ol

MICROCONTROLLER

An Applications Based Introduction

Chris Braithwaite * Fred Cowan
Hassan Parchizadeh

8051 Microcontrollers

An Applications-Based Introduction

David Calcutt
Fred Cowan
Hassan Parchizadeh

SAN FRANCISCO ¢ SINGAPORE ¢ SYDNEY « TOKYO
Newnes is an imprint of Elsevier Newnes

AMSTERDAM ¢ BOSTON e HEIDELBERG « LONDON
NEW YORK ¢ OXFORD e PARIS « SAN DIEGO

Newnes

An imprint of Elsevier

Linacre House, Jordan Hill, Oxford OX2 8DP
200 Wheeler Road, Burlington, MA 01803

First published 2004

Copyright © 2004, David Calcutt, Fred Cowan and Hassan Parchizadeh.
All rights reserved

The right of David Calcutt, Fred Cowan and Hassan Parchizadeh to be identified
as the authors of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988

No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether

or not transiently or incidentally to some other use of this publication) without

the written permission of the copyright holder except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms of

a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London, England WIT 4LP. Applications for the copyright holder’s written
permission to reproduce any part of this publication should be addressed

to the publisher

Permissions may be sought directly from Elsevier’s Science and

Technology Rights Department in Oxford, UK. Phone: (4 44) (0) 1865 843830;
fax: (4 44) (0) 1865 853333; e-mail: permissions@elsevier.co.uk. You may also
complete your request on-line via the Elsevier homepage
(http://www.elsevier.com), by selecting ‘Customer Support” and then ‘Obtaining
Permissions’

British Library Cataloguing in Publication Data
Calcutt, D.
8051 microcontrollers : an applications based introduction
1. INTEL 8051 (Computer) 2. Digital control systems
I. Title II. Cowan, Frederick J. III. Parchizadeh, G. Hassan 004.1'65

Library of Congress Cataloguing in Publication Data
Calcutt, D. M.
8051 microcontrollers : an applications-based introduction / David Calcutt,
Fred Cowan, Hassan Parchizadeh.
. cm.
1. Intel 8051 (Computer) 2. Digital control systems. 1. Cowan, Frederick J.
I1. Parchizadeh, G. Hassan. III. Title.

QA76.8.127C35 2003
004.165—dc22
2003066606

ISBN 0 7506 5759 6 (alk. paper)

For information on all Newnes publications
visit our website at www.newnespress.com

Typeset by Integra Software Services Pvt. Ltd, Pondicherry, India
www.integra-india.com
Printed and bound in Meppel, The Netherlands by Krips bv.

Preface

Contents

Acknowledgements

1 Introduction to Microcontrollers

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Introduction

Microcontroller types

P89C66x microcontroller

Bits, nibbles, bytes and number conversions

Inside microcontrollers

Microcontroller programming

Commonly used instructions of the 8051 microcontroller
Microcontroller clock

Time delays

Summary

2 Flash Microcontroller Board

2.1
2.2
23
24
2.5

Introduction

P89C66x microcontroller
Programming the device

Flash magic

XAG49 microcontroller

Summary

3 Simulation Software

3.1
3.2
33

Introduction

Keil p Vision2
Raisonance IDE (RIDE)
Summary

4 P89C66x Microcontroller

4.1
4.2
43
4.4

Introduction
Timers 0 and 1
Timer 2

External interrupt

vii

o

28

28
29
31
35
35
37

38

38
39
50
64

66

66
67
79
82

iv Contents

4.5
4.6
4.7
4.8
4.9
4.10

Interrupt priority

Programmable counter array (PCA)

Pulse width modulation (PWM)

Watchdog timer

Universal asynchronous receive transmit (UART)
Inter integrated circuit (IIC or 1>C)

Summary

5 Low Pin Count (LPC) Devices

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Introduction

PS87LPC769

Analog functions

Analog comparators
P89LPC932

Serial peripheral interface (SPI)
EEPROM memory

Summary

6 The XA 16-bit Microcontroller

6.1
6.2
6.3
6.4
6.5
6.6

Introduction

XA registers
Watchdog timer
UART

8051 compatibility
Interrupts
Summary

7 Project Applications

7.1
7.2
7.3
7.4
7.5

Introduction

Project 1: speed control of a small DC motor
Project 2: speed control of a stepper motor
Project 3: single wire multiprocessor system
Project 4: function generator

Solutions to Exercises

Appendix

A 8051 Instruction Set

B Philips XA Microcontroller — XA and 8051 Instruction

Set Differences

C 8051 Microcontroller Structure

D P89C66x Microcontroller

E P89LPC932 Microcontroller

F XAG49 Microcontroller

G P89C66x and XAG49 Microcontroller PCB Board Layouts
Index

84
86
88
92
94
103
111

113

113
114
115
125
128
129
136
141

142

142
146
148
152
155
156
168

169

169
169
175
185
192

201

226

232
246
285
327
360
401

407

Preface

A potential reader of this text may be forgiven for initially viewing this book as
yet another text on the ubiquitous 80C51 microcontroller, a topic on which
many books have already been published. However, the authors believe their
application-based coverage using only Flash memory devices will bring home to
the reader a depth of coverage and an understanding of the versatility of the
various members of the 80C51 family, including the 16-bit devices, that have not
been seen before. Three devices in particular are described in the text with their
own chapters and relevant appendices. The devices are those available from
Philips Semiconductors although the applications, both hardware and software,
have a broader scope and could apply to other manufacturer’s devices.

The text includes a chapter on simulation, using evaluation software that can
be downloaded on to a computer. Such software allows the user to compile
their program and simply run it to achieve an objective or single step through
their program to establish how the program affects registers, timers, ports, etc.,
as the program develops. It is hoped that the reader will wish to go beyond
simulation and interface with external inputs/outputs via an actual microcon-
troller. Artwork is included, in an appendix, for a single-sided pcb that could be
used for the construction of a development board. Two different boards are
described; one board is designed for an 8-bit device while the other is for a
16-bit device, both devices being covered in the text. Information relating to the
microcontroller boards can be found in Chapter 2. The use of a Flash micro-
controller board and in-system programming techniques allows the user to
simulate and debug his/her program and refine it before downloading it to
the microcontroller. Source code could then be removed, if required, and
replaced with a new program to serve a different purpose. The use of a micro-
controller board allows an interface to the outside world and the effect of the
program stored in the microcontroller can be observed in real time i.e. to light
LEDs, cause a motor shaft to rotate, etc. For those not wishing to have their
own microprocessor board the text still offers the opportunity to simulate
programs and much can be learnt about the devices by its use.

Three members of the Philip’s 80C51 family have been utilised in the text to
explain circuit action and used as the basis for specific applications. Several

vi Preface

appendices complete the story with details on the 8-bit and 16-bit microcon-
troller instruction set and manufacturers’ data on the devices.

The book is intended to be read on a chapter by chapter basis for those new
to the subject and in this format would be suitable for those on degree,
including postgraduate, courses. The text would also be suitable for any reader
familiar with the devices but requiring information that takes them somewhat
deeper into the detail and applications. For such readers some of the chapters
could be omitted and particular chapters studied in more depth. Practising
engineers could find the text helpful as an aid to the development of prototype
systems prior to full-scale commercial application. Chapters dealing with spe-
cific devices have numerous examples to help reinforce key points, and there are
also numerous exercises for the reader to attempt if they so wish; answers to
these exercises can be found at the end of the book. Relevant appendices can be
used for reference where necessary.

The text assumes that readers have some experience of programming
although some information on assembly language programming can be found
in Chapter 1. Programming examples have been implemented using assembly
language and C.

The authors have attempted to show throughout the text programming
applications where relevant, and the final chapter is devoted to practical appli-
cations that the authors have found to work. Notwithstanding this, the authors
can accept no responsibility for any program that a reader might attempt and
find unsatisfactory.

It should perhaps be mentioned at this point that the Department of Electro-
nic and Computer Engineering at the University of Portsmouth is a Philips
Accredited Product Expert Centre, one of only five in England. Short courses
relevant to industry are run at the Centre on a regular basis and the Centre is
kept up to date on new developments relating to Philips Semiconductors Ltd
devices.

The authors hope that all readers of this text will find the information therein
of some use in their studies and/or as a reference text.

David M Calcutt, Frederick J Cowan and G Hassan Parchizadeh

Acknowledgements

The authors would like to take the opportunity to thank all those individuals
and/or companies who have contributed or helped in some way in the prepara-
tion of this text. Particular thanks must go to Philips Semiconductors Ltd* for
their encouragement and for permission to use so much information from
Philips’ sources. Thanks also are due to Keil** for the use of their evaluation
software for the 8-bit microcontrollers; to Raisonance' for the use of their
evaluation software for both 8-bit and XA 16-bit microcontrollers and to
Maxim? for the use of some items from their range of devices. Our thanks also
to Andy Mondey for his assistance in the production of the Flash microcon-
troller pcb artwork.

Also the authors would like to thank their respective wives for their under-
standing and forbearance shown when the preparation of the book took time
that could have been spent with the family. Our thanks then to David’s wife
Daphne, Fred’s wife Sheila and Hassan’s wife Hoory.

Additionally Hassan would like to dedicate his contribution to this text to
the memory of his mother and would also like to express his gratitude to both
his mother and father for their encouragement and support over the years.

* Philips Semiconductors Ltd. Head Office. PO Box 218, 5600 MD Eindhoven, The Nether-
lands. www.semiconductors.philips.com

** Keil. Head Office. Keil Elektronik GmbH, Bretonischer Ring 15, D-85630, Grasbrunn,
Germany. www.keil.com

f Raisonance. Head Office. RAISONANCE, 17 Avenue Jean Kuntzmann, 38330 Montbon-
not, France. www.raisonance.com

#Maxim Integrated Products. Head Office. 120 San Gabriel Drive, Sunnyvale, CA 94086,
USA. www.maxim-ic.com

This page intentionally left blank

1

Introduction to Microcontrollers

1.1 Introduction

A microcontroller is a computer with most of the necessary support chips
onboard. All computers have several things in common, namely:

A central processing unit (CPU) that ‘executes’ programs.

Some random-access memory (RAM) where it can store data that is variable.
Some read only memory (ROM) where programs to be executed can be stored.
Input and output (I/O) devices that enable communication to be established
with the outside world i.e. connection to devices such as keyboard, mouse,
monitors and other peripherals.

There are a number of other common characteristics that define microcon-
trollers. If a computer matches a majority of these characteristics, then it can be
classified as a ‘microcontroller’. Microcontrollers may be:

¢ ‘Embedded’ inside some other device (often a consumer product) so that
they can control the features or actions of the product. Another name for a
microcontroller is therefore an ‘embedded controller’.

¢ Dedicated to one task and run one specific program. The program is stored
in ROM and generally does not change.

® A low-power device. A battery-operated microcontroller might consume as
little as 50 milliwatts.

A microcontroller may take an input from the device it is controlling and
controls the device by sending signals to different components in the device.
A microcontroller is often small and low cost. The components may be chosen
to minimise size and to be as inexpensive as possible.

The actual processor used to implement a microcontroller can vary widely. In
many products, such as microwave ovens, the demand on the CPU is fairly low

2 Introduction to microcontrollers

and price is an important consideration. In these cases, manufacturers turn to
dedicated microcontroller chips — devices that were originally designed to be
low-cost, small, low-power, embedded CPUs. The Motorola 6811 and Intel
8051 are both good examples of such chips.

A typical low-end microcontroller chip might have 1000 bytes of ROM and
20 bytes of RAM on the chip, along with eight I/O pins. In large quantities, the
cost of these chips can sometimes be just a few pence.

In this book the authors will introduce the reader to some of the Philips’ 8051
family of microcontrollers, and show their working, with applications,
throughout the book. The programming of these devices is the same and,
depending on type of device chosen, functionality of each device is determined
by the hardware devices onboard the chosen device.

1.2 Microcontroller types

The predominant family of microcontrollers are 8-bit types since this word
size has proved popular for the vast majority of tasks the devices have been
required to perform. The single byte word is regarded as sufficient for most
purposes and has the advantage of easily interfacing with the variety of IC
memories and logic circuitry currently available. The serial ASCII data is also
byte sized making data communications easily compatible with the microcon-
troller devices. Because the type of application for the microcontroller may vary
enormously most manufacturers provide a family of devices, each member of
the family capable of fitting neatly into the manufacturer’s requirements. This
avoids the use of a common device for all applications where some elements of
the device would not be used; such a device would be complex and hence
expensive. The microcontroller family would have a common instruction subset
but family members differ in the amount, and type, of memory, timer facility,
port options, etc. possessed, thus producing cost-effective devices suitable for
particular manufacturing requirements. Memory expansion is possible with off-
chip RAM and/or ROM; for some family members there is no on-chip ROM,
or the ROM is either electrically programmable ROM (EPROM) or electrically
erasable PROM (EEPROM) known as flash EEPROM which allows for the
program to be erased and rewritten many times. Additional on-chip facilities
could include analogue-to-digital conversion (ADC), digital-to-analogue con-
version (DAC) and analogue comparators. Some family members include
versions with lower pin count for more basic applications to minimise costs.
Many microcontroller manufacturers are competing in the market place and
rather than attempting to list all types the authors have restricted the text to
devices manufactured by one maker. This does not preclude the book from
being useful for applications involing other manufacturer’s devices; there is a
commonality among devices from various sources, and descriptions within the
text can, in most cases, be applied generally. The chapters that follow will deal
with microcontroller family members available from Philips Semiconductors,
and acknowledgement is due to the considerable assistance given by that

Microcontroller types 3

company in the production of this text. The Philips products are identified by
the numbering system:

EXCXXX

where in general, since there are exceptions, the digit following the 8 is:

0 for a ROMless device

3 for a device with ROM

7 for a device with EPROM/OTP (one time programmable)
9 for a device with FEEPROM (flash).

Following the C there may be 2 or 3 digits. Additional digits, not shown above,
would include such factors as clock speed, pin count, package code and tempera-
ture range. Philips also produces a family of 16-bit microcontrollers in the eXtended
Architecture (XA) range. For these devices Philips claims compatibility with the
80C51 at source code level with full support for the internal registers, operating
modes and 8051 instructions. Also claimed is a much higher speed of operation
than the 8051 devices. The XA products are identified by the numbering system:

PXAG3XXXX

where:

PXA is Philips 80C51 XA
G3 is the derivative name
next digit is memory option:
0 = ROM less
3 = ROM
5 = Bond-out (emulation)
7 = EPROM/OTP
9 = FEEPROM (flash)
next digit is speed:
J =25MHz
K =30MHZ
next digit is temperature:
B=0°C to+ 70°C
F = —40°C to + 85°C
final digit is package code:
A = Plastic Leaded Chip Carrier (PLCC)
B = Quad Flat Pack (QFP)
etc.

The XA architecture supports:
® 16-bit fully static CPU with a 24-bit program and data address range;

e cight 16-bit CPU registers, each capable of performing all arithmetic and
logic operations as well as acting as memory pointers;

4 Introduction to microcontrollers

e both 8-bit and 16-bit CPU registers, each capable of performing all arith-
metic and logic operations;

e an enhanced instruction set that includes bit-intensive logic operations and
fast signed or unsigned 16 x 16 multiplies and 32/16 divide;
instruction set tailored for high-level language support;
multitasking and real-time executives that include up to 32 vectored inter-
rupts, 16 software traps, segmented data memory and banked registers to
support context switching.

The next section of this chapter will look at a member of the Philips 80C51
family in more detail.

1.3 P89C66x microcontroller

Figure 1.1 shows a P89C664 microcontroller in a PLCC package.

I IR I ORI

i i L

. - e O W W e -

PHILIPS

P89C664HBA
1B4866
AeD0046 G

e s 5 8" » " h

. e ‘._‘._-
ee e s e s ee e

[]

h !

@ W % 8w N en

Figure 1.1 Philips P§9C664 PLCC package microcontroller

P89C66x microcontroller 5

P means the device is manufactured by Philips Semiconductors
8 means the micro belongs to the 8-bit 8051 family

9 means Flash code (program) memory

C means CMOS technology and

664 belongs to the 66x family

where:

x =0 16KB Flash code memory, 512 bytes onboard RAM
x =2 32KB Flash code memory, 1 KB onboard RAM
x =4 64 KB Flash code memory, 2 KB onboard RAM
x =8 64KB Flash code memory, 8 KB onboard RAM

All devices belonging to this family of devices have a universal asynchronous
receive transmit (UART), which is a serial interface similar to the COM inter-
face on a PC. Figure 1.2 shows the logic symbol for the device and illustrates
the pin functions.

Port 0

0 0
9 1
2 2
3 3 b
4 4 &
5 5
6 6
7 7
(Clock) xtal1 V.. (5V DC)
(Signal) xtal2 Ve (power supply)

Port 3

Figure 1.2 Logic symbol for the P§9C66x family

The P89C66x family of microcontrollers have four 8-bit ports: port 0, port 1,
port 2 and port 3.

Traditionally in the 80C51 family of microcontrollers the function of port 0
and port 2 is primarily to allow for connection to an external PROM (code
memory chip). Port 0 provides both the 8-bit data and the lower 8 bits of the
address bus, A0 to A7. Port 2 provides the upper 8 address bits, A8 to A15. All
of the flash microcontrollers referred to in this text have onboard code memory,
which can be as much as 64 KB.

6 Introduction to microcontrollers

Port 0 pins are all from open-drain transistors and the port pins should
have pull-up resistors (e.g. 2.7kS2 from pin to 5V DC supply) if the port is to
be used as a general-purpose interface.

Port 3 has some special function pins, e.g. pins 0 and 1 of port 3 may be used
as receive and transmit for the UART. Functions of other pins will be covered
in later chapters.

In the 80C51 family of microcontrollers the RAM is organised into 8-bit
locations.

MSB LSB
7 6 5 4 3 2 1 0

The bits are numbered 7, 6, 5, 4, 3, 2, 1, 0 where bit 7 is the most significant bit
(MSB) and bit 0 the least significant bit (LSB).

A bit (binary digit) has two values, logic 0 or logic 1. Electrically logic 0is 0 V
whereas logic 1 is the value of the microcontroller IC positive supply voltage.
Logic 1 is usually 5V but nowadays with increasing use of batteries for power
supplies logic 1 could be 3V or 1.8 V.

Power depends on the square of the voltage and there is a significant saving
in power (i.e. battery lasts longer) if the microcontroller is powered by 3V or
1.8 V power supplies.

The maximum number that can be stored in an 8-bit memory location is
28 — 1, which equals 255. This would occur when all the bits are equal to 1 i.e.:

MSB LSB
1 1 1 1 1 1 1 1

Binary is a base 2 number system and the electronic devices in the microcon-
troller’s logic circuits can be set to logic 0 and logic 1.
The value of each bit is:

MSB LSB
27 26 23 24 23 22 2! 20
128 64 32 16 8 4 2 1

Example 1.1
Show that if an 8-bit register contains all logic 1s then the value stored is 255.

Solution
With all bits of the register set to logic 1 the total value stored is given by:

128464 +32+16+8+4+2+1=255

Remember the sequence by recalling that the LSB is 1 and the other numbers
are successively doubled.

Bits, nibbles, bytes and number conversions 7

Exercise 1.1
What is the maximum number that can be stored in a 10-bit wide register?

1.4 Bits, nibbles, bytes and number conversions

BITS, BYTES AND NIBBLES

A bit is a single binary digit of value logic 1 or logic 0. A nibble is a group of
4 bits, e.g. 1010 is a nibble. A byte is a group of 8 bitse.g. 10100111 is a byte and
the byte is made up of two nibbles 1010 and 0111.

DECIMAL TO BINARY CONVERSION

A decimal number may be converted to binary by dividing the number by 2,
giving a quotient with a remainder of 0 or 1. The process repeats until the final
quotient is 0. The remainders with the first remainder being the least significant
digit determine the binary value. The process is best explained with an example.

Example 1.2
Express the decimal number 54 as a binary number.

Solution

54/2 =27, remainder 0

27/2 = 13, remainder 1

13/2 = 6, remainder 1
6/2 = 3, remainder 0
3/2 =1, remainder 1
1/2 =0, remainder 1

Thus 54 decimal = 110110 and in an 8-bit register the value would be 00110110. A
binary value is often expressed with a letter B following the value i.e. 00110110B.

It may be easier to use the weighted values of an 8-bit register to determine
the binary equivalent of a decimal number i.e. to break the decimal number
down to those weighted elements, which have a logic 1 level.

Example 1.3
Express the decimal number 54 as a binary number using weighted values.
Solution
54=32+1646
0x128 +0x64 +1x32 4+1x16 +0x8 +1x4 +1x2 +0x1

Hence 54 decimal = 00110110B.

8 Introduction to microcontrollers

Example 1.4
Express decimal 167 as a binary number.

Solution
Using the technique of Example 1.3:

167 =128 +32+4+2+1=10100111B

Exercise 1.2
Represent decimal numbers 15 and 250 in binary format.

It follows that to convert binary to decimal the reverse procedure applies i.e.
to convert the binary number 00110110 to decimal is achieved by simply adding
the weighted values of the logic 1 states. This is shown in the answer to Example
1.3 where 00110110B = 54 decimal.

BINARY, HEXADECIMAL (HEX) AND DECIMAL

When working out values at the port pins, the tendency is to think in binary,
e.g. which LED to turn on, the logic level on a switch, etc.

The assembly language software tends to use hexadecimal, a base 16 number
system useful for grouping nibbles. Since childhood we have been taught to
become familiar with the base 10 decimal system. It is useful to be able to work
between the three number systems:

Binary Hex Decimal
0000 00 00
0001 01 01
0010 02 02
0011 03 03
0100 04 04
0101 05 05
0110 06 06
0111 07 07
1000 08 08
1001 09 09
1010 0A 10
1011 0B 11
1100 0C 12
1101 0D 13
1110 OE 14
1111 OF 15

Bits, nibbles, bytes and number conversions 9

Consider the following examples:
Example 1.5
Express ABCD as binary.
Solution
ABCD =1010101111001101
Example 1.6
Express 101111000001 as a hexadecimal value.
Solution
1011 1100 0001 = BC1
Example 1.7
Express 01110011110 as a hexadecimal value.
Solution
0011 1001 1110 = 39E

Because in this last example the number of bits does not subdivide into groups
of four bits, the method used is to group into nibbles from the right, filling the
spaces at the front with zeros.

Example 1.8
Express decimal 71 as a hex number.
Solution
71/16 = 4 remainder 7 = 47 Hex, usually written as 47H
Example 1.9
Express decimal 143 as a hex number.
Solution
143/16 = 8 remainder 15 = 8FH

Conversion from binary to decimal can be achieved quickly by first convert-
ing the binary number to hex and then converting the hex number to decimal.
An example illustrates the process.

Example 1.10
Express 11000101B in decimal form.

Solution
Converting to hex:

11000101B = C5H

10 Introduction to microcontrollers

The hex number represents a nibble of binary data and each value is to a power
of 16 with the least significant nibble equal to 16°(=1) and the next significant
nibble equal to 16'(=16). Hence the decimal number is:

(Cx16)+ (5x1)=(12x16) 4+ (5 x 1) = 197 decimal
Check:
11000101 = (1 x 128) 4 (1 x 64) 4+ (1 x 4) + (1 x 1) = 197 decimal

Exercise 1.3
Express decimal 200 as a hex number and then as a binary number.

Exercise 1.4
Express the following binary numbers as hex and then decimal numbers.

1. 10000110
2. 10011000011

1.5 Inside microcontrollers

Microcontrollers normally contain RAM, ROM (EEPROM, EPROM,
PROM), logic circuits designed to do specific tasks (UART, I°C, SPI) and
square-wave oscillator (clock).

Built from the logic circuitry the microcontroller has two parts, the processor
core and the onboard peripherals. See Figure 1.3.

Processor
core

Registers

Clock

Onboard
peripherals

Ports

Registers

RAM

Figure 1.3 Constituent parts of a microcontroller

RAM locations that have special functions and support the processor core
and onboard peripheral circuitry are called special function registers (SFRs)
and are reserved areas.

The program instructions provide the primary inputs to the processor core
circuitry. See Figure 1.4.

The microcontroller program resides in the PROM (programmable ROM),
which, in the microcontrollers we are considering, uses Flash technology and is
located in the microcontroller IC.

Microcontroller programming 11

Microcontroller Instruction Processor Onboard 2
program ™| decoder core “—| peripherals &

Clock oscillator
circuitry

Figure 1.4 Block diagram of a microcontroller

1.6 Microcontroller programming

The microcontroller program comprises a set of instructions written by the
program designer. There are four classes of instructions:

1. Arithmetic operations

2. Logic operations

3. Data transfer operations
4. Branch operations.

ARITHMETIC OPERATIONS

Arithmetic instructions operate on whole numbers only and support addition,
subtraction, multiplication and division.

Addition
ADD A #66H ; add the hex number 66 to the accumulator A

This is an example of immediate addressing.
The # sign is important, if it were omitted the operation would have a
different meaning.

ADD A,66H ;add to accumulator A the contents of RAM address
; 0066H

This is an example of direct addressing.
Accumulator A is an SFR; it is an 8-bit register and its RAM address is
00EOH. A large number of instructions use accumulator A, but not all.

INC 66H ;increment (add 1) the contents of address 0066H

Exercise 1.5
Is there any difference between the following two instructions?
A) INC A B) ADD A #1

12 Introduction to microcontrollers

Subtraction
SUBB A, #66H ; subtract hex66 from the contents of A

The extra B in the instruction implies Borrow. If the contents of A are less than
the number being subtracted then bit 7 of the program status word (PSW)
SFR will be set. (For details of the PSW and other SFRs, see Appendix C.)

DEC A ;decrement A by 1, put result into A

Exercise 1.6
Is there any difference between the following two instructions?

(1) DEC A (2) SUBB A #1

Multiplication
MUL AB ; multiply the contents of A and B, put the answer in AB

A is the accumulator and B is another 8-bit SFR provided for use with the
instructions multiply and divide. A and B are both 8-bit registers. The product
of the multiplication process could be a 16-bit answer.

Example 1.11

A = 135 decimal, B = 36 decimal. What would be the value in each register
after executing the instruction MUL AB?

Solution

A x B =4860=0001 0010 1111 1100B = 12FCH
0001 0010 or 12H would be placed in A, 1111 1100 or FCH in B

Exercise 1.7
If A = 2FH and B = 02H, what would each register contain after execution of
the instruction MUL AB?

Division
DIV AB ;divide A by B, put quotient in A and remainder in B
Example 1.12

A =135, B = 36. What would be the value in each register after execution of
the instruction DIV AB?

Solution
Decimal values are assumed if the value quoted is not followed by an H

A/B =3, remainder 27 (27 = 1BH). Hence 03H in A, IBH in B

If multiplication or division is not being used then register B, which is bit
addressable, can be used as a general-purpose register.

Microcontroller programming 13

Exercise 1.8
If A = 2FH and B = 02H, what would each register contain after the execution
of the instruction DIV AB?

LOGIC OPERATIONS

The set of logic functions include:

ANL AND Logic

ORL OR Logic

XRL exclusive OR Logic

CPL Complement (i.e. switch to the opposite logic level)
RL Rotate Left (i.e. shift byte left)

RR Rotate Right (i.c. shift byte right)

SETB Set bit to logic 1

CLR Clear bit to logic 0

AND operation

The ANL instruction is useful in forcing a particular bit in a register to logic 0
whilst not altering other bits. The technique is called masking.
Suppose register 1 (R1) contains EDH (1110 1101B),

bit 1 and bit 4 are at logic 0, the rest at logic 1.
ANL RI1,#7FH ;7FH =0111 1111B, forces bit 7 to zero

1 1 1 0 1 1 0 1
AND

0 1 1 1 1 1 1 1

0 1 1 0 1 1 0 1

Exercise 1.9
If A =2D, what would be the accumulator contents after execution of the

instruction ANL A, #3BH?

14 Introduction to microcontrollers

ORL operation

Another aspect of masking is to use the ORL instruction to force a particular
bit to logic 1, whilst not altering other bits.

The power control (PCON) SFR in the 8051 family, is not bit addressable
and yet has a couple of bits that can send the microcontroller into idle mode or
power down mode, useful when the power source is a battery.

The contents of the PCON SFR are:

PCON
\SMODl\SMODz\ \ POF |GPF1 \ GPFz\ PD | IDL \

SMODI and 2 are used when setting the baud rate of the serial onboard peripheral.
POF, GPF1 and GPF?2 are indictor flag bits. IDL is the idle bit; when set to 1 the
microcontroller core goes to sleep and becomes inactive. The on-chip RAM and
SFRs retain their values. PD is the Power Down bit, which also retains the on-chip
RAM and SFR values but saves the most power by stopping the oscillator clock.

ORL PCON,#02H ; enables Power Down
ORL PCON,#01H ; enables Idle mode

Either mode can be terminated by an external interrupt signal. Details of all

device SFRs are to be found in Appendix C.

Exercise 1.10
If the contents of register 0 (R0) = 38H, what would the contents of that
register be after execution of the following instruction?

ORL RO,#9AH

CPL complement operation

The instructions described so far have operated on bytes (8 bits) but some
instructions operate on bits and CPL is an example.

CPL P1.7 ; complement bit 7 on Port 1
Port 1 is one of the microcontroller’s ports with 8 pins.
Port 1
P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

MSB LSB

Complement has the action of the inverter logic gate as shown in Figure 1.5.

P1.74‘>07 P17

Figure 1.5 Production of the complement of pin function

Microcontroller programming 15

Exercise 1.11
If the contents of port 0 (PO) = 125, what would be the port contents after
execution of the following instruction?

CPL PO

RL, rotate left one bit, RR, rotate right one bit operations
Suppose the accumulator A contents are 0000 0001B; this is 01H.

RL A ; contents of A become 0000 0010B or 02H
RL A ;0000 0100B or 04H
RL A ;0000 1000B or 08H

RL three times has the effect of multiplying A by 23 i.e. by 8.
Suppose the accumulator A contents are 1000 0000B, or 128 decimal, then:

RR A ; contents of A become 0100 0000B which is 64 decimal
RR A ; A becomes 0010 0000B =32 decimal

RR A ; A becomes 0001 0000B =16 decimal

RR A ; A becomes 0000 1000B =28 decimal

RR four times has the same effect as dividing A by 2% i.e. 16.

128
23

16
Exercise 1.12
If the content of A is 128 and B is 2, what would the register contents be after
execution of the following instructions?

RR A
RL B

RR A
RR A
RL B?

SETB set bit, CLR clear bit operations
This instruction operates on a bit, setting it to logic 1.
SETB P1.7 ;set bit 7 on Port 1 to logic 1

Consider Figure 1.6 where pin 7 of port 1 is connected as shown.

SETB P1.7 puts logic 1 (e.g. 5V) onto the inverter input and therefore its
output, the LED cathode, is at 0V causing current to flow through the LED.
The LED has a particular forward voltage V¢ (refer to component specification
e.g. www.farnell.com).

16 Introduction to microcontrollers

5V DC

LED O

Cathode

Inverter
gate

Figure 1.6 Use of an LED to indicate the state of port 1, pin 7
Typically Vy = 2.2V and forward current Iy = 8 mA so that:

SV 5-22 2.8x1000
I 8x103 3 350 33062 (preferred value)

CLR PI1.7 ;clears bit 7 on port 1 to zero

CLR P1.7 puts logic 0 on the inverter gate input and therefore its output, the
LED cathode, becomes logic 1 which is 5V. This gives a voltage difference
(5V DC — cathode voltage) of 0V and the LED turns off.

The inverter gate in the above circuit provides a good current buffer
protecting the microcontroller port pin from unnecessary current loading.
In the above circuit the current flow is between the inverter gate and the 5V
DC supply.

If an inverter gate is not used to drive a LED then the control may be directly
from the port pin but this will demand a current in milliamps from the port pin.

Generally a microcontroller port pin can sink current better than it can
source current. See Figure 1.7.

5V DC Po@@

Ground

SINK SOURCE

Figure 1.7 Arrangements to allow a port pin to SINK or SOURCE current

CLR port_pin; will ground the LED cathode in the SINK circuit and turn it
on. This will turn the LED off in the SOURCE circuit.

Microcontroller programming 17

SETB port_pin; will put logic 1 on the LED cathode in the SINK circuit and
turn it off. This will turn the LED on in the SOURCE circuit.

Exercise 1.13
If Vo =5V and for an LED, V; = 0.7V and the pin P0.0 of the microcon-
troller port can sink 10 mA and source 50 pA.

1. How you connect the LED to the microcontroller and
2. Calculate the value of series resistor R.

Data transfer operations

This is mainly concerned with transfer of data bytes (8 bits). SETB and CLR
have just been covered; they operate on bits.

MOV operation

MOV moves bytes of data. Consider driving a seven-segment display (decimal
point dp included) where each LED is driven by the sink method. See Figure 1.8.

5vDC 5vDC 5vDC 5vDC 5vVDC 5vDC 5vVDC 5VDC

R R R R R R R R flilb
FOVALEOVA L EAVAY FIVALV T IVAN ROV LR OVA L T \\eldlc

P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 dp
Figure 1.8 Arrangement for a seven-segment LED display

Each LED illuminates a segment. The seven-segment display is shown to the
right with its standard segment identification letters.

Example 1.13
Write two program lines, one to display 3, the second to display 4. In both cases
turn the decimal point off.

Solution

P1.7 | P1.6 | P1.5 | P14 | P1.3 | P1.2 | PI1.1 | P1.0

dp g f e d c b a

3 1 0 1 1 0 0 0 0 BOH

4 1 0 0 1 1 0 0 1 99H

18 Introduction to microcontrollers

MOV PIL#B0H ; display 3
MOV PI1,#99H ; display 4

Note: MOV P1,#BOH would give a syntax error. In common with a number
of cross assemblers the software would see BOH as a label because it starts with
a hex symbol; 99H would be acceptable since it starts with a number. The
correct program line should be MOV P1,#0BOH i.e. a zero must be placed in
front of the hex symbol.

The instruction MOV is used to move RAM data that is onboard the
microcontroller.

Examples

MOV 0400H,#33H ;move the number 33 hex to RAM address 0400 hex
MOV APl ; move the contents of port 1 to accumulator A
MOV RO,P3 ; move the contents of port 3 into register R0

Note: As well as the accumulator A the microcontroller has 32 registers in
four banks of eight in the processor core. These 32 bytes are fast RAM and
should be used in preference to standard onboard RAM.

Each of the banks contain 8 registers R7, R6, R5, R4, R3, R2, R1, R0. There
are four banks: 0, 1, 2 and 3.

Bank 0 is the default bank; the other banks can be selected by two bits
(RS1,RS0) in the program status word (PSW) SFR

PSW
CY AC FO RS1 RSO (02 F1 P

Register bank 0 (default)
Register bank 1
Register bank 2
Register bank 3

—_—_ o o
—_o = O

Other PSW bits are indicator flags:

CY (carry flag)

AC (auxiliary carry flag)

OV (overflow flag)

P (parity flag)

FO0, F1 (general-purpose user-defined flags)

More information on the register banks and the SFRs can be found in
Appendix C. MOVX is used to move data between the microcontroller and
the external RAM. MOVC is used to move data (e.g. table data) from PROM
(also called code memory) to RAM.

Microcontroller programming 19

Exercise 1.14
Write an instruction to select the register bank 2 of the microcontroller.

Branch operations

There are two types, unconditional and conditional branching. Unconditional
branch operations are

ACALL absolute call
LCALL long call

ACALL calls up a subroutine, the subroutine must always have RET as its last
operation. ACALL range is limited to +127 places forward or —128 places
backward. If your program jumps further than ACALL the compiler will
report that the program is jumping out of bounds and replacement by LCALL
will solve the problem.

ACALL is two bytes long, LCALL is three bytes long.

AJMP absolute jump
LIMP long jump
SIMP short jump

Similar to ACALL and LCALL, AJMP and LIMP jump to addresses whereas
SIMP, which has a similar range to ACALL and AJMP, jumps a number of
places.

The difference could be seen in the machine code. Consider the program:

SINCLUDE (REG66X.INC) ; lists all sfr addresses

ORG 0 ; sets start address to O

SJMP START ; short jump to START label

ORG 0040H ; puts next program line at address 0040H
START: SETB P1.7 ; set pin 7 onport 1l tologicl

CLR P1.7 ; clear pin 7 on port 1 to logic O

AJMP START ; jump back to START label

END ; nomore assembly language

The machine code can be viewed in the list file, progname.lst:

SIMP START

Shows as 803E 80 is the hex for instruction SJMP
3E is the relative jump to reach 0040H where START is; it
jumps from address 0002, the address after SIMP START,
0002 + 3E = 0040H

AJMP START
Shows as 0140 01 is the hex for instruction AJMP
40 is short for address 0040

20 Introduction to microcontrollers

If LIMP had been used instead of AJMP then,

LIMP START

Shows as 020040 02 is the hex for instruction LIMP
0040 is the full address

Exercise 1.15

In your own words describe the difference between ACALL and AJMP instruc-
tions.

