scheduler manipulates three data structures: a queue of runnable
continuations, which are resumed in a round-robin fashion; a pri-
ority queue of continuations waiting on a timeout, and an array of
queues of continuations waiting on I/O, one per active file descrip-
tor.

3.1 Basic flow of control

The main addition that CPC makes to C is the “function qualifier”
cps. Intuitively, a function that was declaredcps is interruptible,
meaning that a context switch can happen in its body, while a C
function is uninterruptible (executed “atomically”).

Cooperation between threads is achieved by thecpc_yield
statement, which causes the current continuation to be suspended,
and the next runnable continuation in the scheduler’s queue to be
resumed.

A new thread is created with thecpc_spawn statement, which
takes the form

3 2006/3/3



cpc_spawn s

wheres is an arbitrary statement. Execution ofcpc_spawn does
not in itself suspend the current continuation; it merely causes
the continuation associated tos to be enqueued in the scheduler’s
queue of runnable continuations.

Every location in a CPC program is said to be innative C context
or in CPS context. The set of CPS contexts is defined as follows:

• the body of acps function is in CPS context; and

• the argument of acpc_spawn statement is in CPS context.

With the single exception ofcpc_spawn, which is allowed in
any context, CPC statements and calls tocps functions are only
allowed in CPS context.

A consequence of the above restriction is that acps function
can only ever be called by anothercps function.

3.2 Condition variables

CPC introduces a new type,cpc_condvar, which holds condition
variables. There is one CPC statement for the manipulation of
condition variables,cpc_wait, which suspends the calling thread
on the condition variable given as its argument. The effect of this
statement is to enqueue the current continuation on the condition
variablec and pass control to the next runnable continuation.

The functionscpc_signal andcpc_signal_all can be used
for waking up continuations enqueued on a condition variable.

3.3 Waiting on an external event

There are two kinds of external events that a CPC program can wait
for: a timeout or a file descriptor becoming ready for I/O.

Waiting for a timeout is done with the primitivecpc_sleep,
which takes the amount of time to wait for. Waiting for I/O is done
usingcpc_io_wait, which takes a file descriptor and a direction.

The waiting primitives in CPC can wait on a single event; in
order to wait on one of a set of events, the programmer needs to
create multiple threads. When a waiting operation is thus split into
multiple threads, and one of the waiters is woken up, it is necessary
to wake up the remaining waiters; the waiting primitives therefore
take an optional supplementary argument, a condition variable that
will cause the wait to be interrupted if it is signalled.

3.4 Other features

The current implementation of CPC also includes two other minor
features. The statementcpc_done discards the current continua-
tion, in effect killing the running thread. Conversely, the statement
cpc_fork duplicates the current continuation, in effect forking the
running thread.

Note that these instructions manipulate continuations non-line-
arly, which apparently violates one of the properties of Sec. 2. The
need for a refined memory allocator is avoided by performing a
deep copy of the current continuation incpc_fork.

3.5 Bootstrapping

When a CPC program is started, the native functionmain is called
by the C runtime. As a native function cannot call acps function,
some means is needed to pass control to CPS context.

Calling the functioncpc_main_loop passes control to the CPC
scheduler, which returns when the queues of runnable, sleeping
and waiting continuations are all empty. Themain function of
a CPC program typically consists of a number (possibly one) of
invocations ofcpc_spawn followed by a call tocpc_main_loop.

3.6 Example

The following is a complete program in CPC. It behaves like the
Unix commandcat, copying data from its input to its output, but
times out after one second.

Two threads are used: one does the actual input/output, while
the other one merely sleeps for a second. The two threads com-
municate through the condition variablec and the boolean variable
done. (This example is in fact very slightly incorrect, as it does not
deal correctly with partial writes and interrupted system calls.)

#include <unistd.h>

char buf[512];
int done = 0;

int
main()
{

cpc_condvar *c;
c = cpc_condvar_get();

cpc_spawn {
while(1) {

int rc;
cpc_io_wait(0, CPC_IO_IN, c);
if(done) break;
rc = read(0, buf, 512);
if(rc <= 0) break;
cpc_io_wait(1, CPC_IO_OUT, c);
if(done) break;
write(1, buf, rc);

}
cpc_signal(c);

}

cpc_spawn {
cpc_sleep(1, 0, c);
done = 1;
cpc_signal(c);

}

cpc_main_loop();
cpc_condvar_release(c);
return 0;

}

The program above contains a number of common idioms (no-
tably cooperation on message passing, implemented with a condi-
tion variable and a shared boolean). A library for CPC that encap-
sulates a number of such idioms (cooperation on I/O, cooperation
on message passing, barriers, etc.) is currently being implemented.

