

Bachelor Thesis

Implementation of OpenOffice.org

Add-ons for Text Extraction

submitted by

Ky Anh Tuan Tran

Supervisors:

Prof. Dr. Ralf Möller

Dipl.-Ing. Maurice Rosenfeld

Institute of Software, Technology & Systems (STS)

Technical University Hamburg–Harburg

Hamburg, GERMANY

February 2009

2

Acknowledgements

I would like to express my sincerest gratitude to my supervisor, Dipl.-Ing. Maurice Rosenfeld,

who has supported me throughout this thesis with his patience in discussing and giving me

lots of helpful criticisms. I am also deeply indebted to Prof. Ralf Möller who has given me

guidance and encouragement to proceed with the interesting topic of the thesis.

Declarations

I hereby declare that this thesis is my own original work and effort, conducted under the

supervision of Prof. Dr. Ralf Möller and Dipl.-Ing. Maurice Rosenfeld. All sources of

information used have been acknowledged in the bibliography part.

Hamburg, February 1st, 2009

Ky Anh Tuan Tran

3

Contents

1. Introduction .. 4

1.1 Motivation .. 4

1.2 Document Structure .. 4

2. Background .. 6

2.1 Universal Network Objects (UNO) .. 7

2.1.1 UNO Objects ... 8

2.1.2 UNO Services .. 9

2.1.3 UNO Interfaces .. 10

2.1.4 UNO Properties ... 12

2.2 OpenOffice.org Application Environment .. 12

2.2.1 Desktop Environment .. 13

2.2.2 Framework API ... 15

2.2.3 Frame-Controller-Model Paradigm in OpenOffice .. 15

3. Implementation .. 20

3.1 OpenOffice.org Add-On with NetBeans IDE ... 21

3.2 Text working and getting a paragraph from current processing text document 22

3.2.1 XTextDocument, the first step to work with a OpenOffice.org document 22

3.2.2 Model Cursor and View Cursor ... 24

3.2.3 Getting text content from paragraphs ... 25

3.3 Working with OpenOffice.org GUI .. 27

3.3.1 Dialog Model ... 27

3.3.2 Create and insert FixedText and ListBox to Dialog ... 30

3.3.3 KeyListener, KeyHandler and MouseListener in UNO ... 34

3.3.4 Open a document in a new window ... 35

3.4 OpenOffice as a web client in web service..36

4. Conclusion and Outlook ... 38

5. Bibliography ... 40

4

Chapter 1

Introduction

1.1 Motivation

Openoffice.org(OpenOffice) is an open-source office software which supports word

processing with the OpenOffice Writer, spreadsheets with OpenOffice Calc, presentations

with OpenOffice Impress, graphics with OpenOffice Draw and databases with OpenOffice

Base, etc. The user can save all data in different formats like .odg, .odp, .ods or .odt,

which can be read or changed by other office softwares.

The main purpose of this project is the semantic text analysis from OpenOffice Writer. By

using OpenOffice Universal Network Objects (UNO), the OpenOffice Application

Environment is accessed to get the content of a document processed in OpenOffice Writer.

From this step, the text content is analyzed semantically to get a desired instance such as a

paragraph, a sentence or a word. In this project, the desired instance is defined as a

paragraph that is used as an input to an external server. The main function of the server is

a semantic search machine. It analyzes the input and the other documents semantically

and produces a response as a list of semantic related documents together with their

information via the names of the documents, the links to access them, etc.

OpenOffice Writer receives the response from the server and provides the user with a

service, so that he can choose a desired document from the list and open it in a new

window to read or process. The main focus of this project is on the side of OpenOffice

Writer.

1.2 Document Structure

Chapter 2 introduces the theoretical background of OpenOffice. This chapter provides the

reader with an overview of UNO and OpenOffice.org Application Environment.

5

Chapter 3 points out different aspects of this project through its implementation. Session

3.1 explains how to start working with Add-On by using NetBeans. While session 3.3

involves working with text contents of the OpenOffice Writer document, session 3.4

introduces the way to work with GUI of the OpenOffice Writer. Session 3.4 discusses its

role as a web client in web service of OpenOffice.

Chapter 4 presents several frequently met problems when working with OpenOffice and

suggests further improvements that can be made with OpenOffice.

Chapter 5 shows the bibliography of this project.

6

Chapter 2

Background

To start working with OpenOffice, it is important to understand the concept of Universal

Network Objects and the OpenOffice.org Application Environment. They are the basic

concepts providing the developer with an overview of Openoffice components as well as

the way to access and to program with OpenOffice. UNO make it possible to work with

OpenOffice using different programming languages such as Java, C++, OpenOffice Basic

and .NET. An overview and the components which the developer works on will be

introduced in session 2.1 Universal Network Objects. UNO define the amount of objects,

interfaces and properties that programmers must understand before analyzing the structure

and the way to work with a new programming environment. UNO services provide the

instances of OpenOffice components such as paragraphs, sentences, cursors, etc. Being

either visible or invisible, they allow the interfaces to access themselves or let the function

set their properties. Therefore, UNO services, UNO interfaces and UNO properties are

the UNO components that build the structure of UNO.

Together with UNO, the OpenOffice.org Application Environment builds the basic

structure for OpenOffice. It provides the developer with a model hierarchy to explain how

the instances are organized in OpenOffice. Figure 1.1 provides an overview of the

OpenOffice.org Application Environment’s structure. The OpenOffice.org Application

Environment is divided into two parts: the Desktop Environment and the Framework API.

The Desktop Environment is built by Desktop Service and Auxiliary Objects. The Desktop

Service is the central management instance of the OpenOffice application framework,

while the Auxiliary Objects are the sub instances of the hierarchy and interact directly

with the UNO-based office. The Framework API is responsible for setting the visibility of

the components and processing the requests from the user or from OpenOffice. To have a

clearer overview of this Framework API, the Frame-Controller-Model Paradigm is

analyzed.

7

Figure 1.1: OpenOffice.org Application Environment [1]

2.1 Universal Network Objects (UNO)

By using UNO, the developer can program and work with OpenOffice from various

programming languages such as Java, C++, .NET, or Openoffice.org Basic. Furthermore,

UNO supports many operating system environments like Linux, Solaris, Windows, Mac

OS X, FreeBSD, etc.