Conditional branch operations:

JZ Jump if zero
INZ Jump if not zero
DIJNZ Decrement and jump if not zero

Consider an example (a subroutine called by ACALL):

DELAY: MOV ROJF34 ; move decimal 34 into register RO
TAKE: DJNZ RO, TAKE ; keep subtracting 1 from RO until zero
RET ; return from subroutine

CINE Compare and jump if not equal

Consider:
DELAY: MOV ROJF34 ; move decimal 34 into register RO
TAKE: DEC RO ; decrement RO
CIJNE ROJ12,TAKE ; compare ROwith 12 jump to TAKE if not
RET ; return when RO equals 12

Other instructions are:

JC jump if carry is 1
JNC jump if carry is 0

JB jump if bit =1
JNB jump if bit =0

Consider a practical example of testing switched logic levels. Refer to Figure 1.9.
If the switch is not pressed the voltage on the port pin is 0 V. When the switch
is pressed and held, then the port pin is connected directly to 5V. To test for
switch being pressed, the following program could be used:

SINCLUDE (REG66X.INC) ; lists all sfr addresses
ORG 0 ; sets start address to O
SJMP START ; short jump to START label
ORG 0040H ; putsnext programline ataddress 0040H
START: JB P1.0,PULSE ; jump to PULSE if pin O port 1 is logic 1
CLR P1.7 ; otherwise clear pin 7 port 1 to zero

SJMP START ; go to START check switch

Microcontroller programming 21

PULSE: SETB P1.7 ; set pin 7 onport 1 tologicl
CLR P1.7 ; clear pin 7 on port 1 to logic O
AJMP START ; go to START check switch
END ; nomore assembly language
+5V DC

Il

ﬁ

To micro pin

1K

GND
Normally logic 0

Figure 1.9 Circuit to produce logic levels 0 or 1 at a port pin. Circuit normally
producing logic 0

Also, consider the case when pressing the switch generates a logic ‘0’, as shown
in Figure 1.10.

+5V DC

3.3K
To micro pin

’>ﬂ

GND
Normally logic 1

Figure 1.10 Circuit to produce logic levels 0 or 1 at a port pin. Circuit normally
producing logic 1

If the switch is not pressed the voltage on the port pin is 5 V. When the switch
is pressed and held, the port pin is directly connected to ground or 0 V. The test
instruction could be:

CHECK: JNB P1.0,PULSE ; jump to PULSE if pin O portlislogicO
SJMP CHECK
PULSE:

Exercise 1.16
In your own words describe the difference between JNB and JNC instructions.

22 Introduction to microcontrollers

1.7 Commonly used instructions of the 8051 microcontroller

The P89C664 is a member of the 8051 family; it is a CISC device having well
over 100 instructions. The instructions used in this text could be the first set to
become familiar with.

MOV move a byte

SETB set or clear bits
CLR

ACALL call up a subroutine
RET

SIMP unconditional jump
AJMP

JB bit test, conditional jump
JNB

DINZ byte test, conditional jump
CJINE

ORL OR logic, useful for forcing bits to logic 1
ANL AND logic, useful for forcing bits to logic 0

The full 8051 instruction set is shown in Appendix A.

COMMONLY USED ASSEMBLER DIRECTIVES

ORG define address
DB define bytes, useful for table data
END all assembly language programs must end with this.

1.8 Microcontroller clock

The microcontroller may be likened to a logic circuit whose logic states change
in synchronism with the microcontroller clock signal. This is a square-wave
signal as shown in Figure 1.11.

Knowledge of the microcontroller clock cycle time is useful in defining timing
events used in applications.

Example 1.14
A P89C664 microcontroller has a clock frequency of 11.0592 MHz. What is the
time for each cycle?

Microcontroller clock 23

5V
ov

T

——
Frequency f=1/T

Figure 1.11 Square-wave signal at a frequency f Hz

Solution

1

= 170557 <108 = 90.423 ns (n=1077)

Cyclic time (7))

Now let us look at the previous program:

SINCLUDE (REG66X.INC) ; lists all sfr addresses
ORG 0 ; sets start address to 0
SJMP START ; short jump to START label
ORG 0040H ; putsnextprogramlineataddress 0040H
START: JB P1.0,PULSE ; jump toPULSEif pinO, portlislogicl
CLR P1.7 ; otherwise clear pin 7 port 1 to zero
SJMP START ; go to START check switch
PULSE: SETB P1.7 ; set pin 7 onport 1l tologicl
CLR P1.7 ; clear pin 7 on port 1 to logic O
AJMP START ; go to START check switch
END ; nomore assembly language

Initial inspection might lead to the conclusion that the output signal on port 1,
pin 7 is a square wave being turned on by SETB and off by CLR. Closer
inspection reveals that CLR is held for the extra duration of AJMP and JB.
Reference to Appendix A shows that:

SETB takes 6 microcontroller clock cycles
CLR takes 6 microcontroller clock cycles
AJMP takes 12 microcontroller clock cycles
JB takes 12 microcontroller clock cycles

SETB is held for 6 clock cycles and CLR is held for 30 clock cycles, not an equal
on/off waveform as Figure 1.12 shows.

If an equal on/equal off waveform is required then the NOP (No OPeration) can
be used. The NOP operation takes 6 clock cycles. The program could be modified:

SINCLUDE (REG66X.INC) ; lists all sfr addresses
ORG 0 ; sets start address to O
SJMP START ; short jump to START label
ORG 0040H ; putsnextprogramlineataddress 0040H
START: JB P1.0,PULSE ; jump to PULSEif pinO, portlislogicl
CLR P1.7 ; otherwise clear pin 7, port 1 to zero

SJMP START ; go to START check switch

24 Introduction to microcontrollers

PULSE: SETB P1.7 ; set pin 7 on port 1 to logic 1l
NOP ; hold logic 1 onpin 7, port1l
NOP
NOP
NOP
CLR P1.7 ; clear pin 7 on port 1 to logic O
AJMP START ; go to START check switch
END ; nomore assembly language

i e———
SETB CLR AJMP JB SETB
6 6 12 12

Figure 1.12 Waveform produced using specified instructions. Note that the
waveform is not a square wave (i.e. there are unequal ON and OFF periods)

The modified waveform is shown in Figure 1.13.

| | | | |
SETB NOP NOP NOP NOP CLR AJMP JB SETB
6 6 6 6 6 6 12 12

Figure 1.13 Modification to the waveform of Figure 1.12 using NOP instructions to
produce a square-wave output

The cycle time of the equal on/off waveform = 60 microcontroller clock cycles.
If the microcontroller had a clock frequency of 11.0592 MHz then a clock cycle
period 7'is the reciprocal of this frequency, T = 90.423 ns. Therefore the cycle time
of the equal on/off signal is 60 x 90.423 ns = 5.43ps. The frequency of this signal is
1/5.43 us = 184 kHz. The maximum signal frequency would depend on the max-
imum microcontroller clock frequency; for the P89C664 microcontroller the max-
imum clock frequency is 20 MHz. Quite often there is a requirement to generate
accurate lower frequency signals and for these the basic signal must be slowed
down using a time delay.

1.9 Time delays

The NOP instruction is a simple time delay but apart from this there are two
methods of creating time delays:

e register decrement
e onboard timers.

Time delays 25

The use of onboard timers will be described in a later chapter; here the register
decrement method will be described.
The basic single loop program lines are:

DELAY: MOV RO Jfnumber ; move a number into an 8-bit
; register RO
TAKE : DJNZ RO,TAKE ; keep decrementing RO until it is
; zero
RET ; return from DELAY subroutine

MOV takes 6 clock cycles, DINZ and RET each take 12 clock cycles. The delay
is called up from the main program using ACALL, which takes 12 clock cycles.
The delay time is (12 + 6 4+ (number x 12) + 12) clock cycles. When the num-
ber is small the NOPs (total 24 cycles) should be included,

Delay time = (24 + 12 + 6 4+ (number x 12) + 12) clock cycles
Delay time = (54 + (12 x number)) clock cycles

Example 1.15

A P89C664 microcontroller has an 11.0592 MHz crystal-controlled clock oscil-
lator. Write an assembly language program that will generate a 5 kHz square-
wave signal on pin 7 of port 1 when a switch causes pin 0 on the same port to go
to logic 1.

Solution

Clock frequency = 11.0592 MHz

Thus period of clock cycle = (1/11.0592 MHz) = 90.423 ns
Signal frequency = 5SkHz

Therefore period of signal cycle = (1/5 kHz) = 200 ps

The delay required is half of this value since the square wave has an equal
logic 1/logic 0 time. See Figure 1.14.

Logic 1
Logic 0
Delay | Delay

| Cycle time

Figure 1.14 Delay period determination for a square-wave signal

Delay = 100 us = (54 + (12 x number)) x 90.423 ns

Hence number = ((100 ps/90.423 ns)—54)/12 = 88 decimal (to the nearest whole
number).

26 Introduction to microcontrollers

SINCLUDE (REG66X.INC) ; lists all sfr addresses
ORG 0 ; sets start address to O
SJIMP START ; short jump to START label
ORG 0040H ; putsnextprogramlineataddress 0040H
START: JB P1.0,PULSE ; jump toPULSEif pinO, portlislogicl
CLR P1.7 ; otherwise clear pin 7, port 1 to zero
SJMP START ; go to START check switch
PULSE: SETB P1.7 ; set pin7 onportl to logicl
ACALL DELAY
NOP ; hold logic 1 on pin 7 port 1
NOP
NOP
NOP
CLR P1.7 ; clear pin 7 on port 1 to logic O
ACALL DELAY
AJMP START ; go to START check switch
DELAY: MOV RO.f88
TAKE : DJINZ RO,TAKE
RET
END ; nomore assembly language

The delay depended on the chosen microcontroller clock frequency and in the
example this was 11.0592 MHz. This apparently unusual number gives standard
baud rate values, which will be useful later. For microcontroller clock frequen-
cies in this region the single loop register decrement method gives delays in the
region of microseconds. Generally a double loop gives delays in the region of
milliseconds and a triple loop delay gives delays in the region of seconds.

Exercise 1.17
Using the techniques above, assuming the clock frequency is 11.0592 MHz, write
a program to generate a pulse of 20 kHz on pin 7 of port 1 of the microcontroller.

DOUBLE LOOP DELAY

DELAY: MOV R1,ffnumberl

INNER: MOV RO,ffnumber?2

TAKE: DJNZ RO,TAKE
DJNZ R1,INNER
RET

Approximately the time delay = (number 1) x (number 2) x 12 clock cycle periods.
For example, suppose number 1 =200 and number 2=240 and 1 clock
cycle =90.423 ns.

Time delay = 200 x 240 x 12 x 90.423ns = 52.1 ms

The bigger the values of number 1 and number 2, the better the approximation.
The software used has simulation and the values of number 1 and number 2 can
be fine tuned to give the accurate delay during simulation.

Summary 27

TRIPLE LOOP DELAY

DELAY: MOV R2.{fnumberl

OUTER: MOV R1,ffnumber?

INNER: MOV RO,f#fnumber3

TAKE: DJNZ RO,TAKE
DJNZ R1,INNER
DJNZ R2,0UTER
RET

Approximately the delay =(number 1) x (number 2) x (number 3)x12 clock
cycle periods. Suppose number 1 =40, number 2 =200, number 3 =240, 1 clock
cycle period =90.423 ns.

Delay = (40 x 200 x 240 x 12 x 90.423)ns ~ 25

Long enough to see a LED going on and off.

In later chapters the use of the microcontroller’s onboard timers will be used
to describe an alternative method of producing time delays. The timer method
will require the configuration of the timer SFRs.

The register decrement method described above is a valid alternative, easy to
implement and does not require the configuration of SFRs.

Summary

® A microcontroller is a computer with most of the necessary support chips
onboard. Microcontrollers can be embedded and are available in a variety
of forms to suit practical applications.

® Number systems, such as binary and hexadecimal, are used in microcon-
troller applications. If decimal numbers are required they can be converted
to binary and/or hexadecimal and vice versa.

e There are four classes of instructions namely: arithmetic, logical, data
transfer and branch instructions.
The microcontroller port pins may be required to sink and source currents.
Time delays may be achieved by using register decrement instructions or by
using onboard timer circuits.

e Using register decrement, longer delays can be achieved by the use of double
or triple loops.

2

Flash Microcontroller Board

2.1 Introduction

There are three microcontroller families covered in this book, the 8-bit
P89C66x, the 16-bit extended architecture (XA) and the low pin count (LPC)
devices. The P89C66x devices are essentially flash 8051 microcontrollers with
up-to-date features. The XA was publicised by Philips Semiconductors as the
16-bit upgrade of the 8051, and this book covers the XAG49 which is the flash
version of the basic XA microcontroller. The LPC76x devices are one time
programmable (OTP) EPROM microcontrollers; initially some ultra violet
(UV) erasable types were available but this is no longer the case. The number
7 in the device description identifies the technology as EPROM whereas the
number 9 identifies flash technology. Currently 28 pin flash LPC932 devices are
becoming available. LPC devices belong to the 8051 family and will develop to
include 8-pin dual-in-line (DIL) devices.

Philips Semiconductor engineers have produced application notes describing
the in-circuit programming of the P89C66x and XAG49 devices and included
suggested schematic circuits. Application note AN761_10 describes the techni-
que for the P89C66x devices (_10 is the revision number); AN716 2 is the
equivalent application note for the XAG49. The reader should search the
www.semiconductors.philips.com web pages for the latest revision.

The authors adapted the schematic designs, and printed circuits boards
(PCBs) were produced, one for the P89C664 and one for the XAG49. Each
design was based on the 44 pin, plastic leaded chip carrier (PLCC) package.
Full size single-sided artworks are provided in Appendix G.

The PCB artwork in Appendix G can be used, together with the schematic
circuit diagrams in this chapter to produce a microcontroller board (either for
the P89C66x device, the XAG49 device or both). The board can then be used to
verify the programs outlined in the relevant chapters as well as providing the user
with an opportunity to develop their own programs that can be downloaded
into the microcontroller. Components for the board are relatively inexpensive

P89C66x microcontroller 29

and can be readily obtained from electronic distribution outlets. Simulation and
debugging techniques (described in Chapter 3) can then be used to evaluate the
programs prior to downloading into the microcontroller. However, should the
reader not wish to make use of a microcontroller board, the applications as
described in the relevant chapters can still be followed and understood.

At the time of writing, a similar application note is not available for the
P89LPCI32 although a low cost evaluation board, the MCB900, is available
from Keil; their website is www.keil.com.

2.2 P89C66x microcontroller

The P89C66x is available in either PLCC or linear quad flat pack (LQFP)
packages; Figure 2.1 shows the PLCC version.

6 1 40
[1 11 I
7] o] 39
PLCC
17 |: :| 29
L] L]
18 28
Pin Function Pin Function Pin Function
1 NIC* 16 P3.4/TO/CEX3 31 P2.7/A15
2 P1.0/T2 17 P3.5/T1/CEX4 32 PSEN
3 P1.1/T2EX 18 P3.6/WR 33 ALE
4 P1.2/ECI 19 P3.7/RD 34 NIC*
5 P1.3/CEX0 20 XTAL2 35 EA/Vpp
6 P1.4/CEX1 21 XTAL1 36 P0.7/AD7
7 P1.5/CEX2 22 Vg 37 P0.6/AD6
8 P1.6/SCL 23 NIC* 38 P0.5/AD5
9 P1.7/SDA 24 P2.0/A8 39 P0.4/AD4
10 RST 25 P2.1/A9 40 P0.3/AD3
11 P3.0/RxD 26 P2.2/A10 41 PO0.2/AD2
12 NIC* 27 P2.3/A11 42 P0.1/ADA1
13 P3.1/TxD 28 P2.4/A12 43 P0.0/ADO
14 P3.2/INTO 29 P2.5/A13 44 Ve
15 P3.3/INT1 30 P2.6/A14

Figure 2.1 Pin functions for the 89C66x PLCC package microcontroller

With reference to Figure 2.1 the following pin details apply: NIC* means no
internal connection; Vsg is ground and Ve is the 5V DC supply; RST is the

30 Flash microcontroller board

P89C664

c2
|| 11.0892MHz 21 | yral 4 P00 |43 FEMALE DB9
22pF | [POt [42 0 0o
= 3 XTAL P0.2 % olofo|o]o
P0.3 |40 _ f
A5V 22pF || C3 20 | xTAL2 Po.4 |39 ‘L ”“‘11
il sv Po5 (38 MAX232CPE ooo | o
36| /EA P06 [37
10| RsT Po.7 (36 IXD 11 71N T10UT [14
) oo |24 GND 10| T2IN T2OUT|Z _o
swi l+1o F —2f P10 P21 125 RxD12|miouT RIN[13
c1 T oM —3] P11 p22 [26 — g 5 GND
4l P12 P23 [27 G— R2OUT R2IN AE‘V
sv _g P1.3 P24 |28 o vs 2 | 1.C5
D1 — P14 P25 129 CA[gqgr| O * 11
10K R3 k2 — 7] P15 P26 |30 3 16 0.1uF
R1 8| p1g p27 [31 c1- \elo) 0.1uF
TNo14 9 p17 - 4 s c7, = cs
22 R2 44 P3.6 % C6—GTur| ©% V-
_141 p32 P37 [19 0.1uF
= _151 p33 T—3ce- GND {12
_16] p3.a ALE |38 _—
_17] pas PSEN |32 -

)
X
o

P3.0
P31 H13TXD

NORMAL

Figure 2.2 Schematic for the 89C66x microcontroller board

reset input, refer to Figure 2.2; XTAL2 and XTALI are the piezo crystal pins.
11.0592 MHz was used for the authors’ board.

PSEN is program strobe enable. A switch was used to ground PSEN for in system
programming (ISP); it was left floating when the normal program was running.

Address latch enable (ALE) was not used and was left unconnected. ALE
generates a pulse and can be viewed as a source of local interference. Setting pin 0
in the auxiliary register (AUXR) to | disables ALE.

On the PCB all four ports are available for general use.

On port 3 pins 0 (RxD) and 1 (TxD) connect via a MAX232 chip to a 9-pin
female D type socket. This connects to the PC for ISP but once the microcon-
troller is programmed this PC connection can be used for normal running PC
microcontroller communication. Before using the serial connection for normal
use the WinISP software, used to carry out the ISP, must be closed down.

On port 1, pins 6 (SCL) and 7 (SDA) may be used as serial connections for
the onboard I°C interface and as such are open-drain. Figure 2.2 shows 2k2
(2.2 k) resistors connected from these pins to 5V DC.

Port 0 is shown as an address (A0O—A7) and data (D0-D7) port, and port 2 is
shown as an address (A8—A15) port. These ports have been traditionally used
for connection to external PROM, data memory and other peripherals in
expanded systems.

The microcontroller board described in this book is not expanded; it uses the
onboard flash code memory and the onboard static RAM (SRAM). Ports 0 and
2 are left for general use although port 0 pins are open-drain and if used should
employ pull-up resistors.

The active low external access (EA) pin was not required and was connected
to the 5V DC (V).

Programming the device 31
2.3 Programming the device

The authors use WinlISP software to program the flash P§9C664 and XAG49
devices, the software being downloaded from Philips Semiconductors web
pages. First the home page at www.semiconductors.philips.com should be
accessed and then the Microcontrollers page by selecting Products and then
Multimedia Semiconductors. Once on the Microcontrollers page Support
Tools should be selected and then Software Downloads. WinISP.zip is on this
page; it is approximately 2 MB. Selecting WinlISP gives the window shown in
Figure 2.3.

24 PHILIPS ISP

PHILIPS In System Data Bufter (54€)

Programmer
Ver 2.29

: -Parametars - z
| Chip: Fm
,_
Blank Check | Port |Caml -

Prograrm Fart urity: Ronae
Lt ﬂ Start 0000

-
Osc (MHz) 11.0592
Yerity Part

Loaded File:
Fill Buffer TOGGLEHE=

Status Display -
|F|Ie Loaded OK

HSIM'99 ESA'01-02

=

Figure 2.3 Philips WinISP window

As can be seen in the data buffer window a simple test program has been
loaded; it toggles (turns on and off) repeatedly pin 7 on port 1. This can easily
be checked on the microcontroller board by using an oscilloscope or logic
probe. The program is:

ORG 0 ; reset address

SJMP START ; jump over reserved area

ORG 40H ; program start address
START: SETB P1.7 ; set pin 7 port 1 to logic 1l

CLR P1.7 ; clear pin 7 to logic O

SJMP START ; repeat

END ; end of assembly language

The hex version of the program is shown in the data buffer.

32 Flash microcontroller board

The Philips Semiconductors flash microcontrollers come with a small moni-
tor routine already programmed into them at the top of code memory. In
Figure 2.2, switch 2 (SW2) connects PSEN to ground while the reset push-to-
make switch (SW1) is pressed and then released. This causes the microcontrol-
ler to communicate with the WinISP software on the PC. A board produced for
the P89C664 device is shown in Figure 2.4(a); it should be noted that this board
varies slightly from the design presented in Appendix G in that lettering was
formed on the upper surface of the board. The design in Appendix G is simpler
and utilises single-sided artwork with a plain upper surface. The board layout is
shown diagrammatically in Figure 2.4(b) to illustrate the ports and show the
connections to the 5V DC power supply and to the computer.

Figure 2.4(a) The 89C66x microcontroller board

Referring to Figure 2.3, the program hex code is in the WinISP data buffer.
The reset address at 0000 can be seen. The hex code there must be for SIMP
START. The program start address at 0040 can also be seen. The hex code that
follows is that of the program.

Serial lead
from PC

Programming the device 33

From DC
power supply

/

[, L poti]

D 76543210

c _/

6 = @ Switch
= >
[0]
@ >B< Reset P89C664 I:.
< N Run WinISP

Ground
connection

Figure 2.4(b) Diagram of the 89C66x microcontroller board showing ports,
switches and external connections

|I Read

Figure 2.5 Read button from the WinISP window

Test whether WinISP can communicate with the microcontroller board as

follows:

—_—

had

Turn the microcontroller board DC power supply on.

Ensure the switch on the microcontroller board is set to the WinISP
position (PSEN connected to ground).

Press and release the microcontroller board reset switch.

Back to the PC, CLM on the read button at the bottom of the middle Misc
window in WinISP (see Figure 2.5).

If the status display reads boot vector read OK then that is good and you can
proceed to the next step, if not then close the window and repeat. If there is still
a problem then use an oscilloscope to check the signal from the PC, through
the D connector, through the MAX232 to the RxD (see Figure 2.2) pin on the
microcontroller. If this is satisfactory then check the signal back from the TxD
pin on the microcontroller, through the MAX232 to the D connector. If using
a logic probe then remember not to use it between the MAX232 and D type
connector where the voltage levels are in the region of £10V.

Before the microcontroller can be programmed it must first be erased.
Click left mouse button (CLM) on erase blocks and a window appears as

shown in Figure 2.6. CLM on the 0 and the hatched pattern appears in the first

34 Flash microcontroller board

Block Erase Selection

Available Blocks On Chip
Click Blocks to Erase
PE3CEE4 Blocks |

Select All |
8K
1EK DeselectAll |
ERASE! |
32K

48K

64K

i Close
- =Block Selected :

_— "Pe—

Figure 2.6 Block erase selection using WinISP

Figure 2.7 Program part button from the WinISP window

section. Now CLM on the ERASE! button and the hatched section should
flash. When it finishes the micro is ready to be programmed. Now CLM on the
program part button. See Figure 2.7. When there is a successful message in the
status display, the micro is programmed.

HARDWARE CHECK

1. Ensure the microcontroller board DC supply is still on.
On the microcontroller board move the switch to the run mode (PSEN
floating).

3. Press and release the microcontroller board reset switch, this makes the
program run from 0000H.

4. Use a logic probe or oscilloscope to check that pin 7 on port 1 is pulsing.

XAG49 microcontroller 35

iiFlash Magic B = 0] x|

File ISP Options Help

1

COM Port: ICDMI vl Erase block 0 (0<0000-0=1FFF)

Erase block 1 [Uu20|:|0 Dw3FFF)

Baud Rate; ISBDEI VI Erase block 2 [0x4000-0x7FFF)
: Erase block 3 [0xB000-0xBFFF)
Device: 13913554 'I Erase block 4 (0xCO00-0FFFF)
Oscillator Freq. (MHz): I11.0592 W e
Hex File: IC:'\KeiI\I:5T \Book'prog2 hex Browse... |

Last Modified: 29/03/2003 21:52:40 Size: 114 bytes

4 5

v “erify after programming [~ Set Secunty Bit 1

[~ Fill unused Flash [~ SetSecuntyBit 2
[~ Generate checksums [~ Set Secunty Bk 3
[~ Execute [T 6 clks/cycle St

Ratating, fully customizable, remotely updated Intemet finks. Embed them in your
application!
wiww. ermbeddedhints. com >

| J

Figure 2.8 Flash Magic window

2.4 Flash magic

Flash Magic ISP software may be used in place of WinISP. It can be down-
loaded from the web page of Embedded Systems Academy (www.esacademy.com).
The authors have not used it but there have been good reports on its ease of
use. The window that is produced by the software is shown in Figure 2.8.
Again the downloaded file size is just over 2 MB. Included in the installation is
a manual.

2.5 XAG49 microcontroller

The PLCC package for the XAG49 device is shown in Figure 2.9. Comparison
between the pin functions for this device and those of the P89C664 microcon-
troller (Figure 2.1) shows that they are almost pin compatible. One difference is
pins 1 and 23, for the P89C664, they are not internally connected (NIC). On the
XAG49 device, pin 1 (Vsg) is internally connected to pin 22 (Vss) and pin 23
(Vpp) is internally connected to pin 44 (Vpp).

36 Flash microcontroller board

6 1 40
(1 1 [l
7 |: o :| 39
PLCC
17 E :| 29
L] L]
18 28
Pin Function Pin Function Pin Function
1 Ves 16 P3.4/T0 31 P27/A19D15
2 P1.0/A0/WRH 17 P3.5/T1/BUSW 32 PSEN
3 P1.1/A1 18 P3.6/WRL 33 ALE
4 P1.2/A2 19 P3.7/RD 34 NC
5 P1.3/A3 20 XTAL2 35 EA/Vpp/WAIT
6 P1.4/RxD1 21 XTALA 36 P0.7/A11D7
7 P1.5/TxD1 22 Vss 37 P0.6/A10D6
8 P1.6/T2 23 Vpp 38 P0.5/A9D5
9 P1.7/T2EX 24 P2.0/A12D8 39 P0.4/A8D4
10 RST 25 P2.1/A13D9 40 PO0.3/A7D3
11 P3.0/RxD0 26 P2.2/A14D10 41 P0.2/A6D2
12 NC 27 P2.3/A15D11 42 P0.1/A5D1
13 P3.1/TxD0 28 P2.4/A16D12 43 PO0.0/A4D0O
14 P3.2/INTO 29 P2.5/A17D13 44 Vpp
15 P3.3/INT1 30 P2.6/A18D14

Figure 2.9 Pin functions for the XAG49 PLCC package microcontroller

Another significant difference is the reset on pin 10. The reset of the P89C664 is
active high, same as all the standard 8051 devices, whereas the XA reset is active
low; check the schematic circuits. The XAG49 does not have an I>C peripheral
and so has no need for pull-up resistors on pins 6 and 7 of port 1.

The XAG49 has 20 address lines A0 to A19 and can be the 16-bit processor
in a relatively large expanded system. Most of the expansion comes through
ports 0 and 2 although 4 address lines A0 to A3 on port 1 are not multiplexed
with data lines and provide fast (burst) memory addressing. Use of bus width
(BUSW) on pin 17 in conjunction with the bus configuration register (BCR)
can be set to make the data bus width 8 bits or 16 bits. WRH and WRL may be
used to select 8-bit memory devices to work in 8-bit or 16-bit data transfer in
a similar way to the use of upper data strobe (UDS) and lower data strobe
(LDS) in a Motorola 68000 system.

The schematic for the XAG49 is shown in Figure 2.10. The circuit of
Figure 2.10 is similar to that for the P§89C664 (Figure 2.2), the difference being
the reset. The full size single-sided artwork is available in Appendix G together
with the component layout. Programming the XAG49 is carried out in the
same way as for the P89C664. A test program to toggle pin 7 on port 1 could be:

Summary 37

| J
|
. XAGA49 |
I
: c2 ;
| | |_11.0592MHz 21| y7aL1 P00 48 FEMALE DB9 ;
' 22pFl | €L PO.1 [42 '
' = =3 XTAL PO.2 |41 olo|o[o|0):
' P03 [40 EEEEEBE
' sV 22pF || C3 20| x7AL2 P04 [39_ :_lnl_'nL ‘L J' !
' ZF I SV g Pos (36 MAX232CPE !
/EA P0.6 [37
: 10| RsT po.7 |36 TxD 11| 11N T10OUT |14 !
! poo |24 GND 10| T2IN T20UT | Z_ 5 !
! R1 10k 0 ==
i —i P10 Pt I RxD 12| R1OUT R1IN |13 E
| — P 22 15 9| R20UT R2IN |8 GND
! —4] P12 P23 [27 G—] . ASV !
' —5]P13 P24 1 c1s v+ |2 1
: SW”:I + _g P14 Eg_g 29 ciC o —|01uF |
— L P1. 6 |30 3 _ 16 . |
! C1[1uF 8| P16 pos [51 T—__3fct vce __0.1uF:
' 9] p1.7 4 v- |6 c7 T °8
c2 L '
! 1 P36 [18_ COGur| '
' — — ggg P37 119 T 5|lco gD 15 0.1uF !
= _15] pa. |
: _161 P34 ALE |33 —_
\ _171 P35 PSEN |32 !
i |
! p3.0 |11 RxD !
' p3.1 [13TxD |
| NORMAL :
, |
' sw2 |
| ‘
|
| |
\ |
| I
| |

Figure 2.10 Schematic for the XAG49 microcontroller board

SINCLUDE (REGXAG49.INC) ; list of register addresses
ORG 0 ; reset address
DW 8FOOH, START ; config registers, goto START
ORG 120H ; program start address
START: SETB P1.7 ; set portlpin7 tologicl
CLR P1.7 ; clear pin 7 to logic O
JMP START ; repeat
END ; end of assembly language

Notice that the program start address is at 0120H, this means the program
hex would not appear on the front page of the WinISP data buffer and the
buffer would have to be scrolled to show the contents starting at hex address
0120H.

Summary

e A P89C66x microcontroller board can be constructed using the schematic of
Figure 2.2 and the PCB artwork of Appendix G.

¢ An XAG49 microcontroller board can be constructed using the schematic
of Figure 2.10 and the PCB artwork of Appendix G.

¢ The microcontroller device can be programmed using suitable ISP software
such as Philips’ WinISP.

e Suitable software and hardware checks can be carried out to establish that
the boards operate satisfactorily.

3

Simulation Software

3.1 Introduction

The program examples and corresponding simulations shown in this book were
carried out using evaluation software downloaded from:

www.keil.com

WWwWw.raisonance.com

The software from Keil supports the LPC and P89C66x microcontroller
families, and that from Raisonance supports LPC, P§9C66x and XA devices.

It should be pointed out that evaluation software from these companies
support many other microcontroller devices. This book is based on P89C66x,
XAG49 and LPC microcontrollers.

The software size is code limited. For Keil software it is limited to 2 KB while
for Raisonance software it is limited to 4 KB for the 8051 and to 8§ KB for the
XA. Both manufacturer’s evaluation software compile down to a reset hex
address of 0000.

The software can be used for programming in both C and assembly language.
Generally, if the first line of an assembly language program begins SINCLUDE
then the Raisonance software is being used.

Both sets of software operate within an integrated development environ-
ment (IDE); the package from Keil is called p Vision2 (micro Vision 2) and
that from Raisonance is called Raisonance IDE (RIDE). Writing of the
source program C or assembly language, syntax check, compilation to hex,
program debugging/simulation all takes place within the integrated environ-
ment.

When the debugging/simulation is satisfactorily completed the microcontrol-
ler is programmed with the .hex version of the program.

It is assumed that if the reader is going to read this chapter then he/she will
have downloaded the required software and will be following the text at the

Keil i Vision2 39

same time the simulation software is being accessed. In this chapter, reference is
often made to a colour used in the simulation window, i.e. a red breakpoint,
a yellow arrow, etc. While it is appreciated that the diagrams shown in this
chapter will be in various shades of grey the colour references are apposite if the
reader is using the simulation package at the same time as reading the text. The
diagrams in the text can then be cross-checked against those of the simulation
package in glorious technicolour.

A flow diagram suitable for source program evaluation, and including the
programming of the microcontroller using Philips WinISP, as described in
Chapter 2, is shown in Figure 3.1.

3.2 Keil u Vision2

Starting with this software a window is opened as indicated in Figure 3.2.

A start is made by selecting Project from the top menu bar and then choosing
New Project. A folder can be created and a Project name chosen, in this
example the Project is called Testl. See Figure 3.3.

Clicking left mouse button (CLM) on Save generates another window which
prompts the user to select a chip vendor and then a particular microcontroller.
See Figure 3.4.

For this example a Philips P89C664 is chosen. CLM on OK, another small
window appears as shown in Figure 3.5.

The program is going to be in assembly language so CLM on No. With
reference to Figure 3.2 it can be seen that in the top of the left hand window
there is a small icon with a + sign to the left and the description Target 1 to the
right. Moving the cursor over Target 1 and clicking right mouse button (CRM),
another window appears as shown in Figure 3.6.

Selecting Options for Target ‘Target 1°, a new window appears as shown in
Figure 3.7.

The oscillator frequency defaults to 33MHz and requires changing to
11.0592 (it is already in MHz). Now CLM on Output, the tag to the right of
Target, as shown in Figure 3.7, the window changes and the left mouse button
should be clicked to select Create HEX File. See Figure 3.8.

CLM on OK. From the top menu bar File should be selected, followed by
New to produce a text window. Going to File again and selecting Save As
produces a small window defaulting to the Project folder. The program requires
to be saved with the same name as the project but with the extension .a51. The
program (e.g. testl.a51) and the project title should be in the same folder.

The simple assembly language program used to test the target board should
be typed into this window. Refer to Chapter 2 for the program to test the
P89C664 device. The program, shown in Figure 3.9, is one that causes pin 7 on
port 1 to toggle. The program should now be saved. The program defaults to
syntax colours, which is very helpful. This Editor characteristic and other
attributes may be changed by selecting View, from the top menu bar, and then
Options.

Configure the

software environment

¥

—

Write the source program

Syntax
errors?

—

Simulate the program

Program
errors?

Configure ISP software

I

Program the micro

Programmed
?

Hardware test

As
expected ?

Figure 3.1 Design flow diagram

Fle Edit View Project Debug Fiash Perpherak Tools SVCS Window Help
e LR 2
& E 8 &K Target1
‘reject Workspacs

-1 Target 1

=l

Create New Project

Savein; | Teslprogs LI & B gt B

File name: Itesl‘i
Saveastype: |ProjectFiles ("uv2) | Cancel |
|

Figure 3.3 Window for the creation of a Project

Select Device for Target Target 1°

CRU

Vender: Philips

Device: P39C664 [Use Edended Linker (LX51) instead of BL51
Family: MCS-51 ™ Use Exfandad. bler (AE1] instasd of 467
Data base contents: Description:

{2 PASCSIRB2x -~ 5051-based microcontroller with G-clock High-Speed Cors,

- {21 PASCSIRC2Hboc : 20 Mhz at6 ciks/cyele, 33 Mhz at 12 clks/cyele, 12C.

{21 PRICSIRC & Intermupts4 Priority Levels. E4K Bytes ISPJIAP FLASH,

{22 PA9CHTIRD2Hx 256 Bytes on-chip RAM. 1792 Bytes XRAM

i (3 P83C51RD20:

i3 Pagcs1N2

L PasCs2R2
{2 PagCEAR
(2 Pascsax2
| (2 PagCe0x2
23 Pascen
2 PasCes0 E

| (3 P89CEES
| 72 P39CEEY

[

Figure 3.4 Window for the selection of a Vendor and particular microcontroller chip

2

Yes

Copy Standard 8051 Startup Code to Project Folder and Add File to Project ?