4. CPS conversion for C
Consider a functioncps void f() {...} that is to be CPS-
converted into a functionvoid f∗(κ) {...}. If the body off
is just return, then the body off∗ is just an invocation ofκ. If the
body off is just a call to another CPS-converted functiong, then
the body off∗ is just a call tog∗(κ).

Suppose now that the body off is two calls in sequence,
g(); h();; then the continuation of the call tog() consists of
a call toκ′ = h∗(κ), and hence the body off∗ is a call tog∗(κ′).
This obviously generalises to an arbitrary number of function calls.

While a λ-term consists of just function calls, this is not the
case of a C program, which contains relatively complex control
structures. Thus, in order to CPS-convert an arbitrary C function,

4 2006/3/3



we proceed as follows: we first convert the program to an equivalent
program in an “easy” form, which we subsequently CPS-convert.

We first describe the CPS conversion itself. The algorithm for
conversion to the “easy” CPS-convertible form is described in
Sec. 5.

4.1 CPS-convertible form

Let cps f(· · ·){A} be a function. We say that such a function is
in CPS-convertible formwhen, up to some non-essential details,
its body A consists of a sequenceA0 of C code containing no
return statements followed with a straight-line sequenceA1 of
cps function calls.

More precisely, we define by simultaneous induction two no-
tions of CPS-convertible form: (void-)CPS-convertible form, which
can be converted to a continuation of no arguments, and, for any
variablev, v-CPS-convertible form which can be converted to a
continuation of one argument bound to the variablev. The defini-
tion is as follows:

• if A is in v-CPS-convertible form for somev, thenA is in CPS-
convertible form;

• return; is in CPS-convertible form;

• return v; is in v-CPS-convertible form;

• if A′ is in CPS-convertible form, then

A = f(x1 . . . xn); A′,

wheref is acps function, is in CPS-convertible form; addition-
ally, if n ≥ 1, thenA is in xn-CPS-convertible form;

• if A′ is in v-CPS-convertible form, then

A = v=f(x1 . . . xn); A′,

wheref is acps function, is in CPS-convertible form; addition-
ally, if n ≥ 1, thenA is in xn-CPS-convertible form.

CPS-convertible form can be seen as a version of A-normal
form [13] that doesn’t rely on lexical scoping to propagate values,
but instead passes all values as explicit function parameters.

A functioncpsf(· · ·){A} is in CPS-convertible form if it is of
the form

cps f(· · ·)
{

A0;
if (e1) { A1; B1 }
else if (e2) { A2; B2 }
· · ·
else { An; Bn }

}

where theAi are sequences of pure C statements containing no
return statement, and theBi are in CPS-convertible form.

4.2 Continuations

A closureis a pair(f ′, x1 . . . xn), wheref ′ is a function pointer,
andx1 · · ·xn is a tuple of values. A (concrete)continuationis a
sequence of closures.

Intuitively, f ′ is the image by CPS conversion of a function
f , and the continuationκ = ((f ′, x1 . . . xn) · κ′) represents the
function

λ(y1 . . . yk).f ′(x1 . . . xn, y1 . . . yk, κ′)

wheren + k + 1 is the number of arguments off ′, or, equiva-
lently, n + k is the number of arguments off ; in particular, iff
takes exactlyn arguments, thenκ represents a function of no ar-
guments. This interpretation leads to the following definition of the

operations on continuations:

push(f, x1 . . . xn, κ) = (f, x1 . . . xn) · κ
resume((f, x1 . . . xn) · κ, y1 . . . yk) =

f(x1 . . . xn, y1 . . . yk, κ)

4.3 CPS conversion

We are now ready to define the CPS conversion itself. This is not
a direct translation of the one defined in Sec. 2. The most obvious
difference is that C functions take multiple arguments, and are not
identified with their curried equivalents; thus, the conversion must
take into account the number of arguments taken by a function.