OpenOffice can be accessed from UNO, because Application Programming Interface

(API) is supported by UNO. It is OpenOffice API that makes OpenOffice programmable

from the user’s view. This API contains a big amount of services and interfaces which

allow the developer to work with every component of OpenOffice such as the OpenOffice

Writer, the OpenOffice Cal, etc. by writing an Add-On, Add-In or a complete application

as a client of OpenOffice.

One of the Java components used for this project is Java Beans which supports UNO and

integrates with Java IDEs (Integrated Development Environment) to create a container

used for data transmission to OpenOffice. It makes the access to OpenOffice easier. After

installing the OpenOffice.org API plug-in (found in the plug-in package of NetBeans) and

the OpenOffice.org Software Development Kit (SDK)[2], the developer still needs to add

in some API references to NetBeans IDE, then he can choose which kind of application he

wants to write to access OpenOffice. It can be an OpenOffice.org Client Application

Project Type, an OpenOffice.org Calc Add-In Project Type, a General UNO Component

Project Type or an OpenOffice.org Add-On Project Type. These types simplify the access

and usage of the API in new projects and make it easier and faster to program or create

complete OpenOffice extension packages. In this project, the Openoffice.org Add-On

Project Type is used.

8

2.1.1 Objects in UNO

An object in UNO is a software artifact that has methods to call and attributes to set and

get. The UNO object supports a set of interfaces that specify methods and attributes. UNO

use multiple-inheritance interfaces and services to specify complete objects which can

have many aspects. Each single-inheritance interface describes only one aspect of an

object. Therefore, one object can implement multiple interfaces.

OpenOffice objects can inherit services, including interfaces from only one parent object.

Figure 2.1 demonstrates the relationship between objects, services and interfaces. Within

this figure, OfficeDocument object is the parent object of TextDocument object.

Figure 2.1: Relationship between Objects, Services and Interfaces

9

2.1.2 UNO Services

Objects in UNO can be seen as UNO services in OpenOffice.org. The

com.sun.star.lang.ServiceManager is a main factory in every UNO application to create

the services (see figure 2.2). It initiates the services with their service names, for example:

com.sun.star.frame.Desktop for loading the documents or managing the access to current

documents, com.sun.star.text.GlobalSetting for setting a view and a print format of text

documents. We will discuss the importance of desktop service and the relationship

between those services later in the session 2.2.

Figure 2.2: Service Manager [1]

There are various methods to create a service in OpenOffice. We go back to service

manager. It provides a main com.sun.star.lang.XMultiServiceFactory interface offering

three methods: createInstance() returning a default com.sun.star.uno.XInterface service

instance which supports all interfaces specified for the requested service name;

createInstanceWithArguments() returning a instantiation of the service with additional

parameters; and getAvailableServiceNames() returning every service name that the service

manager does support. For example: By using the service manger, a FixedTextModel

service can be created.

Object oFixedTextModel = xMultiServiceFactory.createInstance

("com.sun.star.awt.UnoControlFixedTextModel");

However, the service manager described above is not suitable for the instantiation of

every new component, because a new component needs more functions and the

10

information must be exchangeable during the implementation process. The service

manager does not support in this case. Therefore, the concept of component context is

needed. It can be seen as a container offering named values and every named value goes

with a component, for example: service manager is one of the named values.

A component can be reached from the component context by giving a request together

with a named value. The component context supports only the

com.sun.star.uno.XcomponentContext interface that offers getValueByName() method to

get an implementation property or a service property but it is used mostly to get a

singleton. Singletons are used to specify named objects where exactly one instance can

exist in the life of a UNO component context like theServiceManager, for example:

Object serviceManager = xComponentContext.getValueByName

(“/singletons/com.sun.star.lang.theServiceManager”);

Figure 2.3 shows the relationship between the component context and the servicemanager

together with their interfaces.

Figure 2.3: ComponentContext and the ServiceManager [1]

In terms of the relationship between the service manager and the component context, the

service manager supports the com.sun.star.lang.XMultiComponentFactory interface which

replaces the XMultiServiceInterface, because it has an additional XComponentContext

parameter for the two object creation methods, for example: both objects Desktop and

UnoControlDialogModel can be created from a context:

Object oDialogModel =

xMultiComponentFactory.createInstanceWithContext(

"com.sun.star.awt.UnoControlDialogModel",

xComponentContext);

Object desktop =

xMultiComponentFactory.createInstanceWithContext(

"com.sun.star.frame.Desktop", xComponentContext);

11

2.1.3 UNO Interfaces

In OpenOffice.org API, names of all interfaces start with “X” to be distinguishable from

the names of other entities. The developer cannot use a factory like a service manager to

access methods of an interface which the object supports, because the developer needs to

request the UNO Runtime Environment to get the appropriate reference for this interface

while the compiler is not aware of it. Indeed, the compiler only knows about objects but

does not know about interfaces of the object. However, it is sometimes necessary to

access the interfaces, as there is a need to call a method of an interface. Thus the Java

UNO Runtime Environment provides queryInterface() method to solve this problem. This

method is about safe casting of UNO types across process boundaries. It makes sure the

developer gets a reference that can be casted to the needed interface type, no matter if the

target object is local or a remote object, for example: the XtextDocument interface is

gotten from the Desktop object by using the function queryInterface().

XComponentLoader xComponentLoader = (XComponentLoader)

UnoRuntime.queryInterface(XComponentLoader.class, desktop);

The developer usually does not need to query an interface from an object, because he can

also query an interface from another interface, for example:

XSpreadsheetDocument xSpreadsheetDocument =

(XSpreadsheetDocument) UnoRuntime.queryInterface(

XSpreadsheetDocument.class, xComponent);

The call to queryInterface() is necessary in Java only when the developer has a reference

to the object which supports the desired interface. Nonetheless, he does not have the

proper reference type yet. Another method which can return the desired interface from the

existent interface is that, the existent interface provides a function for this purpose, for

example:

XController xController = xFrame.getController();

The XController interface is gotten from the XFrame interface by using the

getController() method . Both methods to get an interface from UnoRuntime or from

another interface are used many times in this project.