No |

Figure 3.5 Window for possible use of 8051 Startup code

Options for Target Target 1

[#% Rebuild target
[%] Buid target

E

Manage Components

| Include Dependencies

Figure 3.6 Window for Target operations

Device Target | Output Listing| €51 | A51 | BL51 Locate | BLS1 Misc | Debug | Utiites |

Philips PEICER4

Xtal (MHz): |11-0592

Memory Modal: |Sma||.' variables in DATA

Code Rom Size: |Lalge: 64K program

=

Operaling system: |None

— Off-chip Code memory

[~ Code Banking

Banks: | -

=

Start

Eprom #1:
Eprom #2:
Eprom #3:

Size:

Start

Bank Area: |

[~ Use On-chip ROM {0x0-0xFFFF)

[Use On-chip XRAM ((x0-0x6FF)

[~ Use multiple DPTR registers

- Off-chip Xdata memory

Start: Size:

Ram #1: I—[—
Ram #2: I—’—
Ram #3: I—’—

Figure 3.7 Window for Target options

Keil 1 Vision2 43

[v Create HEX File

Figure 3.8 Creating a hex file

_Qﬁ-"ﬂﬂ"’ Gl = L == v Gy _Iﬁ(‘ﬂé@fﬂrﬁl g [T
AR
'p_m,-.dwodcml
=4 Target 1

address

;rese—_
SIMEP START ;jump over reserved area

CRG 40H ;program start address
START: SETB P1.7 ;set pin7 port 1 to gicl
CLR P1.7 ;jclear pin7 to logic O

SJME STRRT Frepeat
;jend of assembly language

Figure 3.9 Text window showing testl.a51 source program

Now CLM on the + sign to the left of Target produces a subfolder Source
Group 1, as shown in Figure 3.10. CRM on Source Group 1 generates another
window shown in Figure 3.11. Choosing Add Files to Group ‘Source Group 1’
causes another window to appear which defaults to C programs. See Figure 3.12.

(7 Source Group 1

Figure 3.10 Target 1 subfolder Source Group 1

Options for Group 'Source Group 1'

[#4 Rebuild target
""" (%] Build target F7

Add Files to Group 'Source Group 1'

Manage Components
Remove Group 'Source Group 1' and it's Files

[+ Include Dependendies

Figure 3.11 Window for Source Group 1 operations

44 Simulation software

Add Files to Group ‘Source Group 1°

Look in: |."_"Jtestprogs LI - &k B

[=Jtest1.a51

File name: Itesn Add

Files of type: IAsm Source file (*.s* *.src; *.a%) __ﬂ Close

Figure 3.12 Window for adding files to Source Group 1

Changing to Asm and CLM on the program name, then CLM on Add and
then on Close produces a + sign to the left of Source Group; CLM on this +
sign the program file appears as shown in Figure 3.13.

X |Targel
Pro_ped Workspace N h -
- i3 Target 1

=-£3 Source Group 1

Figure 3.13 Program file testl.a51 added to Source Group 1

CLM on the top left hand icon will Translate the program and check the
syntax. Alternatively from the top menu bar selecting Project and then Trans-
late will achieve the same result.

A report will appear in the Build window at the bottom of the screen, as
shown in Figure 3.14.

Any syntax errors would be reported at this stage. For example, putting SET
instead of SETB would report a syntax error as shown in Figure 3.15. The
syntax error is on line 4 of the program. Correcting the error and re-translating
should result in an error-free program. If this is the case, then selecting the
Build icon to the right of the Translate icon (alternatively selecting Project and
then Build) will produce the hex file. This is shown in Figure 3.16.

Keil 1 Vision2 45

assembling testl.aSl...

testl1.a51 - 0 Error(s). 0 Warning(s).

1« «<I> 1> \Build { Command } Findin Files [

Figure 3.14 Build window report showing errors and warnings as appropriate

B C:\Keil\C51\testprogs\test1.a51

CRG (4] ireset address =

SJIMP START ;jump over reserved azrea

ORG 40H ;program start address

START: SET 1.7 ;set pinT pozrt 1 to logicl

CLR F1.7 ;jclear pin7 to logic 0

SJIMP START jrepeat

END ;end of assembly language Bl
= Files |[§' Regs | () Books | 4 * 4
— —

assembling testl.aSl...
testl.aS1{4): error AY9: SYNT&X ERRECE
testl.aS51 - 1 Error(s), 0 Warning(s}.

Figure 3.15 Syntax error in the Build window

START
40H
P1.7
P1.7
START

S e

;reset address

B C:\Keil\C51\testprogsitest1.a51 r- ”D |X|
rs

;jjump over reserved area
;program start address

;set pin7 port 1 to logicl
;clear pin7 to logic O
;repeat

;end of assembly language

Build target 'Target 1°

assembling testl.aS51...

linking...

Program Size: data=8.0 zdata=0 code=70
creating hex file from "testl"...
"testl" - 0 Error(s). 0 Warning(s).

Figure 3.16 Creation of a hex file for testl.a51 program

DEBUGGING/SIMULATION

Debug may be accessed by either CLM on the red letter d or selecting Debug
from the main menu bar and then selecting Start Debug Session. See Figure 3.17.
A register window would show on the left and a command window at the bottom
of the screen. This program toggles pin 7 on port 1 so a port 1 window would be
useful to display. The window may be selected by choosing Peripherals on the
main menu bar, then I/O Ports and then Port 1. See Figure 3.18.

46 Simulation software

Project Debug Flash Peripheralk Tools SVCS Window Help

Start,’Stop Debug Session Ctrl+F5 I |ﬂ .Qg & I@_ |

Figure 3.17 Using the Debug facility

Peripherals Tools SVCS Wndcm Help
3"Reset CPU

Interrupt 1l

rotg
p=

Timer 4 Port 2
12C Interface Port 3

Figure 3.18 Selection of port 1 window

The port 1 window appears and there are two rows of eight ticks; the top row
represents the logic level set by the microcontroller while the lower row repre-
sents the actual level on the port pins. Ideally they should always be the same
but there are times when a bad interface might load a port pin and cause it to be
logic 0 when the microcontroller is assigning logic 1.

When debugging complex programs it is useful to single step through com-
plete loops; in this simple example the program is a simple loop. Selecting
Debug and then Step, the function key F11 can be pressed to step or the
brackets icon with the arrow into it can be used. See Figure 3.19. By repeatedly

|Debug Fiash Peripherab Tooks SVCS Window Help
/@ start/stop Debug Session QrkFs ~#E &g nE o

1= Go

“*I ST ——

'_}‘ Sleg Over

P ent Functior i+ F11

{3 Run to Cursor fine Ctr+F10

@ stof E

Breakpomts...

+f Insert/Remove Breakpoint

BT Enable/Disable Breakpoint

Disable Al Breakpoints

4 (<l Al Breakpoints Fart 1 ;

% Eits 1]

% Show Next Statement Pl ’W FEFFRRFRR

1 24 Enable/Disable Trace Recording Fins: [0FF R R R

04 View Trace Records

Parallel Port 1

b Memory Map...
Performance Anabyzer...
Inine Assembhy...
Function Editor (Open Ini Fi)...

Figure 3.19 Selection of Step function

Keil p Vision2 47

pressing and releasing key F11, the cursor and yellow arrow in the program
window allows the program to be followed step by step. The corresponding
logic levels of bit 7 in the port 1 window can be checked with the hex and
corresponding binary values of port 1.

Time delays can be measured using sec in the Sys registers, between states
and PSW. The reset value of sec is 0.00000000. See Figure 3.20. Consider a
modification to the program that puts a delay after SETB and CLR. The data
from the first Time Delay example in Chapter 1, where register RO was loaded
with decimal 88 to establish a 5kHz square wave, could be used. The result is
shown in Figure 3.21.

Register Value
= Regs
] 000
1 0x00
2 0x00
3 00
4 0x00
[Ox00
] 000
7 0x00
= Sys
a 0x00
b 0x00
=p 07
sp_max 07
PCs C:0x0000
auxrl 0x00
#- dpir (0000
o states 1]
oosec 0.00000000
H- paw 00

Figure 3.20 Register window display

B C:\Keil\C51\testprogs\test1.a51"

ORG (1] ;jreset address —
SJME START ver reserved area &
ORG 40H n start address
START: SETE P1.7 port 1 to logicl
ACALL DELAY tine DELAY
CLR P1.7 ;jclear pin7 to logic O
ACALTL DELAY ;jcall subroutine DELAY
SJMP START E
DELAY: MOV RO, #88 ;move decimal 88 into RO
TLEE: DJINZ RO, TAEE ;decrement 1 till RO zero
RET :sreturn from subroutine
END ;end of assembly language —_—
-
[« v/

Figure 3.21 Modification to testl.a51 to include a time delay

The program should then be translated before returning to Debug. There are
seven icon buttons above the Register space available for use and they are
shown in Figure 3.22.

48 Simulation software

& Bon®o

Figure 3.22 Icons used for program control purposes

With reference to Figure 3.22, the RST icon with the red arrow is the Reset.
The icon to the right, a sheet with a blue arrow to the right, is the Run button.
The cross icon next right is the Stop button; it changes to red when the
simulated program is running. The next four sets of brackets to the right are:

1. Single stepping (alternative is key F11).

2. Single step avoiding subroutines (alternative is key F10).
3. Jumping out of subroutines when stuck in a loop.

4. Run simulation to stop at blinking cursor.

Breakpoints at suitable points in the program may be inserted by moving the
PC mouse to the beginning of a line and positioning the blinking cursor at this
point. Then moving the mouse cursor over the hand icon, shown on the top row
in Figure 3.23, and CLM positions a red breakpoint block against that line.
This has been done in Figure 3.23 alongside the line with the first ACALL
DELAY and the next line CLR P1.7.

QnE oewe

Parallel Port 1
~ Part1

i Bi 0 .
PLpFF PRV

Fins [0FF - PRV

B C:\Keil\C51\testprogs\test1.a51

ORG] ;reset adda
= SJIMP START ;jump over
CRG 40H iprogram si
START: SETB P1.7 ;set pin7 g
ACALL DELAY ;call subzx¢
CLR P1.7 ;clear pin®
ACALL DELAY ;call subzr¢

SJMPE START ;repeat
DELAY: MOV RO, #88 ;move decir
TARE: DJINZ RO, TARE ;decrement
RET ;jreturn £«
END ;end of as:

Figure 3.23 Inserting breakpoints in the program testl.a51

Keil 1 Vision2 49

Resetting (RST icon) the simulation causes the yellow arrow to go to
address 0000H where SIMP START is located. At reset the contents of sec
are 0.00000000; see Figure 3.24(a). Running the simulation (sheet with blue
arrow icon or pressing function key F5) causes the program to run to
ACALL DELAY at the first breakpoint. The contents of sec will then be
as shown in Figure 3.24(b). Running the simulation once more to the
next breakpoint increases the contents of sec to the value shown in
Figure 3.24(c).

The time difference can be determined from Figure 3.24(b) and (c) i.e.

(0.00009983 — 0.00000163) s = 0.0000982's = 98.20 pus

' """ States 0 States 3
i Sec 0.00000000 - Sec 0.00000163
- PSW 0x00 - PSW 0x00
(a) (b)
""" States 184
L Sec 0.00009983
H- PSW 0%00

(c)

Figure 3.24 (a) Time at reset of program testl.a51. (b) Time at first breakpoint of
program testl.a51. (c) Time at second breakpoint of program testl.a51

For the 5kHz square wave it should be 100 ps. Increasing RO to decimal 89
gives a delay of 99.28 us and increasing RO to decimal 90 gives a delay of
100.37 ps.

Assembly language programs are written using the microcontroller registers
and the SFRs of the onboard peripherals. The microcontroller registers are
shown on the Debug/Simulation screen. See Figure 3.20.

The onboard peripheral SFR windows may be selected via Peripherals on the
top menu bar. An example is shown in Figure 3.25.

Programs written in C may also use onboard peripheral SFRs but they can
also use defined variables that do not represent an SFR. The values of these
defined variables may be checked using a Watches window; SFRs may also use
a Watches window. From the top menu bar selecting View then choosing
Watch & Call Stack window produces a window at the bottom of the PC
screen as shown in Figure 3.26.

50 Simulation software

Peripherals Tools SVCS Window Help

24 Reset CPU

Interrupt

I/O-Ports ¥

Serial

Timer Timer 0

12C Interface Timer 1
Timer 2
PCA Timer
PCA Modules
Watchdog

Figure 3.25 Selection of particular onboard peripherals

| Name Value

<type F2 to edit>

Watches

L <]»]\ Locals) watch #1 } Watch #2 }, Call Stack [

Figure 3.26 Production of a Watch window

The time delay program written earlier using assembly language can be
written in C language. The C equivalent of the original program is shown in
the program window of Figure 3.27.

The delay variable j and the main variable pin 7 are shown in the Watch
window. To initialise j it is necessary to start by single stepping until the delay
function is executed once. The variables are entered into the Watch window
by pressing function key F2. Breakpoints have been set at the first delay () and
pin 7= 0. The delay time can be measured as before by subtracting the two
sec values.

3.3 Raisonance IDE (RIDE)

The Raisonance software can be downloaded as a separate 8051 package, a
separate XA package or as a combined 8051 + XA package. Start by selecting
Project from the top menu bar and then selecting New. See Figure 3.28.

If using the combined 8051 + XA package the relevant microcontroller
family should be selected. Note that the LPC microcontrollers are part of the

Raisonance IDE (RIDE) 51

B C:\Keil\C51\testprogs\test2.c

$include<regé6x.h>

sbit pin7 = P1°7;

void delay ()
{

unsigned char j;

{

for (j=0;j<60;j++);

}
}

void main (void)

{

while (1)

{

pin7 = 1;
delay () ;

pin7 = 0;
delay () ;

}

//=fr addresses

//delay function
255

//3 range =0 to

//increment j to 59

//main function

//do following forever
//pinT port 1 =
//delay function
//pinT port 1

logicl

= logicO

//delay function

Figure 3.27 C language program to produce toggling on pin 7, port 1 with a time

delay

8051 family. Choosing 80C51 and CLM on OK will produce the window shown
in Figure 3.29, which is similar to the window obtained with the Keil software.
The device manufacturer should then be selected (e.g. Philips) and the parti-
cular device selected by scrolling down the list until the required device (e.g.

P89C664) is found.

52 Simulation software

~@’ New Project

MName: |c.‘vida\baok\resll it

Directory: Chridelbooky

Type: ﬂ

&0Cs1
S0CET M

0K | Cancel | Erowse E Help |

Figure 3.28 Raisonance window for the creation of a new project

Davica | Propatiss

| BOCEI M (50 Goal & BOCH]E i based rcrocoolioler vt 2k
i +8 kinean Lt TR Flagh § Cio0es core: 20 51
-8 Fhiips
=) glﬁ-lxﬂoﬁl Mot zimuleted pesphanals:
= e

b FralFoai d

e PRaLPCIN

e FEALFCII0 2

= | ones | Hep

Figure 3.29 Window for Core Selection

For the explanation of the Raisonance software that follows, the XA family
has been chosen. The XA family member (e.g. XAG49) is chosen at the point of
entering the Debug/Simulation. CLM on OK will generate another window;
XA should be selected to confirm the core, then CLM on OK. Selecting File
from the top menu bar and then New results in a small window, as shown in
Figure 3.30.

C Files
Assembler Files
Listing Files
Script files

All Files

Figure 3.30 File selection window

Selecting Assembler Files and a blank text window appears, labelled
untitled.axa. From the top menu bar selecting Options and then choosing
Project result in the window shown in Figure 3.31.

CLM on the + sign to the left of Environment and choosing Editor will give
an opportunity to change the values indicated. TabStop defaults to 3 and

Raisonance IDE (RIDE) 53

Opficne:
= Ervdronment TabStop ’87 (" Insert Spaces
(® Feep Tabs
el Uindo number: fio
Direciories Ottt 507
[Rl
[H- MAKA

[+ FLXA I Corvet DER 1o ANSI
I+ CodaCompresson=A, L

I~ Fromptihe dile nama betors deleting from the project
¥ Showthe nade path
[¥ Shewthe translation infarmeasion

v Show the translation ool name

(a4 | Dafaults | REgisherasdEfnults| Cancel | Halp

Figure 3.31 Options window

should be changed to 8; Offset defaults to 2 and should be changed to 0. The
result of the changes is illustrated in Figure 3.31.

To illustrate the use of the simulation software a simple assembly language
program, to toggle pin 7 of port 1, is to be used. Once the test program has been
written in the text window, File may be selected from the top menu bar and the
program saved by choosing Save As. The program is shown in the text window
of Figure 3.32.

- c:\ride\book\test1.axa

$INCLUDE (REGXAG49.INC) ;list of register addresses
CRG 0 ;reset address
oW &8F00H, START ;config registers, gotoc START
ORG 1208 :program start address

START: SETB P1.7 ;set pin7 port 1 to logicl
CLR P1.7 ;clear pin7 to logic 0
JME START i Lepeat
END ;end of assembly language

< | >

Figure 3.32 Test program to toggle pin 7, port 1 using the XA device

The XA assembly language program extension must be .axa (it is .a51 for
8051). The source program should be saved in the same directory as the Project.

54 Simulation software

The XA program has a start that is different from that of the 8051. The
explanation for this is given in Chapter 6. Another difference is that the XA
uses the instruction JMP.

When complete the Source program should be added to the Project by selecting
Projectin the top menu bar and then choosing Add node Source/Application. In the
window that appears, add the program name and CLM on Open. See Figure 3.33.

Add File @@

Lookin: |2 book B £ B

& test.axal

Files of type: |Scurce[‘.c;".h:".au(a:".xS'I;".lnc:".src] ;] Cancel

Figure 3.33 Adding file testl to the project

From the window illustrated in Figure 3.28 there are icons which have
frequent use. Some of these icons are shown in Figure 3.34.

The source program may be translated by CLM on the icon shown in
Figure 3.34(a) or by selecting Project from the top menu bar, then choosing
Translate; the end result can also be obtained by simultaneously pressing Alt
FO. If there are any syntax errors the information will appear at the bottom of
the screen. A typical window is shown in Figure 3.35.

[= &

@ (b) () (d)

Figure 3.34 (a) Icon used to Translate source program. (b) Icon used to ‘Make all’.
(c) Icon used to select Debug. (d) Animation button

To produce the Debug/Simulation file and the hex file, CLM on the icon
Make all, shown in Figure 3.34(b), which is to the right of the Translate icon.
Alternatively Project may be selected from the top menu bar, then choosing
Make all or simply press function key F9.

DEBUGGING/SIMULATION

With the Raisonance software the particular device belonging to the microcon-
troller family is chosen at the Debug/Simulation stage. Debug/Simulate is entered

Raisonance IDE (RIDE) 55

Make]Debug | Grep | Seript |

B Running MAXA on c:\ride\book\test1.axa

X
Figure 3.35 Window for display of syntax errors

by CLM on the icon shown in Figure 3.34(c) or by selecting Debug on the top
menu bar, then choosing Start, when a window appears as shown in Figure 3.36.

@+ Debug Options

Tool | Environment |

- Tod

® Yirtual Machine (Simulator)
(" Real Machine (Emulatar or ROM-konitor) Cancel [
(" Other Tool
| Help
—Device (See Options|TarGet) - - Frequency -
[<a-Gaa v | | Crystal (MHz) [17.0582 Advanced Options
KA-C3 |
HA-G3
HAS3

Figure 3.36 Debug options window

For our purposes, the selected device is the XAG49; three other XA family
members are also shown. The XAG3 is the one time programmable (OTP)
EPROM version of the Flash XAG49. The XAC3 is the XA version having an
onboard controller area network (CAN). The XAS3 has 24 address lines, six
8-bit ports, I>C, 8 channel 8-bit ADC and a programmable counter array (PCA).

The crystal frequency might default to 11.059; the value should be changed to
11.0592. The value chosen is in MHz. CLM on OK, another window appears,
as shown in Figure 3.37. The values required have been changed to the values
shown in Figure 3.37 and CLM on OK causes the software to go into Debug/
Simulation mode.

A Watches window will appear at the bottom of the screen. If it appears too
large then CLM on the two vertical bars on the left of the Watches window and
dragging the window into the program window and then out again, should
make it smaller.

More frequently used icons are shown in Figure 3.38. Reset is the icon with
the finger pointing towards the red button.

The icon to the right of reset is Step into (fast key F7), used for single
stepping through the program. The icon to the right of this is Step over (fast

56 Simulation software

Application options

Code Size (kB) g4 [” Embedded ROM (E4)
Data Size (kB) |2 (@ § bitexternal data bus

(16 hit external data bus

OK. | Cancel ‘ Help

Figure 3.37 Applications options window

XN + +
YO0

Figure 3.38 Frequently used icons

key F8), similar to Step into, but steps over (avoids) subroutines or functions.
The spectacle with the + sign, to the right of the Step over icon, adds a variable
to the Watches window. The letter s in the red circle with the + sign is used to
add or remove breakpoints. All of these icon controls are accessible by selecting
Debug in the top menu bar.

The Raisonance software has an animation icon shown in Figure 3.34(d).
CLM on the animation icon, then CLM on GO in the green box should result
in the blue horizontal cursor continually moving through the program.

The test program used toggles pin 7 on port 1. Port 1 can be accessed by
selecting View on the top menu bar and then choosing Hardware Peripherals
which causes a window to appear listing the XAG49 onboard peripherals as
shown in Figure 3.39.

CLM on P1 1 produces the window shown in Figure 3.40.

Single stepping (continually pressing F7) should show pin 7 toggling (red for
logic 0, green for logic 1). The corresponding hex number in the LATCH
window should also change (7F when pin 7 is logic 0, FF when pin 7 is logic 1).
The LATCH window represents bit settings by the program, equivalent to the
top row of eight ticks in the Keil software. The column numbered 0 down to
7 represents the port pins, equivalent to the bottom row of eight ticks in the
Keil port window. The LATCH value can be changed by editing, using the
mouse cursor. For example it could be changed to 7E to make pin 0 = logic 0.
The port pins can also be changed. Moving the cursor arrow over the second
pin down, pin 1, and CLM when the arrow cursor changes to a pointing finger
will produce a small window as shown in Figure 3.41.

Selecting Ground should cause pin 1 to change to red, logic 0, but the
LATCH value would not change.

Raisonance IDE (RIDE) 57

P3

Timer 0

Timer 1

Timer 2

UART O

UART 1
WatchDog Timer
Interrupt controller

Figure 3.39 List of XAG49 onboard peripherals

@ c:\ride\book\test1.axa

§INCLUDE (REGERG49.INC) :list of register addresses

ORG a ;reset address 0 [Mo Connection
oW BF00H, START sconfig registers, goto START r“_’ :
CRG 120H :program start address LATCHI7F [HoGonnecian

STARI: SETB F1.7 ;set pin7 port 1 to logicl T [Mo Connection
CLR P1.7 ;clear pin7 to logic O :
P START srepeat [Mo Cannection
END send of assembly language

': Mo Connection
[Mo Connection
E Mo Connection
7 F Mo Cannection

Figure 3.40 testl.axa program window with program and port 1 window showing
pin logic levels

To detect a pin change would require the port to be read, e.g. MOV.B ROL, P1

MOV.B means move a byte(B)
ROL means Register 0 Low byte

1; P1 (test1) |__ |

0 ' Mo Connection

LATCH[7A | Ground
{ Mo connection

xET—

Vec

[Net

E Mo Connaction
7 F MNa Connaction

Figure 3.41 Window used to alter value of port pin

58 Simulation software

The XA is a 16-bit microcontroller able to move data in bytes (8 bits) or words
(16 bits) and its registers are 16 bits (W), e.g. comprising a high byte ROH and
low byte ROL. This is dealt with in Chapter 6.

If the simulation is reset and the animation made active, then by pressing GO
the blue cursor will move through the program and pin 7 should toggle on and
off. Coming out of the simulation by CLM on the icon of Figure 3.34(c), the
program can be modified by changing the program details in the text window.
For example, Figure 3.42 shows a variation in the original program caused by
adding a time delay. This is achieved by putting a delay after SETB and CLR.

=&+ c:\ride\book\test1.axa

¢INCLUDE (REGXAG49.INC) +list of register addresses
CRG] ;reset address
DW 8F00H, START ;config registers, goto START
CRE 120H ;program start address
START: SEIB P1.7 ;set pin7 port 1 te leogicl
CALL DELAY scall delay
CLR P1.7 ;clear pin7 to logic 0
CALL DELAY ;call delay
JMP START ;repeat
DELAY: MOV.B ROL,#88 ;move byte 88 into RO low byte
TAKE: DINZ ROL, TAKE sdecrement ROL until zero
RET sreturn from subroutine
END send of assembly language
& >

Figure 3.42 Program amendment to testl.axa introducing a time delay

If there are no syntax errors then pressing the icon of Figure 3.34(c) will save
the program. Make all by pressing the icon of Figure 3.34(b) and returning to
Debug/Simulation mode check for syntax errors. If there are syntax errors then
they will be reported and the software will remain in Edit mode.

Moving the mouse cursor to the beginning of the first CALL DELAY line
and CLM will set a blinking cursor at this point. Now move the mouse to the
breakpoint icon, shown in Figure 3.38, and CLM will establish a red break-
point line. Another breakpoint on the next line down (CLR P1.7) can be set
using the same procedure. This is shown in Figure 3.43.

An alternative method of setting the breakpoint is to move the mouse cursor
close to the green icons on the grey left column. As the cursor moves over the
green icon, the cursor changes into the breakpoint icon. CLM when this change
occurs sets a breakpoint. The same breakpoint can be removed by repeating the
procedure over the breakpoint.

Running (GO) will take the program to the first breakpoint, where it will
change colour to a light purple. The time in a panel at the bottom right of the
screen should be noted; it will probably be zero on this first run, if not then it

Raisonance IDE (RIDE) 59

teztl |

] l: Mo Connection
AATCH rl-:l-?— l: Mo Connection
[Mo Connection
[Mo Connection

Walches | Value

| START
lé| DELAY: MOV.B ROL,#88

l: Mo Connection
[4 TRKE : Dang ROL, TRKE

[Mo Connection
7 [No Connection

Locals | Value

Figure 3.43 testl.axa program with breakpoint set

can be made zero with Ctrl T. See Figure 3.44(a). Running (GO) to the next
breakpoint and noting the time in the panel should give the delay time which,
for this test program, reads 0.089 ms or 89 us. See Figure 3.44(b).

Using the P89C664, the time delay was 98.2 us; the XAG49 microcontroller
is faster. To establish a 5kHz square wave, a half-cycle time delay of 100 ps is
required. If decimal 88 sets a time delay of 89 pus with the XAG49, then an
intuitive value of decimal 99 could be tried to establish a delay of 100 us. To
achieve this, the icon of Figure 3.34(a) should be pressed to come out of
simulation; the value #88 in the program should be changed to #99 and the
icon of Figure 3.34(a) pressed again to save the program. Pressing the icon
Make all will then cause a return to simulation.

Running to the first breakpoint will give a time that, if necessary, can be set
to zero by pressing Ctrl T. Running to the next breakpoint should give a time of
0.100 ms = 100 ps as shown in Figure 3.44(c).

[0s.000ms.000 0s.000ms.089 0s.000ms.100

(a) (b) ()

Figure 3.44 (a) Time recorded at first program breakpoint. (b) Time interval between
breakpoints. (c¢) Time interval between breakpoints with amended delay time

This could be checked since the Raisonance software has another, more
visual, way of measuring the time. Whilst in the Debug/Simulation mode if
View is selected from the top menu bar, then from the window that appears,
choosing Trace and then View (see Figure 3.45), a Trace window appears.

The windows, including the Watches window, can be organised and the
breakpoints removed (e.g. by moving the cursor to grey column till cursor
changes, then CLM). The result is shown in Figure 3.46.

To see the effect of variations in P1.7 logic levels with time, it is necessary
to add P1.7 into the Watches window; CLM on the Watches icon, shown in Fig-
ure 3.38, results in a blank Expression window appearing. P1.7 can be typed in,
as shown in Figure 3.47, and the OK button clicked using the left mouse button.

60 Simulation software

20 Debug Optons RideScript Window |
Messages
Project

Listing from compier
Map Report from inker
Debug Report

Symbols
Functions/Code Coverage
Code (disassembly)

Main registers

Data dump...
Hardware Peripherals...
Function Generatars...
Mets

v Display executed ines

Watch
Fhgs
Stack e —

— &/

Figure 3.45 Selecting Trace View

Note: CLM on the radio button to the right of the Expression window, shown
in Figure 3.47, drops down a list of all valid expressions for the current program.
P1.7 will appear in the Watches window with its default state True (i.e. logic 1).
Now moving the mouse cursor onto the light grey line coming from P of P1.7
and clicking the Right mouse button (CRM), a small window appears as
shown in Figure 3.48. Choosing Add/Delete from Trace List, as shown in

!'ET el

1 r ha Coanedtion
ATCHIFF [Ma Coaneion
[Na Coanection

i : = . r Na Coanection
CALL AL [b Coanedion

Watches Valus

JHP i i
WIVLE [Ma Coanedtion
DJ¥z 5 5
BET [NoCamection Locals Walue
END ? [Na Coanedion
< ¥
N | Wmans,. . di PC | Source

Figure 3.46 Trace window for testl.axa program

Raisonance IDE (RIDE) 61

Expression: ’p1 7 L!

0K | Cancel Help]

Figure 3.47 Entering an expression in a Watch window

Figure 3.48, causes a small blue T in a circle to appear to the left of P1.7. See
Figure 3.49. Also a P1.7 button will appear as the last on a row in the Trace
window. CLM on this P1.7 button will cause P1.7 to also appear to the left of
the black space. See Figure 3.50.

testl |

Watches | Value

o[ig\Dokte rom Troce st
Evaluate
Format
Add Insert
Delete Suppr
Delete al

Local:

v Local Variables
v Mode Docking

Figure 3.48 Window with option to add/delete from Trace list

I__Wat_ches Va_lue__

Figure 3.49 Indication that P1.7 is added to Trace list

Moving the mouse cursor into white space, above the black space, below the
row of buttons, and CRM will generate a small window: only Options is active
and this should be chosen. The window of Figure 3.51 should now appear.
Mode should be set to Continual, the Rolling trace checked to ensure it is
ticked and the maximum number of records set to 2000. CLM on OK and the
black space P1.7 disappears, CLM on the Trace P1.7 button will retrieve it.

Making sure animation is off and CLM on GO, the program should be
allowed to run for about 3s before CLM on Stop; the Trace window should
be as shown in Figure 3.52. The time column shown in Figure 3.52 can be

62 Simulation software

e imir.s. dl |=m PG Source P17 |

Figure 3.50 Trace window for program testl.axa indicating P1.7 is on the Trace list

Trece |viaw |

Mocle:
¢ Of (& Cordinual " Flashing

" OnChangss ~ Toggling

daximurm nurmber of records 1000

[+ Fulling raca
[Tracs only source linas

[Besatiraca listbefore un

[Record listin e tex file

File: |

oK Cancel | Help |

Figure 3.51 Trace Options window

widened by positioning the cursor on the line joining the t button to the dt
button, CLM, hold and dragging right. The trace shown in Figure 3.52 starts
off as logic 0 and so under P1.7 appears as FALSE. It is a binary signal, hence it
will start TRUE (logic 1) or FALSE (logic 0).

There are five sets of numbers under the time ¢ column; their units are
minutes, seconds, ms (107%), ps (107°), ns (107°). It is possible to CLM on
the Trace scroll button until P1.7 changes from FALSE to TRUE (or TRUE to
FALSE). If the cursor is positioned next to the corresponding record number
under the N column (see Figure 3.53) (161 in this example) and CLM, a blue
horizontal marker appears in the Trace text and a white vertical cursor line
appears in the Trace screen on the signal edge which changes from FALSE to
TRUE. The time reads 140 ms 428 ps 440 ns.

Scrolling the Trace to the next FALSE and again marking the position, as
shown in Figure 3.54, will give the time interval between transitions. From
Figure 3.54 the time is seen to be 140 ms 528 us 700 ns.

Raisonance IDE (RIDE) 63

N [® tmins.[® dt PC Scurce | 0 P17

] L2 . DJNZ.B 20L TRUE
1 = DJNZ.B 20L TRUE
2 (55 DJNZ.E 20LTRUE
3 [DJNEZ.B R0L TRUE
& G2 DINZ.B 0L TRUE
5 €2 DJNZ.B 0L TRUE
[[DJNzZ.BE ROL IRUE

[DJNZ.B R0LTRUE

0:00:142.500.000 200141.000.300

Figure 3.52 Trace window response to testl.axa program

Trace (test1)

Source |32 257

Ls7 DJNZ.E RCLFILSE
L58 RE FALSE
1159 JMP START FILSE
1.6[SETE T2EX FILSE

.42
:00: 140.422. 420 _o: 00: 00..00¢ mm_

L6z 0 .070 00.000/00:0130 MOV.B ROL, § TEUE

163 0:00:140.429 NOF TEUE

164 0:00:140.429.880 00.00000:0134 DJNZ.B RCL TEUE
4

P17

0:00:140.500.000 0:00:141.000.300

Figure 3.53 Establishing a transition time for program testl.axa

The delay time is the difference between this value and the earlier recorded
value, i.e.

528.700 ps — 428.440 ps = 100.26 s

Multiple traces can be displayed on the Trace window. Block data such as port
values can also be shown; hex values tend to be given. See Figure 3.55.

64 Simulation software

fa _Trace (test1)

N* timin:s:ms.ls.ns) | dt | B | Source P17 |
P62 0:00:140.526.630 0:00:00.00000:0134 DINZ.B ROLTRUE
P63 0:00:140.527.350 0:10:00.00000:0137 RET TRUE
64 0:00:140.523.070 0:20:00.00000:0126 CLR T2EX TRIE
52

6 MOV.E ROL, # FALSE
a7 HOE FALSE
zag DINZ.BE ROLFALSE
Peo DJNZ.BE ROLFALSE
P17

0:00:140.£00.000 0:00:141000.C00

Figure 3.54 Establishing a second transition time to give time duration of a positive
pulse for program testl.axa

ST i) it

Walches Valus

7Fh

[T T LAIEZ B U

Figure 3.55 A Trace response for program testl.axa showing changes on port 1 in
general and port 1, pin 7 in particular

Summary

® Software suitable for simulating and debugging programs is readily avail-
able.

e Evaluation software from Keil supports the LPC and 89C66x microcon-
troller families.

e Evaluation software from Raisonance supports the LPC, 89C66x and XA
microcontroller families.

Summary 65

Both sets of software operate within IDE.

Both sets of software support microcontroller devices from various manu-
facturers.

The software can be used for programming in both assembly language
and C.

Writing of the source program C or assembly language, syntax check,
compilation to hex, program debugging/simulation all takes place within
the integrated environment.

When the debugging/simulation is satisfactorily completed, the microcon-
troller is programmed with the .hex version of the program.

A

P89C66x Microcontroller

4.1 Introduction

This device is a member of the 80C51 family able to execute one instruction in
six clock cycles, hence providing twice the speed of a conventional 80C51. A
one time programmable (OTP) configuration bit gives the user the option to
select conventional 12-clock timing. This device is a single-chip 8-bit micro-
controller manufactured in an advanced CMOS process. The instruction set is
100% executing and timing compatible with the 80CS51 instruction set.
Further information on the device, including details of the SFRs, can be
found in Appendix D while details of the 80C51 Instruction set can be found
in Appendix A.

Examples used in this chapter include simulation, using software that,
unless otherwise stated, is available from Keil. Details regarding simulation
software used in this text are covered in Chapter 3. The majority of
examples in this chapter requiring programs to be written utilise assembly
language. The use of high level (C) language programs is, in the main, left
as an exercise for the reader although one example illustrating the use of a
program written in C has been included. The solutions to all exercises in
this chapter, and other chapters where relevant, can be found at the end of
the book.

There are four devices in this family of microcontrollers:

P89C660 16 KB Flash Code Memory 512 bytes onboard RAM
P89C662 32 KB Flash Code Memory 1 KB onboard RAM
P89C664 64 KB Flash Code Memory 2 KB onboard RAM
P89C668 64 KB Flash Code Memory 8 KB onboard RAM

b

All the devices have four 8-bit ports and an onboard clock oscillator, the
frequency being defined by an externally connected piezo-crystal or ceramic
resonator.

Timers 0 and 1 67
The P89C66x onboard peripherals include:

three timers — timer 0, timer 1, timer 2
programmable counter array (PCA)

universal asynchronous receiver transmitter (UART)
inter integrated circuit (I?C) interface.

4.2 Timers 0 and 1

Timers 0 and 1 are fundamentally the same and both have two 8-bit registers,
timer high (TH) byte and timer low (TL) byte. Both share the timer control
(TCON) register and the timer mode (TMOD) register. The arrangement is
shown in Figure 4.1.