Perhaps more subtly, it produces results that are inη-reduced
form, or, equivalently, it performs elimination of tail calls on the
fly. The implications of this choice are explored further in Sec. 6.1.

We define two notions of CPS conversion, which correspond
closely to the two notions of CPS-convertible form. The map·∗
maps a CPS-convertible sequence of statements to a continuation of
no arguments; the map·∗∗ maps av-CPS-convertible sequence to a
continuation of a single argument. (This scheme could in principle
be generalised to continuations of multiple arguments, allowing the
implementation of functions returning multiple values.)

The definition is as follows:

• if A is return;, thenA∗ is resume(κ);

• if A is return v;, then A∗ is resume(κ, v) and A∗∗ is
resume(κ).

• if A is f(x1 . . . xn);B, then

A∗ = push(κ, f, x1 . . . xn); B∗,

and

A∗∗ = push(κ, f, x1 . . . xn−1); B∗;

• if A is y = f(x1 . . . xn); B, then

A∗ = push(κ, f, x1 . . . xn); B∗∗,

and

A∗∗ = push(κ, f, x1 . . . xn−1); B∗∗.

Let nowcps f(x1 · · ·xk){A} be a function in CPS-convertible
form. By the definition in Sec. 4.1,f is of the form

cps f(x1 . . . xk)
{

A0;
if (e1) { A1; B1 }
else if (e2) { A2; B2 }
· · ·
else { An; Bn }

}

where theAi are plain C code, and theBi are in CPS-convertible
form. The CPS conversion off is a function

cps f ′(x1 . . . xn, κ)
{

A0;
if (e1) { A1; B∗

1 }
else if (e2) { A2; B∗

2 }
· · ·
else { An; B∗

n }
}

whereB∗
i is the CPS conversion ofBi with respect toκ.

5 2006/3/3



5. Transformation into CPS-convertible form
In the previous section, we have shown how to perform a CPC con-
version for the CPS-convertible subset of CPC. In this section, we
show how every CPC program can be transformed into a semanti-
cally equivalent program that is in that particular form.

We give two algorithms for conversion into CPS-convertible
form. Theidealised algorithm, presented in Sec. 5.1, is fairly easy
to explain, but produces code that is very inefficient. The algorithm
actually used by CPC is described in Sec. 5.2.

5.1 Transformation into CPS-convertible form: idealised
algorithm

The idealised algorithm is structured a a sequence of steps. We
show the operation of every step on the following CPC function:

cps void g() {
int i;
i = 0;
while(1) {

f(i);
i++;

}
}

wheref is acps function.

5.1.1 Making the flow of control explicit

In this step, we ensure that any internal part of an expression has
only trivial flow of control. Given any statement of the form

s[e[e’]]

wheree’ is either a CPC function call or an expression with side
effects, we replace it with

x = e’;
s[e[x]]

wherex is a fresh variable of the right type.
This step has no effect on our example.

5.1.2 Elimination of control structures

In this step, loops (while, do. . .while andfor) andcase con-
structs are replaced with their equivalents in terms of gotos. After
this step, our example has the following form:

cps void g() {
int i;
i = 0;

l: f(i);
i++;
if(1) goto l;

}

In order to simplify the rest of the exposition, we “cheat” by
simplifying this snippet to the following equivalent code:

cps void g() {
int i;
i = 0;

l: f(i);
i++;
goto l;

}

5.1.3 Making branch continuations explicit

In this step, we add an explicit goto to any conditional branch that
doesn’t end in either goto orreturn. Thus, a conditional such as

if(e) { s1; } else { s2; }

becomes

if(e) { s1; goto l; } else { s2; goto l; }
l: ;

wherel is a fresh label.
This step has no effect on our example.

5.1.4 Elimination of gotos

It is a well-known fact in the compiler folklore that a tail call is
equivalent to a goto. It is less well-known that a goto is equivalent
to a tail call [18].

This step replaces all gotos with the equivalent tail calls. This
transformation is obviously only valid in systems that implement
elimination of tail calls, which, as we noted in Sec. 4.3, is the case
in CPC.