Sometimes the developer does not need an agent service to get the desired service

containing the function he needs. He can also work with the interfaces of the services.

This is the best way to work with OpenOffice.org containing a complicated structure.

12

2.1.4 UNO Properties

Each OpenOffice.org object has a lot of properties and offers these properties through its

interfaces so that the developer can work with them. There are two types of property

interfaces. The most basic form is com.sun.star.beans.XPropertySet. The other type,

com.sun.star.beans.XmultiPropertySet, allows the developer to get or set many values of

properties with a single method call. The latter is more popular among the developers.

Two methods to work with XPropertySet in Java:

void setPropertyValue(String propertyName, Object

propertyValue);

Object getPropertyValue(String propertyName);

It can also be possible to query XPropertySet from XMultiPropertySet, for example:

//XPropertySet from (XMultiPropertySet) xLBModelMPSet

XPropertySet xLBModelPSet = (XPropertySet)

UnoRuntime.queryInterface(XPropertySet.class,

xLBModelMPSet);

//set value for (XPropertySet) xLBModelPSet

xLBModelPSet.setPropertyValue("MultiSelection",

Boolean.FALSE);

The way to set values with XMultiPropertySet is a bit different. The developer must

remember to pass the property names in alphabetical order.

void setPropertyValues(String[] propertyName, Object[]

propertyValue);

Usage sample of XMuiltiPropertySet will be explained further in the chapter 3.

2.2 OpenOffice.org Application Environment

The OpenOffice allocates defined interfaces which provides a way to access OpenOffice

from external programs or to load another OpenOffice document from the processing

document. To understand the structure of OpenOffice, it is necessary to have knowledge

of the Openoffice.org Application Environment which consists of the Desktop

Environment and the Framework API. The overview is shown in Figure 1.1.

13

Desktop Services and Auxiliary Objects are the principle parts of the Desktop Environment

whose functions are executed by using the Framework API. On the other side, the

Framework API includes Component Framework and Dispatch Framework. While the

Component Framework is responsible for making components viewable in OpenOffice,

the Dispatch Framework handles command requests from the graphic user interface.

2.2.1 Desktop Environment

The com.sun.star.frame.Desktop service is the centre of the OpenOffice.org Application

Environment. All windows with the viewable components are based on this service and

organized in a hierarchy of frames because the desktop is the root of this hierarchy.

Through the com.sun.star.frame.XDesktop interface of the Desktop service, the viewable

components can be loaded, the frames and components can be accessed, and the office can

be terminated, etc. Figure 2.4 shows the relationship between desktop service, frames and

components.

Figure 2.4: The Desktop terminates the office and manages components and frames [1]

The desktop object and frame objects use the Auxiliary Services which interact with the

UNO-based office, but are not accessible by the OpenOffice.org API. Therefore, the

desktop service and surrounding objects are grouped together in the Desktop Environment.

This definition is used, whereas the problem concerns with the viewable components, the

windows, as well as the frames.

The viewable components are classified into three different kinds:

- Office documents with a document model and controller, for example, a normal text

document or calculation document.

14

- Components with a controller but without model, for example, a database browser.

- Windows without API-enabled controller, for example, message windows.

All of them contain the com.sun.star.lang.XComponent interface, which offers the facility

to access those components.

The frames are used for establishing the connections between the components, the

windows and the desktop environment. The frame plays therefore an important role in

OpenOffice.org Application Environment. The frame is seen as a sub class of the desktop

service. It is shown in figure 2.5.

Figure 2.5: Description of the desktop service and the frame [1]

The above figure shows the relationship between com.sun.star.frame.Desktop service and

com.sun.star.frame.Frame service together with their interfaces. The most important

interface of the service Desktop is com.sun.star.frame.XDesktop. The XDesktop interface

makes the access to the frames and the components available. It defines the following

methods:

com.sun.star.frame.XFrame getCurrentFrame();

com.sun.star.lang.XComponent getCurrentComponent();

com.sun.star.container.XEnumerationAccess getComponents();

getCurrentFrame() and getCurrentComponent() functions return the active frame and the

active document model, while getComponent() function returns the interface to all loaded

15

documents. This interface also provides the methods to control the termination of the

office process:

boolean terminate ();

void addTerminateListener (

com.sun.star.frame.XTerminateListener xListener);

void removeTerminateListener (

com.sun.star.frame.XTerminateListener xListener);

2.2.2 Framework API

There are two types of framework: Component Framework and Dispatch Framework,

depending on which interface of OpenOffice components it implements. The Component

Framework is responsible for implementing the Frame-Controller-Model Paradigm to

define the relationship among objects in OpenOffice. We will discuss this paradigm

further in the session 2.2.3.

The Dispatch Framework helps the components in the Component Framework work

together, because the frame provides the communication context with the components that

it contains and the communication from a controller to the Desktop Environment with help

of the interface com.sun.star.frame.XDispatchProvider. The Dispatch Framework also

manages or implements command requests from or to application environment. The

dispatch API is called from UI to access the component whenever a command is needed

to be dispatched. Because only the component knows how to execute a command, the

dispatch API calls are handled by the frame. The frame can assign exactly the component

that can handle the command.

2.2.3 Frame-Controller-Model Paradigm in

OpenOffice

Frame-Controller-Model (FCM) Paradigm is similar to the well-known Model-View-

Controller (MCV) Paradigm in software engineering. MCV is an architectural pattern for

structuring in software development. The aim of MCV is to show a flexible program

design that facilitates changes or expansions and enables the reusability of the separate

component. The MCV isolates three application areas: document data (model),

presentation (view) and interaction (controller). But FCM is quite different from MCV. It

is applied in three other areas: model for document object, controller for managing the

screen presentation of the model, and frame for establishing the connection between

controller and window. Figure 2.6 shows the organization of the FCM.

16

Figure 2.6: Frame-Controller-Model Organization [1]

- The Model: Through the model, we can access all data of a document directly, for

example: a text, a table or other components. It is important to understand that the

developer has to work with the model directly when he want to change it through the

OpenOffice API. The model has a controller object which enables the developer to

manipulate the visual presentation of a document in the user interface.