! Timer 1 Timer 0 :
: I"""""""""""""'I I"""""""""""""'I !
' 1 | |
b TH1 TL1 i ! THO TLO i ;

i (8 bits) (8bits) | 1 i (8 bits) (8 bits) ! '

Timer control (TCON) !

Timer mode (TMOD) !

Figure 4.1 Timer 0/1 arrangement for the 89C66x family

The timers can be configured into one of the four modes:

Mode 0 TH and TL come together to form a 13-bit register where TH has 5 bits.
This makes the microcontroller compatible with an earlier device.

Mode 1 TH and TL come together to form a 16-bit register.

Mode 2 TL is the working 8-bit register and TH is the automatic reload
register. This mode is used to define the baud rate of the serial UART

interface.
Mode 3 TH and TL registers of both timers combine to produce three 8-bit
timers.
Details of the TMOD SFR are:

T™MOD
GATE C/T M1 MO GATE C/T Ml MO

Timer 1 Timer 0

68 P89C66x microcontroller

This register has two identical halves, the upper four bits for timer 1 and the
lower four bits for timer 0. The bits M1 and MO set the TMOD:

Ml MO

0 0 mode 0
0 1 mode 1
1 0 mode 2
1 1 mode 3

MODE 1 16-BIT UP COUNTER

Figure 4.2 shows the timer in mode 1 with the TH and TL registers together
forming a 16-bit register. The diagram also shows that for this microcontroller
family, the timer clock is one-sixth of the microcontroller clock. The default
value of TMOD is 00H, so C/T =0 and the peripheral defaults to being a timer
rather than a pulse counter. The default value of GATE is 0 and this is inverted,
so the OR output defaults to logic 1. The timer is turned on or off by TR1/0 (in
TCON register), putting TR0 =1 would turn timer 0 on.

Oscillator Divide by 6 Timer (T)
frequency
16 bits
C/T=0
— o I T i 1)
C/T=1 8 bits 8 bits
T1/0 port pin Counter (C)
TR1/0 (TCON) }

GATE (TMOD)

INT1/0 port pin

Figure 4.2 Circuit for timer 0/1 operating as a 16-bit up-counter in mode 1

In mode 1, the TH and TL registers in timer 0 or timer 1 join to form a
16-bit up counter. The counter can be loaded with a base number from which
the timer can increment upwards towards the 16-bit maximum of 65535
(FFFFH). The time taken to count from the base number to the maximum
count value is the required delay. Figure 4.3 shows the method of achieving the
required delay.

65535

Base number

Timers 0 and 1 69

THn
Mode

TLn

1 timer

Delay
count

0000

Figure 4.3 Determination of delay count for a mode 1 timer

Example 4.1

A 1kHz square-wave signal is to be generated from pin 7 on port

microcontroller clock frequency is 11.0592 MHz.

(a) Determine the required delay time.
(b) Using timer 0 determine the base numbers that must go into THO and

TLO.

Solution
The required waveform is shown in Figure 4.4.

1.

The

(a) One cycle time T of the required square-wave signal equals 1/frequency

(b)

T =1/1000 = 1 ms
Delay time = T/2 = 0.5ms

Timer clock = microclock/6
= 11.0592MHz/6 = 1.8432 MHz
Timer cycle time = 1/1.8432 MHz = 542.54 ns
Delay count = (delay time)/(timer cycle time)
= 0.5ms/542.54ns = 922 (nearest whole number)

Base number = 65535 — delay count

=65535-922 =

64613

70 P89C66x microcontroller

Vo ON ON ON ON
GND J OFF OFF OFF IEF
HLH
Frequency (f)=1/T
and t=1/f

Figure 4.4 Square-wave signal to be generated at port 1, pin 7

THO = whole number of 64613/256
64613/256 = 252.3945313 = whole number of 252
THO = 252 assembly language MOV THO, #252

TLO = (remainder of 64613/256)252
= (0.3945313)256
TLO = 101 assembly language MOV TLO, #101

Base number in hexadecimal

A calculator may have hex conversion; on some Casio calculators, it is accessed
via the Mode button. The PC calculator in scientific view may be used; enter
using decimal (Dec), then select hex (Hex). Figure 4.5 shows the value of 64613
entered with Dec selected. Clicking on the Hex button would give the hexa-
decimal value of FC65.

E Calculator

Edt View Help
I 64613 |

(OHex (@®Dec ()Oct (C)Bin (3) Degrees (") Radians () Grads

Figure 4.5 Use of the PC calculator to convert a decimal number to its hexadecimal
equivalent

Alternatively the decimal numbers can be converted to hex values using the
technique described in Chapter 1, e.g.:

252/16 =1575=15 and 0.75x16=12
thus 252 decimal = FC in hex

101/16 =6.3125=6 and 0.3125x16=75
thus 101 decimal = 65 in hex

Timers 0 and 1 71

Whichever method used gives 64613 decimal = FC65 hex.
Loading the timer, using assembly language, can be achieved as follows:

MOV THO,#0FCH ; 0 required before leading hex symbol
MOV TLO,#65H

The software debugger/simulator will display all numbers in hex, so it is

essential to be prepared.

Exercise 4.1
Repeat Example 4.1 to produce a 2 kHz square wave at port 1, pin 7. Assume
the clock frequency remains at the same value.

Rollover

The timer clock increments in timer clock cycles from the base number up to
the maximum value of the 16-bit register, which is FFFFH. One more incre-
ment would cause the register to rollover to 0000H and set the timer flag (TF)
to 1. The TF is a bit in the TCON SFR:

TCON
TF1 TR1 TFO TRO IE] IT1 1EO ITO

The four least significant bits (LSB) are concerned with the trigger profiles of
the interrupt signals INTO and INT1. This will be examined later in the chapter.

On power-up the default values of all the TCON bits are zero and so the
timer flags TF1 and TFO are 0. Timer 1 is turned on by making TR1=1 and it is
turned off by making TR1=0; the control action of timer 0 is the same using
TRO.

As soon as TRO=1, the timer 0 model THO,TLO registers start incrementing
upwards from their base number. Upon rollover the TFO flag sets to 1 and this
indicates that the delay has been completed. A possible assembly language
routine for the 0.5 ms delay could be:

DELAY: MOV THO, #fJOFCH ; move hex FC into THO

MOV TLO,#65H ; move hex 65 into TLO
SETB TRO ; turn timer O on
FLAG: JNB TFO, FLAG ; jump to FLAG 1f TFO is not bit (i.e.
; not 1)
CLR TRO ; turn timer 0 off
CLR TFO ; clear TFO to zero
RET ; return from subroutine
Example 4.2

A P89C664 microcontroller having an 11.0592 MHz clock is to be used to
generate a 1kHz square-wave signal from pin 7 of port 1. Write a suitable
assembly program to achieve this.

72 P89C66x microcontroller

Solution
Square-wave cycle time = 1/1 kHz = 1/1000 = 1 ms
Delay required of a square wave = half the cycle time = 0.5 ms

Timer 0 clock = (micro clock)/6 = 11.0592 MHz/6
= 1.8432 MHz
Timer 0 clock cycle time = 1/1.8432 MHz = 542.54 ns

Delay count = (delay time)/(timer clock cycle time)
= 0.5ms/542.54ns = 922 (to nearest whole number)

Mode 1 timer base number = 65535 — delay count

= 65535 -922
= 64613 decimal
= FC65 hex
FC hex to go into THO
65 hex to go into TLO
Program
ORG 0 ; reset address
SJMP START ; short jump over reserved area
ORG 40H ; program start address at 0040H
START: MOV TMOD,#01H ; put Timer O into mode 1
AGAIN: SETB P1.7 ; pin 7 port 1 to logic 1 (5volts)
ACALL DELAY ; goto 0.5ms delay
CLR P1.7 ; pin 7 port 1 to logic O (Ovolts)
ACALL DELAY ; goto 0.5ms delay
SJMP AGAIN ; repeat
DELAY: MOV THO,#f0OFCH ; high byte base number into THO
MOV TLO,#65H ; low byte base number into TLO
SETB TRO ; turn Timer O on
FLAG: JNB TFO, FLAG ; repeat until rollover when TFO =1
CLR TRO ; turn Timer O off
CLR TFO ; clear TFO back to 0
RET ; return from delay subroutine
END ; nomore assembly language after here
Simulation

If from Peripherals the following are chosen:

with breakpoints placed at the program lines:

ACALL DELAY
CLR Pl1.7

Timers 0 and 1 73

The simulation response will be as shown in Figure 4.6. It can be seen from
Figure 4.6 that the time to the first breakpoint is shown as 0.00000271, which is
0.00271 ms. The time to the next breakpoint is 0.00050998, which is 0.50998 ms.
The difference between the two values is thus:

0.50998 ms — 0.00271 ms = 0.50727 ms

The contents of TLO could be altered to bring this difference closer to 0.5 ms.
To decrease the measured delay, it would be necessary to increase the base
number in TLO: maybe by increasing 65H to 72H.

B HemPOG EE ARTSOE A

DG 3] - = e ————
Register Valis B C:\Keil\C51\book\progi.a51 . ||D| x| Timer/Counter 0 lx
i ; - = Timerjt!uumerﬂ

s Dekl STMP STERT - tade
i 0w ORG 40H =
2 000 START: MOV TMOD, #01H |1: 18 Bt TimerCounter -]
3 000 AOATH SETE 1 s
Ea 000 ACALL DELAY [Timer =]
5 000 CLR P1.7
! ACALL DELAY Toon: [Ba0— Twon: [Ba1
g e SIMP AGATN
i 000 DELAY : MOV THO . #0FCH Tho: [0 1o [0
Ry MOV TLO, #65H
ioa 0x00 ZETE TRO [¥ T0Fin I~ TFO
b 000 FLAG: JHE TF0,.FLAG Contral
£ Dell? CLR TRO i
sz_max 07 CLR IFOD Status: |Stop
s s [T TR0 [GATE [« INTD#
anerl w00
- dptr w0000
o glates 5
i sec 0.00000271
2 L 0 —_—
¥ Bits i]
P B
Pins: [0FF R

Figure 4.6 Simulation display showing the use of breakpoints

After final adjustment of TLO, it would be useful to single step through the
program cycle.

If THO and TLO are loaded in turn, then TCON and TRO will change when
timer 0 is turned on. TLO increments as the program repeats at JNB. Moving the
mouse cursor to the THO window would allow the user to change the register
contents to a value of FF: similarly moving the cursor to the TLO window
would permit its value to be altered to FC. If single stepping of the program is
continued, then THO and TLO would be seen to roll over to 0000 and TF0 go to 1.

Alternatively, register values can be changed at the chevron sign in the
Command window at the bottom of the Debug page. This is illustrated in
Figure 4.7. Changes made this way have the advantage of being stored and
repeated in turn by pressing the upward cursor key on the PC keyboard.

>THO=0xFF|

Figure 4.7 Use of Command window to change register values

74 P89C66x microcontroller

Example 4.3

A P89C664 microcontroller having an 11.0592 MHz clock is to be used to
generate a 1 kHz square-wave signal from pin 7 of port 1. Write a C program
to achieve this.

Solution
A suitable program would be:

#finclude <regb66x.h>

ffdefine on 1

{fdefine off 0

sbit SquareWavePin =P1"7; // pin 7 of portl

void delaylKHz () ; // delay-on() returns nothing and
// takes nothing
main() { // start of the program
TMOD =0x01; // timerl : Gate=0CT=0M1=0
// M0=0
// timer0 : Gate=0 CT=0 M1=0 MO=1;
// mode 1
while (1) { // do for ever
SquareWavePin =on; // P1.7 set to 1
delaylKHz () ; // wait for on time
SquareWavePin = off;// P1.7 set to 0
delaylKHz () ; // wait for off time
) // while ()

) // main ()
void delaylKHz ()
THO=~1(922/256); // ~(3) =~(bin:0000 0011) =bin:1111
// 1100 = hex : FC
TLO=—1(922%256);// —(154) =—(bin:1001 1010) =bin:
// —0110 0110 =hex:66

TRO=on; // set TRO of TCON to run timer0
while (! TFO) ; // wait for timer0 to set the Flag TFO;
TRO=off; // stop the timer0
TFO=off; // clear flag TFO

} // delay ()

MODE 2 EIGHT-BIT UP-COUNTER

The instruction MOV TMOD,#02H would put timer 0 into mode 2 defining an
8-bit timer using TLO as the working register and THO as the automatic reload
register. The circuit arrangement is shown in Figure 4.8.

In mode 2, the working register is only 8 bits wide and so the base number is
8 bits wide. When the TL register rolls over it is automatically reloaded with the
contents of the TH register, whose loaded contents remain the same, so the base
number goes into the TH register.

Timers 0 and 1 75

Oscillator - Timer (T)

frequency Divide by 6
C/T=0 TLn

= gbits [TFN
C/T=1
T1/0 port pin Counter (C) THn
8 bits
TR1/0 (TCON) }

GATE (TMOD)

INT1/0 port pin

Figure 4.8 Circuit for timer 1/0 to operate as an 8-bit up-counter in mode 2

Example 4.4

A P89C664 microcontroller having an 11.0592 MHz clock is to be used to
generate a SkHz square-wave signal from pin 7 of port 1. Write a suitable
program to achieve this.

Solution
Square-wave cycle time = 1/5kHz = 1/5000 = 0.2 ms
Delay required for a square wave = half the cycle time = 0.1ms = 100us

Timer 0 clock = (micro clock)/6 = 11.0592 MHz/6 = 1.8432 MHz
Timer 0 clock cycle time =1/1.8432 MHz = 542.54 ns

Delay count = (delay time)/(timer clock cycle time)
= 100 us/542.54 ns = 184 (to nearest whole number)

Mode 2 timer base number = 225 — delay count
(225 =maximum value of 8-bit register)

=255—-184

= 71 decimal

= 47 hex
47 hex is to go into THO
47 hex is to go into TLO
TLO could start with its default value of 00H since the first half cycle would not
be seen on an oscilloscope screen! The line MOV TL0,#47H can be left out of
the program since after the first half cycle TLO will automatically be reloaded
with 47H from THO.

76 P89C66x microcontroller

Program
ORG 0 ; reset address
SJMP START ; short jump over reserved area
ORG 40H ; program start address at 0040H
START: MOV TMOD, #02H ; put Timer O into mode 2
MOV THO,#47H ; auto-reload base number into THO
AGAIN: SETB P1.7 ; pin 7 portl to logic 1 (5volts)
ACALL DELAY ; goto 0.5ms delay
CLR P1.7 ; pin 7 portl to logic 0 (Ovolts)
ACALL DELAY ; goto 0.5ms delay
SIJMP AGAIN ; repeat
DELAY: SETB TRO ; turn Timer O on
FLAG: JNB TFO,FLAG ; repeat until rollover when TFO=1
CLR TRO ; turn Timer O off
CLR TFO ; clear TFO back to 0
RET ; return fromdelay subroutine
END ; nomore assembly language after here
Simulation

Time taken to run to the first breakpoint ACALL is 0.00000380 = 3.80 ps. THO
is loaded with 47 hex and TLO has its default value of 00 hex. This is shown on

the simulation response in Figure 4.9.

GlHomPre e | REYSIE A

Preject Werkspess = —

Register Value Timer/Counter 0 |X| B C\KeilC51\bookiprog3.as1
= Rags —TirnerCounter - - K

i e] 1 Mode

n [0
| bep 000 12:& Bii auto-reload __:J
] 0
i] = = ACRIN
5 00
6 000 TCOM: |3x00 ThACID: EME‘
I;I b 7 00 THI: [id? Lo (00
S Sys
3 00 [+ T0 Fin [~ TED
b 00 Confrol————
ek et Status: |Stop

sp_max el

FC$ C-048 | T TR1 [GATE [INTO#
- aurl 000
B dptr 00000
© states 7 Parallel Port 1
zer 0.00000330
= psw 000 el

7 Ei 1]
PO SRR R
Pins: [P PR

THOD , #026
THO . #47H

Figure 4.9 Simulation display showing the use of breakpoints

Clicking left mouse (CLM) on the simulation run button twice causes the
program to come back to the first breakpoint which gives a time as shown in
Figure 4.10. From Figure 4.10, the time is given as 0.00025336's = 253.36 ps.
CLM on simulation run button once more would give the time shown as:

0.00035699 s = 356.99 us

Timers 0 and 1 77

L Sec 0.00025336
B PSW 0x00

Figure 4.10 Breakpoint timing value display

The difference is equal to 103.63 pus which is close to the 100 us delay required
for the 5 kHz square wave. Changing 47H in THO to 4FH would give a closer
result.

Exercise 4.2

A P89C664 microcontroller having an 11.0592 MHz clock is to be used to
generate a 5kHz square-wave signal from pin 7 of port 1. Write a C program
to achieve this.

TIMER INTERRUPT

When an interrupt occurs the processor pauses, saves the current program
counter (PC) value into RAM designated by the stack pointer (SP) and then
jumps to the interrupt vector address. The processor then carries out the
instructions at the interrupt vector address and returns to the original program
sequence, retrieving the previous PC data. The interrupt program must end
with RETI (return from interrupt).

The P89C66x microcontroller has nine interrupts, if reset is included, as
shown in Table 4.1. It can be seen from Table 4.1 that previous assembly
language programs started from address 0040H in order to leave the interrupt
vectors as a reserved space.

Timer interrupts can be made to occur when the TF is set at rollover. This is
achieved by setting the relative bits in the interrupt enable (IE) registers.

1EO
EA EC ES1 ESO ET1 EX1 ETO EXO0

EA Enable all and must always be set when interrupts are used. By
putting EA =0 any arrangement of interrupts can be disabled

EC PCA interrupt enable

ES1 I’°C interrupt enable

ESO UART interrupt enable

ET1 Timer 1 interrupt enable

EX1 External 1 interrupt enable

ETO0 Timer O interrupt enable

EXO0 External 0 interrupt enable

IE1

- ET2

ET2 Timer 2 interrupt enable (EA in IEO must also be set)

78 P89C66x microcontroller

Table 4.1 P89C66x interrupts

Source Interrupt vector address Polling priority
Reset 00H 0 (highest)
External 0 03H 1

I’C 2BH 2

Timer 0 0BH 3

External 1 13H 4

Timer 1 1BH 5

UART 23H 6

Timer 2 3BH 7

PCA 33H 8 (lowest)

Example 4.5

Modify the program of the previous example such that a timer 0 interrupt
causes the logic level on pin 7 port 1 to be toggled (switched to opposite logic
level) producing a square wave of frequency 5 kHz.

Solution
Program could be

ORG 0 ; reset address
SJIMP START ; short jump over reserved area
ORG 0BH ; Timer O interrupt vector address
SJMP TASK ; go to interrupt routine
ORG 40H ; program start address at 0040H
START: MOV TMOD, ##02H ; put Timer O into mode 2
MOV THO, #f47H ; auto-reload base number into THO
SETB EA ; enable all
SETB ETO ; enable Timer O interrupt
SETB TRO ; turn Timer O on
AGAIN: SJMP AGAIN ; stay here till interrupt occurs
TASK: CPL P1.7 ; complement (i.e. toggle) pin 7 port 1
RETI ; return from interrupt routine
END ; end of assembly language
Simulation

The response is shown in Figure 4.11. The interrupt window is shown in
Figure 4.11. When in debug the Interrupt window is obtained from Peripherals on
the top menu bar. Putting a breakpoint at the TASK label and running the program
to this point give a timing of 0.00014594 s = 145.94 us. Running the simulation
once more the timing increases to 0.00024631 s = 246.31 pus. The difference between
this and the previous value is 100.37 us, which is very close to the required 100 ps.

Exercise 4.3

Modify the C program of Exercise 4.2 such that a timer 0 interrupt causes the
logic level on pin 7 port 1 to be toggled (switched to opposite logic level)
producing a square wave of frequency 5kHz.

Timer 2 79

HEHOBPEFY ¢ ARTSOE »

Srcject Warkspace v =]

-\KeillC51\book\prog3.a51” L. =] [)([

0

Timer/Counter 0 x =]

Register i Value !
= Regs TirnerfCovnter 0 sTeset adT—{
il 0x0D - Moce S.IMP START :short jul™
—=H Ol ey = OR3 oEH ;Timsr O
2 @00 £ iBtaibalond ETMP TASE igo to din
3 00 ,hl ORG AH program
u 00 MOV IMOD,#02H ;put Time
MOV THO, #47H rauto-rel
15 00D g g
- S TCOM: (1D ThoD- |02 SETE Ef :enahle a
SETB ETO senable T
THI: |0xd? TLO (el SETH TRO sturn Tim
= 2T ABRIN :=tay her
[TOFin I TFO CFL P1.7 scomplems
Contel —— RETI ireturn £
Status: [Run ||
" TR [GATE [INTO# o

Interrupt System

Int Source I \:‘emr[Mode [Fleq! Ena] Fri | - " Bits 0
F5.2/Ini0 n003H a] 1] [} | F1: [FF e e v v
Tirnee nnne= (1] 3]

Fadnn i 0] n 0 Fins: [BFF PV
Tirner 1 n0ie=] 1] 0 :

Senal Rov 0023+] 1] 0

Senal Xmil 0023+] 1] 0

1EC Inbarrupt onze 0 1} 0

FCa Timer boizH 0 L] u]

Fa Module O 0033H 0 a u] =

FCa Module 1 D033H 1} a [t}]

FCA Module 2 D033H a a o a

FCA Mocule 3 DO3IH a a 1}] F

Bra binduls n n n n L

[k)
Selected Inbzrpt
I mo [IEn [~ E=n iz [0

[+ EA

Figure 4.11 Simulation display with breakpoint used to determine timing

4.3 Timer 2

The previous program could be viewed as the basis of a simple multitasking
system where the microcontroller performed a task of complementing pin 7
on port 1 every 100 ps. The auto-reload and automatic clearing of the Timer
Flag meant that once the timer reload register had been set up and the timer
turned on it could be left to continually interrupt every 100 us. Because the
working register TLO is only 8 bits wide the time duration of the interrupt
signal is small.

The P89C664 has Timer 2, which has 16-bit auto-reload giving a maximum
count of 65536 (2'%). Timer 2 has three operating modes:

1. capture mode
2. 16-bit auto-reload mode
3. baud rate generator mode.

Auto-reload is the default mode. Capture mode causes data in TL2 and TH2
to be transferred to the capture registers RCAP2L and RCAP2H when there is
a 1-to-0 transition on T2EX (port 1.1).

Timer 1 can be used as the serial port baud rate generator but has limita-
tions on the minimum baud rate. For example, with an oscillator frequency of

80 P89C66x microcontroller

11.0592 MHz the baud rate generation can only go down to the standard rate
of 4800, for lower values the oscillator frequency must be lowered. Timer 2
having 16-bit auto-reload gets over this problem. (See Section 4.9.)

The control register associated with timer 2 is T2CON.

T2CON
TF2 EXF2 | RCLK | TCLK |EXEN2| TR2 C/T2 |CP/RL2

TF2 rollover or overflow flag, it must be cleared by software

TR2 turns timer 2 on (1) or off (0)

C/T2 increments TL2, TH2 by onboard timer (0) or external
negative edge on portl.0 (T2)

CP/RL2 when 1 (capture mode), when 0 (auto-reload on rollover)

EXF2 external flag set to 1 when there is a negative transition on
port 1.1 (T2EX)

EXEN2 external enable flag, when 1 allows capture or reload fol-

lowing a negative transition on T2EX
RCLK, TCLK when 1, baud rate generator mode

Example 4.6

A P89C664 microcontroller has an oscillator frequency of 11.0592 MHz. Write
a program that causes timer 2 to generate an interrupt every 10ms toggling
pin 7 on port 1.

Solution

Oscillator frequency = 11.0592 MHz

Therefore timer clock = 1.8432 MHz

Timer clock cycle = 542.54 ns

Delay time count = 10ms/542.54 ns = 18432 (nearest whole number)
Timer 2 base number = 65535 — 18432 = 47103 decimal = B7FFH

In timer 2 the reload register for TH2 is RCAP2H (capture register 2) and the
reload register for TL2 is RCAP2L. ET2 in IENI1 enables timer 2 interrupt.

IEN1
- - - - - - - ET2

The evaluation version of the assembly language software does not have timer 2
SFRs; therefore the program starts by equating (EQU) the SFR labels to their
hex addresses. This information is obtained from the microcontroller data
sheet, see Appendix D.

The program uses OR logic (ORL) to force logic 1 in the SFRs
without affecting other bits, and it also uses AND logic (ANL) to force
logic 0.

Timer 2 81

Program

sfr address = CBH
sfr address = CAH

RCAP2H EQU 0CBH
RCAP2L EQU 0CAH

IEN1 EQU OE8H ; ser address = E8H

T2CON EQU 0C8H ; sfr address = C8H
ORG 0 ; reset address
SJMP START ; jump over reserved area
ORG 3BH ; Timer2 interrupt address
SJMP TASK ; jump to interrupt task
ORG 40H ; program start address

START: MOV RCAP2H,#f0B7H
MOV RCAP2L,{#fOFFH
SETB EA
ORL IEN1,#f01H
ORL T2CON,#04H
AGAIN: SJMP AGAIN

B7H into RCAP2H

FFH into RCAP2L

enable all interrupts

enable Timer2 (ET2) interrupt
turn Timer2 on

stay here till interrupt

TASK: CPL P1.7 ; toggle P1.7
ANL T2CON,#7FH ; clear Timer2 flag (TF2)
RETI ; return from interrupt
END ; end of assembly language
Simulation

The simulation response is shown in Figure 4.12. Setting the breakpoint at the
TASK label and running the simulation would initially give a large time count
in the sec register because TH2 and TL2 (T2 in the timer simulation window)
start with their default values of zero. In Figure 4.12 the sec count is seen to be
0.03556261 which is 35.56261 ms. Running the simulation once more would see
the sec register change to 0.04556315 which is 45.56315ms, a difference of
approximately 10 ms.

ElRomPEn 28 ARYEOE P

e [vame [l c:eitcsnibookiprogs.ast [— [OX Tmerscounter2 X
= Regs i '={‘r‘7 — Timar/Counzar 2 —
0 00 vl
al 000 - Mo | Timer: 16-Bit Reload
TZoon EDU OCEH
,’j m oRd . D Tcan; [Dad v TRe
SIMP START
- 00 o e TaoD: [0 Loy
SIME TASE I CriRLes
0R¢ 40H T2. [0EE03 e
MOV RCAPZN,#0B7H GETH ||| = 2
MOV RCAPZL,#0FFH ACAPz: [1E7FF [~ TELE
ORL TENL.AOIH L vt M
I 1.#01] fonak) .
T ORL T2CON,#04H ;turn [» TeEs | (¥ TR | I TOE
o D9 SIME AGAIN istay v T2Rin | | [T ExF2 | [DCEM
L CPL P1.7 gy
s ;;%?”5” a0, #7FH —
aurl
b dow i Parallel Port 1 |x|
e
- slalas 65549 Fort 1
sec 003556261 — 0
B pew 00 Pl |[FF BRIV E
5 e
pis B PR RRR

Figure 4.12 Simulation display with breakpoint used to determine timing

82 P89C66x microcontroller

Exercise 4.4

A P89C664 microcontroller has an oscillator frequency of 11.0592 MHz. Write
a C program that causes timer 2 to generate an interrupt every 10 ms toggling
pin 7 on port 1.

4.4 External interrupt

Negative edge transitions on PORT 3 pins 2 (INTO) and 3 (INTI) can cause
interrupts; their interrupt vector addresses are 03H and 13H respectively. A
possible circuit arrangement is shown in Figure 4.13. Figure 4.13 shows a
switch circuit where the voltage on P3.3 (port 3 pin 3) is normally 5 V. Pressing
the switch causes a negative edge transition as the voltage switches down from
5V to 0V. If the switch is pressed and held then a logic 0 level is held on P3.3.
These are the two external interrupt conditions; it can be either edge triggered
(transition logic 1 to 0) or level triggered (logic 0).

+5V DC

Microcontroller
” 3.3k

P3.3/INT1

C

GND

Figure 4.13 Circuit arrangement to produce an interrupt on port 3, pin 3. A similar
arrangement can be used for port 3, pin 2

Example 4.7

A P89C664 microcontroller has an oscillator frequency of 11.0592 MHz. Write
an assembly language program that complements the logic level on port 1 pin 7
when an edge triggered interrupt occurs on port 3 pin 3 (INT1).

Solution
The four least significant bits of the TCON register are used to set the external
interrupt parameters.

TCON
TF1 TR1 TFO TRO IE] IT1 IEO ITO

External interrupt 83

IT1=1 INTI (P3.3) interrupt activated on a negative edge transition. IE1 flag
set to 1 when there is a negative edge transition on INTI (P3.3), cleared
automatically when servicing the interrupt. IT1=0 INT1 (P3.3) interrupt
activated on logic 0 level. IE1 flag set to 1 when there is a logic 0 level on
INT1 (P3.3), cleared when the logic level on P3.3 goes back to logic 1.

The process for ITO and IEO is similar to the above.

Program

ORG 0 ; reset address

SJMP START ; jump over reserved area

ORG 13H ; INT1 address vector

SJIMP TASK ; jump to interrupt routine

ORG 40H ; program start address
START: SETB IT1 ; interrupt edge triggered

SETB EA ; enable all set interrupts

SETB EX1 ; enable INTI interrupt
AGAIN: SIJMP AGAIN ; stay here till interrupt
TASK: CPL P1.7 ; interrupt task

RETI ; return from interrupt

END ; nomore assembly language
Simulation

The simulation response is shown in Figure 4.14. The activity of IT1 and IE1
can be seen on the Watch Window or TCON in the timer 1 window. In Figure
4.14 the simulation uses the timer 1 window. When single stepping through the
program, the position reached in Figure 4.14 is when P3.3 has just gone to logic 0.
At this point Reg in the Interrupt System window goes to 1. TCON changes
from 0x04 (SETB IT1) to 0xOC (IT1 and IE1 both set).

ZHoREIw| Y | ARTYSDE »

= Timer/Counter 1 |x| By C:\Keil\C51\bookl\progs a5 i " "x
TimeriZaurizr 1 | ORG o ireset adiress]
MOEE 3THP STAERT Ljump ovar reservad arss ~
T ——— = i) 13H +/INT1 address vector
BN =] S.TMP TASK Sjump to interrupt routing
,“—‘_“lv QOR3 40H art address
Al STAHT SETH IT1 sinterrupl edge Lriggeres
SETD EA reneble all set
TCOM: |02 Tra0De: (0=00 I SETE EX1 repable INT1 inte:
B3 TH SJIMP AGATH : y18 i
THI: |00 TLI: 100 TREH: CPL P1.7 E
B E . RETT sraturn from intaTrupt
¥ T18n | T4 EWD ;b wore assembly language
Cardicl
Slah lEhop
[T TRl [T GATE [INT1#
|| [e——

—Fort1

I Sourca | Wachor| Mode | Ses | S0s | Pri | P o Bits 1

F3 240 [T o0 0 P1: | PR e
- pew Timer A0OEH [|

FI.3/t a1 1 10 Foe: [MFF GRRFEE

Timer | 01ek [

Seriol Ficow. 1023 o0 0

Serinldmit 023K 003 Earallel Part 3

IECInernipt O02BK 003 Pt s

FCé Timer Wik 1 003 7 Em 0

FCAModule D 0033 1 o0 o0 PRI RN R

Fla vodule 1 o33 o u il J

FoAModule? O033E 0 oo a0 Pas 1577 [P F

Figure 4.14 Simulation display showing the effect of a program on timer 1

84 P89C66x microcontroller

Single stepping once more will cause the program cursor to go to SIMP
TASK; TCON to go back to 0x04 and Reg go back to 0. Single stepping twice
more would cause P1.7 to go to logic 0.

Exercise 4.5

A P89C664 microcontroller has an oscillator frequency of 11.0592 MHz. Write
a C program that complements the logic level on port 1 pin 7 when an edge-
triggered interrupt occurs on port 3 pin 3 (INT1).

4.5 Interrupt priority

Table 4.1 shows the order in which the interrupts are polled; for example it is
seen that timer O interrupt is polled or checked before timer 1. The order in
which the interrupts are serviced may be set by using two interrupt priority
tables, together they give four levels of interrupt as shown in Table 4.2.

Interrupt priority (IP)
PT2 PPC PS1 PSO PT1 PX1 PTO PX0

IPH (high byte)
PT2H | PPCH | PSIH | PSOH | PTIH | PX1H | PTOH | PXOH

PT2 Timer 2

PPC PCA

PS1 I*C

PSO UART

PT1 Timer 1

PX1 External 1 (INTI)
PTO Timer O

PX0 External 0 (INT1)

Table 4.2 Priority levels

IPH.x IP.x Levels order

0 0 0 (lowest)
0 1 1

1 0 2

1 1 3 (highest)

Example 4.8
Assuming a P89C664 microcontroller is to be used, write an assembly language
program that causes timer 1 to have a higher priority than timer 0.

Interrupt priority 85

Solution
MOV IP,ffOAH ; A=1010 PT1(IP.3)=1PT0 (IP.1)=1
MOV IPHJ08H ; 8=1000 PT1(IPH.3)=1PTO (IPH1) =0

Timer 0 has a priority level of 1 and timer 1 has a priority level of 3, so even if
timer O interrupt has not finished servicing its task, timer 1 will interrupt the task.

Program

IENO EQU 0A8H ; sfr address = A8H

IPH EQU OB7H ; sfr address = B7H
ORG 0 ; reset address
SJIMP START ; jump over reserved area
ORG OBH ; Timer O interrupt vector address
SJMP TASKO ; jump to Timer O int task
ORG 1BH ; Timer 1 interrupt vector address
SJIMP TASK1 ; jump to Timer 1 int task

START : MOV TMOD,#22H ; Timer 0 & Timer 1 in mode 2
MOV IENO,##8AH ; EA and Timer 1&2 interrupts
MOV THO,#f0F8H ; hex F8 into THO
MOV TH1,#fOEEH ; hex EE into TH1
MOV TLO,#f0F8H ; hex F8 into TLO
MOV TL1,#/0OEEH ; hex EE into TL1

MOV IP,#FOAH ; Timer O priority 1 and

MOV IPH,#08H ; Timer 1 priority 3

MOV TCON,#50H ; turn Timers 0 and 1 on
AGAIN: SIJMP AGAIN ; stay here till interrupt
TASKO: CPL P1.0 ; Timer O task, cpl P1.0

MOV RO,#55H ; trivial tasks, 55H to RO

MOV A,RO ; register RO to Accumulator

MOV P2,A ; Accumulator to port 2

MOV R2,#f88H ; 88H to register R2

MOV A,R2 ; R2 to Accumulator

MOV P2,A ; Accumulator to port 2

CPL P1.0 ; complement P1.0

RETI ; return from TaskO interrupt
TASK1: CPL P1.1 ; complement port 1 pinl

RETI ; return from Taskl interrupt

END ; end of assembly language

Simulation

The simulation response is shown in Figure 4.15. It may be seen from the
interrupt system window in Figure 4.15 that timer 0 has a priority (Pri) of 1 and
timer | has the higher priority of 3. Both timers are in §-bit auto-reload (mode 2).
It may also be seen that pins 0 and 1 of port 1 are both at logic 0.

The simulation has been single stepped and the simulation cursor is at RETI
in the timer 1 interrupt TASK1. The timer 0 interrupt TASKO starts off with
CPL P1.0 and finishes with the same instruction, so when TASKO is complete
port 1 pin 0 should be showing logic 1. The simulation as shown in Figure 4.15
is at the point where the higher priority timer 1 interrupt has interrupted timer 0

86 P89C66x microcontroller

E(MOUTFU (i | AEEE RE »
[L3

Ragister [valus | kookipregs.a i}
! TERD EOO 0AAA cetr add—]| - TimeCounter 0
1=H EQU OB7H i=fr addi®
For T = oRd O e £ e Bravioeloas -
M [BFe . FEERERT T ot Bl HTUE ¢ [fvar =]
Fira: [1FC T FFRFF SJMP TRSKD = =
ofleb oLl oRG 1EH oo 570 o, [
TMP TASKL
START: MOV TMOD,#2ZH TH [1:F2 1 [FF
MOV LEND,4#82H
- WOV THOL#OFEL ¥ TUFin [170
Ink Sourcs Wartnr [bncs | Beg [Fre [Fri | A MOV THL,#DEE Zumirl
Fa.2ird) [T e o0 0 ol MDY TLO,NDFE i
Trner [T 1 1A MOV TL1.#0EEH Staryz: |Run
Fa 3 JiSTE noon o MOV TPL#0AH - 5 :
Ml it T 3 :gx 53:3{1#32;1 [# TRL [GATE ¥ INTOE
Seeinl P, fisLETS [g Tk,
Saiciann o £ 5 & LCAIH: SOME AGAIA TR
e U0ZER oo (TASRO: T F i X
P Tirmzr e 0 10 1 e e | TimarCounter1
FCiModilal 002314 0 noon o0 WOy Fh.a ~Mnds
A rdodule 1 003 0 o oo M FE
Fohnodule 2 0033F 0] o0 Wo ne 20 Eit autery = 0ad b
Foatodlad 003 0 0 00 Z HOY P24 [T =]
Ditinindulad (T 0 - SEL BeD
T - Selecied Interupl e
FEs || rea Ceas e e CEL PL.1 ToR B TheoD [
RETL e
EXD THT: [B=E (L8 T
I+ T1Pn ™
[Condral
- S ER.JII 3
" S| IR T osaE B oNTie
] A L=

Figure 4.15 Simulation display showing the priority levels of timers 0 and 1

TASKO before completion, preventing it from reaching the final CPL instruc-
tion. When timer 1 interrupt has completed TASK1 the microcontroller returns
to the point at which it left timer 0 TASKO and completes the task.