After this step, our example looks as follows:

cps void g() {
int i;
i = 0;
cps void l() { f(i); i++; l(); return; }
l();
return;

}

Note that the functionl introduced in this step has a free variable
i, which C does not allow (unlike ALGOL-60, Pascal and most
functional languages). This “inner function” will be eliminated
duringλ-lifting (Sec. 5.1.6).

5.1.5 β-expansion in tail position

At this point, the functiong is in CPS-convertible form;l, how-
ever, is not. We putl into CPS-convertible form by encapsulating
the final fragment into a new functionh (β-expandingthis final
fragment), and iterating this process until all functions are in CPS-
convertible form:

cps void g() {
int i;
i = 0;
cps void h() { i++; l(); return; }
cps void l() { f(i); h(); return; }
l();
return;

}

5.1.6 λ-lifting

All that remains to be done at this point is to eliminate inner
functions. A standard technique for doing that isλ-lifting [10]. λ-
lifting consists in making all free variables into explicit arguments,
and adding an extra argument to all calls to the lifted function.

λ-lifting, however, is only correct in a call-by-name language.
In a call-by-value imperative language, it has the effect of creating a
copy of the free variable, which makes any mutation performed by
the inner function invisible to the outer one. Consider for example
the following code:

cps void f() {
int i;
cps void g() { i++; }
i = 1;
g();
printf("%d\n", i);
return;

}

6 2006/3/3



After λ-lifting, this becomes

cps void g(i) { i++; }
cps void f() {

int i;
i = 1;
g(i);
printf("%d\n", i);
return;

}

which prints 1 rather than 2.
There is one case, however, in whichλ-lifting is correct in

call-by-value: if a function is only ever called in tail position,
the changes it performs to the values of its free variables can
never be observed; it may therefore be lifted with no change to
the semantics of the program. As all the inner functions that we
introduced (during elimination of gotos andβ-expansion) are only
called in tail position,λ-lifting is correct in our case.

After λ-lifting, our example has the following form:

cps void h(int i) { i++; l(i); return; }
cps void l(int i) { f(i); h(i); return; }
cps void g() {

int i;
i = 0;
l(i);
return;

}

5.2 Conversion into CPS-convertible form: actual algorithm

The algorithm described in Sec. 5.1 performs more transformations
than strictly necessary. Indeed, it starts by converting every single
loop into a set of gotos (Sec. 5.1.4), and then converts all of those
gotos into expensive, CPS function calls. The overhead of such a
coarse transformation is probably non-negligible.

For this reason, the CPC translator uses a more careful algo-
rithm: it only performs those transformations that are necessary in
order to arrive to a CPS-convertible form. More precisely, a loop
is converted into gotos only when it contains CPS function calls
or return statements. Similarly, a goto is converted to a function
call when it follows a CPS function call. As this introduces new
CPS function calls, which produce new opportunities for the other
transformations, all the steps are intermixed in an iterative process.

The CPC translator is thus structured into just three steps:

1. conversion into CPS-convertible form;

2. λ-lifting;

3. CPS conversion.

Step (1) invokes on an as-needed basis all of the transformations
in Sec. 5.1. As to step (2), it might encounter not only free variables,
as in usualλ-lifting, but alsofreeor escaping gotos, gotos to a label
that is in the enclosing function. Thus, elimination of gotos can be
invoked again by step (2).

A further efficiency improvement is obtained by inlining (β-
reducing) functions that either immediately return to their caller
or merely call another function after permuting their arguments;
such functions are often introduced by the process described in
Sec. 5.1.3. This inlining happens after step (2).

6. Limitations and further extensions
6.1 Limitations

While our aim is to allow any reasonable C construct in CPS
context, this is not quite the case in the current implementation of

CPC. A number of limitations of our scheme of translation have
been identified.

C’s facility for non-local transfer of control,longjmp and its
variants, cannot be used in a CPC program. While the continuation
provided by CPC could be used to implement non-local transfer
of control, an implementation would need to be able to capture all
of the transfers escaping from a piece of C code to map them to
CPC transfers; such “wildcard exception handlers”, while available
in most programming languages, cannot be implemented within
portable C.

A more serious limitation is that it is currently impossible to
reliably take the address of a local variable in CPS context. There
are two reasons for that: first, due toλ-lifting, local variables may
be duplicated; in effect, from the programmer’s point of view, they
“move around”. Second, local variables may vanish due to the
elimination of tail calls performed by the CPS conversion step; and,
as we noted in Sec. 5.1.4, conversion to CPS-convertible form relies
on the fact that tail calls are eliminated.