- The Controller: The controller is used as a bridge to present the document on the

screen without any knowledge of the data in this document. It interacts with the user

interface for movements, such as moving the visible text cursor, flipping through

screen pages or changing the zoom factor. The controller establishes the connection

between a frame and a document model with help from the

com.sun.star.frame.XController interface. This interface has two methods: getModel()

for getting the document frame and getFrame() for providing the frame that the

controller attaches to. A detailed explanation can be found in The Frame part.

Different controllers have different ways to present a document on the screen. It is

also possible that two controllers are used for the same model. Figure 2.7 shows how

the controller connects the frame and the model.

17

Figure 2.7: Controller with Model and Frame [1]

Another purpose of the controller is to gather information about the current view

status, such as current selection, current page, total page count or line count. Usually

the controller holds the model and only the model can have access to the data.

- The Frame: The main task of the frame is linking the components and the windows. A

frame can contain one component or one component with subframe. A frame usually

has two windows: a container window and a component window. A frame is

constructed in a com.sun.star.awt.XTopWindow and this window becomes a container

window when its frame is initialized in calling the initialize() method at the

com.sun.star.frame.XFrame interface. The container window can appear in front of

other windows or be sent to the background.

The component window has a rectangular area to display the component and it

receives GUI events while it is active. A com.sun.star.awt.XWindow is an instant

which becomes a component window whenever the components are set in the frame

with the setComponent() method at the XFrame interface. At the same time when the

components are loaded into the frame, the interface com.sun.star.frame.XController is

also called. The controller holds the model, which can access the components. That is

why the components can get its window and the controller is called a bridge to present

the components on the screen. Figure 2.8 shows the relationship between frame,

subframe, container window and component window.

18

Figure 2.8: Frame containing a component and a sub-frame [1]

The Desktop service, which is available at the global service manager, includes the

Frame service. In the desktop frame hierarchy, the Desktop becomes parent frame of

other frames. The Desktop service provides the com.sun.star.frame.XFramesSupplier

interface for this purpose. It is passed to the setCreator() method at the interface

XFrame. Figure 2.9 shows a better overview about this relationship:

19

Figure 2.9: Desktop Service and Component Framework [1]

20

Chapter 3

Implementation

OpenOffice.org Add-On has two functions in this project:

- The first function allows the user to get a desired paragraph that is similar to the

processing paragraph from the document.

- The second function sets OpenOffice as a client. The client sends the processing

paragraph to the server and gets back the response as a list of documents.

But they both have the same first task, which is to handle the OpenOffice programming

environment and to get the events from the users whenever the user selects the function he

wants to start. Then the Add-On analyzes the semantic text content to extract a working

paragraph for the next task. The following steps must be followed to complete this task:

- Create the Add-On from IDE and allocate the interfaces such as XFrame,

XComponentContext, etc. (Session 3.1)

- Handle the selection of the user by creating and adding the XKeyHandler to

OpenOffice from the XFrame. (Session 3.3.3)

- Analyze the text document and get the processing paragraph. (Session 3.2)

o Get the processing document by accessing XTextDocument, XController from

XFrame. (Session 3.2.1)

o Get the XTextCursor model cursor and XTextViewCursor view cursor from

XController. (Session 3.2.2). Then provide the XParagraphCursor and XText

for the next step.

o Save the text contents of all existent paragraphs in a xParagraphArray array

from the XText and getting the text content of the processing paragraph from

XParagraphCursor. This step is explained in session 3.2.3.

21

In terms of the first function, it is necessary to save all text paragraphs in order to compare

with the processing paragraph in a later step. The program will display all similar

paragraphs in a window on the screen so that the user can choose which one should be

inserted into the working document without having to write the same text again.

One of the tasks of the second function is to pack the working paragraph in a message to

send to the server. In this demonstration the OpenOffice.org Writer is used as a web client.

Therefore the OpenOffice Writer can connect to the server with the help from a URL.

Another important task is to process the response from the server and change it to a

defined form. Like the first function of this program, the formatted data must be shown on

a graphic user interface. It is a window containing the document index, from which the

user can choose the desired document by a mouse click and using keyboard. The chosen

document will be displayed on the graphic user interface on an external window for the

user.

Thus, the following steps show how to display a window with the table form content and

how to handle the selections from the user. This will be explained further in session 3.3.

- Create the dialog model and set the properties (Session 3.3.1). Then provide the

XMultiServiceFactory of the dialog model from the XComponentContext. This factory

is named as xMSFDialogModel which is used to create other components shown on

the dialog. These components are inserted into the dialog by adding their names to the

(XNameContainer) xDlgModelNameContainer provided in this step.

- Create and add the fixed text and the list box to the dialog by using xMSFDialogModel

and xDlgModelNameContainer from last step (Session 3.3.2). Then add XKeyListener

and XMouseListener to the dialog. (Session 3.3.2 and 3.3.3)

The second function still requires OpenOffice to send the processing paragraph to the

server and to open the desired document from the selection of the user:

- The process is packed in a message and sent to the server. (Session 3.4)

- The desired document is opened by using the response from the server, the

XMultiComponentFactory and XComponentContext.(Session 3.3.4)

3.1 OpenOffice.org Add-On with NetBeans

IDE

OpenOffice.org Add-On is one of the applications supported by NetBeans IDE after

installing the OpenOffice.org API Plug-in. From the main class of the Add-On project, the

XFrame and XComponentContext interfaces are available. These interfaces play an

important part in this project, because we can get more services or other interfaces from

both of them.

22

There are still other available interfaces in the Add-On main class, for example:

com.sun.star.lang.XInitialization to initialize our code or program in OpenOffice.org as

soon as OpenOffice.org program starts up; com.sun.star.frame.XDispatch to implement

the functions to execute whenever an event exists. The developer can create the buttons on

the OpenOffice taskbar through the Add-On program and the interface XDispatch decides

which functions will be executed once the user clicks on dedicated button. In this Project

this function is not used, because the user will start up the Add-On program by clicking a

defined key, for example F8 or F9 to start the program.