Exercise 4.6
Assuming a P89C664 microcontroller is used, write a C program that causes
timer 1 to have a higher priority than timer 0.

4.6 Programmable counter array (PCA)

The PCA has a 16-bit timer and five 16-bit capture/compare modules each of
which can be put into one of seven different configurations. Each of the five
modules has a port pin associated with it that may be an input (e.g. interrupt)
or an output (e.g. signal out). The 16-bit Timer/Counter is the time base for
each of the five modules as can be seen in Figure 4.16. Each of the five modules
has a Compare/Capture Mode register (CCAPMn) for selecting one of the
seven configurations.

CCAPMn (n = 0,1,2,3,4)
~ | ECOMn | CAPPn | CAPNn | MATn | TOGn | PWMn | ECCFn

ECOMn when = 1, enable comparator
CAPPn when = 1, capture on positive edge
CAPNn when = 1, capture on negative edge

MATn

TOGn
PWMn
ECCFn

Programmable counter array (PCA) 87

when = 1, match between counter and capture registers flags an

interrupt
when = 1, port pin toggles when MATn condition occurs
when = 1, pulse width modulation (PWM) mode

when = 1, enables flags (CCFn) in CCON SFR to generate interrupts

Details of the module modes for the CCAPMn register are shown in
Table 4.3 for each bit of the register.

16-bit

Timer/counter

Table 4.3 CCAPMn module modes

—16 bits —|

Module 0 |<«——— [|P1.3 (CEXO0)
Module 1 |~<——————»[| P1.4 (CEX1)

Module 2

~<—>[|P1.5(CEX2)

Module 3

<> |P3.4(CEX3)

<—>|:| P3.5 (CEX4)

Figure 4.16 Programmable counter array (PCA)

SR
—mmm XXX

SO OO~ O —O
SO OO == OO

—_—o = = O O OO

oo —o oo oo

O~ OO OO OO

X O R E XX X2

No operation
16-bit capture by positive edge on CEXn
16-bit capture by negative edge on CEXn
16-bit capture by transition on CEXn
16-bit software timer
16-bit high speed output
8-bit PWM
Watchdog timer

The two other SFRs associated with the PCA are the counter mode register
(CMOD) and the counter control register (CCON).

CMOD
CIDL | WDTE - - CPS1 CPSO ECF
CIDL when =0 (PCA continues during idle mode)
when=1 (PCA gated off during idle mode)
WDTE when =0 (disables watchdog timer)

when=1 (enables watchdog timer)

88 P89C66x microcontroller

CPS1 CPSO

0 0 PCA time base runs at (micro oscillator frequency)/6

0 1 PCA time base runs at (micro oscillator frequency),/2

1 0 PCA time base runs at Timer 0 overflow

1 1 PCA time base runs at external clock on port 1 pin 2 (ECI)

(maximum=micro oscillator frequency/4)

ECF =1 (enables counter overflow interrupt, enables CF bit in CCON SFR)
=0 (disables counter overflow interrupt)

CCON
CF CR - CCF4 | CCF3 | CCF2 | CCF1 | CCFo
CF counter overflow flag
CR when =1, PCA time base runs

when =0, PCA time base stops
CCFn interrupt flag, set by hardware when a match or capture occurs.
Cleared by software

4.7 Pulse width modulation (PWM)

The use of PWM allows a variable DC average voltage to drive small inductive
loads such as a small DC motor. The PWM frequency has to be much faster
than the movement of the application. An example of waveforms produced
using PWM is shown in Figure 4.17.

The DC average is achieved by variation of the on/off ratio in a cycle. In
Figure 4.17 the top signal has an average of (5V x 9)/10 = 4.5V, while the
lower signal has an average of (5V x 6)/10 =3V.

5V
High average
oV
— Time
9 1| 0
5V i
Lower average
oV
bl Time
6 10
Cycle time (T) i
i
1
I

Figure 4.17 Waveforms showing the effect of pulse width modulation (PWM) in
varying the average DC voltage over a cycle period (T)

Pulse width modulation (PWM) 89

PULSE WIDTH MODULATION (PWM) USING THE PCA

A possible arrangement is shown in Figure 4.18. The example is taking n=1, so
the PWM output is from port 1 pin 4 (P1.4). To configure the PCA into PWM
mode set bits ECOM1 and PWM1 in the CCAPM1 SFR to 1. The PWM is
8 bits and Figure 4.18 shows the comparison is between the low byte CL of the
PCA Timer/Counter and the low byte CCAPIL. The high byte CCAPIH is
used to automatically reload CCAPI1L when it goes to zero. CCAP1L goes to
zero when CL has incremented up to its value. CCAP1H is effectively a marker
fixing the on (e.g. SV) off (0 V) ratio of the PWM signal. Because the PWM is
8 bits, the cycle time of the PWM is 256 PCA timer clock cycles.

CCAP1H

CCAP1L

0 [:
CL < CCAP1L T
8-bit

g comparator L] CEX1(P1.4)
CL>=CCAP1L .}

I 1_|>_

CL

Timer/counter

| - |[ecomi|capp1|caPNi| MAT1 | TOG1 | PWM1 |ECCF1|

Figure 4.18 Use of the PCA to produce a PWM output from port 1, pin 4

In one PWM cycle CL increases from zero up towards the CCAPIL value
(automatically loaded from CCAP1H). During this period, when CL < CCAPIL,
the PWM output is logic 0 (0 V). When CL = CCAPIL the latter momentarily
goes to zero but is immediately reloaded from CCAP1H. CL continues to increase
and for the period CL >= CCAPIL the PWM output is logic 1 (e.g. 5V). The
effect is illustrated in Figure 4.19.

Example 4.9

A P89C664 microcontroller has an oscillator frequency of 11.0592 MHz. Write
an assembly language program that will cause the PCA to generate a PWM
signal from pin 4 of port 1 with a Mark (logic 1) Space (logic 0) ratio of 6 to 4.
The PCA timer clock frequency should be one-sixth of the microcontroller
oscillator frequency.

90 P89C66x microcontroller

CCAP1H
Y
, CCAP1L ,
Logic 0 I Logic 1 |
CL CL 255
CL=CCAP1IL

Figure 4.19 Effect on output logic level as CL increases from 0 to 255. Transition
occurs as CL increases above the value in CCAP1IL

Solution

Ratio 6:4=6+4 periods =10 periods
8 bits=0 to 255=256 increments
Therefore one period =256/10=25.6 increments per period

Mark (logic 1)=6 periods

Hence Mark=6 x25.6=154 increments (nearest whole number)
CCAPIL (and CCAPIH)=256 —154=102=decimal =66 hex

Since the PCA timer clock frequency = (micro oscillator frequency)/6, the
CMOD SFR can assume its default value of 00H. The CR bit in the CCON
SFR will have to be set to 1 to turn the PCA time base on.

PCA timer clock frequency = 11.0592 MHz/6 = 1.8432 MHz

. . 1
PCA timer cycle time = T8a%2 MHz = 542.54 ns

Logic 0 is held for 102 x 542.54ns = 55.3 us
Logic 1 is held for 154 x 542.54ns = 83.6 us

Program

CCAP1H
CCAP1L
CCAPM1
CCON

START:

STAY:

EQU
EQU
EQU
EQU

ORG
SJIMP
ORG
ORL
MOV
MOV
ORL
SJIMP
END

OFBH
0EBH
0C3H
0COH

0
START

401
CCAPM1,#42H
CCAP1L,#102
CCAP1H,#102
CCON,##40H
STAY

; sfr address
; sfr address
; sfr address
; sfr address

; microcontroller reset address

; jump over reserved area

; program start address

; set ECOM1 and PWM1

; load 6:4 count

; 6:4 count reload

; set CR to turn PCA timer on

; stay here whilst generating PWM
; nomore assembly language

Pulse width modulation (PWM) 91

Simulation

The simulation response is shown in Figure 4.20. The program generates the
PWM whilst it remains at the SJMP STAY line, so there is nowhere to
measure time using a breakpoint. The Raisonance software has the Trace
feature where the signals on the port pins can be displayed. Signal times can
be measured from the table above the traces.

From Figure 4.20 the trace cursor is on a leading edge, selected from the
table above by clicking the mouse on the TRUE condition at 199 ps. Scrolling
to the first FALSE after this at 282 ps gives that logic 1 is held for 83 ps, which is
quite accurate. The trace was run under animation; the chosen options were:
continual mode, rolling trace, maximum number of records = 1000.

CF [0 CMOD |
CCAPOHL (0000 CCFO [0 CCOM [4
CCAPTHL [6666 CCF1 [0 &

CCAPZHL [ooo0 CCF2 [o
CCAP3HL [0000 COF3 o
CCAPAHL [ooo0 CCF4 [o

Function: timer with intemal clock (Fosc2)
Stataon

Mode Modulal: Mo operation

Mode Modulzl: 8-bit FWk

Mode Module2: Mo operation

Mode Modula3: No oparation

Mode Modulzd: Mo operaxlon

0 [Mo Connaction
LATCH [FF - [Mo Connaction
[Mo Connaction

: FL8 Mo Connecii
= [Mo Connection
mm 4 4
0.200.540 ¥ TRUE
2 TRUE

[Mo Connection
E Mo Connection
[Mo Connection
7 F Mo Connection

000,000 0:00.00.100.020 0:00:00.200 000 00:00.300.000 0000400000 20000500000 00:00.600,000

Figure 4.20 Simulation display showing the use of the Trace window

Exercise 4.7

A P89C664 micrcontroller has an oscillator frequency of 11.0592 MHz. Write
a C program that will cause the PCA to generate a PWM signal from pin 4 of
port 1 with a Mark (logic 1) Space (logic 0) ratio of 2 to 8. The PCA timer clock
frequency should be one-sixth of the microcontroller oscillator frequency.

92 P89C66x microcontroller
4.8 Watchdog timer

If it is allowed to run unchecked the watchdog timer automatically causes a
main system reset. This is particularly useful if the system is to operate in a
noisy environment where interference may cause the microcontroller-based
system to malfunction.

In the P89C66x microcontroller family the watchdog timer is available by
using module 4 of the PCA. Figure 4.21 outlines its configuration. The Watch-
dog is enabled with WDTE =1 in the CMOD register. Once turned on the
PCA Timer/Counter increments up from zero. If the 16-bit CH, CL register
ever matches the 16-bit CCAP4H CCAPAL register setting then a main system
reset occurs and the operating program runs from the beginning.

lcof wote | - | - | - |cpst|cPso| ECF| cmop
i

Write to Write to
CCAP4H CCAP4L |CCAP4H|CCAP4L| Module 4

| @ \ Y
|1 6-bit comparator ! Match Reset

A A

\----------—-

CH CL
PCA Timer/counter

| - |ECOM4CAPP4|CAPN4| MAT4 [TOG4|PWM4|ECCF4| CCAPM4

Figure 4.21 Use of module 4 of the PCA to facilitate the watchdog timer

To prevent the match CCAP4H, CCAP4L are periodically changed prevent-
ing CH, CL from reaching a matching value. This is done by periodically
changing the value of the high byte CCAP4H to the current value of the
PCA timer (CH) 4 (FFH).

Example 4.10
Write a simple assembly language program that toggles pin 7 of port 1 and also
incorporates the use of the watchdog timer.

Solution

CCAPM4 EQU 0C6H ; sfr address
CCAP4L EQU OEEH ; sfr address
CCAP4H EQU OFEH ; sfr address
CCON EQU 0COH ; sfr address
CMOD EQU 0C1H ; sfr address
CL EQU OE9H ; sfr address

CH EQU OF9H ; sfr address

Watchdog timer 93

ORG 0 ; reset address
SJMP START ; jump over reserved area
ORG 40H ; program start address
START:
ORL CCON,#40H ; turn PCA timer on
ORL CMOD,##40H ; enable watchdog WDTE = 1
MOV CCAPM4,#48H ; CCAPM4 to watchdog
MOV CCAP4L#fOFFH ; maximum initially into
MOV CCAPLH{FOFFH ; compare
STAY:
CPL P1.7 ; complement port 1 pin 7
MOV RO,#99H ; register decrement
LOOP: DJINZ RO, LOOP ; delay
ACALL WATCHDOG ; call watchdog refresh
SJMP STAY ; repeat complement
WATCHDOG:
MOV CCAP4L 0 ; make CCAP4L zero
MOV A, CH ; get current CH value
ADD A fFOFFH ; add FF to CH value and
MOV CCAP4H, A ; put answer in CCAP4H
RET ; return from refresh
END ; nomore assembly language
Simulation

Figure 4.22 shows the simulation response. Single stepping down to the line
after MOV CCAPM4,#48H which selects the watchdog timer gives the
response shown in the compare capture register window. Moving the mouse
cursor over the line 4 0000H watchdog timer and clicking the left mouse button
will cause all the module bits to change to mode 4.

SEHOBE Oy v AR OE |
IR I 0 |

= [Vais [l £ C:\keilcsibaokiprags.as1
E Regs CCAFM4 EQU OCBH ;sfr address P\')J‘\Tlmc: z
] 00 CCAP4L EQU OEEH sefr add
e Cl EQu OFEH sfr adi Inpud Mode: [Fosc /12 jorE) LI
Farallel Port 1 Co EgU 0coH :ufr ad
- EQU OCiH =fr ad Siotue: |Fun ¥ R
Y e — | L EQU 0ESH 2T address I oF
- il EQU F . -) 06
A e CcH E OFIH sir address CHICL | 10005 =t
Fins: [WFF PR RRR g&;p g'm]zr : CHOD: [Let0 [~ oL
ORE 40H COON (140 [¥ ‘WOTE
a 200 START: e WM e
k= GG
+ A4 renah
’;”D - gﬁi MOV CCADMS,#48H
1 = MOV CCAPAL,#0FFH
PG E C 00043 MOV OOLPAH . #OFFH x CCAPx Mode CCFx CEM«
+awrl 00 STAY -
: ’ 0 O000R Chseblec 0 1
Fi-ipir (N0 CPL P1.7 scomald |y giogH Disabled 1 1
o smates a8 MOV RO, #99H iregig | pgooH Disabled 1 4
- ere 000000434 LODE: 0LJ9Z RD,LOCE sdeladd (3 goooH Disabled 2 1
- pew 0 BCZALL WATCHDOG icalll G Tt 0 -
TP BTAY i e
WATCHDOG : = . Selecszd Module
MOV CCAPAL,#0 make
MOV A,CH iget Moda: |Disablec =1
ADD AL#DFFH sodd 3
WOV COAPSH,A sput COAR [B0000 [R4 [v cB
RET sretuy
END tno omd ¥ ECOMA [T CAPPA [CAPMS [v MATA
7 TR [PWMA [T ECCFY
4

Figure 4.22 Simulation display showing details of the compare capture register

94 P89C66x microcontroller

Single stepping further will cause the program to become stuck in the delay
loop. Going to the Command window at the bottom left of the PC screen and,
at the chevron (>), typing RO = 1 and then pressing the enter key, would allow
a check on the register window.

If single stepping is continued the watchdog subroutine can be gone through
and the contents of the CH/CL and CCAP4 windows checked. Clicking the left
mouse button on simulation run should cause pin 7 in the port 1 window to
flicker on and off.

Coming out of the simulation and commenting out the line that calls up
the watchdog routine (by putting a semicolon at the beginning of it) produces
the result as shown in Figure 4.23. Recompiling the program and running the
simulation should cause the Command window to report that the system is
being continually reset. See Figure 4.24.

ACALL WATCHDOG :call watchdoyg refresh

Figure 4.23 Use of a semicolon to ‘comment out’ a program line

-

PCA Watchdoé Timer will invoke Reset
PCA Watchdog Timer will invoke Reset
PCA Watchdog Timer will invoke Reset

>
ASM ASSIGN BreakDisable BreakEnable Break

] | | r\BuiId ACommandA Find in Files /

Output ‘Window

Figure 4.24 Command window indication that the system is being continually reset

Exercise 4.8
Write a simple C program that toggles pin 7 of port 1 and also incorporates the
use of the watchdog timer.

4.9 Universal asynchronous receive transmit (UART)

UARTS are used for serial communication between systems; they can be either
half duplex (send or receive) or full duplex (send and receive at the same time).
Also known as an RS232 connection the microcontroller UART can provide
the connection with a PC or another microcontroller-based system. Figure 4.25
illustrates possible connection arrangements. In a minimum connection there
could be only two transmission lines, transmit (Tx) and receive (Rx) as shown
in Figure 4.26. The data is conveyed as a bit stream, either transmit or receive,
and the speed is defined by the baud rate i.e. the bits per second.

The UART has four modes of operation, 0 to 3. Modes 0 and 2 have fixed
baud rates, mode 0 is one-sixth of the oscillator frequency, and mode 2 is 1/16

Universal asynchronous receive transmit (UART) 95

PC
COMMA1 Microcontroller
RS 232 UART
Cable
Microcontroller Microcontroller
UART RS 232 UART
Cable

Figure 4.25 Use of RS232 interface between PC and microcontroller or between
two microcontrollers

Tx 2 2 Tx
Rx 3 3 Rx
4 4 RTS
) [{scrs
6 6 DSR
GND7 7 GND
20 20 DTR
Microcontroller PC

Figure 4.26 RS 232 transmit (Tx) and receive (Rx) connections between a PC and
microcontroller

or 1/32 of the oscillator frequency. For modes 1 and 3 the baud rate can be
selected, a typical range is:

75, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400

Modes 0 and 1 are used for connection between two devices. Modes 2 and 3 are
used for master slave multiprocessor systems, in principle there could be one
master microcontroller and up to 255 slave microcontrollers.

In mode 1 ten bits are used to specify an RS232 frame consisting of 1 start bit
(logic 0), 8 data bits and 1 stop bit (logic 1). For example the ASCII bit pattern
0100 0001 (hex 41) represents the character A and is transmitted as shown in
Figure 4.27; least significant bit (LSB) first.

The baud rate is defined by using one of the onboard timers usually timer 1 in
mode 2 and for the P89C66x microcontroller, timer 2.

96 P89C66x microcontroller

STOP

START 1 0 0 0 0 0 1 0

Figure 4.27 ASCII bit pattern 01000001 (41H) for character ‘A’

BAUD RATE USING TIMER 1

In timer mode 2, timer high byte (TH1) is used as the automatic reload register.
The equation is:

2SMOD . Oscillator frequency
192 x Baud rate

THI1 = 256 —

SMOD = 0 for UART modes 0, 1, 3
SMOD = 0 for UART mode 2 bit speed (oscillator frequency)/32
SMOD =1 for UART mode 2 bit speed (oscillator frequency)/16

As an indication of possible values to be loaded into TH1, using the above
equation, and assuming an oscillator frequency of 11.0592 MHz and UART
mode 1, the TH1 values for baud rates of 38400, 19200, 9600, 300, 150 would be:

38400 THI1 =254.5

19200 THI1 =253 FDH
9600 THI1 = 250 FAH
300 THI =64 40H
150 THI = —128

The content of TH1 should be a positive, whole number. The baud rate of
38400 gave 254.5 and the baud rate of 150 gave —128, so there are limits
using timer 1. Of course one solution would be to change the oscillator
frequency, another solution is to use timer 2. If you are using timer 2 for
something else and insist on very low baud rates it is possible to use timer 1
in mode 1 (16 bit) with the interrupt enabled and the interrupt routine
doing a software reload.

SERIAL PORT CONTROL (SCON) REGISTER
SCON
SMO SM1 SM2 REN TB8 RBS TI RI

Universal asynchronous receive transmit (UART) 97

SM0O SM1
0 0 mode 0
0 1 mode 1
1 0 mode 2
1 1 mode 3
SM2 when £ =1, enables multiprocessor operation in modes 2 and 3
REN when £=1, enables serial reception
TB8 Used in multiprocessor operation in modes 2 and 3
RB8 Used in multiprocessor operation in modes 2 and 3
TI Transmit interrupt flag, set when byte transmission is completed.

Must be cleared by software
RI Receive interrupt flag, set when a byte in the serial buffer (SBUF) is
ready for retrieval. Must be cleared by software
Practical tip. Although not apparent in the device data sheet and not required
in the simulation, transmission start-up problems may occur in the hardware if
TI is not initially set to 1 by the software.

Example 4.11

A P89C664 microcontroller has an oscillator frequency of 11.0592 MHz. Using
timer 1 and configuring the UART in mode 1 write an assembly language
program that transmits the ASCII character A at a baud rate of 9600.

Solution
Program
SOCON EQU
SOBUF EQU
ORG
SJIMP
ORG
START : MOV
MOV
MOV
MOV
SETB
AGAIN: MOV
HERE: JNB
CLR
SJIMP
END
Simulation

98H
99H

0
START

40H
SOCON,#42H
TMOD,#20H
TH1,#OFAH
TL1,#f0FAH
TR1

SOBUF.# A"’
TI,HERE
TI

AGAIN

; SCON sfr address
; SBUF sfr address

; reset address

; jump over reserved area
; program start address

; serial mode 1, TI set

; timer 1 mode 2

; baudrate 9600

; TL1 also initially set
; turn timer 1 on

; ASCIT of Ainto SOBUF

; stay here ti11l TT set

; clear TI

; repeat

; end of assembly language

The simulation response is shown in Figure 4.28. If a breakpoint is inserted at
CLR TI and the program kept running to this point, a string of the character A

98 P89C66x microcontroller

s BoBnRro (it ARV E

Project Workspacs

Serial Channel

i Timer/Counter 1

98H

kT -Timer/Counter 1 -

i Mode | EQU B & Mode: |B-Bitvar.Baudrate X
— ORG O 3] : :
i|2.aaEmemt:s-relnau ;I‘ SIME START | socon: [mdz sanDR: [0
Timar - ORC:: AU : - [y
L I START MOV ~ SOCON.#42H :of | SUBUR DAl - SADEN: 010
MOV TMOD,#20H Shaz Tas RES
TCOM:]UrCﬁ THOD: 020 MOV TH1.#0FBH - n b
e, e MOV TL1,40FH ;1) [SmoDo [FE [~ REM
THI | TLI: [0xFA SETH TRI1 B e
s IF T1 Fin I T AGAIN MoV SOBUF.#'ac i [SMOD1 [T RCLK [T TCLK
[~ Control HERE JNB TI,HERE i9 :
S ’RLm— SR TI s Trensmit Baudrats: (9600
SJMP AGAIN i Fosive Bl [oE00
| [# TR [~ GATE [V INTI# END : gtk |
! ~IRO i
w
states 9640 dY L2
- SBC 000523003
E- psw 00

Figure 4.28 Simulation display showing a string of character ‘A’ in the serial
window, using timer 1

will be generated in the serial window. Serial Window # 1 is obtained from
View on the top menu bar. Text is cleared from this window by moving the
cursor over the text and then right clicking the mouse.

Exercise 4.9

A P89C664 microcontroller has an oscillator frequency of 11.0592 MHz. Using
timer 1 and configuring the UART in mode 1 write a C program that transmits
the ASCII character A at a baud rate of 9600.

BAUD RATE USING TIMER 2
The equation is:

Oscillator frequency

RCAP2 = 65536 — 16 x Baud rate

Example 4.12
Assuming an oscillator frequency of 11.0592 MHz and UART mode 1 deter-
mine the timer 2. Capture values for baud rates of 38400, 19200, 9600, 300, 150.

Solution

38400 RCAP2 = 65518 = FFEEH

19200 RCAP2 = 65500 = FFDEH
9600 RCAP2 = 65464 = FFB8H
300 RCAP2 = 63232 = F700H

150 RCAP2 = 60928 = EEOOH

RCAP2H = 0FFH
RCAP2H = OFFH
RCAP2H = 0FFH
RCAP2H = 0F7H
RCAP2H = 0EEH

RCAP2L = OEEH
RCAP2L = 0DEH
RCAP2L = 0B8H
RCAP2L = 00H
RCAP2L = 00H

Universal asynchronous receive transmit (UART) 99

Example 4.13

A P89C664 microcontroller has an oscillator frequency of 11.0592 MHz.
Using timer 2 and configuring the UART in mode 1 write an assembly
language program that transmits the ASCII character A at a baud rate of 9600.

Solution

SOCON EQU 98H
SOBUF EQU 99H
RCAP2L EQU 0CAH
RCAP2H EQU 0CBH
T2CON EQU 0C8H

SCON sfr address

SBUF sfr address

sfr address

sfr address

Timer 2 control sfr address

ORG 0 ; reset address
SJMP START ; jump over reserved area
ORG 40H ; program start address

START: MOV SOCON,#42H
MOV RCAP2H,fOFFH
MOV RCAP2L,#OBSH
ORL T2CON,#34H

serial mode 1, TI set
baudrate 9600

turn Timer 2 on

AGAIN: MOV SOBUF,#*A” ASCII of A into SOBUF

HERE: JNB TI,HERE ; stay here till TT set
CLR TI ; clear TI
SIJMP AGAIN ; repeat
END ; end of assembly language
Simulation

The simulation response is shown in Figure 4.29. Again the simulation is run to
a breakpoint at the instruction CLR TI.

HOBMPO i ARVEERE A

TmarfCountar 2 |x| B CokeiliC51booklprog10.a51 il Chariel |X|

~Timer/Counterg——————————————— - gg: B [
Moo TGl Ca aCAH g hode: |3-BitvarBoudrote e
0EH ssfr - [t [0
T 7 Th2 Tea ; SOCOM, [Ixd2 SADDR: [100
- [0eg1 : [a
i = S % ireset] | SOBUF: I SADEN; |1x01
[~ CRiRL2 STMP START +jump Cswe [Tee [A
T2 [0FFEA = ORG 40H Sprug
Lot MOV SOCOM,#42H Ty | [Mewooe [TFE | REN
RCAF2 |17FO0 [TCLK MOV RCAPZH,#0FFH ;houdr] —Paudrate
MOV RCAPZL,#0BSH :
10— 1 CIRO—— [¥ RCLE ORL T2C0N, #3483 tturn || [SMODT [RO ¥ TOLK
v T2EX (W [~ Teos s g Transrnit Baudsste: (9600
| ¥ T2Pm || EsF2 | I DEN NorT SIEURea AT
ELR TI.' § Feceve Baudrsle (3600
T RO STHP AGAIN iTeped RO
1 dptr 00000 EWD rend o Tl (=
- stales 16807 i
EEL 0.00517263
4 psw 0300 497

Figure 4.29 Simulation display showing a string of character ‘A’ in the serial
window, using timer 2

100 P89C66x microcontroller

Exercise 4.10
A P89C664 microcontroller has an oscillator frequency of 11.0592 MHz. Using
timer 2 and configuring the UART in mode 1 write a C program that transmits
the ASCII character A at a baud rate of 9600.

SENDING A LINE OF TEXT

Example 4.14
Write an assembly language program that repeatedly sends the line of text
‘Roses are red’.

Solution
SOBUF
SOCON

START:

TEXT:

NEXTCH:

TRXCH:

SEND:

MSG1:

Simulation

EQU
EQU

ORG
SJIMP
ORG
MOV
MOV
MOV
MOV
SETB

MOV
MOV
MOVC
CJINE
MOV
ACALL
MOV
ACALL
SJIMP
ACALL
INC
SJIMP
JNB
CLR
MOV
RET
DB
END

99H
98H

0
START

40H

SOCON ,ff42H
TMOD ,#20H
TH1,#f0FAH
TL1,jfOFAH
TR1

DPTR,{MSC1
A0
A,@A + DPTR

A J7EH, TRXCH

A,ffODH
SEND

A JFOAH
SEND
TEXT
SEND
DPTR
NEXTCH
TI,SEND
TI
SOBUF,A

‘Roses are red ~’

; SBUF sfr address
; SCON sfr address

; reset address

; jump over reserved area
; program start address

; serial mode 1, TI set

; timer 1 mode 2

; baudrate 9600

; TL1 also initially set
; turn timer 1 on

; Data Pointer to message address
zero the previous character

; character into A

; checking end of message, ~= 7EH
carriage return = ODH

call up send routine

line feed = 0AH

call up send routine

repeat line of text

send text character

increment data pointer
prepare to send next character
check SBUF clear to send

clear TI

send contents of A

; return from subroutine

; text message

; nomore assembly language

With a breakpoint at SJMP TEXT, the simulation response is as shown in
Figure 4.30.

Exercise 4.11
Write a C program that repeatedly sends the line of text ‘Ashes to ashes, dust to

dust’.

Universal asynchronous receive transmit (UART) 101

|2
[Roses are red
Roses are red
Roses are red

Figure 4.30 Simulation display showing a text message displayed in the serial
window

RECEIVING A CHARACTER

Example 4.15

Write an assembly language program that receives a character into the serial
buffer (SOBUF) of the UART and writes the hex value of the character onto
port 1. The character capture process is to start as the result of the UART being
interrupted. The UART should be configured as mode 1.

Solution
The TI bit in the serial control (SOCON) can be left at its default value of zero
but the receive bit (REN) must be set.

SOCON
SMO SM1 SM2 REN TBS8 RBS TI RI
0 1 0 1 0 0 0 0

Thus SOCON = 50H. When the character byte is received RI will set but this
must be cleared by the program to enable other receive interrupts to occur. In
the simulation we should expect RB8 to set when the character byte has been
received. TB8 and RB8 are mainly used in modes 2 and 3 but in mode 1 RB8 is
set by the stop bit, which is the last bit of the 10-bit mode 1 data frame.

The interrupt enable (IENO) register bits must be set.

IENO
EA EC ES1 ESO ETI EX1 ETO EXO0
1 0 0 1 0 0 0 0

Thus IENO = 90H. The UART interrupt vector address is at 0023H.

Program

SOBUF EQU 99H ; SBUF sfr address

SOCON EQU 98H ; SCON sfr address

TENO EQU 0A8H ; interrupt sfr address
ORG 0 ; reset address
SJMP START ; jump over reserved area

ORG 23H ; UART interrupt address

102 P89C66x microcontroller

START:

STAY:

RXBUF:

Simulation

SJIMP
ORG

MOV
MOV
MOV
MOV
SETB
SJMP

JNB
CLR
MOV
MOV
RETI
END

RXBUF
40H

SOCON,##50H
TH1,#f0FAH
TMOD, {2 0H
IENO,#f90H
TR1

STAY

RI,RXBUF
RI
A,SOBUF
P1,A

jump to interrupt routine
program start address

mode 1, REN enabled

9600 baud

timer 1 mode 2

UART interrupt enabled

turn timer 1 on

stay here, wait for interrupt

check for received byte

clear RI

move character frombuffer to A
hex value onto port 1

return from interrupt

no more assembly language

The simulation response is shown in Figure 4.31. Running the simulation
would cause little activity until the character byte is entered. The character
can be entered at the command prompt at the bottom of the screen.

> sin = ‘A’, see Figure 4.32.

e BERe e ARTYOE A

ot Worazea - x|
Fegaler [vale
5 Res
m e
I]
2 Neli
0 Il
| neDd
LS bl
— 6 el
7 Ihell
= oSy
] hed1
[[0
ap Mens
o ey
rcs (R0
2wl el
* v 00200
slane hil
e 000378
o paw Lhetkc

T AAeme [z

IR
[

P ————— | ~ himapoumes 1 — —
Wove [FSiva sy« — | e
| :
00 el SA00R (B |2 B el =]
puassy N il il Il .
SELE [0 zapen [m [Tirar |
N [~ TR& [MRE TOOH [bedl g [
Iamon [T re [HER
~Baycrae—— HI |ibta L |
[T sm001 [RCK [Tk o [Tt Fn 11
i Sl
Tenereil Buwde. |00 =
P ais B[00

CF

iProjran stars a

1. RIH wnabled
ud
T 1 oode 2
" ETATTURE ARan A
s

21 FAAUE

2, SLEUF
2Lz

Figure 4.31 Simulation display for a program to write a hex character on to port 1
as a result of the UART being interrupted

Inter integrated circuit (IIC or FC) 103

>sin="'A"|
{C-style expression> varilab

[<] [»]\ Build), Command |

Figure 4.32 Entering the character byte in the Command window

Exercise 4.12

Write a C program that receives a character into the serial buffer (SOBUF) of
the UART and writes the hex value of the character onto port 1. The character
capture process is to start as the result of the UART being interrupted. The
UART should be configured as mode 1.

4.10 Inter integrated circuit (IIC or I?C)

Commonly referred to as I squared C, the I>C bus or IIC bus was originally
developed as a control bus for linking microcontroller and peripheral ICs for
Philips consumer products on a PCB. The simplicity of a 2-wire bus that
combined both address and data bus functions was quickly adopted in such
diverse applications as:

telecommunications
automotive dashboards

energy management systems
test and measurement products
medical equipment

point of sales terminals
security systems.

This patented Philips method of serial data transmission uses two lines, one for
a serial clock (SCL) and the other for serial data (SDA). The SDA line is
bi-directional, i.e. data can go up it or down it. There are various microcontrollers
in the Philips Semiconductors family having I?C capability; the programs in
this text are based on the PS0C554. The P89C66x pin 7 on port 1 is the SDA
line and that pin 6 is the SCL line. When used for I?C these two pins configure
as open drain and it is necessary to have a pull-up resistor from each pinto 5V,
the P89C664 board used 3.3 k resistors.

There are other microcontrollers belonging to the 80C51 family that have
IC SFRs, for example the P§7LPC764. The P§7LPC764 microcontroller is
designed to send and receive I1>C data as bits and requires extra programming
to group them into bytes. The class of microcontrollers to which the P§9C664
belongs sends and receives the data as bytes.

All I2C slave ICs have the ability to return Acknowledge (A) signals (active
low) back to the Master IC sending to them.

104 P89C66x microcontroller

I2C has three modes; all 8-bit bidirectional, dependent on devices and clock
speeds:

standard mode (up to 100 kbps (k bits per second))
fast mode (up to 400 kbps)
high-speed mode (up to 3.4 Mbps).

There are four modes of operation:

master transmitter
master receiver
slave receiver
slave transmitter.

b

The master is the microcontroller while the slave is the device addressed by
the microcontroller. In a system having two microcontrollers the master at a
particular time is the one issuing the commands.

Philips manufacture a whole range of I>C slave devices, a small range is:

memories, EEPROM and static RAM
data converters

LCD drivers

I/O ports

clock/calendars

DTMF/tone generators

TV decoders

teletext decoders

video processors

audio processors.

The arrangement for connecting a microcontroller to I>C devices is shown in
Figure 4.33. For the purposes of explaining the I?C bus the devices shown in
Figure 4.33 will be used, i.e. the P89C664 microcontroller and the slave devices,
PCF 8582, a 256-byte CMOS EEPROM and PCF 8591, an 8-bit A/D and D/A
converter, which has 4 ADC channels.

The P89C664 has four I>C SFRs; they are:

SICON Serial 1 Control
SISTA Serial 1 Status
SIDAT Serial 1 Data
SIADR Serial 1 Address

The STADR is used only in the slave transmitter mode, which will not be
covered in this chapter. The SIDAT register is used to transmit data in
much the same way as the SBUF register was used for the RS232 UART
operation. You may recall that when data was transmitted in the UART
SBUF the program waited, via a continuous loop, until the transmit inter-
rupt (TI) bit was set. A similar method is used for the I>C bus, i.e. data is

Inter integrated circuit (IIC or FC) 105

Vee P89C664 NOTE: P1.7 and P1.6 on the
microcontroller are each connected
Pull-up sDC SCL I;psiggltlr;rgzgh a resistor,
resistors P1.7 P1.6
SDA [
scL i]] i
SDC SCL SDA SCL
PCF8591
Eg:;sgﬁnz 4 channel Mux ADC
and one DAC
A6 A5A4A3 A2 A1 AD A6 A5 A4 A3 A2 A1 AO
toto || too 1| | |
I I I 1 |
Set by connecting Set by connecting
to 5V or ground to 5V or ground

Figure 4.33 P89C664 microcontroller connected to slave devices via the I?C bus

put into SIDAT and then the program continually loops until the serial
interrupt (SI) bit is set.