The simple way of lifting this limitation would be to include
an extra layer of indirection, in effect converting local variables
to references to heap-allocated storage (perhaps using anad hoc
allocator). In order to avoid the related efficiency cost in cases
where it is not necessary, we will need a simple pass of static
analysis to conservatively determine the set of variables whose
addresses may escape; C’s ability to take the address of a field
within a compound data structure (an array or a structure) makes
this somewhat cumbersome.

CPC does not allow communication between threads through
shared local variables. Indeed, if a local variable is in scope in
the bodies of two distinctcpc_spawn statements,λ-lifting will
duplicate it, thus removing all sharing. While this limitation is
consistent with the C language (which does not allow shared access
to local variables due to the lack of inner functions), it might be
convenient to have it lifted; that too could be done by accessing the
shared variables through an additional indirection.

While there is no good reason for this restriction, we do not
currently allow pointers tocps functions.

Finally, we do not allowcps functions to take a variable number
of arguments. While the CPS conversion could in principle be
generalised to such function, I do not currently feel that this minor
limitation justifies the resulting increase in complexity.

6.2 Interaction with native threads

CPC provides a cooperatively scheduled user-space implementa-
tion of threads, and such a system is convenient for I/O bound appli-
cations. There are some cases, however, where using the system’s
native (preemptively scheduled) threads is necessary.

A cooperative threads package requires all interaction with the
environment to go through non-blocking or asynchronous inter-
faces; most operating systems, however, still fail to provide non-
blocking alternatives to all of their blocking interfaces. The most
egregious case in the Unix environment is the interface to the
network resolver (gethostbyname andgetaddrinfo), but even
something as simple as disk I/O cannot be done asynchronously in
many implementations.

Native threads are also desirable when a program contains
compute-bound sections: in a cooperative threads package, CPU-
intensive code needs to be peppered with explicit calls to a co-
operating primitive (cpc_yield), which is cumbersome at best.
In some environments, it may furthermore be possible for native
threads to use more than one physical processor. (It may be argued,
however, that on a system with relatively cheap processes such as
Unix, full-fledged processes communicating through byte streams
(pipes, sockets) might be a better solution to this kind of problem.)

7 2006/3/3



One technique for dealing with such situations consists in al-
lowing a cooperative thread to bedetachedfrom the cooperative
scheduler and become a native thread [12]. When the blocking or
CPU-intensive activity is over, the thread can be reattached to the
cooperative scheduler. The Fair Threads library [17] expands on
this scheme by allowing for multiple cooperative schedulers, each
in its own native thread, between which threads are free to migrate.
It is not yet clear to me to what extent the full generality of the latter
scheme is necessary.

In a continuation-passing system such as CPC, such an abstrac-
tion can be implemented in a manner that is both simple and effi-
cient. A pool of native threads communicate with the cooperative
scheduler through two blocking queues of continuations: one queue
of recently detached threads, and one queue of threads waiting to
be reattached. In normal circumstances, both queues are empty, and
a number of native threads are blocked on the first queue. When a
cooperative thread needs to detach from the native scheduler, it en-
queues its continuation on the first queue, which causes one of the
native threads to be woken up; when a native threads needs to reat-
tach, it enqueues its continuation on the second queue.

7. Relation with event loop programming
The code generated by the CPS transformation looks very much
like event loop code. There is one major difference: where an event
handler takes a single tuple of arguments, a function in CPS style
takes a continuation, which is a complex structure consisting of
multiple tuples of arguments and pointers to code.

Consider however the case of a CPC program in which all calls
to cps functions occur in tail position; at runtime, all continuations
passed in such a program consist of a single closure (a function
pointer and a tuple of arguments), which corresponds exactly to an
event handler. Any program in CPS-convertible form can be con-
verted to such form by first eliminating all recursion [3] and then
inlining all cps function calls that are not in tail position. Another
way of achieving a similar result would be to apply a defunctional-
ising transformation [16] to continuations. Note that both schemes
require global knowledge of the program being translated.

It is my guess that programmers writing event loop code have a
mental model that is expressed in terms of threads, and apply some
combination of the two techniques outlined above on the fly.