3.2 Text working and getting a paragraph from

current processing text document

This session involves working with text documents and some objects or interfaces that are

used to build this project. The XTextDocument interface is the first step to access the

processing document. The important object of this project is the paragraph of a text

document. However, to get the access to this object, we need agents as a bridge to reach

the content of paragraphs from XTextDocument. The view cursor and the model cursor are

offered for this purpose. The view cursor is visible from the user’s view. There is only one

view cursor which provides all information of the document from the current view, for

example, the current page, the current paragraph or the current character. On the other

side, the model cursor supports the user to travel over the document with different objects

and interfaces to take what he wants, independently from view cursor. Two kinds of

cursors offer two ways to get paragraphs from a text document: one for the current

processing paragraph, the other for collecting the paragraphs for the purpose of the first

function.

3.2.1 XTextDocument, the first step to work with

an OpenOffice document

The text document model in OpenOffice API has five major architectural areas shown in

Figure 3.1. The five areas are: the text, the service manager (document internal), the draw

page, the text content suppliers and the objects for styling and numbering.

23

Figure 3.1: Text Document Model

The core of a text document model is the text. It consists of character strings organized in

paragraphs and other text contents. In order to get the processing paragraph, the

XTextDocument interface is needed. It provides the developer with a useful way to access

the current text document with all of its components. To get XTextDocument from the

interface XFrame, we need the XModel’s help:

24

//get interfacce xModel from xFrame, xController is the

//bridge between them

xController = xFrame.getController();

xModel = xController.getModel();

//get xTextdocument from xModel with help of the function

//queryInterface

xTextDocument = (XTextDocument) UnoRuntime.queryInterface

(XTextDocument.class, xModel);

Both methods to get the interface are discussed in session 2.1.3. The XModel interface is

accessed from the existent XFrame interface, but to get the XTextDocument, the

queryInterface() provided method by UnoRuntime must be used.

The above method enables to get the current document processed by OpenOffice and this

is also the document that the Add-On program is working on. There is another way to get

other documents with its known URL from the current work. UNO support the developer

to work with different documents at the same time. This method will be discussed later in

session 3.3.4.

The XTextDocument interface is the key to work with an OpenOffice document. The

XTextDocument plays a bridging role for the developer to get other components contained

in the document. It can be a paragraph, a sentence, a word or just a picture or a chart. As

we have mentioned about the two functions of this project earlier, the component we need

to get from the TextDocument is the paragraph. But it is impossible for the developer to

access it directly from the XTextDocument. He still needs helps from the other agent

interfaces like com.sun.star.text.XText to access the text content of the document or the

group of cursor interfaces. More details will be discussed in next session.

3.2.2 Model Cursor and View Cursor

There are two kinds of cursor in the OpenOffice structure: model cursors and visible

cursors. Visible cursors are also referred to as view cursors.

The View cursor is visible on the screen. It enables the user to travel over the document to

get information about the current layout, such as character, line number, view page,

document page presented on the UI. The com.sun.star.text.TextViewCursor view cursor is

the only one and it is based on com.sun.star.text.XTextRange. We can get it from the

XController interface that is available from XFrame discussed in the previous chapter:

25

// the controller gives us the TextViewCursor query the view

// cursor supplier interface

XTextViewCursorSupplier xViewCursorSupplier =

(XTextViewCursorSupplier) UnoRuntime.queryInterface(

XTextViewCursorSupplier.class, xController);

// get the cursor

XTextViewCursor xViewCursor =

xViewCursorSupplier.getViewCursor();

The model cursor allows the developer to move freely over the model by paragraphs,

sentences or words. Every element here is suitable for a special cursor such as

ParagraphCursor, SentenceCursor, WordCursor which are accessible from the

TextCursor. The following codes show how to get them. At first, the Text service must be

gotten from the TextViewCursor. The cursor is only a XTextRange and has therefore the

getText() method. This XText interface is used to access the text content displaying on the

screen from the view cursor.

XText xText = xViewCursor.getText();

// the text creates a model cursor from the viewcursor

XTextCursor xModelCursor =

xText.createTextCursorByRange(xViewCursor.getStart());

Now the XWordCursor, the XSentenceCursor and the XParagraphCursor can be queried

from the XTextCursor. Here is an example for XParagraphCursor:

XParagraphCursor xParagraphCursor = (XParagraphCursor)

UnoRuntime.queryInterface(XParagraphCursor.class,

xModelCursor);

3.2.3 Getting text content from paragraphs

To the first and the second function of this project, it is necessary to get the content of the

current processing paragraph. From the XParagraphCursor interface, it is possible to take

the content by scanning from the beginning to the end of the paragraph:

xParagraphCursor.gotoStartOfParagraph(false);

xParagraphCursor.gotoEndOfParagraph(true);

String mainString = xParagraphCursor.getString();

26

To execute the first function, all text contents of the paragraphs need to be gained and

saved in an array so that it is easier to find the desired paragraph that resembles the

processing paragraph. OpenOffice helps the developer to complete this task by using the

com.sun.star.container.XEnumerationAccess interface. It enumerates all paragraphs in a

text and returns the objects which support com.sun.star.text.Paragraph. The enumeration

access can be gotten from XText by querying the UNO runtime environment. But the

XText interface of the text content of the whole document must be accessed from

XTextDocument.

XText xDocText= m_xTextDocument.getText();

XEnumerationAccess xEnumerationAccess =

(XEnumerationAccess) UnoRuntime.queryInterface

(XEnumerationAccess.class, xDocText);

The next step is to create an enumeration access of all paragraphs of the document.

// the enumeration contains all paragraph form the document

com.sun.star.container.XEnumeration xParagraphEnumeration =

xEnumerationAccess.createEnumeration();

Now it is possible to iterate over the paragraphs of the text and create the text portions for

each paragraph.

XTextContent xParagraph = null;

ArrayList xParagraphArray = new ArrayList();

//check if a paragraph is available

while (xParagraphEnumeration.hasMoreElements()) {

//get the next paragraph

xParagraph = (XTextContent)UnoRuntime.queryInterface

(XTextContent.class, xParagraphEnumeration.nextElement());

//we need the method getAnchor to get a TextRange -> to

//manipulate the paragraph. This sText here is the content

//of every Paragraph

String sText = xParagraph.getAnchor().getString();

if (xParagraphEnumeration.hasMoreElements()) {

 xParagraphArray.add(sText);

27

}

}

All paragraphs except for the processing paragraph are saved in an ArrayList. The last if-

statement makes sure that the processing paragraph is not saved in this list.