Only the five most significant bits of the SISTA register are used, and these
are used to give information on the success or failure of each part of the I>’C
serial transmission. Data transfer on the I>C bus takes the form as shown in
Figure 4.34.

! SCL low SDA true 0 or 1 I
SDA |

scL | \ / \ /| I scL
|
| | |
LS L P
START condition STOP condition
SCL high SDA goes low SCL high SDA goes high

Figure 4.34 Data transfer on the I>C bus

The SICON register is very important; it controls each part of the serial
transmission and it is worth looking at this register in some detail.

SICON
CR2 ENSI STA STO SI AA CR1 CRO

CR2, 1, 0 are used to define the serial clock speed as shown in Table 4.4.

106 P89C66x microcontroller

The P89C664 experiment board had a value of fosc = 11.0592 MHz.

ENSI enable serial 1

when = 1 enables the I’C
STA start, used to generate starts, refer to I°C protocol later
STO stop, used to generate stops, refer to I>C protocol later
SI serial interrupt
AA assert acknowledge

These last four control bits are very important in the use of the I°C bus.

Table 4.4 Serial clock rates

CR2 CRI1 CRO fosc divided by

0 0 0 128

0 0 1 112

0 1 0 96

0 1 1 80

1 0 0 480

1 0 1 60

1 1 0 30

1 1 1 48 x (256 — reload value Timer 1)

USE OF THE SI BIT

SI is usually cleared by software; SI is set when a function completes.

Example 4.16
To illustrate the effect of the SI bit consider the following assembly language
programs:

; program to send a Start (STA=1)

SETB STA ; set STA=1
CLR ST ; clear SI
LOOP: JNB SI,LOOP ; continually loop until ST =1, then
; STAwill =1
; program to send a Stop (STO=1)
SETB STO ; set STO=1
CLR ST ; clear ST
LOOP: JNB SI,LOOP ; continually loop until SI =1, then

; STOwill =1
; program to send data e.g.#04h

CLR STA ; clear start (STA=0)
MOV S1DAT,#04H ; put hex 4 into sldat
CLR ST ; clear ST
LOOP: JNB SI,LOOP ; continually loop until SI =1, then

: sldat will contain #04H
; program to set up transmission speed, send a stop, send a start,
; clear ST

Inter integrated circuit (IIC or IPC) 107

; this is an example of the start of a typical IIC program
; the 89C664 fogcis 11.0592MHz, divide by 112 for clock cycle time
MOV S1CON,#f45H ; set ENS1, set AA, clear SI

SETB STA ; set STArt
CLR ST ; clear ST
LOOP: JNB SI,LOOP ; continually loop till ST is set

; program to send Assert Acknowledge (AA)
; Note that AAdis active low; a clear AA is sent to assert the

; acknowledge
CLR AA ; clear AA to assert acknowledge
CLR ST ; clear SI

LOOP: JNB SI,LOOP ; continually loop till ST is set

USING THE PCF8582 EEPROM

This 256-byte memory device can be written to by the microcontroller and
retain the information even though the power is turned off. It is specified to
have data retention for at least 10 years and would be very useful for battery-
powered remote sensing devices and many more applications. It is in an 8-pin
package as shown by Figure 4.35.

A0 | 1 I:I 8 | Voo

Al | 2 7 | PTC

A2 | 3 6 | scL

Vss | 4 5 | SDA
PCF8582

Figure 4.35 Pin-out details of the PCF 8582 EEPROM

Pins 1, 2 and 3 are hardwired by the engineer to define the slave address of
the device. With three definable address pins it means that up to 23 or eight
8582 EEPROMs can be addressed on the I>C bus. The first four address bits are
internally configured, for the PCF8582 the address table is:

1 0 1 0 A2 Al A0

108 P89C66x microcontroller

In the following examples A2, Al and A0 are all connected to ground or 0'V.
The full slave address is:

1010000X

where the least significant bit X is 0 for write data and 1 for read data. The hex
address for writing a byte is A0 and for reading a byte the address is Al.

pin 4 is ground (0 V)

pin 5 is serial data SDA

pin 6 is serial clock SCL

pin 7 is programming timing control (an output and may be left uncon-
nected)

pin 8 is the 5V DC power supply

The I?C bus has only two lines and therefore there is a certain protocol
to go through in order to store or retrieve data. Each device data sheet
has a block diagram to explain the necessary protocol and for the

PCF8582 this is shown by:

S|SLAVE ADDRESS |0 |A

WORD ADDRESS | A

DATA BYTE |A | P

Send a start

Send the slave address + 0 for write
Send word address
Send data byte

Send a stop

Example 4.17

Write an assembly language program to write a byte to the PCF8582 EEPROM

chip.
Solution
S1CON EQU 0D8H ; sfr address
S1DAT EQU O0DAH ; sfr address
ORG 0 ; reset address
SJIMP START ; jump over reserved area
ORG 40H ; program start address
START: MOV S1CON,#45H ; set clock speed, set ENS1,set AA,
; clear ST
SETB S1CON.5 ; set STA
LOOP1: JNB S1CON.3,LO0P1 ; continually loop till SI =1
CLR S1CON.5 ; clear start, donot want repeated
; start
MOV S1DAT,##0AOH ; send eeprom address + write to
S1DAT
CLR S1ICON.3 ; clear ST

Inter integrated circuit (IIC or IFC) 109

LOOP2: JNB S1CON.3,LO0OP2 continually loop till ST =1

MOV S1DAT,#f04H ; send eeprom internal address to
S1DAT ;
CLR S1CON.3 ; clear ST
LOOP3: JNB S1CON.3,L00P3 ; continually loop till ST =1
MOV S1DAT,#66H ; send data byte to sldat
CLR S1CON.3 ; clear ST
LOOP4: JNB S1CON.3,L00P4 ; continually loop till ST =1
SETB S1CON.4 ; set STO=1
CLR S1CON.3 ; clear ST

LOOP5: JNB S1CON.3,LO0P5 ; loop till SI =1 and stop is set
AGAIN: SJMP AGAIN forever loop, a way of stopping
END end of assembly language

Simulation

The simulation response is shown in Figure 4.36. If the breakpoints are set
as shown and the program run to each one, the response may be checked on
the I°C Interface window. Figure 4.36 shows that the Master has just
transmitted the slave address + Write information. The Status shows 0x20
which agrees with the data sheet information. The communication informa-
tion is available by clicking the left mouse button on the I’C Communication
button.

k4| C:\Keil\C5 1\book\prog14.a3 1

SL00 EQU R isir sddress
FEAT] OAH isfr address
ORG a rrmsce -
] THE STHAT JRsto 1:C Interface
QK 46 prug
12C Hardwara |m Communicatics |
ST2AT: Mo S1C0K, #45H =t Gl
SETE 31C0H . 5 sset. %
Local: B 100K 3,LOCPL o - RS :
CLR 21001, 5 1zled [sTA(StEr) Clack Rate: |Fosc (224 (112) -I
sicon [0 [ST (Siep)
réoln-: giggg,;uhut [« Al idsset dck) 12C Master Clack: (98742
Lezaz: b S1C0K, 3.L0CPZ 7 sl ekt
=] O S1DAT, #04H smEnC Status
7 CLE S1C0H, 3 izled | 218TA [B20 Devies Made: [Master- Trenamar
Loooa: IHB 51008, 3,LOCP3 s=ont)
Status [SLAW trane mitied: NOT ACK received
] MOV S1DAT, #6EH
] oLR £1C0K. 3
LoDRe: B 51C0K, 3.LOCE4 Addrezs
| SETE SICO, 4 B1A0RK Iﬁ:l Elawe Adiress |0 [T G Geneal Call)
oLR £1C0K. 3 izla
LocEs: IHB S1C0K, 3. LOCES ool | Dem
i TH SIHE ATH sfare STDAT: [0
EN sead |5

ot -

Figure 4.36 Simulation display showing the I>C interface hardware window

The result is shown in Figure 4.37. Figure 4.37 shows that the microcontrol-
ler is in Master Transmitter mode. It shows the slave address as 50! (means
50 hex). This is A0 with the least significant bit removed and the remaining bits

110 P89C66x microcontroller

:ofr address
A1na~ Forr nnaH :afr Address

E CKcil\C51\book!progi4.a51 '--_"E"§|
-

oRG o read
=) LN START i L2 Ioterface
CORG 40H pros ,
12C Hardware 22 Commurication |
ETART: MO B set
SETB sat Moce | Address | Directior | Daza(, = ACK 1= NACK) I
~OOPL: JHD srony Masier
CLR szleq | pager L] Trenamit
Moy o Maswer B rensmil 04! 6!
CLR |
mildah JHE H
Moy 3=y
CLR rzles
el Sl JHE zong
MOV P
CLR ivled
LO0Pd: JHB et
SETB izt 12C Maste: Message Senerator
= CLE L 3 reled " E D | e
ZO0PS: JME S1OOK. 3, LOOES o | Asiness. 500 Dewbon [Tansrt v sys [I
AGAH; SIHE IS TS sturd vt | Step
D fend

Figure 4.37 Simulation display showing I>C interface communications window

A6, A5, A4, A3, A2, A1, A0 = 101 0000 = 50 hex. The address within the
EEPROM is 04hex and 66hex is the byte written into this address.

Exercise 4.13
Write a C program to write a byte to a PCF8582 EEPROM chip.

TO READ A BYTE OF DATA

The protocol block diagram is given below.
The last acknowledge after Data Byte and before P is sent by the microcon-
troller master.

S| SLAVE |0|A| WORD |A|S| SLAVE |1|A|DATA|A|P
ADDRESS ADDRESS ADDRESS BYTE

The first slave address has 0 at the end for Write Word Address. The second
slave address has 1 at the end for Read Data Byte.

Send a start

Send the slave address +0 for Write
Send word address

Send a repeated start

Send the slave address + 1 for Read
byte transfers to SIDAT

Master generates acknowledge

Send a Stop

Example 4.18
Write an assembly language program to read a byte from PCF8582 EEPROM

chip.

Solution

; program to read a byte

S1CON
S1DAT

START:

LOOP1:

LOOP2:

LOOP3:

LOOP4:

LOOP5:

LOOP6:

LOOP7:
AGAIN:

EQU
EQU
ORG
SJMP
ORG
MOV
SETB
JNB
CLR
MOV
CLR
JNB
MOV
CLR
JNB
SETB
CLR
JNB
CLR
MOV
CLR
JNB
CLR

CLR

JNB
SETB

CLR
JNB
SJIMP
END

Exercise 4.14
Write a C program to read a byte from a PCF8582 EEPROM chip.

Summary

0D8H
ODAH

0

START

40H
S1CON,#45H
S1CON.5
S1CON.3,LOO0P1
SI1CON.5
S1DAT,#OAOH
S1CON. 3
S1CON.3,LO0P2
S1DAT,#04H
S1CON. 3
S1CON.3,LO0P3
S1CON.5
S1CON. 3
S1CON, LOOP4
S1CON.5
S1DAT,#0A1H
S1CON.3
S1CON.3,L0OO0P5
S1CON.?2

S1CON.3

S1CON.3,LO0OP6
S1CON. 4

S1CON.3
S1CON.3,LO0P7
AGAIN

The P89C66x microcontroller:

Summary 111

; reset start address

; jump over reserved address space
; program start address

; set speed, ENS1, set AA, clr ST

; set STArt

; wait till complete

; ensure no repeated start

; write to slave address

; clear SI

; wait till complete

; data byte stored at address 04h

; wait till complete
; generate a STArt

; wait till start is complete
; ensure no repeated start
; send slave address to bus + Read

; wait till complete

master sends acknowledge, recall

; acknowledge

; is active low, clr sends

acknowledge

; wait till sent
; microcontroller master generates

a stop

; wait till stop is sent

forever loop, a way of stopping
end of assembly language

® is a member of the 80C51 family with enhanced speed compared to the
conventional 80C51 device;
¢ uses Flash Code memory with four 8-bit ports and an onboard clock oscillator;

112 P89C66x microcontroller

e has three 16-bit timers, timer 0, 1 and 2. Timers 0 and 1 are virtually the
same and can be configured into one of four possible modes, mode 0, 1, 2
and 3. Timer 2 has three operating modes i.e. Capture, 16-bit auto-reload
and baud rate generator mode;
has nine interrupts;
allows negative-edge transitions or levels to generate external interrupts
with specific interrupt vector address locations;
can operate with specified interrupt priority levels;
has a PCA consisting of a 16-bit timer and five 16-bit Capture/Compare
modules. Each of the latter can be utilised in one of seven different config-
urations. The PCA can be used to provide a PWM signal,;

® has a watchdog timer, which is available using module 4 of the PCA. The
watchdog timer if allowed to run unchecked will cause a system reset;

e has a UART facility used for serial communication. The UART has four
modes of operation, modes 0,1, 2 and 3;

® has an I’°C interface for linking the device with I°C compatible peripherals
using a 2-wire bus for address and data communication.

5

Low Pin Count (LPC) Devices

5.1 Introduction

The P8xLPCxxx family of microcontrollers are designed for low pin count
applications with high functionality and a wide range of performance. There
are two types of LPC devices, namely PS7LPC76x with EPROM/OTP code
memory ranging from 1 KB to 4 KB and PS89LPC9xx with 4 KB to 8 KB of flash
memory. At the moment there are several different LPC microcontrollers, namely
P87LPC760, PS7LPC761, P87LPC762, PS7TLPC764, PSTLPC767, P87LPC768
and P87LPC769, all with EPROM/OTP code memory and P89LPC921,
PS9LPC922, PRILPCI30, PRILPCI31 and PSILPCI32 with flash code memory.
Table 5.1 shows some of the characteristics of eight of these devices.

Table 5.1 shows that the code memory for the P87LPC76x devices ranges
from 1 KB to 4 KB, while the RAM memory is 128 bytes for all devices in the
range. The I/O pin count for this group varies from 12 pins for the P§7LPC760
device, 14 pins for the PS7LPC761 and 18 pins for the rest of P§7LPC76x series.

All the LPC range incorporates I?C and UART serial interfaces and a
Watchdog (Wd) timer. The P87LPC767, PS7LPC768 and P87LPC769 devices
all contain analog to digital converter (ADC) circuitry onboard. The
P87LPC768 has pulse width modulation (PWM) while the P87LPC769 has
digital to analog converter (DAC) circuitry onboard.

The PSOLPC932 has § KB of Flash code memory, 128 bytes of RAM data
memory and special features such as the capture/compare unit (CCU) and
serial peripheral interface (SPI).

Information on details such as PWM, CCU and SPI can be found in
Appendix F, which is for the 89LPC932 device but contains data relevant to
the features of the other devices mentioned above.

In this chapter we shall concentrate on two of the above devices, namely
P87LPC769 and PSILPCI32, and use some application examples to show the
working of some of the features in each device. The examples and exercises use
C language programming. It is left as an exercise for the reader if assembly

114 Low pin count (LPC) devices

Table 5.1 Characteristics of 87LPC76x and 89LPC9xx devices

Part Memory Timer/counters 1/O Serial Special A/D

number Flash EPROM RAM PWM CCU Wd pins interfaces features bits/ch

87LPC760 1k 1282 N N Y 12 I’)C, UART

87LPC761 2k 12260 N N Y 14 IPC, UART

87LPC762 2k 1226 N N Y 18 IPC,UART

87LPC764 4k 1282 N N Y 18 I’)C,UART

87LPC767 4k 12822 N N Y 18 IP)C,UART ADC 8/4

87LPC768 4k 1280 Y N Y 18 IP)C,UART ADC 8/4
PWM

87LPC769 4k 1226 N N Y 18 IPC,UART ADC 8/4
DAC

89LPC932 8k 512 1220Y Y Y 26 I’)C, UART Analog

(EEPROM) SPI Com.

language programming is required. Simulation has been used for the first
example in this chapter only. Details of the simulation software, suitable for
the LPC devices and available for downloading to the user’s PC, can be found
in Chapter 3. Again, it is left as an exercise for the reader if simulation is
required in order to follow the remaining examples and exercises in this chapter.

5.2 P87LPC769

The 87LPC769 is a 20-pin single-chip microcontroller designed for LPC
applications. A member of the Philips LPC family, the §87LPC769 offers
programmable oscillator configurations for high and low speed crystals or
RC operation, wide operating voltage range, programmable port output
configurations, selectable Schmitt trigger inputs, LED drive outputs and a
built-in watchdog timer. The 87LPC769 is based on an accelerated 80C51
processor architecture that executes instructions at twice the rate of standard
80C51 devices.
Features of the LPC769 include:

four-channel multiplexed 8-bit ADC;
two DAC outputs;

4KB EPROM code memory;

128 byte RAM data memory;
32-byte customer code EPROM;

two 16-bit counter/timers;

two analog comparators;

full duplex UART;

IC communication port;

eight keypad interrupt inputs, plus two additional external interrupt inputs;
four interrupt priority levels;

Analog functions 115

e watchdog timer with separate on-chip oscillator, requiring no external
components. The watchdog timeout time is selectable from § values;

e oscillator fail detect. The watchdog timer has a separate fully on-chip
oscillator, allowing it to perform an oscillator fail detect function;

e configurable on-chip oscillator with frequency range and RC oscillator
options (selected by user programmed EPROM bits). The RC oscillator
option allows operation with no external oscillator components;

® programmable port output configuration options: quasi-bidirectional, open
drain, push-pull, input only;
selectable schmitt trigger port inputs;

LED drive capability (20mA) on all port pins;

® 151/O pins minimum. Up to 18 I/O pins using on-chip oscillator and reset
options;

¢ only power and ground connections are required to operate the 87LPC769
when fully on-chip oscillator and reset options are selected.

Figure 5.1 shows the block diagram of the device while Figure 5.2 shows the
pin configuration diagram. In the section that follows we shall concentrate on
analog functions and use ADC, DAC and comparator examples to show some
of the applications of the LPC769 device.

5.3 Analog functions

The pins that are used for analog functions must have their digital outputs
(except for DAC output pins) and their digital inputs disabled. Digital outputs
are disabled by putting the port output into the input only (high impedance)
mode. This is done by configuring the appropriate bits of the port output mode
registers PxM1 and PxM2 as shown in Table 5.2.

Table 5.2 87LPC769 port output mode configurations

PxMly PxM2y Port output mode

0 0 Quasi-bidirectional

0 1 Push-pull

1 0 Input only (high impedance)
1 1 Open drain

Digital inputs of port 0 are disabled through use of port 0 digital input
disable (PTOAD) register, by setting the corresponding bit in the PTOAD.

ANALOG TO DIGITAL CONVERTER

The 87LPC769 incorporates a four channel, 8-bit ADC. The A/D inputs are
alternate functions on four port 0 pins. These are P0.3 as ADO, P0.4 as ADI,

116 Low pin count (LPC) devices

Accelerated

' 1

' 1

! .

! '

; 80C51 CPU :

! '

' 1

. / .

' Internal bus L -

E UART '

'

! 4kB T

' code EPROM \

i 1’c —

1 12B !

' Data RAM i

! '

i le—

! . Timer 0,1 .

! ort 2

! Configurable 1/0s E

' 1

' Port 1 Watchdog timer H

! Configurable 1/0s and oscillator E

' 1

! Port 0 T

-
¢ ! ’ Configurable 1/Os Analog Dl

1 ‘ comparators __._'

| ——

! '

: Key pad AD —

1 interrupt converter D

' [

! or DAC output —

' 1

| DAC —

! output |

! '

! .

! '

' . On-chip Power monitor H
Crystal or [— Configurable l~— RIC (power-on reset ;
resonator ! oscillator Y » '

: oscillator brownout reset) !

! .

! '

Figure 5.1 Block diagram of the 87LPC769 microcontroller

P0.5 as AD2 and P0.6 as AD3. The A/D power supply and references are
shared with the processor power pins, Vpp and Vss. The ADC circuitry
consists of a 4-input analog multiplexer and an 8-bit successive approximation
ADC.

The SFR ADCON controls the ADC. Details of ADCON are:

7 6 5 4 3 2 1 0

ENADC | ENDACI | ENDACO | ADCI ADCS RCCLK | AADRI1 | AADRO

where the bit functions are:

ENADC When ENADC =1, the A/D is enabled and conversions may
take place. Must be set 10us before a conversion is started.
ENADC cannot be cleared while ADCS or ADCI is 1.

Analog functions 117

ENDAC1 When ENDACI =1, DACI is enabled to provide an analog
output voltage.

ENDACO When ENDACO = 1, DACO is enabled to provide an analog
output voltage.

ADCI A/D conversion complete/interrupt flag. This flag is set when an
A/D conversion is completed.

ADCS A/D start. Setting this bit by software starts the conversion of the
selected A/D input. ADCS remains set while the A/D conversion
is in progress and is cleared automatically upon completion.

RCCLK When RCCLK = 0, the CPU clock is used as the A/D clock.

When RCCLK = 1, the internal RC oscillator is used as the
A/D clock.
AADRI, 0 These bits select the A/D channel to be converted:

AADRI1 AADRO A/D input selected

0 0 ADO (P0.3)

0 1 ADI (P0.4)

1 0 AD2 (P0.5)

1 1 AD3 (P0.6)
CMP2/P0.0[1 | - 20] P0.1/CIN2B
DACO/P1.7[2] [19] P0.2/CIN2A
DAC1/P1.6[3] 18] P0.3/CIN1B/ADO

RST/P1.5[4| 17] P0.4/CIN1A/AD1
Vs[5 16] P0.5/CMPREF/AD2
x1/P2.1[6 15] Yoo
X2CLKOUT/P2.0 14] P0.6/CMP1/AD3
INT1/P1.4[8] [13] PO.7/T1
SDA/INTLD/P1.3[9| [12] P1.0/ T>D
SCL/TO/P12 [10] [11] P1.1/RxD

Figure 5.2 Pin configuration for the 87LPC769 microcontroller

A/D conversion

The A/D must be enabled by setting the ENADC bit at least 10 us before a
conversion is started to allow time for the A/D to stabilise. Prior to the
beginning of an A/D conversion, one analog input pin must be selected for
conversion via the AADRI1 and AADRO bits. These bits cannot be changed
while the A/D is performing a conversion. Setting the ADCS bit, which
remains set while the conversion is in progress starts an A/D conversion.

118 Low pin count (LPC) devices

When the conversion is complete, the ADCS bit is cleared and the ADCI
bit is set. When ADCI is set, it will generate an interrupt if the interrupt
system is enabled; the A/D interrupt is enabled (via the EAD bit in the IEI]
register), and the A/D interrupt is the highest priority pending interrupt.
When a conversion is complete, the result is contained in the register DACO.
This value will not change until another conversion is started. Before another
A/D conversion may be started, the ADCI bit must be cleared by software.
The A/D channel selection may be changed by the same instruction that sets
ADCS to start a new conversion, but not by the same instruction that
clears ADCI.

A/D timing

The A/D may be clocked in one of two ways. The default is to use the CPU
clock as the A/D clock source. When used in this manner the A/D completes a
conversion in 31 machine cycles. The A/D may also be clocked by the on-chip
RC oscillator, even if the RC oscillator is not used as the CPU clock. This is
accomplished by setting the RCCLK bit in ADCON.

Example 5.1
Use of ADC

/-k*-k************~k******~k-k*-k**********************************

* Chapter 5 *
* ADC application of 87LPC769 *
* April 2003 *
* This program reads ADO, AD1, AD2 and AD3 one at *
* a time and stores it in the ACC for other uses *

Gk ok ok ok ok ok ok okkokokkokokkokokkokokkokkkohkkkkrkohhkkhkdkohkhkhhdkhdhdthhhkdhkkhkhdkkhkxk /

#finclude <REG769.H>

/-k*-k************~k******~k-k*-k**********************************

* START of the PROGRAM *
E R R A O R A A A A A A R R A A A R AR A /
void main (void) {

unsigned char channel;

/**

* Disable PO, ADC pins digital Outputs and Inputs *
* AD3 =P0.6, AD2 =P0.5, AD1 =P0.4, ADO =PO0.3 *
Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok okokokokokokokokokkkkkkkkkk ok ok ok ok ok ok ok okokokokokokokokokokokokokokokok ok ok /
POM2& =~ 0x78; /*Set Pins for Input Only*/
POM1|=OX78; /*POM2 = 0& POM1 =1 */
PTOAD = 0x78; /*Disable Digital Inputs */
R R R Kk Rk Kk K Kk R K Kk K K K kK K K KK KK KK KR KK KK KK K K K K K K KK K K KK K Kk K K
* Enable the A/D Converter and use the CPU clock *
* as the A/D clock. *

B A 2k I I /

Analog functions 119

ENADC =1; /*enable ADC, 10us before conv.*/
RCCLK =0; /*use CPU clock*/
channel = 0; /*set to the first channel*/

/**
*

* Perform conversions forever.
ok kok ok ok ok k ok ok ok ok ok ok ok ok ok ok ok k ok ok ok k ok ok k ok ok k ok ok ok k ok ok k ok ok k ok ok ok ok ok ok ok ok ok k ok ko k k ok ok ok ok ok /

while (1) {

/**

* Update the channel number and store it in ADCON. *
N T T TThhTTttTTOTETETTTTT
channel = (channel +1)%4; /*update channel*/
ADCON& =~ 0x03; /*clear channel no*/
ADCON | = channel; /*set the channel no*/

/****'k*******‘k'k******'k*******‘k'k****'k*'k***********************
* Start a conversion and wait for it to complete. *

ok ok ok kkokkkkokkkkokkokokkokkkokkkhkhkohkhkrohdkhhhkrkhhkrohdhdhdkrhdhrhdhdkhdtrdxrk /

ADCI =0; /*Clear conversion flag*/
ADCS =1 /*Start conversion */
while (ADCI==0) ; /* Wait for conversion end */
ACC = DACO; /* send the results to Acc*/
ADCI =0; /*Clear conversion flag*/
)
}
Simulation

The Keil simulation package can be used to demonstrate the simulation of the
87LPC769 microcontroller. The Keil p Vision2 package is well suited for the
analogue functions of the LPC since there is a special ADC window available,
which shows all the internal registers related to ADC and DAC conversions
such as ADCON, DACO and channel select. The window also shows the bits
related to the ADC/DAC functions such as ADCS and ENDADC. The values
of the channels could also be set using analogue input channels windows. The
ADC window is shown in Figure 5.3.

As described in Chapter 3, the simulation begins by going to Project on the
top menu bar and selecting New Project. For the chip vendor and particular
device, the P87LPC769 should be chosen from the Philips directory. Details are
shown in Figure 5.4.

Figure 5.4 illustrates that information about the device, such as memory
capability (128 bytes of RAM, 4 KB of on-chip programmable EPROM), etc. is
available in the window. The C file should now be added to the project and the
simulation started by clicking on the button with the red letter d as shown in
Figure 5.5.

The window for the program should appear as shown in Figure 5.6.

Next Peripherals is chosen from the top menu bar and then A/D Converter
as shown in Figure 5.7.

The ADC window, shown in Figure 5.3, should appear, allowing different
values to be set for each channel prior to simulation. See Figure 5.8.

Analog/Digital Converter x ‘

—Analog Digital Converter—————————————

ADCON: [[~ ENADC

[~ RCCLK
DACD: |[|X[||]
[~ ADCI

Channet: [4D0 v | [~ apcs
—Analog Input Channels E—
ADD: 00000 AD1: [0.0000
AD2 [0.0000 AD3: [0.0000
Wref: IE.UDT

Figure 5.3 Keil p Vision2 analog/digital converter window

Fle EdE View Project Debug Fash
ié‘lravﬂﬂ M OB |

{7 Targek 1

Selmct Device for Target ‘Target 17

Wendar Philips
Devies: PBALPCTSS I Use Exlended Linker (LX51) inslead < BLST
Family, MCS-51 [~ Uzautandas Asaambles (=51 instaad of 451

Data basa contarts: Draseription:

L Pe/CaTRe2 5051 besed CMOS conlicler wilh 15(18) [0 ins,
(3 PETCAIRE? 2 Timers/Courilers, 2 Anskeo comp, 4 channel SBILAD,
_ I PEFCSIRDE P 2 chisnied -hil DA converer, 12C-Bus,
plces 1K Biyte: ar-chiip pragramable EPROM,
8 ;g#f:;m 128 Bytes an-chip RAM
- [0 PETCLEXD
(£ PETCLESS
(1 PETLPCTED

- {51 PEICSIRB2H:

Figure 5.4 Selection of chip vendor and device type

Q

Figure 5.5 Icon to start/stop debug session

0= - = T ok & @ DE S0 n

C:\KailVC5 1bor sterFivelPC.c A "D"x
® ®

® ®

= This program reads ADO, AD1, 2 one at -

* a time and stores it in the ACC for other uses -

#ipclude <REG76D,H:

= START of the PROGRAM o
-

woid mein (void) {

unsignad char chaonel:
» Disable bU, ins digital Outputs and laputs -
* AD3-PO.6, AD2-P0D.S, AD1-PO.4. ADO=POD.3 -

B T T P P PR PO PP T
POM2 B= ~0x78: ~% Hat Pins for Inau' [Il\l,r L
POM1 |- (Ox75; = POM2 = D & POM1
PTOAD = (Ox75; = Dusable Digital : puts e

* Enable the A<D Coopvartar snd uwse the CPU clock ®
& 2z the &0 clock. =

EWADC = 1; = enzble ALZ, 10uS before cowv. =

id
™ 2L

XI'B\um Largut Target 1'

compiling ChaptarFivelPO.c.. .
linking..

Figure 5.6 Simulation window for analog/digital converter program

Interrupt
Jo-Ports E
7 Serial ot n R R TR
®* Chapter § I ¥ ®
% ADC application of B7L! ST *
* Rpril 2003 12C Interface 2
® M
#* This program reads ADD = *
* & time and stores it il pyA Converter *
PP
#include <REGTB9.H> Analog Comparator
e Keyboard Internupt FETTTTTETEY
START of the PROGRAM Oscilator Control *
HRRERRRRRRRR
woid main (veid) { ystem Conigu
unsigned char channel;
S
Disahle PO, ADC pins digital Qutputs and I[nputs =
» ADA=P0.6, ADZ=F0.5, AD1=P0.4, ADO=P0.3 *
-
POM2 &= ~0278; -+ Set Pins for Input Cnly =~
POM1 |= O0x78: = POM2 = 0 & POML = 1 "
PTOAD = D=78;: ~# Disable Digital Inputs #*~
i
* Enable the A<D Converter and use the CPU clock *

*|Running with Code Size Limit: ZE
JLoad "CrssEel lNSC518ShookssChapterFivel P!

Figure 5.7 Selection of analog/digital converter window

122 Low pin count (LPC) devices

11| ChapterFivelPC -

| e Edt Vew eroject Debug Fash Perphersls Toos SVCS Window Help
=N A = AT B -lam @ a NE e R

B C:\Keil\C51\book\ChaptarFiveLPC.c |_ m} 4

ital Converter P73
- Analog Digitel Comvarer
Apcow: [EE [ENeBC

: [~ ROCLK
DACO: [0l A

Channet |AD0 > | [~ apcs

i

= Chapter 5

« ADC application of BFLPCTED
& April 2003
*
*

This program reads ADD, ADL, ADZ and AD3 cne at
® a time and stores it in the ACC for other uses

EEHE XK XN R NN NN EE KRR AT NN R KRN N TR R RN AATRNS
#includs <REGTED.H:» ~Analog lnput Charmsls
ADD: Iﬂ.ﬂUUD A07: (D.0000
= START of the PROGRAM * A0z 10000 A0 | 10000
-

Vel IS.;‘IUUD

void wain (void
un=signed char channel:

-
% Digskle PO, ADC pins digital Outputs and Inputs -
* ADI<F0.6, AD2-P0.5, ADI-F0.4, ATO-PD.3 *
EEHE XK NN XK AR K KN NN TR R RN AT NN R NN AT KRR A A AT RS

l% POMZ &= ~0x73; = 3st Fins for Input OUnly

POM1l |= O0x78; = POM2 = 0 & POM1 = 1

PTOAD = Ox78: = Disable Digital Inputs =~

Lrs
L2

o

= Erakle the A<D Converter and use the CPU clock
4

‘lLoad "2rwHeilwsUS1vibookssChapterFivelPO"

"!Rum\ing with Code Size Limit: 26

Figure 5.8 Simulation window with the analog/digital converter window added

Placing the cursor in the AD1 window allows the value to be set to 2.5 (this
would be volts). Similarly the value for AD2 may be set to, say, 4.0 and AD3 to
5.0. The effect of these changes is shown in Figure 5.9.

| ChapterFivelPC -

He Edt View Project Debug Flash Perphersls Took SVCS Window Help
2dHd| i e oo S |

|l & @ ME|Hwr o

B C:\KeiliC51\bookiChapterFivelPC.c

al Corwerter [x

| Anelog Digitz! Canverer

® Chapter 3 * | eor T EMaDe

® ADD applicatisn of BYLPOTES i | ADEOR: 100 bis

= april 2003 i) CrLE

paco: 100

. Ths is ADD, AD1, ADZ and ADZ : | I #oct

b 1s program Tedds da - am ohe at o - -

* = time and stores it in the ACD for other uses * | Chomel [400 [~ aDCS
-

3 Anolog mput Channels

! poon api: [esom
| Dz 000 apa [Eom
| v [E2000

|

#inslude <REGTEE.I

B T L P PP PR P T e e e

= START of the PROGRAM

EEXXAAN RN R AKX RN RN R RN A AN RN KRN AN AR AR RN KL AR
wold main (woid) |
unsigned chor channel;

L

* [Nisable PO.

& A03=F0.6, Al

s digital Outputs and Tnpots

AD1-P0.4, ADO-PD.3

l% POM2 &= ~0z78; ~+ et Fins for Input Only #-
o POM] |= Ox76: «* POMZ = 0 & POMI1 = 1 Lrd
PTOAD = 0O=z78: = Disable Digital Inputs =

-

* Epzble the A-L Converter ond uwse the CFU clock

*lEunning with Code Size Limit: ZE
YlLoad "0ivEeilwsLSlvcbookssChapterTivelro"

Figure 5.9 Changing the values of the analog input channels

Analog functions 123

Single stepping through the program may be achieved by pressing the appro-
priate icon from the debug menu (see Figure 5.10), or pressing key F11. Details
regarding the debug menu and other icons used for debug operations are
described in Chapter 3.

&
Figure 5.10 Icon for single stepping the program

When single stepping through the program it can be seen that values in the
ADCON (A/D control register), channel (selected channel), ADCI (A/D con-
version complete/interrupt flag bit), ADCS (A/D start bit) and DACO (A/D
0 value) windows change as the steps progress. It should be noted that ENADC
(enable A/D) would be set only once, at the beginning of the program. The
effect is shown in Figure 5.11.

Figure 5.11 shows the values for each channel; for example channel ADO set
originally to ‘0.0’ V, is indicated by DACO of 0x00 while that of AD3 set to ‘5.0
indicates a value of OxFF. Note that AD1 was set to ‘2.5’ V, which is indicated
by a DACO value of 0x80 (128).

Exercise 5.1

An §7LPC769 microcontroller is to be used to read an analog input ranging from
0V to 5V on the ADCO, and display the results on two seven-segment displays
(which are driven by display drivers), with the following interface:

P0.3-P0.0 connected to A, B, C and D of Driver 1 (least significant digit 0.0—0.9)
P1.3—P1.0 connected to A, B, C and D of Driver 2 (most significant digit 0 — 5)

Write a ‘C” program to do this.

DAC OUTPUTS

The 87LPC769 provides a two channel, 8-bit DAC function. DACO is also a
part of the ADC and it should not be enabled while the A/D is active. Digital
outputs must be disabled on the DAC output pins while the corresponding
DAC is enabled, as described under Analog Functions. The DACs use the
power supply as the references, V'pp as the upper reference and Vg as the lower
reference. The DAC output is generated by a tap from a resistor ladder and is
not buffered. The maximum resistance to Vpp or Vss from a DAC output is
10k§2. Care must be taken with the loading of the DAC outputs in order to
avoid distortion of the output voltage. DAC accuracy is affected by noise,
generated on-chip and elsewhere in the application. Since the 87LPC769 power
pins are used for the DAC references, the power supply also affects the accuracy
of the DAC outputs.