8. Experimental results
All the benchmarks described in this section were performed on a
machine with an Intel Pentium 4 processor at 2.6 GHz with 512 MB
of memory running Linux 2.6.8 with swap disabled.

I compared CPC with the following thread libraries:

• nptl, the native thread library in GNU libc 2.3 (I used the version
from libc 2.3.5);

• LinuxThreads, the native thread library of earlier GNU libc
releases (I used the version bundled with libc 2.3.5);

• GNU Pth version 2.0.1;

• State Threads (ST) version 1.5.1.

Nptl and LinuxThreads are kernel thread libraries, while GNU Pth
and ST are cooperative user-space thread libraries.

Micro-benchmarks I wrote a number of benchmarks that were
each aimed at measuring the performance of a single feature of
CPC. The most important in my view is the ability of CPC to use
massive numbers of threads; on a machine with 512 MB of physical
memory and no swap space, CPC can handle up to 7.4 million
continuations, implying an average memory usage of roughly 69
bytes per continuation. This figure compares very favourably to

both kernel and user-space thread libraries (see Fig. 1), which my
tests have shown to be limited on the same system to anywhere
from 250 to 30 000 threads in their default configuration, and to
99 000 threads at most after some tuning.

Time measurements, as shown in Fig. 2, yielded somewhat more
mixed results. A loop with a single function call is roughly 100
times slower when the call is CPS-converted than when it is native.
This rather disappointing result can be explained by two factors:
first, due to the translation techniques used, after CPS conversion
the loop consists of four CPS and four native function calls. The
remaining factor of 20 can be attributed to the inefficiency on mod-
ern hardware of making an indirect function call, which prevents
accurate branch prediction. The fact that CPS-converted functions
are mostly opaque to the native compiler might also play a role.

The situation is much better when measuring the speed of the
concurrency primitives. Both spawning a new continuation and
switching to an existing one were measured as being five times
faster than in the fastest thread library available to me.

nptl 250
LinuxThreads 1 533
Pth 70 000 (est.)
ST 29 000
ST (4 kB stacks) 99 300
CPC 7 390 000

All thread libraries were used in their default configuration, except
where noted. Pth never completed, the value 70 000 is an educated
guess.

Figure 1. Number of threads possible in various thread libraries

call cps-call switch cond spawn
nptl 4.3 · 10−3 2.7 10.1 6.3
LinuxThr. 4.3 · 10−3 2.2 7.3 42
Pth 4.3 · 10−3 23.2 59
ST 4.3 · 10−3 2.7 3.6
CPC 4.3 · 10−3 0.33 0.57 0.67 0.78

All times are in microseconds. The columns are as follows:
call: native function call;
cps-call: call of a CPS-converted function;
switch: context switch;
cond: context switch on a condition variable;
spawn: thread creation.

Figure 2. Speed of various thread libraries

Full-size benchmark In the absence of reliable information on
the relative dynamic frequency of CPS function calls and thread
synchronisation primitives in CPC programs, it is difficult to esti-
mate the performance of CPC programs from the above data. In or-
der to experimentally determine this information, Boucher [4] has
written a small web server in CPC. The server consists of 1700
lines of CPC code, more than half of which is devoted to the HTTP
parser; all cooperation between contexts happens on input/output
operations or on condition variables, with the exception of two ex-
plicit cpc yield operations. In the presence of 1000 simultaneous
connection attempts, his server appears to be five times faster than
thttpd, a standard web server implemented in hand-written event-
loop style (15 ms mean connection time for Boucher’s web server,
against 60 ms for thttpd when running on a Pentium-M processor
downclocked to 600 MHz in order to avoid being limited by the
client’s performance). Boucher’s web server has not yet been tested

8 2006/3/3



with larger numbers of simultaneous clients due to a limitation of
the current implementation of the CPC runtime.

Conclusion
CPC is a concurrent extension of the C programming language
that provides extremely cheap cooperatively scheduled threads. By
combining in a novel way a dozen well-known source-to-source
transformations, the CPC implementation provides a relatively
clean semantics and very modest memory requirements, compa-
rable to those of hand-written event-loop driven code.