We only need the collection of the paragraphs in the document to compare with the

processing paragraph later. But the XEnumerationAccess interface can do more than that.

Every paragraph also has a XEnumerationAccess of its own. It can enumerate every single

text portion that it contains. A text portion is a text range containing a uniform piece of

information that appears within the text flow. A paragraph can have different formatted

words or other contents. The text portion enumeration returns one

com.sun.star.text.TextPortion service for each differently formatted string and for every

other text content. They will be gained with the help from the com.sun.star.text.TextRange

service. The function getAnchor() can return the interface XTextRange from XTextPortion.

3.3 Working with the OpenOffice.org GUI

This chapter introduces the way to work with the OpenOffice.org GUI. Concerning the

functions of this project, it is necessary to create a window with a table form to display the

information. In the first function, this information can be acquired after comparing the

processing paragraph with the saved paragraphs. In the second function, the OpenOffice

receives the information from the server after sending the request with processing

paragraph. To set table form for the window, at first a dialog model must be created to be

inserted in the window. Every component that we want to present on the window must be

firstly added to this dialog, because the dialog control decides how to display the other

components. The controls of other components must also be created and added to the

dialog model by names. Therefore the dialog model is considered as a container of

controls. After the dialog is executed, the inserted components will be presented on the

screen.

A header showing the introduction and a ListBox displaying the information in the table

form are the components supported by the OpenOffice UNO. After showing the

information on the window, the KeyListener and the MouseListener are used to get events

from the user to finish the defined task.

3.3.1 Dialog model

28

A dialog is known as a control container for other controls of the components which will

be displayed on the window. All controls belonging to a dialog are grouped together

logically. The dialog has the com.sun.star.awt.UnoControlDialog service that supports the

com.sun.star.awt.XControlContainer interface. This interface is a container whose

controls can be accessed by name. The hierarchy between a dialog and its controls can be

seen in the com.sun.star.awt.UnoControlDialogModel dialog model which is a container

of control models and therefore supports the com.sun.star.container.XNameContainer

interface. This interface is used to insert the other created controls. The way to use this

model will be introduced in this chapter.

The XMultiComponentFactory and XComponentContext interfaces are used to create a

dialog model UnoControlDialogModel. While XComponentContext is available from

Add-On instantiation, the XMultiComponentFactory must be gained from

XComponentContext.

xMultiComponentFactory =

xComponentContext.getServiceManager();

//Now it is possible to create a dialog model

Object xUnoControlDialogModel =

xMultiComponentFactory.createInstanceWithContext(

"com.sun.star.awt.UnoControlDialogModel",

xComponentContext);

//The named container is used to insert the created

//controls into

XNameContainer xDlgModelNameContainer = (XNameContainer)

UnoRuntime.queryInterface(XNameContainer.class,

xUnoControlDialogModel);

The XMultiServiceFactory interface of the dialog model is a useful key when the

developer begins to work with OpenOffice GUI. Through this interface, it is possible to

create the controls of the other objects that are inserted later into the dialog, for example:

in this project, the ListBox and the header need to be created and inserted in the dialog, so

their controls must be added to the dialog container.

The component’s control models can be created by using XMultiServiceFactory of the

dialog model but they are not available until they are inserted into the dialog container by

adding their control names to XNameContainer.

29

// The XMultiServiceFactory of the dialog model is needed to

// instantiate the controls

XMultiServiceFactory xMSFDialogModel =

(XMultiServiceFactory)UnoRuntime.queryInterface

(XMultiServiceFactory.class, xUnoControlDialogModel);

The XUnoControlDialog object dialog is also created by XMultiServiceFactory of the

dialog model.

// create the dialog

Object xUnoDialog =

xMultiComponentFactory.createInstanceWithContext(

"com.sun.star.awt.UnoControlDialog", xComponentContext);

//get control of the dialog

XControl xDialogControl = (XControl)

UnoRuntime.queryInterface(XControl.class, oUnoDialog);

//The scope of the control container is public

XControlContainer xDlgContainer = (XControlContainer)

UnoRuntime.queryInterface(XControlContainer.class,

xUnoDialog);

// link the dialog and its model

 XControlModel xControlModel = (XControlModel)

UnoRuntime.queryInterface(XControlModel.class,

xUnoControlDialogModel);

xDialogControl.setModel(xControlModel);

After creating the dialog model and its control or its window, it is essential to set the

properties of this dialog like its size and attributes. It should be done before the other

objects are inserted into it. There are two ways to set the properties of the components in

UNO, which were discussed earlier in session 2.1.4. The XMultiPropertySet is used for

this dialog model.

30

XMultiPropertySet xMultiPropertySet = (XMultiPropertySet)

UnoRuntime.queryInterface(XMultiPropertySet.class,

xDlgModelNameContainer);

xMultiPropertySet.setPropertyValues(String[] PropertyNames,

String[] PropertyValues);

The properties of the dialog model can be found at [3], for example, there are some

properties used in this project: Height, Moveable, Name, PositionX, PositionY, Step,

TabIndex, Title and Width. Now the other component can be created and inserted into the

dialog. After inserting of all components, the dialog will automatically create its window

to present on the screen.

3.3.2 Create and insert FixedText and ListBox to

Dialog

Displaying the information on the screen is almost the same in both functions of the

project. Only in the second function, the information must be displayed in table form

which is not supported by UNO, meaning the information must be formatted before it is

added to a ListBox provided by UNO. Because OpenOffice.org Writer receives the

response from the server in the format of String[] we can also create new strings with the

same length from elements of String[].

For this purpose the new font will be set as a property of the header or the ListBox. After

setting the format of the information and changing the font, it is ready to create and insert

the header or the ListBox to the dialog model.