124 Low pin count (LPC) devices

Analog/Digital Converter

Analog/Digital Converter x I

—Analog Digital Converter—————————— —Analog Digital Converter
ADCON: [0x80 [v ENADC ADCON: |0x91 [v" ENADC
[~ RCCLK [~ RCCLK
DACD: |0x00 DACD: IUxﬁD
[~ ADCI [v ADCI
Channel: |ADU VI [~ ADCS Channel: IAD1 vl [~ ADCS
—Analog Input Channels —Analog Input Channels

ADD: IU.UDI]D ADT: IZ,EIJDI] ADD: ID.U[]IJ[] ADT: IZ.EIJEIB
ADZ: I4.I]DI]D AD3: IS.UI]DI] ADZ: |4.U[][][] AD3: |5.[][]El[}
Vref: IS.l]DI]D Vref. IS.DEIIJE]

= —
Analog/Digital Converter | x Analog/Digital Converter ‘ b 4 |

~ Analog Digital Converter -Analog Digital Converter
ADCON: [0x82 [v ENADC ADCON: [0x33 [v' ENADC
[~ RCCLK [~ RCCLK
DACD: IUXCD DACO: |0x<FF
[v ADCI [v ADCI
Channel: IADZ - I [~ ADCS Channel: IADB vl [~ ADCS
—Analog Input Channels —————————— —Analog Input Channels
ADO: |U.UUUU ADT: |2-5D|]D ADO; |0.0000 AD1: [2.5000
AD2: |4.0000 AD3: IS.I]DI]D AD2: |4.0000 AD3: |5.0000
Yref: (5.0000 Vref. |5.0000

Figure 5.11 Analog/digital converter window showing values for channels ADO,
ADI1, AD2 and AD3

Example 5.2
Use of DAC

/**

* Chapter 5

* DAC application of 87LPC769

* April 2003

* This program generates a sawtooth waveform on
* DAC1 and DACO of the P87LPC769 microcontroller

E R 2 2R R R R R R

#finclude <REG769.H>

/**

Analog comparators 125

* START of the PROGRAM *
EE I I R R I I A R A R A B A B A /
void main (void) f

unsigned int i;

/**

* Disable P1, DAC pins digital Outputs and set the *
* DAC1 =P1.6, DACO="P1.7 to Input Only (Hi z) *
KKK R KR KK KK KK R R KR A KK K KK KKK KKK KRR KK KA KA KK KRR AR KR KA KA KA KA KA
PIM2& =~ 0xCO; /*Set Pins for Input Only*/
PlMl‘ = 0xCO0; /*P1IM2 =0 & PIM1 = 1%/
T TTTTTTTTTTTETETETETETETEYE
* Disable the A/D Converter because of DACO *
* AND Enable the D/A Converters *
KKK K KK KK KK KR R R K R X KK K KK KK KK KKK KK KK KA KKK KRR KKK AR AR AR AR A KA
ADCI =0; /*Clear A/D conversion complete flag*/
ADCS =03 /*Clear A/D conversion start flag*/
ENADC = 0; /*Disable the A/D Converter*/
ENDACO = 1: /*Enable DACO*/
ENDACL =1: /*Enable DAC1*/

/**

* Create a sawtooth waveform on DACO and the opposite *

*

* sawtooth waveform on DAC1.

I a2 R R R /

while (1) {
for (1 =0; 1i<255; i++){
DACO =1;

DAC1 = OxFF — 1;

Exercise 5.2
An 87LPC769 microcontroller is to be used to generate a triangular waveform
on DACO0. Write a ‘C’ program to do this.

5.4 Analog comparators

The PS7LPC769 provides two analog comparators. Because of the input and
output options the comparators can be used in a number of different config-
urations. Comparator operation is such that the output is a logical one (which
may be read in a register and/or routed to a pin) when the positive input (one
of two selectable pins) is greater than the negative input (selectable from a pin
or an internal reference voltage). Otherwise the output is a zero. Each com-
parator may be configured to cause an interrupt when the output value
changes.

126 Low pin count (LPC) devices

COMPARATOR CONFIGURATION

There are two comparator control registers, CMP1 for comparator 1 and
CMP2 for comparator 2. These control registers are identical and their bits
are as shown:

7

6 5 4 3 2 1 0

- CEn CPn CNn OEn COn CMFn

where the bit functions are:

7,6
CEn

CPn

CNn

OEn

COn

CMFn

Reserved for future use. Should not be set to 1 by user programs.
Comparator enable. When set by software, the corresponding com-
parator function is enabled. Comparator output is stable 10 us after
CEn is first set.

Comparator positive input select. When 0, CINnA is selected as the
positive comparator input. When 1, CINnB is selected as the posi-
tive comparator input.

Comparator negative input select. When 0, the comparator refer-
ence pin CMPREF is selected as the negative comparator input.
When 1, the internal comparator reference Vref is selected as the
negative comparator input.

Output enable. When 1, the comparator output is connected to the
CMPn pin if the comparator is enabled (CEn = 1). This output is
asynchronous to the CPU clock.

Comparator output, synchronised to the CPU clock to allow reading
by software. Cleared when the comparator is disabled (CEn = 0).
Comparator interrupt flag. This bit is set by hardware whenever the
comparator output COn changes state. This bit will cause a hard-
ware interrupt if enabled and of sufficient priority. Cleared by soft-
ware and when the comparator is disabled (CEn = 0).

The overall connections to both comparators are shown in Figure 5.12.
There are eight possible configurations for each comparator, as determined
by the control bits in the corresponding CMPn register.

Example 5.3

Comparator configuration

/**

* Chapter 5 *
* Comparator application of 87LPC769 *
* April 2003 *
* This program configures CMP1 with CIN1B (P0.3) *

*

as positive input and CMPREF (P0O.5) as the *

Analog comparators 127

CP,1 Comparator 1

(P0.4) CIN1A
.

. [(F——"""
(P0.3) CIN1B cot A] CMP1(P0.6)

P0.5) CMP REF[_ —— '
(P0.5) \—. - OET1
Vref o
CNi Change detect
><_ Interrupt
cP2 Comparator 2
(P0.2) CIN2A [} . 4
(P0.1) CIN2B [] c2 1] cMP2(P0.0)
TN OE2
L
CN2 Change detect

>{: Interrupt

Figure 5.12 Comparator configurations of the 87LPC769 microcontroller

*

negative input.

* CMP2 is configured with internal V,.r (1.28V) as *
* negative input and CIN2A (P0.2) as positive input. *
* Both comparator outputs CMP1 (P0.6) and CMP2 *
*(P0.0) are gated to output pins. *

kk ok ok ok ok ok ok ok ok ok ok ok okok ok okokokokokkokokkokokkokokkohhkkohkhkhkohhkhohdkhhhkrtohhdohdkdkhdhthdxrk /

#finclude <REG769.H>

/**

* START of the PROGRAM *
k ok ok ok ok ok ok ok ok ok ok ok ok hkokkhkokk ok ok ok ok okokkohkokkhkokokhkokkohkhkkkhkokkohkokkhkokokk ok ok okhk ok ok ok ok ok okok /
void main (void) f

unsigned char i;

/***************~k********~)<***********************************

* Disable PO, digital Outputs and Inputs *
* CMPREF = PO0.5 *
* CIN1A =P0.4, CIN1IB =P0.3, CMP1 = PO0.6 *
* CIN2A =P0.2, CIN2B =P0.1, CMP2 = P0.0 *
kk ok ok ok ok ok ok ok ok ok ok ok okokokokokokokokokokokkokokkokokkohkohkkohkhkohhkhohdkhhhkrtohhdohkhkdkhdtkdxkk /

POM2& =~0x0C; /*Set Pins for Input Only*/

POM1| = 0x0C; /*POM2 = 0&POM1 = 1%/

PTOAD = 0x0C; /*Disable Digital Inputs*/
/*~)<******~)<***
* Set CIN1B(PO.3) as +ve input, CMPREF as —ve *
* input and CMP1 Out (P0.0) *
- - CEn CPn CNn OEn COn CMFn *
*0 0 1 1 0 1 0 0 *

kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok okokokokokokokok ok okokkokokkokokkokokkokokkokhkkohkkokhkdokhkdkhhtkkxrk /

CMP1 = 0x34;

/**

128 Low pin count (LPC) devices

* Set CIN2A(P0.2) as +ve input, V,.f as —ve *

* input and CMP2 Out (P0.6) *

*o- - CEn CPn CNn OEn COn CMFn *

*0 0 1 0 1 1 0 0 *

R N R R T T Ty
CMP2 = 0x2C;

/******************~k~k******~k*********************************

* Do nothing delay 10 us. *

Kok ok ok ok ok k ok k ok ok ok ok ok ok ok ok k ok ko k ok ko kk ok k ok ko k ok ok k ok k ok ko k ok k ok ok ok ko ko k k ok ok ok ok ok ok %k /
for (i =0;4i<=10;4i++)

B

while (1) /*Loop Forever */

Exercise 5.3

Configure CMP1 with CIN1A (P0.4) as a positive input and Vref (1.28 V) as the
negative input and CMP2 with internal CMPREF (P0.5) as a negative input
and CIN2B (P0.1) as the positive input. Both comparator outputs CMP1 (P0.6)
and CMP2 (P0.0) are to be gated to output pins.

5.5 P89LPC932

The P89LPC932 device is based on a high performance processor architecture
that executes instructions in two to four clocks, six times the rate of standard
80C51 devices. Many system level functions have been incorporated into the
P89LPCI32 in order to reduce component count, board space and system cost.

The P89C932 contains many features, some of which are summarised as
follows:

e 8KB Flash code memory with 1 KB erasable sectors and 64-byte erasable
page size;
256-byte RAM data memory; 512-byte auxiliary on-chip RAM;
2-byte customer Data EEPROM on-chip allows serialisation of devices,
storage of set-up parameters, etc;
® two 16-bit counter/timers. Each timer may be configured to toggle a port
output upon timer overflow or to become a pulse width modulation (PWM)
output;
real-time clock that can also be used as a system timer;
capture/compare unit (CCU) provides PWM, input capture and output
compare functions;
two analog comparators with selectable inputs and reference source;
enhanced UART with fractional baud rate generator, break detect, framing
error detection, automatic address detection and versatile interrupt capabilities;
e 400 kHz byte-wide I>’C communication port;

Serial peripheral interface (SPI) 129

SPI communication port;

eight keypad interrupt inputs, plus two additional external interrupt inputs;

four interrupt priority levels;

watchdog timer with separate on-chip oscillator, requiring no external

components. The watchdog time-out time is selectable from 8 values;

e LED drive capability (20 mA) on all port pins. A maximum limit is specified
for the entire chip;

e 23 I/O pins minimum (28-pin package). Up to 26 I/O pins while using

on-chip oscillator and reset options.

Figure 5.13 shows the block diagram while Figure 5.14 shows the pin con-
figuration diagram for the 89LPC932 device. In the following sections we will
concentrate on the serial peripheral interface (SPI), I>C serial communication
and EEPROM functions and use examples to show some of the applications of
the device.

5.6 Serial peripheral interface (SPI)

Together with the usual serial communication interfaces, the LPC932 device
provides another high-speed serial communication interface, called the SPI
interface. SPI is a full-duplex, synchronous communication bus with Master
and Slave operation modes. Communication of up to 3 Mbit/s can be sup-
ported in either Master or Slave mode.

The SPI interface has four pins: SPICLK, MOSI, MISO and SS. SPICLK,
MOSI and MISO are typically tied together between two or more SPI devices.
Data flows from master to slave on the MOSI (master out slave in) pin and
flows from slave to master on the MISO (master in slave out) pin. The SPICLK
signal is output in the master mode and is input in the slave mode. If the SPI
system is disabled, i.e. SPEN (SPCTL.6)= 0 (reset value), these pins are
configured for port functions.

SS is the optional slave select pin. In a typical configuration, an SPI master
asserts one of its port pins to select one SPI device as the current slave. An SPI
slave device uses its SS pin to determine whether it is selected. The SS is ignored
if any of the following conditions are true:

If the SPI system is disabled, i.e. SPEN (SPCTL.6) = 0 (reset value).
If the SPI is configured as a master, i.e. MSTR (SPCTL.4)= 1, and P2.4 is
configured as an output (via the P2M 1.4 and P2M2.4 SFR bits).

e If the SS pin is ignored, i.e. SSIG (SPCTL.7) bit = 1, this pin is configured
for port functions.

Note that even if the SPI is configured as a master (MSTR = 1), it can still be
converted to a slave by driving the SS pin low (if P2.4 is configured as input and
SSIG = 0). Should this happen, the SPIF bit (SPSTAT.7) will be set. Typical
connection of a simple Master Slave is shown in Figure 5.15.

130 Low pin count (LPC) devices

High performance
LPC932 CPU

E 8KB code UART -
; flash Internal bus —
E 256 byte E
. data RAM |ZC |
1 |t
512 byte
H auxiliary RAM SPI ~—
; 512 byte data E
. EEPROM) i
' Real-time clock/ '
, system timer '
! Port 3 1
<——| configurable 1/Os .
1 Timer 0 ~—
; Port 2 Timer 1 -
<——| configurable 1/Os .
E Watchdog timer E
! Port 1 and oscillator .
| configurable 1/Os .
E —
! Port 0 CCU (capture/ [
<= configurable I/Os compare unit) [
E J E
; Keypad ——
! interrupt Analog . —
! comparators [«
; Programmable CPU N
! oscillator divider —— 1
1 Power monitor 1
, 1 (power-on reset, :
Crystal or {-— Configurable On;ch'p brownout reset) :
resonator | oscillator " oscillator !

Figure 5.13 Block diagram of the 89LPC932 microcontroller

SPI CONFIGURATION

The LPC932 provides three registers for SPI programming. These are SPiCon-
TroL register SPCTL, SPiSTATus register, SPSTAT and SPiDATa register
SPDAT. The details of these registers are discussed below.

Serial peripheral interface (SPI) 131
ICB/P2.0 [1| P2.7/ICA
OCD/P2.1 [2] [27] P2.6/0CA
KB10/CMP2/P0.0 [3 | [26] P0.1/CIN2B/KB11
OCC/P1.7 [4] [25] P0.2/CIN2A/KB12
OCB/P1.6 [5 | [24] P0.3/CIN1B/KB13
RST/P1.5[6 | (23] P0.4/CIN1A/KB14
Vss [7 | [22] P0.5/CMPREF/KB15
XTAL1/P3.1 8] [21] Voo
CLKOUT/XTAL2/P3.0 [9| [20] P0.6/CMP1/KB16
INT1/P1.4 [10] P0.7/T1/KB17
SDA/INTO/P1.3 [11] P1.0/TXD
SCL/TO/P1.2 [17] P1.1/RXD
MOSI/P2.2 [13] [16] P2.5/SPICLK
MISO/P2.3 [15] P2.4/SS
Figure 5.14 Pin configuration for the 89LPC932 microcontroller
Master Slave
MISO 5 MISO
8-bit shift [~ ; "7 8-bit shift
register . H -- register
MOSI ; MOSI
SPICLK SPICLK
SPI clock o j
generator
Port : SS
Figure 5.15 Simple master and slave connection
SPCTL register
7 6 5 4 3 2 1 0
SSIG SPEN | DORD | MSTR | CPOL CPHA SPR1 SPRO

where the bit functions are:

SSIG SS IGnore. If set = 1, MSTR (bit 4) decides whether the device is a
master or slave. If cleared = 0, the SS pin decides whether the device is
master or slave. The SS pin can be used as a port pin.

132 Low pin count (LPC) devices

SPEN

DORD

MSTR
CPOL

CPHA

SPI Enable. If set = 1, the SPI is enabled. If cleared = 0, the SPI

is disabled and all SPI pins will be port pins.

SPI Data ORDer.1: The LSB of the data word is transmitted
first.

0: The MSB of the data word is transmitted first.

Master/Slave mode Select (see Table 5.3).

SPI Clock Polarity. 1: SPICLK is high when idle. The leading

edge of SPICLK is the falling edge and the trailing edge is the

rising edge.

0: SPICLK is low when idle. The leading edge of SPICLK is

the rising edge and the trailing edge is the falling edge.

SPI CLock Phase select. 1: Data is driven on the leading edge of

SPICLK and is sampled on the trailing edge.

0: Data is driven when SS is low (SSIG = 0) and changes on the

trailing edge of SPICLK, and is sampled on the leading edge.

(Note: If SSIG = 1, the operation is not defined.)

SPR1, SPRO SPI Clock Rate Select

SPR1 SPRO SPI clock rate

0 0 CCLK /4
0 1 CCLK/16
1 0 CCLK/64
1 1 CCLK/128
SPSTAT register
7 6 5 4 3 2 1 0
SPIF WCOL - - - - - -

where the bit functions are:

SPIF

WCOL

SPI transfer completion Flag. When a serial transfer finishes, the
SPIF bit is set and an interrupt is generated if both ESPI (IEN1.3)
bit and the EA bit are set. If SS is an input and is driven low when
SPI is in master mode, and SSIG = 0, this bit will also be set. The
SPIF flag is cleared in software by writing ‘1’ to this bit.

SPI Write COLlision flag. The WCOL bit is set if the SPI data
register is written during a data transfer. The WCOL flag is cleared
in software by writing a ‘1’ to this bit. Bits 5-0 reserved for future
use. Should not be set to 1 by user program.

Table 5.3 Master and slave selection

SPEN SSIG MSTR Master or

(SPCTL.6) (SPCTL.7) P2M2.4 SS Pin (SPCTL.4) Slave Mode MISO MOSI SPICLK Remarks

0 X X P24 X SPI Disabled P2.3! P22' P2.5! SPI disabled. P2.2, P2.3, P2.4, P2.5 are
used as port pins.

1 0 X 0 0 Slave Output Input Input Selected as slave.

1 0 X 1 0 Slave Hi-Z Input Input Not selected. MISO is high impedance to
avoid bus contention.

1 0 0 0 1(—>0)*> Slave Output Input Input P2.4/SS is configured as an input or

quasi-bidirectional pin. SSIG is 0.

Selected externally as slave if SS is

selected and is driven low. The MSTR bit

will be cleared to ‘0’ when SS becomes low.
1 0 0 1 1 Master Input Hi-Z Hi-Z MOSI and SPICLK are at high

impedance to avoid bus contention. Note

that the user must pull-up or pull-down

SPICLK (depending on CPOL —

SPCTL.3) to avoid a floating SPICLK.

1 0 1 X 1 Master Input Output Output MOSI and SPICLK are push-pull.
1 1 X pP24! 0 Slave Output Input Input
1 1 X p24! 1 Master Input Output Output

1. Selected as a port function.
2. The MSTR bit changes to ‘0’ automatically when SS becomes low in input mode and SSIG is 0.

134 Low pin count (LPC) devices

SPDAT register
7 6 5 4 3 2 1 0
MSB LSB

EXAMPLES OF SPI ON 89LPC932

Example 5.4
SPI master

/*****«k******«k***************«k***-k**«k******«k********«k******«k*

* Chapter 5 *
* SPI Master application of 89LPC932 *
* April 2003 *
* This programwrites some data to some slave Devices. *
* Assumes, P0.0 =Device0O.ss pin *
* Assumes, P0.1 =Devicel.ss pin *
* Assumes, P0.2 =Device2.ss pin *
* Assumes, P0.3 =Device3.ss pin *

Ea R R I N) /

ffinclude <Reg932.h>
sbit Device0 = P0"0;
sbit Devicel = PO"1;
sbit Device2 =P0"2;
sbit Device3 = P0"3;

/**

*Write one byte to the SPI *

Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok okokkokokkokokkokkokok ok ok ok ok ok ok kokokkohkokkokkkokokokokkokkkkkkkok koK /

void SPI_Write(unsigned char dat) {

SPDAT = dat; /*write Data to SPI bus*/
while ((SPSTAT & 0x80) ==0) ; /*wait completion*/
SPSTAT| = 0x80; /*clear SPIF by writing 1 to it*/

}

/*****«k************-k******-k**«k***-k******************«k********

* START of the PROGRAM *

a2 I I 2 I 2 R R) /

void main (void) {

/**
* Port 2 to quasi-bidirectional *
* MOSI =P2.2, MISO =P2.3, SPICLK = P2.4, SS =P2.5 *
* ok ok ok ok ok ok ok ok ok hk ok ok ok ok ok khk ok k ok ok ok ok ok hk ok ko k ok ok ok ok ok k ok k ok ok ok ok ok ok hk ok k ok ok ok ok hk ok k ok k ok ok k /

P2M1 = 0xC3;

P2M2 = 0xC3;
/**
* configure SPI *
*3S =1 MSTR determines device is master/slave *

Serial peripheral interface (SPI) 135

*

SPEN=1 Enable SPI *
DORD=1 LSB of the data is transmitted first *
MSTR=1 device is master *
CPOL =1 SPICLK is high when idle. The leading edge of SPICLK ig *

*

*

*

*

falling edge.
CPHA =1 dataisdrivenon the leading edge of SPICLK and sampled *
on the trailing edge *
SPR1 =0 SPI clock rate=CCLK/4 *
SPRO =0 *

Kk ok ok kkkkkkkkkhkkkkkkkkkhkkhkhkhkhhkrhdkhkhhkrkhhkrhdhrhdkrhhrhdhxkhdtrdxrk /

SPCTL = OxFC;

/**

*

*

*

* *

send A, B, Cand D to devices continuously

I A R /

while (1) {
Device0 =0; /*select Device 0*/
SPI_Write(0 x 41) ; /*write A to Device 0%/
DeviceO =1; /*Deselect Device 0*/
Devicel =0; /*select Device 1*/
SPI_Write(0 x 42); /*write B to Device 1*/
Devicel =1; /*Deselect Device 1*/
Device2 =0; /*select Device 2%/
SPI_Write(0 x 43); /*write C to Device 2%/
Device2 =1; /*Deselect Device 2*/
Device3 =0; /*select Device 3%/
SPI_Write (0 x 44) ; /*write D to Device 3%/
Device3 =1; /*Deselect Device 3*/
) /* while() */

} /* main() */

Exercise 5.4

Write a C program to write text ‘Hassan’ to a slave Device. MSB is to be
transmitted first, and clock rate to be CCLK/128. Assume P0.0 =
Device0.ss pin.

Example 5.5
SPI Slave

/**

* Chapter 5 *
* SPI Slave application of 89LPC932 *
* April 2003 *

*

This program writes some data to Master Devices.
* Note: SS pin (P274) must be set to 0 for slave *
* to be active.

I I /

136 Low pin count (LPC) devices

f#finclude <Reg932.h>

/**

*Write one byte to the SPI *

9.-**************************9.-***************************/

void SPI_Write (unsigned char dat)
{

SPDAT =dat; /*write Data to SPI bus*/
while ((SPSTAT & 0 x 80) ==0) ; /* wait completion */
SPSTAT| = 0x80; /*clear SPIF by writing 1 to it */

}

/**

* START of the PROGRAM *

d ok ok ok ok ok ok ok ko k k ko kok ok ok ok k ko ok k ok k k ko ko ko ok ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok k% ko k% /
void main (void) {
/‘k******‘k******‘k********‘k******‘k******‘k********‘k******‘k******

*

* Port 2 to quasi-bidirectional

*MOSI =P2.2, MISO="P2.3, SPICLK=P2.4, SS=P2.5 *
Kok okok ok ok ok ok /

P2M1 = O0xE3;

P2M2 = 0xE3;
/*******4«******4«***************4«******4«**********************
* configure SPI *
*SS =0 MSTRdetermines device is master/slave *
* SPEN=1 Enable SPI *
*DORD =1 LSB of the data is transmitted first *
*MSTR =0 device is slave *
*CPOL =1 SPICLK is high when idle. The leading edge of *
* SPICLK is falling edge. *
*CPHA =1 data is driven on the leading edge of SPICLK and *
* sampled on the trailing edge. *
* SPR1 =0 SPI clock rate=CCLK/4 *
* SPRO =0 *

Kok ok ok ok ok ok ok ok ok ok ok ok okok ok koK kKKK kKKK KKK KKK KKK KKK KKK KRR KRk Kk kKR Kk k ok koK kK /

SPCTL = 0x6C;
while (1) {
SPI_Write(‘V’); /* write A to Master */
SPI_Write(‘W’); /* write B to Master */
SPI_Write(*X’); /* write C to Master */
SPI_Write(‘Y’); /* write D to Master */
) /* while () */
) /*main() */

5.7 EEPROM memory

The LPC932 has a 512 byte eclectrically erasable program read only
memory (EEPROM) that can be used to store configuration parameters.
The Data EEPROM is SFR based, byte readable, byte writeable and

EEPROM memory 137

erasable. The user can read, write and fill the memory via three SFRs and one

interrupt:

e Address Register (DEEADR) is used for address bits 7-0 (bit 8 is in the
DEECON register).

e Control Register (DEECON) is used for address bit 8, set-up operation
mode and status flag bit.

e Data Register (DEEDAT) is used for writing data to, or reading data from,
the Data EEPROM.

DEECON
7 6 5 4 3 2 1 0
EEIF | HVERR | ECTL1 | ECTLO - - - EADRS

where the bit functions are:

EEIF

HVERR

Data EEPROM interrupt flag. Set when a read or write
finishes. Reset by software.

Reserved for future use. Should not be set to 1 by user
program.

ECLTI1, ECTLO Operation mode selection:

ECLT1 ECLTO Selection

0 Byte read/write mode
1 0 Row (64 bytes) fill
1 1 Block fill (512 bytes)
bit 3 Reserved for future use. Should not be set to 1 by user program
bit 2 Reserved for future use. Should not be set to 1 by user program
bit 1 Reserved for future use. Should not be set to 1 by user program
EADRS8 Most significant address (bit 8) of the Data EEPROM.
OPERATION MODES
Byte Mode In this mode data can be read and written to one byte at a
time. Data is in the DEEDAT register and the address is in the
DEEADR register.
Row Fill In this mode the addressed row (64 bytes, with address
DEEADR.5 — 0 ignored) is filled with the DEEDAT pattern.
To erase the entire row to 00H or program the entire row to
FFH, write 00H or FFH to DEEDAT prior to row fill.
Block Fill In this mode all 512 bytes are filled with the DEEDAT pattern.

To erase the block to 00H or program the block to FFH, write
00H or FFH to DEEDAT prior to the block fill. Prior to using
this command EADRS8 must be set = 1.

138 Low pin count (LPC) devices

In any mode, after the operation finishes, the hardware will set EEIF bit. An
interrupt can be enabled via the IEN1.7 bit. If TEN1.7 and the EA bits are set, it
will generate an interrupt request. The EEIF bit is cleared by software.

DATA EEPROM READ
To read a byte from EEPROM the steps shown below should be followed:

Write to DEECON with ECTL1, ECL0O = ‘00’ and correct bit 8 address to
EADRS.

Without writing to the DEEDAT register, write address bits 7-0 to
DEEADR.

If both the EIEE (IEN1.7) bit and the EA (IENO0.7) bit are ‘1’s, wait for
the Data EEPROM interrupt then read or poll the EEIF bit until it is set
to ‘1. If EIEE or EA is ‘0’, the interrupt is disabled, only polling is
enabled.

Read the Data EEPROM data from the DEEDAT SFR.

DATA EEPROM WRITE
To write a byte to EEPROM the steps shown below should be followed:

Write to DEECON with ECTL1, ECLO = ‘00’ and correct bit 8 address to
EADRS.

Write the data to the DEEDAT register.

Write address bits 7-0 to DEEADR.

If both the EIEE (IEN1.7) bit and the EA (IENO0.7) bit are ‘1’s, wait for
the Data EEPROM interrupt then read/poll the EEIF bit until it is set
to ‘1’. If EIEE or EA is ‘0’, the interrupt is disabled and only polling is
enabled. When EEIF is ‘1’, the operation is complete and data is
written.

DATA EEPROM ROW FILL
To write a row of 64 bytes to the EEPROM the following steps should be taken.

Write to DEECON with ECTL1, ECTLO = ‘10’ and correct bit 8 address to
EADRS.

Write the fill pattern to the DEEDAT register.

Write address bits 7-0 to DEEADR. Note that address bits 5-0 are
ignored.

If both the EIEE (IEN1.7) bit and the EA (IENO0.7) bit are ‘I’s, wait for the
Data EEPROM interrupt then read/poll the EEIF (DEECON.7) bit until it
is set to ‘1’. If EIEE or EA is ‘0’, the interrupt is disabled and only polling is
enabled. When EEIF is ‘1’, the operation is complete and row is filled with
the DEEDAT pattern.

EEPROM memory 139

DATA EEPROM BLOCK FILL

To write array of 512 bytes to the EEPROM the following steps should be
taken.

Write to DEECON with ECTL1, ECTLO = “11°. Set bit EADRS8 = 1.
Write the fill pattern to the DEEDAT register.

® Write any address to DEEADR. Note that the entire address is ignored in a
block fill operation.

e If both the EIEE (IEN1.7) bit and the EA (IEN0.7) bit are ‘1’s, wait
for the Data EEPROM interrupt then read/poll the EEIF (DEECON.7)
bit until it is set to ‘1’. If EIEE or EA is ‘0’, the interrupt is disabled
and only polling is enabled. When EEIF is ‘1’, the operation is
complete.

EXAMPLES OF EEPROM USING THE 89LPC932

Example 5.6
EEPROM Write

/**

* Chapter 5 *
* LPC932 EEPROM byte write applications *
* April 2003 *
* *
* This program writes some data to EEPROM memory *

I 2 R /

#finclude <Reg932.h>
{fdefine dataAddress 4

/**

*Write one byte to the EEPROM *

kok okok ok okokokokokkokokokokokokokokokokokokokokokokokkokokokokokokokokk koK /

void writeByte(unsigned int adr, unsigned char dat)
{

DEECON = 0b00000000; /*write byte operation*/
DEEDAT = dat; /*set write data*/
DEEADR = (unsigned char) adr; /*start write*/
while ((DEECON & 0x80) == 0) ; /*wait until completes*/

}

/**

* START of the PROGRAM *
EE R R I 2 /
void main (void) {

unsigned char myData =‘H";

writeByte(dataAddress,myData) ; /* write H to address & */

while(1);

}

140 Low pin count (LPC) devices

Exercise 5.5
Write a C program to fill a row of 64 bytes with text ‘X’on the EEPROM on
address 0 onwards.

Exercise 5.6
Write a C program to fill a block of 512 bytes with text ‘Y’.

Example 5.7
EEPROM Read

/**

* Chapter 5 *
* LPC932 EEPROM byte Read applications *
* April 2003 *
* This program writes some data to EEPROM memory *
* and then reads the same data back *

P R R A 2 2 2 I I A 2 R R A /

ffinclude <Reg932.h>
{fdefine dataAddress 4

/**************4«***

* Read one byte from the EEPROM *

***/

unsigned char readByte (unsigned int adr)

{

DEECON = 0x00; /*address*/
DEEADR = (unsigned char) adr; /*start read*/
while ((DEECON&0Ox80) == 0) ; /*wait until completes */
return DEEDAT; /* return data read */

}

/**

* START of the PROGRAM *

*********************************9.-***************************/

void main (void) {
Pl =readByte(dataAddress) ; /*read address 4 of EEPROM*/
while(1);

}

Exercise 5.7

Write a C program to write ‘Hassan’ ‘Fred’ ‘David’ to EEPROM in location
10 hex onwards and then read this data back and send then one character at a
time to port PO.

Summary 141

Summary

Low pin count (LPC) devices are available:

1. in the 87LPC76x range with up to 4 KB EPROM/OTP code memory
2. in the 89LPC9xx range with up to 8 KB of flash code memory.

LPC devices incorporate serial interfaces including I1°C, UART and SPI,
according to type.

LPC devices contain special features such as ADC, DAC and PWM,
according to type.

LPC devices can use some pins for analog functions. This permits the use of
analog comparators as well as onboard ADC and DAC functions.

Analog comparators on the 87LPC76x range have up to eight possible
configurations.

The 89LPC932 incorporates a high-speed serial peripheral interface (SPI)
and contains three registers for SPI programming.

The 89LPC932 has 512 bytes of EEPROM that is SFR based, byte read-
able, byte writeable and erasable. The memory can be read, written to and
filled using three SFRs and one interrupt.

6

The XA 16-bit Microcontroller

6.1 Introduction

The eXtended Architecture (XA) microcontroller was introduced by Philips
Semiconductors as the 16-bit version of their 8051 microcontroller. This
chapter describes the XAG49, which is a Flash version, having 64 KB of
program memory. See Figure 6.1. As shown in Figure 6.1 the peripherals
include two UARTS, three timers 0, 1 and 2 and a Watchdog timer. More
information about the peripherals, SFRs etc., is contained in Appendix F.

It is most important to note that in the XA microcontroller, the Watchdog
timer is on by default and if its action is not required then one of the first things
to do is to program it off. Having stated this, it should be said that the current
version of the Flash programming software WinISP (windows in system pro-
gramming) disables the Watchdog during programming of the device. Never-
theless the authors think it is better to include the three programming lines that
turn off the Watchdog in case later versions or other ISP software do not
disable it.

The Watchdog is on by default for other XA family members that use
external PROMs for program memory. The three assembly language lines that
disable the Watchdog are,

MOV.B WDCON, #0
MOV.B WFEEDI1, #A5H
MOV.B WFEED2, #5AH

This will be covered in more detail later.

Notice the .B extension to the MOV instruction; the XA microcontroller is a
16-bit device and this describes the width of some internal registers. Data is
moved in bytes (MOV.B) or words (MOV.W); the default is word (MOV).

Introduction 143

' XA CPU core

. Program T .
! memory SFR :
' bus bus '
. 64 KB \ % UARTO —
: FLASH :
Data .
© | 2048 bytes | 2u8 UART1 1+
' static RAM '
. J -~
L Port0 ¢) % Timers 0,1 .
' ¢ ¥ Timer2 B
= Ptz f— =
. A | Watchdog '

Figure 6.1 XA block diagram

The timers 0, 1 and 2 are better organised than in the 8-bit devices. In the
P89C66x and standard 8051 microcontrollers, mode 0 of the timers 0 and 1 is
configured as a 13-bit timer so that the device could be compatible with the
earlier 8048 microcontroller. In the XA, mode 0 for timers 0 and 1 is a 16-bit
auto-reload timer/counter.

The P89C66x family has a timer 2 but it only has three modes of operation
i.e. 16-bit auto reload and counting up or down, 16-bit capture and baud rate
generator. Timer 2 in the XA has four modes of operation, the first being 16-bit
auto-reload counting up while the other three modes are the same as the
P89C66x.

Additionally, on the P89C66x the timer clock is fixed at one-sixth of the
oscillator frequency. The XA has pre-scalar bits in the system configuration
register (SCR) that give three options for timer clock of one quarter, 1/16 or
1/64 of the oscillator frequency.

The beginning of the XA assembly language program is different from that
of the 8051. The assembly language programs for the P89C664 commence
with:

ORG 0 ; reset address
SJMP START ; jump over area reserved for interrupts
ORG 40H ; program start address

START:

144 The XA 16-bit microcontroller

while assembly language programs for the XA commence with:

ORG 0 ; reset start address
DW 8FO00H, START ; Define Word hex 8F00
ORG 120H ; program start address

START:

The XA has many more interrupts than the 8-bit 8051 microcontrollers and
this accounts for the higher program start address.

The action of the XA to the line DW 8FOOH,START at the reset address is to
put the word, 8FO0H in the above example, into the 16-bit PSW register, then
run the program from the label address (START in this example).

The program is written for compilation and simulation using the evaluation
software from www.raisonance.com. This excellent package can be down-
loaded as an 8051 and XA combination.

Example 6.1

This first program is aimed at toggling pin 7 on port 1 at a frequency of 1 kHz,
copying as far as possible the 1 kHz square-wave program written for the 8-bit
P89C664 microcontroller in Chapter 4. The XAG49 flash microcontroller in
this example has an oscillator frequency of 11.0592 MHz. The timer clock
pre-scalar is at its default value of (oscillator frequency)/4.