CPC is not finished yet. In particular, the current implemen-
tation has a number of annoying limitations that need to be lifted.
And while the little experience that we have had with programming
in CPC seems to show that it is a pleasant language to program in,
we need to write more complex programs in order to find out what
its limitations might be.

The threads provided by CPC are purely cooperative user-space
entities. In some situations, however, native threads are a necessary
evil. CPC should be easy to extend to allow cooperative threads to
become native ones.

Software availability The CPC translator is available from
http://www.pps.jussieu.fr/~jch/software/cpc/.

References
[1] Andrew W. Appel.Compiling with Continuations.Cambridge Univer-

sity Press. 1992.

[2] J. Berdine, P. W. O’Hearn, U. S. Reddy, H. Thielecke. Linear
Continuation Passing.Higher-Order and Symbolic Computation. 2002.

[3] R. S. Bird. Notes on Recursion Elimination.Communications of the
ACM, June 1977,20:6, pp. 434-439. 1977.

[4] Édouard Boucher.Tuś, un serveur web en CPC.Rapport de stage,École
Nationale Suṕerieure des T́elécommunications, Paris, France. 2005

[5] L. Cardelli and R. Pike. Squeak: A language for communicating
with mice. In B. A. Barsky, editor,Computer Graphics (Proc. of
SIGGRAPH’85)19, pp. 199-204, July 1985.

[6] James Gosling, David S. H. Rosenthal, Michele J. Arden.The NeWS
Book: an introduction to the Network/Extensible Window System.
Springer-Verlag. 1989.

[7] Matteo Frigo, Charles E. Leiserson and Keith H. Randall. The
Implementation of the Cilk-5 Multithreaded Language.Proceedings
of the 1998 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’98), Montreal, Canada. 1998.

[8] Michael Halbherr, Yuli Zhou and Chris Joerg. MIMD-Style Parallel
Programming Based on Continuation-Passing Threads.Proceedings of
the 2nd International Workshop on Massive Parallelism, Capri, Oct.
1994.

[9] ISO/IEC 9899:1999 Information technology — Programming Lan-
guage C. 1999.

[10] T. Johnsson. Efficient Compilation of Lazy Evaluation.Proceedings
of the SIGPLAN’84 Symposium on Compiler Construction. Montreal,
1984.

[11] R. Kelsey, W. Clinger, J. Rees (eds.). Revised5 Report on the Algo-
rithmic Language Scheme.Higher-Order and Symbolic Computation,
11:1, August 1998 andACM SIGPLAN Notices, 33:9, September 1998.
1998.

[12] Simon Marlow, Simon Peyton Jones and Wolfgang Thaller. Extending
the Haskell Foreign Function Interface with Concurrency.Proceedings
of the Haskell Workshop, Snowbird, Sept 2004.

[13] Atsushi Ohori. A Curry-Howard isomorphism for compilation and
program execution.Proceedings of TLCA’99, Springer LNCS 1581,
258–179. 1999.

[14] John Ousterhout. Why Threads Are A Bad Idea (for most purposes).
Invited talk at the 1996USENIX Technical Conference. 1996.

[15] Gordon D. Plotkin. Call-by-name, Call-by-value and theλ-calculus.
Theoretical Computer Science1. 1975.

[16] John C. Reynolds. Definitional interpreters for higher-order program-
ming languages. InProceedings of the ACM National Conference, pp.
717-740, August 1972.

[17] M. Serrano, F. Boussinot and B. Serpette. Scheme Fair Threads.
Proceeding of the 6th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming (PPDP). Verona,
Italy, 2004.

[18] Guy Lewis Steele, Jr. and Gerald Jay Sussman. Lambda: The Ultimate
Imperative. AI Lab Memo AIM-353. MIT AI Lab. March 1976.

[19] Christopher Strachey and Christopher P. Wadsworth. Continuations: A
mathematical semantics for handling full jumps. Technical Monograph
PRG-11, Oxford University Computing Laboratory, Programming
Research Group, Oxford, England, 1974.

[20] J. Robert von Behren, Jeremy Condit and Eric A. Brewer. Why Events
Are a Bad Idea (for High-Concurrency Servers). InProceedings of
HotOS’03: 9th Workshop on Hot Topics in Operating Systems, May
2003, Lihue (Kauai), Hawaii, USA. 2003.

9 2006/3/3