//format the header to be looked like the title of the

//table. The function setFormat is written to create a text

//to insert it in the listbox

String label = setFormat("Nr", "Name Of Documents",

"Comment", "Percent");

//create the header model by using UnoControlFixedTextModel

Object oFTHeaderModel = xMSFDialogModel.createInstance(

"com.sun.star.awt.UnoControlFixedTextModel");

31

//get property interface of the header (FixedTextModel)

XMultiPropertySet xFTHeaderModelMultiPropertySet =

(XMultiPropertySet)

UnoRuntime.queryInterface(XMultiPropertySet.class,

oFTHeaderModel);

//set properties for the header

xFTHeaderModelMultiPropertySet.setPropertyValues(

 new String[] {"FontDescriptor", "Height",

"Label", "Name", "PositionX", "PositionY", "Width"},

 new Object[] { font, new Integer(8), label,

"HeaderLabel", new Integer(0), new Integer(3), new

Integer(250)});

//add the model to the NameContainer of the dialog model

xDlgModelNameContainer.insertByName("Headerlabel",

oFTHeaderModel);

The developer must be careful whenever he tries to insert a component into the dialog by

name. The name must be unique in the (XNameContainer) xDlgModelNameContainer. In

case there are many components to be inserted into the dialog, it stands a high chance that

several components have the same name. The best solution to this problem is to write a

function only to alter the duplicated name. For example, the function can add more space

character to it.

After receiving the information from the server, the response is formatted and saved in a

String[] itemList which will be set in the properties of the ListBox later by its instantiation.

The code below shows how to create and insert the ListBox into the dialog:

// create a list box model by using the MultiServiceFactory

//of the dialog model

Object oListBoxModel = xMSFDialogModel.createInstance

("com.sun.star.awt.UnoControlListBoxModel");

//get property interface of the ListBoxModel

32

XMultiPropertySet xLBModelMultiPropertySet =

(XMultiPropertySet)

UnoRuntime.queryInterface(XMultiPropertySet.class,

oListBoxModel);

// Set the properties at the model, we must keep in mind to

// pass the property names in alphabetical order!

xLBModelMultiPropertySet.setPropertyValues(

 new String[] {"Dropdown",

"FontDescriptor", "Height", "MultiSelection", "Name",

"PositionX", "PositionY", "Printable, "StringItemList",

"Width" } ,

 new Object[] {Boolean.FALSE, font, new

Integer(height), Boolean.FALSE, "ListBox", new

Integer(posX), new Integer(posY), Boolean.TRUE, itemList,

new Integer(width)});

// add the model to the NameContainer of the dialog model

xDlgModelNameContainer.insertByName(“ListBox”,

xLBModelMultiPropertySet);

More properties of FixedTextModel and ListBoxModel will be found in [4] and [5]. It is

necessary to add KeyListener and MouseListener to the ListBox so that the ListBox can

manage events from the user. In this project, the user has two possibilities to choose a

paragraph: to insert it in the document in the first function and to choose the document to

open in the second function.

//ask the XControlContainer of the dialog to get control of

//the ListBox by name

XControl xControl = xDlgContainer.getControl(“ListBox”);

//get the window containing the ListBox

XWindow xListBoxWindow = (XWindow)

UnoRuntime.queryInterface(XWindow.class, xControl);

33

//add KeyListener and MouseListener to the window to handle

//the events from the user

xListBoxWindow.addKeyListener(new XKexListener());

xListBoxWindow.addMouseListener(new XMouseListener());

The implementation of both listeners will be discussed in the next session. Now the

window of the dialog must be created and executed to present the dialog on the screen. So

the object ToolKit must be created to access the XtoolKit interface. This interface specifies

a factory interface for the window toolkit. This is similar to the abstract window toolkit

(AWT) in Java.

Object toolKit =

xMultiComponentFactory.createInstanceWithContext

("com.sun.star.awt.Toolkit", xComponentContext);

//get XToolKid from its object

XToolkit xToolkit = (XToolkit)

UnoRuntime.queryInterface(XToolkit.class, toolKit);

//creates a "child" window on the screen. If the parent is

//NULL, then the desktop window of the toolkit is the

//parent.

xWindowParentPeer = null;

xDialogControl.createPeer(xToolkit, xWindowParentPeer);

It is possible to get the Xdialog interface now. By executing this interface, the dialog

together with the inserted components like FixedTextModel and the ListBoxModel will be

present on the screen.

//get XDialog

XDialog xDialog = (XDialog)

UnoRuntime.queryInterface(XDialog.class, xDialogControl);

//execute the XDialog

xDialog.execute();

34

3.3.3 KeyListener, KeyHandler and

MouseListener in UNO

In this project, com.sun.star.awt.KeyListener and com.sun.star.awt.MouseListener are

used to get events for the dialog. It enables the user to choose a paragraph or a document

to open by mouse click or using the keyboard. They must be added to the window

containing the processing components. In this project the (XWindow) xListBoxWindow is

the container window of ListBox object. The provided functions of KeyListener and

MouseListener are similar to KeyListener and MouseListener (AWT) in java.

Nevertheless, UNO still provides another interface com.sun.star.awt.XKeyHandler to

handle with key events. The difference is that the handler consumes the event. To add a

key handler, the developer must use the addKeyHandler() method from the

XUserInputInterception or XExtendedToolkid interface. Both of these interfaces are

implemented by the com.sun.star.frame.Controller controller.

The KeyHandler is used in this project to get events from the user to decide which

function should be started. The user must press F8 for the first function or F9 for the

second function. This KeyHandler must be added to the XExtendedToolkit of the main

frame. The XExtendedToolkit is an extension of the XToolkit interface. It basically

provides access to three event broadcasters used for instance in the context of

accessibility. The first event broadcaster is used to get the set of currently open top-level

window; the second event broadcaster informs its listeners about key events and the last

event broadcaster sends events on focus changes of all elements that can have the input

focus. The following code introduces the way to get XExtendedToolkit from the existent

XFrame:

//get the component window

XWindow xWindow = xFrame.getComponentWindow();

XWindowPeer MyWindowPeer = (XWindowPeer)

UnoRuntime.queryInterface (XWindowPeer.class, xWindow);

XToolkit MyToolkit = MyWindowPeer.getToolkit();

XExtendedToolkit MyExtToolkit = (XExtendedToolkit)

UnoRuntime.queryInterface (XExtendedToolkit.class,

MyToolkit);

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XExtendedToolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XToolkit.html

35

MyExtToolkit.addKeyHandler (new KeyListenre());

Nonetheless, the KeyHandler is not always a good choice because the controller may get

disposed. Still, the document may be opened, so the handler won’t be called anymore.

Hence, the KeyHandler is substituted for the KeyListener to be added to the ListBox. The

functions of KeyHandler are similar to the functions of KeyListener.

3.3.4 Open a document in a new window

To open a document from a given URL, it is necessary to get the desktop service that was

explained in the session 2.2.2. We can access this service by using the

XMultiComponentFactory and XcomponentContext interfaces.

Object desktop =

xMultiComponentFactory.createInstanceWithContext(

"com.sun.star.frame.Desktop", xComponentContext);

// Query the XComponentLoader interface from the desktop

Object.

XComponentLoader xComponentLoader = (XComponentLoader)

UnoRuntime.queryInterface(XComponentLoader.class, desktop);

//set properties for ComponentLoader

PropertyValue[] myProperties = new PropertyValue[1];

myProperties[0] = new PropertyValue();

myProperties[0].Name = "Hidden";

myProperties[0].Value = new Boolean(false);

XComponent xComponent =

xComponentLoader.loadComponentFromURL(

 source_File, // Url

 "_blank", // TargetFramName

 0, // Is ignored

36

 myProperties); // Special properties

}

catch(Exception e) {

}

The TargetFrameName “_blank” is set to load the new document in a new window. More

properties or TargetFrameName of the ComponentLoader will be found in [6].

3.4 OpenOffice as a web client in web service

Java Development Kit 6 (JDK 6) imports the Java Web Services Developer Pack

(JWSDP) to facilitate the implementation of web service [8]. The web service has two

sides: web client and web server. But OpenOffice only plays the role as web client in this

project. The following code shows how to define a web service:

// name of this web service is “Search Machine” with the URL

@WebService(name = "SearchMachine", targetNamespace =

"http://OpenOfficeClient/service/")

@SOAPBinding(style = SOAPBinding.Style.RPC)

public interface SearchMachine {

 @WebMethod

 @WebResult(partName = "return")

 // arg0 is the input and also the processing paragraph

// the return value is the list of document with their

//information

public String[] askForDocumentList(

 @WebParam(name = "arg0", partName = "arg0")

 String arg0);

 }

}

37

Then the Client of the web service can be implemented like this following code:

// The main string here is the list of documents with their

// information

public String[] sendAndGetMessage(String paragraph) {

SearchMachineService service = new SearchMachineService();

// this method to get the service Search Machine

SearchMachine searchMachine =

service.getSearchMachinePort();

String[] mainString =

searchMachine.askForDocumentList(paragraph);

return mainString;

}

After getting the response from the server as a String[], a dialog must be created to

present this information on the screen. The URL of every document is also saved in this

String[].

38

Chapter 4

Conclusion and Outlook

To develop an OpenOffice.org application, it is essential to learn about UNO and the

OpenOffice.org Application Environment. It provides not only an overview about the

structure of OpenOffice.org but also the introduction of how the components in UNO are

organized.

The aim of this project can only be attained when it is possible to open the pdf-document

with OpenOffice, either by itself or by using another application such as Acrobat Reader.

Programming with OpenOffice can be confusing at the beginning due to a huge amount of

objects, interfaces and properties. Moreover, the API is not stable among different

versions of OpenOffice and many problems still exists whilst programming with

OpenOffice, for example: the XMultiServiceFactory in the old version is substituted for

the XMultiComponentFactory in the new version. It is also confusing that the two

interfaces XKeyHandler and XKeyListener have the same task which is to manage the key

events, but they are spilt into two different interfaces. Furthermore, related research is still

in developing phases, so it is more time-consuming to find the solutions to the problems.

Another difficulty is that OpenOffice does not support pdf-document. We are unable to

import pdf-documents in OpenOffice Writer and it is also not possible to program to open

pdf-document with an external application such as Acrobat Reader. These functions

should be developed in next OpenOffice.org version. It is useful if the user can start

another application from OpenOffice.org. Up to now, only the OpenOffice Draw and the

OpenOffice Impress can import pdf-document. There is an on-going project trying to

make it possible in OpenOffice Writer. More information can be found in [7].

However, OpenOffice UNO provides many useful services and interfaces to work with

the content of OpenOffice Writer. The interfaces of the view cursor service and the model

cursor service enable to get and set any text content in the document. It can not only be a

paragraph but also a sentence, a word or text contents with different characters. Therefore

future work with OpenOffice can aim to analyze semantic text by using useful interfaces

such as the XWordCursor, the XSentenceCursor or the XParagraphCursor which can be

queried from the XTextCursor.

39

40

Chapter 5

Bibliography

[1] Sun Microsystems, Inc, OpenOffice.org 2.3 Developer's Guide 2007.

http://api.openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf. Date Retrieved:

January 1st, 2009.

[2] The OpenOffice.org Software Development Kit.

http://download.openoffice.org/3.0.0/sdk.html. Date Retrieved: January 1st, 2009.

[3] The properties of the service UnoControlDialogModel.

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogMode

l.html. Date Retrieved: January 1st, 2009.

[4] The properties of the service FixedTextModel.

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedTextM

odel.html. Date Retrieved: January 1st, 2009.

[5] The properties of the service ListBoxModel

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxMo

del.html. Date Retrieved: January 1st, 2009.

[6] The properties of the interface XComponentLoader

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.h

tml. Date Retrieved: January 1st, 2009.

[7] OpenOffice.org Ninja. The project for importint pdf-document in OpenOffice.

http://www.oooninja.com/2008/06/pdf-import-hybrid-odf-pdfs-extension-30.html.

Date Retrieved: January 1st, 2009.

[8] WebService in Java. http://www.theserverside.de/webservice-in-java/. Date

Retrieved: January 1st, 2009.

http://api.openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf
http://download.openoffice.org/3.0.0/sdk.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedTextModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedTextModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://www.oooninja.com/2008/06/pdf-import-hybrid-odf-pdfs-extension-30.html
http://www.theserverside.de/webservice-in-java/