Solution

Square-wave cycle time = 1/1kHz = 1/1000 = 1 ms
Time delay required of a square wave = half the cycle time = 0.5ms

Timer 0 clock = (micro clock)/4 = 11.0592 MHz/4 = 2.7648 MHz
Timer 0 clock cycle time = 1/2.7648 MHz = 361.69 ns

Delay count = (delay time)/(timer clock cycle time)
= 0.5ms/361.69ns = 1382 (to nearest whole number)

Mode 1 timer base number = 65535 — delay count

= 65535 — 1382
= 64153 decimal
= FA99 hex
Program
SINCLUDE (REGXAG49.INC) ; list of sfr addresses
ORG 0 ; reset address
DW 8FOOH, START ; define word hex8F00
ORG 120H ; program start address
START: MOV.B WDCON, {0 ; watchdog control off

MOV.B WFEEDI1,#0A5H ; watchdog feedl

Introduction 145

MOV.B WFEED2,#5AH ; watchdog feed?2
MOV.B TMOD,{#f01H ; Timer 0 into mode 1
AGAIN: SETB P1.7 ; pin 7 port 1 to logic 1
CALL DELAY ; call delay routine
CLR P1.7 ; pin 7 port 1 to logic O
CALL DELAY ; call delay routine
JMP AGAIN ; repeat pin 7 toggling
DELAY: MOV.B THO,#0FAH ; FAH into Timer 0 high byte
MOV.B TLO,#99H ; 99H into Timer O low byte
SETB TRO ; turn Timer O on
FLAG: JNB TFO,FLAG ; wait till Flag sets at rollover
CLR TRO ; turn Timer O off
CLR TFO ; clear flag TFO to zero
RET ; return from sub-routine
END ; end of assembly language

Note that, apart from MOV.B and DW 8F00H, there are a couple of
instruction changes i.e. SIMP becomes JMP and ACALL becomes CALL.

Simulation
The simulation window is shown in Figure 6.2.

o ciiride\bockiprogt.axa |__||E‘§| © Timer 0 (progi) __| A Y| o Pl preet) | o | IX
THLD [ogoo TEOR o L
FTHLO rﬁ‘g—g‘_‘ TFI r‘"
THOD TR [0

Function:timer.
Stote: off
Mo 1. 16 regisher.

[t} [Ha Connedlion
TCH I,T [Ha Connaction
[Mo Conneclion
r- Ho Connection
E o Zonnection
E i Cannection
E Mo Cannection
7 | Ho Comnechion

THO, $0FRH
Al MPB TLD,433E

FLX JHE TFQ,FLAE
el CLE P
CLE TEQ
7l RET
0

Figure 6.2 Simulation response showing the use of breakpoints

Placing a breakpoint on the first CALL and another at CLR P1.7 and then
running the program to the first breakpoint will give a time interval which can
be observed at the bottom of the PC screen as shown in Figure 6.3(a).

This example shows 0.003 ms, which is 3 pus. This number can be reset to zero
by pressing Ctrl T and the program run to the next breakpoint, which gives the
time shown in Figure 6.3(b). From Figure 6.3(b) the time interval is 0.501 ms,
which is close to the required value of 0.5 ms.

B R D s T | 05.000ms.003

Figure 6.3(a) Simulation response showing a breakpoint time interval

146 The XA 16-bit microcontroller

XA-G49 0s.000ms.501

Figure 6.3(b) Simulation response showing a time interval between breakpoints

This Raisonance software is able to show digital traces in the simulation.
Using the trace window and scrolling to the first transition and then
clicking the left mouse button on the table line will produce a vertical
cursor on the trace. The effect is shown in Figure 6.4. From this figure
the table shows 82.489410ms. Scrolling to the next transition, which is
the first False in this example, gives a time of 82.991970ms. The differ-
ence is 0.50256ms. Trace options used were continual mode, maximum
records = 2000.

fm_Trace (progi)

N f{min:s:ms.js.ns) | dt PC Source P17 |
n26 : 2.486.890 0:00:00.000 00:0153 CLR TFO FALSE
27 487.250 0:00:00.000 00:0156 RET FALSE
L2g 487.970 a 0.00000:013C JMP AGAIN FALSE
l:.‘? .488.780 0:00:00.00000:0130 SETB T2EX FALSE
mmmam_

.490.040
.490.580
.491.120

MOV.B THO, # TRUE
MOV.B TLO, & TRUE
SETB TRO IRUE

0:00:32.500.000 00032000000

Figure 6.4 Simulation response showing trace window and transition times

Exercise 6.1

An XAG49 microcontroller having an 11.0592 MHz clock is to be used to
generate a 1 kHz square-wave signal from pin 7 of port 1. Write a C program
to achieve this.

6.2 XA registers

The XA general registers are shown in Figure 6.5. The registers are 16-bit wide
although registers RO to R7 may be accessed as high byte or low byte. As with
the 8051 family, registers RO to R3 are available in four banks and these banks

XA registers 147

R 15
R 14
R 13
R12 Global registers
R 11 (word only)
R 10
R9
R8
L SSP I
SP(R7) R7H USP R7L
R6 R6H R6L
Global registers
R5 R5H R5L
R4 R4H R4L
R3 R3H R3L
R2 R2H R2L
Banked registers
R1 R1H R1L
RO ROH RoL

Figure 6.5 XA general registers

are selected by two bits RS0 and RS1 in the program status word high (PSWH)
byte register:
PSWH

SM ™ RS1 RSO IM3 M2 IM1 IMO

SM = 1 System mode
SM = 0 User mode

The XA can be used in a multitasking system, operating in system mode (system
designer) or user mode (product user). In Figure 6.5, Register 7 (R7) is either the
system stack pointer SSP (SM = 1) or the user stack pointer USP (SM = 0).
TM=1 Trace mode on, SM must=1
TM =0 Trace mode off
Putting TM =1 causes the XA to pause after each instruction and a monitor
program could display any of the XA registers. This could be used for system debug.
RSI1, RSO Register bank selection, RS1, RS0 = 0, 0 is default bank 0
IM3,IM2, IM1, IMO Interrupt mask levels. 1111 = F is the highest level

The PSW low (PSWL) byte register contains arithmetic and logic unit (ALU)
information.

148 The XA 16-bit microcontroller

PSWL

C

AC

C carry flag

AC auxiliary Carry flag
V overflow flag

N negative result flag
Z zero result flag

The program line in the program of Example 6.1 occurring at reset (ORG 0)
DW 8F00H,START

puts the XA in system mode (SM) and set the highest interrupt level, i.e.

8FO0H = 1000 1111 0000 0000;1000 1111 in PSWH 0000 0000 in PSWL

PSWH

SM

™

RSI RSO

M3

M2

IM1

IMO

1

6.3 Watchdog timer

The watchdog timer protects the system by causing a main reset when the
watchdog underflows as a result of a failure of software to feed the timer prior
to it reaching its overflow count. Unusually the XA watchdog timer is on by
default and if not required it must be programmed off.

The watchdog timer has four SFRs:

WFEEDI1

WFEED2

WDL
WDCON

feed part 1

feed part 2
WatchDog auto-reLoad

WatchDog CONtrol

The watchdog timer arrangement is shown in Figure 6.6. Bit functions of the
WDCON SFR are:

WDCON
PRE2 PREI PREO - - WDRUN | WDTOF -
PREn Watchdog pre-scale

WDRUN = 1 (watchdog on)

= (0 (watchdog off)

WDTOF WatchDog TimeOut Flag

Watchdog timer 149

Watchdog feed sequence
MOV WFEED1.#A5H

MOV WFEED2 #5AH
TCLK — : Pres‘TaIer ‘ 8;:bcitu g?ggn > Internal reset
N — :
I
L > |
|Pre2 | PRE1| PREO| - | - |woRuN|woTOF| - |wDCON

Figure 6.6 XAG49 watchdog timer

WDCON default (reset) value = E4H = 1110 0100. Hence watchdog on by

default. The required routine to turn it off is:

MOV.B WDCON, #0
MOV.B WFEEDI, #0A5H
MOV.B WFEED2, #5AH

and this must be the very first program task.

Using the watchdog would be good industrial practice. Local electro-magnetic
interference (EMI) could freeze the circuit operation and a watchdog induced reset
would automatically restart the circuit. The watchdog time delay, ¢p, is given by:

tp = tosc X Nx P(W +1)
where:
tosc = crystal oscillator cycle time
N = main timer prescale value

P = watchdog prescale value
W = watchdog 8-bit WDL value

N may be set using the system control register (SCR) SFR:
SCR

- - - - PT1 PTO CM

PZ

PT1 PTO N

0 0 4
0 1 16
1 0 64
1 1 -

150 The XA 16-bit microcontroller

N = 4 is the default. P may be set using WDCON:

PRE2 PREI PREO P

0 0 0 32
0 0 1 64
0 1 0 128
0 1 1 256
1 0 0 512
1 0 1 1024
1 1 0 2048
1 1 1 4096

P = 4096 is the default value.

Example 6.2

An XAG49 microcontroller system having an 11.0592 MHz crystal oscillator
uses the watchdog. WDL value is 8AH, SCR is 04H and WDCON is 64H.
Determine the maximum time in which the watchdog refresh routine must be
applied.

Solution

fosc = 11.0592 x 10° Hz
tosc = 1/fosc = 90.422ns

SCR = 04H = 0000 0100 binary, hence N=16.

WDCON = 64H = 0110 0100 binary, hence P=256.

WDL = 8AH = (8 x 16 + 10) decimal = 138.

The watchdog time delay, fp = 90.422 x 107 x 16 x 256(138 + 1)= 51.48 ms.

WATCHDOG REFRESH PROGRAM ROUTINE

Using values from Example 6.2, the instructions to produce the required values
of N, P and W are:

MOV.B SCR, #04H
MOV .B WDCON, #f64H
MOV .B WDL, #8AH

The following subroutine must be continually applied within 51.48 ms time
periods to prevent the watchdog from resetting.

Watchdog timer 151

CLR EA ; disable all interrupts
MOV.B WFEEDL #0A5H
MOV.B WFEED2 #f5AH

SETB EA ; enable all interrupts
RET
Example 6.3

The program of Example 6.1 is to be modified so that the watchdog is enabled
with a time-out delay of approximately 0.6 ms.

Solution

tp =tosc X N x P(W+1)=90.42ns x 4 x 32(51 + 1) = 0.602 ms

The two watchdog feed lines are written into the 0.5 ms delay, so the watchdog
should never time-out.

Program
SINCLUDE (REGXAG49.INC) ; list of sfr addresses
ORG 0 ; reset address
DW 8FO0OH, START ; define word hex8F00
ORG 120H ; program start address
START: MOV.B WDCON,{#04H ; watchdog pre-scale = 32
MOV.B WDL,#51 ; watchdog auto-reload =51
MOV.B SCR,#0 ; timer clock pre-scale =4
MOV.B TMOD,#01H ; Timer0 into mode 1
AGAIN: SETB P1.7 ; pin7 port 1 to logic 1
CALL DELAY ; call delay routine
CLR P1.7 ; pin7 port 1 to logic O
CALL DELAY ; call delay routine
JMP AGAIN ; repeat pin7 toggling
DELAY: MOV.B THO,#0FAH ; FAH into TimerO high byte
MOV.B TLO,#99H ; 99H into Timer0 low byte
SETB TRO ; turn TimerO on
FLAG: JNB TFO, FLAG ; wait till flag sets at rollover
CLR TRO ; turn TimerO off
CLR TFO ; clear flag TFO to zero
MOV.B WFEEDL#0A5H ; feed the watchdog
MOV.B WFEED2,##5AH ; feed the watchdog
RET ; return from sub-routine
END ; end of assembly language
Simulation

The simulation response is shown in Figure 6.7. In the simulation, putting a
breakpoint at MOV.B TMOD.,#01H and running the program from reset, the
simulation will stop at this breakpoint. Pressing GO again, the program repeats
at the AGAIN label so that, provided the watchdog is fed in time, the simula-
tion should not stop at the breakpoint again.

152 The XA 16-bit microcontroller

@ cride’book!progl.ana B - |0 x| 1 =10l =] m [Tl B3
fINCLUDE (REGXAGAD. TNC) :liat of sfr addresses 3
o5 0 iressr address THLO [FOFC TEONfTE (] e
[FO0H, START :define word hexsFO0 HIHLOW TE0 ID_ LATEHF:'IT“[Mo Conrection
ORG 120H sprogram start addreas — [NDCmiun
4| START: MOV.B UDCONHO4H ;watchdag pre-scale=3z THED [5G TRO [T Al ;
Fi MOV.B UDL,H#51 swatchdoy auto-reload = 51 e - ‘-LEI [NDCarnedm
v MOY.B SCE, HO ;timer clock pre-scale = 4 Furction: imer. 4 [ND Conrection
THOD, HO1H ;Timer 0 into xode 1 State: on ‘ il [an;m
4 AGATN: SETB .7 :pin? port 1 to logic 1 ; A a
3 CALL DELAY scall delay rourine EEEDT S iRl
ar PL.7 spin? port 1 oto logic O 7 [No Connection
CALL DELAY scall delay routine =
4 JOMP AGAIN srepeat pin? coggling
4 DELAY: MOV.B THO,HOFAH #FAH into TimerD high byte
b MOV.B TLO,H25H J99H into TimerD low byce Pomer IU_UT
'l SETHE TRO sturn Timer(on
w Stater on
CLR TRO rturn Timer0 off Peload Vase : 33
LR TFO sclear £lag TFO to zero Divigor: 32

Figure 6.7 Simulation response illustrating the effect of the watchdog timer

Coming out of the simulation and changing WDL to #34 (0.4ms), re-
compiling and returning to the simulation shows that repeated pressing of the
GO button results in the program continually sticking at the breakpoint having
arrived there from a watchdog reset.

The counter in the watchdog simulation window is that of the WDL register
and shows it decrementing. For the watchdog delay of 0.6 ms WDL starts from
33H (51 decimal) and before WDL reaches zero the 0.5 ms delay ends and the
watchdog is refreshed. For the watchdog delay of 0.4ms (WDL = #34 or
#22H) the 0.5ms has not completed when WDL decrements to zero and the
watchdog causes a main reset.

Exercise 6.2
Write the program for Example 6.3 using C language.

6.4 UART

The equation for the timer range value (TRV) when using the XA depends on
the timer and mode used since the timer range (TR) can be either 65536 (16-bit
timer) or 256 (8-bit timer). Timers 2 and 1 in mode 0 are 16-bit timers while
timer 1 in mode 2 is an 8-bit timer.

Oscillator frequency
N x 16 x Baud rate

TRV =TR —

N is the timer clock pre-scaler set by bits PT1 and PTO in the system config-
uration register (SCR); this register is shown in earlier text on the watchdog
timer. If TR = 65536 then TRV is converted into hex and put into reload
registers RTL1 and RTHI1 for timer 1 mode 0 and registers T2CAPL
and T2CAPH when Timer 2 is used. If TR =256 then TRV is 8 bits and is
loaded into RTLI.

UART 153

Example 6.4

(a) Timer 1 mode 2 is to be used with oscillator frequency = 11.0592 MHz,
N =4, baud rate = 9600. Determine the value for TRV and derive the program
lines that would place the correct values in the timer registers.

(b) What would be the changes necessary to part (a) if timer 2 is used?

Solution
(a) TRV =238 and the program lines could be:

MOV.B TMOD,#20H ; timer 1 mode 2

MOV.B RTLI,#238 ; timer 1 reload TL1
MOV.B TL1,7#238 ; TL1 also initially set
SETB TR1 ; turn timer 1 on

(b) Iftimer 2 had been used then TRV = 65518 decimal = FFEE hex and the
program lines could be:

MOV.B TH2,{fOFFH ; FFhex into timer 2 high byte

MOV.B TL2,#fOEEH ; EEhex into timer 2 low byte

MOV.B T2CAPH,#fOFFH ; FFhex into timer 2 high byte capture
MOV.B T2CAPL,#fOEEH ; EEhex into timer 2 low byte capture

OR.B T2CON, ##34H ; enable Rx and Tx clocks and timer 2 on

T2MOD not used since timer 2 defaults to 16-bit baud rate generator.

Example 6.5

Write an assembly language program that repeatedly sends two lines of text:
‘Roses are red’

“Violets are blue’.

Solution

A comparison can be made between this UART program and that for the
8-bit P89C664 in Chapter 4 (Example 4.14) where the requirement was to
send a single line of text. The basic program structure is modified to
send two rows of text. Of course the XA has a different start and
the watchdog is turned off and also the XA uses bytes and words. The
registers used are either word length e.g. R6 or byte length e.g. R3L (L for
low byte).

Look at the alternative to using the DPTR (data pointer):

MOVC R3L, [R6 +]

R6 contains the message address; the above instruction moves the contents of
the address (message characters) into the low byte of R3 and increments R6
(points to the next character).

154 The XA 16-bit microcontroller

Program
SINCLUDE (REGXAG49.INC) ; list of sfr addresses
ORG 0 ; reset address
DW 8FOOH, START ; define PSW
ORG 120H ; program start address
START: MOV.B WDCON, #f0 ; watchdog control off
MOV.B WFEEDI,{0ASH ; watchdog feedl
MOV.B WFEED2,#5AH ; watchdog feed?2
MOV.B SOCON,{f42H ; serial mode 1, TI set
MOV.B TMOD,#20H ; timer 1 mode 2
MOV.B RTLI,{#238 ; timer 1 reload TL1
MOV.B TLI1,#238 ; TL1 also initially set
SETB TR1 ; turn timer 1 on

FIRST: MOV.B RZL,#1
TEXT1: MOV.W R6,#MSG1
JMP NEXTCH
TEXT2: MOV.W R6,{MSG2
NEXTCH: MOVC.B R3L, [R6+]

message marker

messagel address into R6
jump over message?2
message?2 address into R6
contents of R6 into R3L,
increment R6

CJNE R3L,#f7EH, NEXT ; checkforendofmessage,~=7EH
MOV.B R3L, #ODH carriage return into R3L
CALL SEND send carriage return
MOV.B R3L,#0AH line feed into R3L

CALL SEND send line feed

DJINZ R4L,FIRST decrement R4L, if not zero
messagel

if R4L zero message?

JMP TEXT2

NEXT: CALL SEND ; send current character
JMP NEXTCH ; get next character
SEND : JNB TI, SEND ; check SBUF clear to send
CLR TI ; clear TI
MOV.B SOBUF,R3L ; send current character
RET ; return from subroutine
MSG1: DB ‘Roses are red~’ ; messagel
MSG2: DB ‘Violets are blue~’ ; message?2
END ; end of assembly language
Simulation

The simulation can be run with the animation button set. The animation button
is shown in Figure 6.8.

[

Figure 6.8 Animation button

In the simulation the blue horizontal cursor moves through the program
and the message text prints out on the UART Buffer window as shown in
Figure 6.9.

8051 compatibility

155

Gl
GRAGAS, THE) Lt
ORG o v TEE Eiosat Bulfer | Mode T 8-bit IART
& ?;g‘?’]'STMT I |REE el Feceie b generatar: Timar 1 cverfiaw (3539 Hz)
O e P iEasthiode. 1= FC-PORT | Transmit bl gengrator Timer | ou=riose (3535 Hz)
3 WOV.E WFEEDL HOASH =ue
Fl HOV.B UFEEDZ, #5AH i
4 s SOCOH, #H42ZH [Fozes are red
4 HOV.B THOD, §20H ielets are blue
d MOV.B RTLL #Z3E Fosed are red
4 MOV.B TLL.HEZE Viclets are blue
4 SETE TRL
4 FIRST: MOV.B R4L.#l imeggage et
4 TEXTL: MOV.W RG HMEGL imessagel
£l JHP HEXTCH : "
4 TEXTZ: MIOV.W RE HNSGE
4 MEXTCH: MOVC.B ER3L, [RE+]
4 CJHE R3L HTEE, ¥ZXT
4 HOV. B RAL, HobH
i CHLL B Input
MOV B R3L H0AK
CHLL SEND
4 DINE R4L, FIRST
3 pid TEXTZ
4| NEXT: CHLL SEND
4 NP HEXTCH 4 »
4| SEND: &: _I A
; | © Timer 1 (pra2) IS=IET] | +ain Registers (progz) = [RIET
¥l I T
THL [0oFB TCON[CT o oo o[
‘Violets ace blue.’ RTHLI[OCEE TF1 [T FT W P2 L
En, fend TMOD[ZD TR i =0 O O Pz [FF
i usk [0 “EE—— P2 [
;‘I'::m ik S5P AT [onanes TEOM [C3
an
: THLD [T0m
4 | |[Mode: 2 3:biteg T with o
atomatc rabhad of ATLT 1 1L, Sm Em 8im THUI [iF
[0 oo [oe
sz || i THL2 [T0m
oo oo [0 | Ada fo o [0 |pcom i

Figure 6.9 Simulation response showing the message printed in the UART buffer
window

Exercise 6.3

Implement Example 6.5 in C.

6.5 8051 compatibility

The XA-G3 was the first XA on the market and was introduced as the 16-bit
version of the 8051 microcontroller and there are bits in the SCR (system
configuration register) to help the 8051 designer. The XAG49 is basically the
flash version of the XA-G3.

SCR

- PT1 PTO CM Pz

CM =1
PZ=1

8051 compatibility mode

Page Zero, forces the code and data memory to be limited to 16
address lines.

When CM =1 the general-purpose registers are re-allocated. The registers
are shown in Figure 6.10. Also there is a special 8-bit PSW register that
looks like the PSW register in the P§9C664:

156 The XA 16-bit microcontroller

SSP
! ~

R7 R7H USP R7L
R6 R6H =DPH DPTR R6L=DPL
Global registers
R5 R5H R5L
R4 R4H=B R4L=A (ACC)
R3 R3H R3L 1
R2 R2H RoL]
Banked registers
R1 R1H R1L
RO ROH ROL
I
I

Figure 6.10 XAG49 general-purpose registers
PSW51

C AC FO RSI RSO oV F1 P

Translation software used to be available to convert 8051 programs to XA
but it was not satisfactory. The XA programs start up differently and there is
the watchdog, on by default. There is the need to use bytes (B) and words
(W) and there is double-word (D), a 32-bit instruction, used by the division
instruction.

It is the authors’ opinion that the XA is best treated as a new microcontroller
in its own right and not one that 8051 programs should be forced into. The
Flash XAG49 is a particularly useful 16-bit microcontroller having two
UARTSs and a good set of timers. The default watchdog is an integral part of
the device and far more robust than that of the P89C66x family; use of a
watchdog is good practice for reliable systems.

6.6 Interrupts

The interrupt table for the 8-bit P89C66x microcontroller family showed eight
interrupts which, apart from the two external interrupts INTO, INTI,
occurred as a result of actions by the onboard peripherals. Collectively these
are described as event interrupts. There was another type of interrupt, although
it was not emphasised as such, and that is the reset. The action of operating the
reset always starts the system running again from the reset address; reset is the

Interrupts 157

highest overriding interrupt. In XA terms, the reset is described as an exception
interrupt that is serviced immediately.
The XA has four types of interrupts:

exception interrupts
trap interrupts
event interrupts
software interrupts.

B =

Details of exception interrupts are provided in Table 6.1.

Table 6.1 XA exception interrupts
Exception interrupts — non-maskable

Exception Vector Arbitration ranking Service
interrupt address precedence
Breakpoint 0004H-0007H 1 0

Trace 0008H-000BH 1 1

Stack Overflow 000CH-000FH 1 2
Divide-by-zero 0010H-0013H 1 3

User RETI 0014H-0017H 1 4
<reservedl > 0018H-001BH - -
<reserved2 > 001CH-001FH - -
<reserved3 > 0020H-0023H - -
<reserved4 > 0024H-0027H - -
<reservedS > 0028H-002BH - -
<reserved6 > 002CH-002FH - -
<reserved7 > 0030H-0033H - -
<reserved® > 0034H-0037H - -
<reserved9 > 0038H-003FH - -

NMI 009CH-009FH 1 6

Reset 0000H-0003H O 7

(High) always serviced immediately,

aborts other exceptions

Exception interrupts are serviced as soon as they occur since each represents
some important event or problem that must be dealt with before normal
operation can resume. Reset has a higher priority than the other exceptions
and is always serviced immediately, aborting other exceptions.

Example 6.6
The following program actually has a line:

DIVU.B R4L, #0 (register 4 low byte is divided by zero)

It should be appreciated that the purpose of the program is to demonstrate an
exception handling routine. The divide-by-zero interrupt vector address is
0010H. When the divide-by-zero happens the program goes to a UART routine

158 The XA 16-bit microcontroller

that could send a message to the host PC. In a small system, the message might
be sent to an alphanumeric LCD.

Solution
Program
SINCLUDE (REGXAG49.INC) ; list of sfr addresses
ORG 0 ; reset address
DW 8FO00H, START ;SM=1, IM=F
ORG 0010H ; divide-by-zero interrupt
; vector
DW 8AOOH, TEXT ; 80 to message
ORG 120H ; program start address
START: MOV.B WDCON, #0 ; watchdog control off
MOV .B WFEEDI, #f0AS5H ; watchdog feedl
MOV .B WFEEDZ2, #f5AH ; watchdog feed?2
MOV .B SOCON, ##42H ; serial mode 1, TI set
MOV .B TMOD, #20H ; timer 1 mode 2
MOV .B TH1, #fOFAH ; baudrate 9600
MOV. B TL1,{fOFAH ; TL1 also initially set
SETB TR1 ; turn timer 1 on
;Divide by zero
MOV . B R4L, 44 ; load R4L with 44
DIVU.B R4L, #0 ; divide R4L by zero
STAY: JMP STAY ; stay here after message
TEXT: MOV. W R6,#IMSG1 ; messagel address into R6

NEXTCH: MOVC.B R3L, [R6+] contents of R6 into R3L,

increment R6

CJINE R3L,#7EH, NEXT ; check for end of message,
; ~=7EH
MOV .B R3L, #ODH ; carriage return into R3L

CALL SEND ; send carriage return
MOV .B R3L,{f0AH ; line feed into R3L
CALL SEND ; send line
RETI ; return from interrupt
NEXT: CALL SEND ; send current character
JMP NEXTCH ; get next character
SEND : JNB TI, SEND ; check SBUF clear to send
CLR TI ; clear TI
MOV.B SOBUF, R3L ; send current character
RET ; return from subroutine

MSG1: DB ‘Divide by zero~’ ; Messagel
END end of assembly language

Simulation

The simulation response is shown in Figure 6.11. It is useful to single step until
the exception interrupt occurs; at this rate it would be possible to see that the
SSP stacks down to 00FA. The SPs in the 8051 microcontrollers stack up.

Interrupts 159

10] [
W TRM & ABCE Feget Buffar i MUGB. 1: B-bit L&D
"' REC = Rieceive bd genare
[Fostbode Hiw PC-FORT i Transmit be gensrt

Butfer:
[Fivide by zero

LTHC)
]

BFCOH, STRRT
[IGTETE)
DADOH, TEXT

THL, BUFAl
BY.B TLL BUFAN
SETH TRL

Input

4| TEXT: B LW

S NEXITH: BIVC.B _‘I

" CalbiE:

| i HEE
g&,ﬁ P 03146 o m B FF

I rETT FT M F2 s [E

{wEer: cm scr o [0 o £e ’03: P2 [

4| SEND: ﬁ us= 1 —5EEL Fs ,r

i an 55P (7| [007m ESUEN 365 yony [p—

| BV e — m E . =

J BET | R 55 T4 A%

HEGL: DR !‘—Iﬂ_lﬁlf e
o AN W7 i F25 R1S R THLZ (oo
C o | 7 e lo [poon[m

Figure 6.11 Simulation response showing the effect on system registers of an
exception interrupt

If the simulation is then run by pressing Go (the program is also stopped with
this button), it should be possible to see in the Main Registers window that Z
(divide-by-zero) and V (overflow) in the PSW are set to 1.

Also R3L contains 0A (line feed was the last action of the message routine).
R4H contains hex 2C (the equivalent decimal is 44). R4L contains FF; this is as
big as 8 bits gets! In mathematical terms 44/0 might tend to infinity. The
message appears in the UART buffer.

Exercise 6.4
Using C language, write a program that demonstrates division-by-zero excep-
tion and, in your exception function, provide a method that sends a message to
the UART.

Recall that when event interrupts were used for the 8-bit P89C664 microcontroller
the IE register had to be configured and priorities assigned. This will also be done
later for the XA event interrupts. This type of preparation is not necessary for
exception and trap interrupts since they are activated as soon as they happen.
However, exception interrupts have a higher priority than traps and reset has the
highest priority of all. Details of trap interrupts are shown in Table 6.2.

It should be noted that a trap interrupt is a type of exception interrupt. It
occurs immediately and there is no prioritising. The use of trap interrupts is
illustrated in Figure 6.12.

The XA has two operating modes, system and user (or application). This is in
common with other microcontrollers capable of sustaining and supporting real-
time multitasking systems. To manage tasks between these two modes the XA

160 The XA 16-bit microcontroller

Table 6.2 XA trap interrupts
Traps — non-maskable

Description Vector address Arbitration ranking
Trap 0 0040-0043H 1
Trap 1 0044-0047H 1
Trap 2 0048-004BH 1
Trap 3 004C-004FH 1
Trap 4 0050-0053H 1
Trap 5 0054-0057H 1
Trap 6 0058—-005BH 1
Trap 7 005C-005FH 1
Trap 8 0060-0063H 1
Trap 9 0064-0067H 1
Trap 10 0068-006BH 1
Trap 11 006C-006FH 1
Trap 12 0070-0073H 1
Trap 13 0074-0077H 1
Trap 14 0078-007BH 1
Trap 15 007C-007FH 1
System mode (SM=1)
Trap routine SSP
A
IS
2
5 oy o
£ L
Q
o
'_
\ \
User program USP

User mode (SM=0)

Figure 6.12 Use of trap interrupts

has two SPs, SSP and USP. The control between the two is done using the SM
bit in the PSWH.

Trap interrupts occur in user mode programs but are serviced in the control-
ling SM program.

Example 6.7
The following program is designed to illustrate the use of a trap interrupt that
causes pin 7 of port 1 to toggle.

Interrupts 161

Solution
Program
SINCLUDE (REGXAG49.INC) ; sfr addresses
ORG 0 ; reset address
DW 8FOOH, START ; SM=1, IM=F
ORG 54H ; Trap 5 vector address
DW 8FO0O0H, SYSTEM ; go to System routine
ORG 120H ; program start address
START:
;watchdog off
MOV.B WDCON, #0 ; watchdog control off
MOV.B WFEEDI, #f0A5H ; watchdog feedl
MOV .B WFEED2, #5AH : watchdog feed?2
;assign SSP(System Stack Pointer)and USP values
MOV.W R7,#0800H ; SSP =0800H
CLR SM ; SM =0 User mode
MOV . W R7,#0800H ; USP = 0800H
; User mode routine runs whilst P1.0 is high
USER:
SETB P1.4 ; port 1 pin 4 to logicl
CLR Pl.4 ; port 1 pin 4 to logicO
JB P1.0,USER ; test pin 0 for logicl
TRAP #05 ; activate Trap if pin 0 =0
JMP USER ; repeat User routine
;System mode routine runs when Trap 5 is executed
SYSTEM:
SETB P1.7 ; port 1 pin 7 to logicl
CLR P1.7 ; port 1 pin7 to logicO
RETI ; return from interrupt
END ; end of assembly language
Simulation

The simulation response is shown in Figure 6.13. Selecting the Animation
button (shown in Figure 6.8) and then pressing GO causes the simulation to
continually repeat the first three lines of the user routine. Because the port pins
default to logic 1, the switch test on pin 0 is high.

Stopping the simulation and looking at the main registers would show that
register 7 (R7) is assigned to the USP; it was left there when the SP values were
assigned. Also looking in the PSW window would show that SM = 0, confirm-
ing that the system is in user mode.

Moving the cursor to the LATCH space on the port 1 window and clicking
the left hand mouse button to the right of the F, the least significant byte, and
changing it to an E will cause pin 0 to go to logic 0. This would cause a colour
change from green to red.

Now continuing the simulation by single stepping until the trap instruction
executes when the program jumps to the system routine. If the main registers
are checked it will show that SM has now gone to 1 and R7 is pointing to the

162 The XA 16-bit microcontroller

B ciride\bookiprogd.axa =10l x] JR=IE|
FINCLUDE (REGXAGAS. INC| ;efr adiresses R
ORG 0 sreset sddress PC | K s [oo PO |FF
oW BFO0H, START :3M=1, IN<F PT M FZ s |uu B [EF
ORG 548 Trap § vector address
it SFO0H, 5TSTEM ;go to System routine seR [0 5 [o S o P2 [FF
DR 120H sprogram start address USF R7] IEIIISEIIJ T ———— i1
3_‘::’:1:\“ S5F [oooann ESWEN FES | rony fop
§ g off o
] MV B TDCON, #o swatchdoy control off —PSwW THLO [ooon
i MOV.E UFEEDL,#OASH ;watchdog feedl SmTm REIm e] L
d MOV.B UFEEDZ,BSAH vatchdoy feed? |g_|g_|alf | O 0000
sassign 3%F (3Jysren Itack Pointer) and USF walues C MY N 2 e R25 R1s ROs | THL2 [oooo
oo oo E o [0 o [0
S MOV.H R, HO0S00H ;SSP-0800H O O [0 fo"Jo 7} oan o
i R E $8M=0 User node
i WOV.W R7,HOS00H :U3P=0800H ' P1 (progt)
sUser mode routine runs whilst PL.0O i= high

0 [Mo Connection

LATEHT[Mo Connection

Fl - 1 pi;

i : ind v 1 - : ‘F' [MnCnmm
] f 1.0, U3E - pind for logicl = [NoCo'!:tm
3 TRAP HOS ;activate Trop if pin0=0 E i

¥l JMP TEER srepeat User routine ‘ i s g

:Systen mode routine runs when Trap 5 1s executed [NO Connection

USER:

SYSTER: [Mo Connection
SETE PL.T sportl pin? to logicl .
4 CILR P1.7 sportl pin? to logicO 7[an:n i
4 BETT sreturn from interrupt
EHD rend of aszenbly language

Figure 6.13 Simulation response showing the effect on system registers of a trap
interrupt

SSP. Execution of the trap instruction has taken the microcontroller from user
mode to SM.

If single stepping is continued, pin 7 will be toggled and when RETI is
executed the microcontroller would return to user mode.

Exercise 6.5
Use a C program to demonstrate the trap events, and prove the C program
works by using simulation similar to that used in Example 6.7.

Event interrupts are illustrated in Table 6.3. Each event interrupt has seven
priorities associated with it, 9 (lowest) to 15 (highest).

Table 6.3 Event interrupts

Flag Vector Enable Interrupt Arbitration
Description bit address bit priority ranking
External interrupt 0 TEO 0080-0083 EXO IPA0.2-0 (PXO0) 2
Timer 0 interrupt TFO 0084-0087 ETO IPA0.6—4 (PTO) 3
External interrupt 1 IE1 0088—-008B EX1 IPA1.2-0 (PX1) 4
Timer 1 interrupt TF1 008C-008F ETI1 IPA1.6-4 (PT1) 5
Timer 2 interrupt TF2 0090-0093 ET2 IPA2.2-0 (PT2) 6

(EXF2)
Serial port 0 Rx RI.O 00A0-00A3 ERIO IPA4.2-0 (PRIO) 7
Serial port 0 Tx TI.O 00A4-00A7 ETIO IPA4.6—4 (PTIO) 8
Serial port 1 Rx RI.1 00A8-00AB ERIl1 IPA52-0 (PRIl) 9
Serial port 1 Tx TI.1 00AC-00AF ETI1 IPAS5.6-4 (PTIl) 10

Interrupts 163

The interrupt priority column shows three bits associated with each event
interrupt and this could imply a range 0-7 but event interrupts must be read
as having a range (8 + 1) to (8 + 7) i.e. 9—15. This is to avoid confusion with
software interrupts, explained later, which have a lower priority range of
1(lowest) to 7(highest). A value of 0 in the event interrupt priority field will
disable the interrupt.

Example 6.8
A program to illustrate the use of event interrupts will use the following
program lines:

MOV.B IPA0.# 20H ; Timer 0 priority = 10(i.e. 8 +2)
MOV.B IPAL# 03H ; External interrupt 1 priority = 11(i.e. 8 + 3)

So external 1 interrupt would have a greater priority than timer interrupt 0 even
though the latter has a higher arbitration ranking.

Solution
Program
SINCLUDE (REGXAG49.INC) ; sfr addresses
ORG 0 ; reset address
DW 8200H, START ; SM=1, IM=2
ORG 84H ; Timer O interrupt vector
DW 8AOOH,TIMER ; IM=10, go to Timer O int.
ORG 88H ; Externall interrupt vector
DW 8BOOH,EXTNL ; IM=11, go to Extnll int.
ORG 120H ; program start address
START: MOV.B WDCON #0 ; Watchdog of f
MOV.B WFEED1 jf0ASH
MOV.B WFEED2 jf5AH
MOV.B TMOD.ff02H ; Timer 0 in mode2
MOV.B TLO JFODDH ; hexDD into Timer O low byte
MOV.B RTLOJfODDH ; hexDD into Timer 0 Reload
MOV.B IPA1.jf03H ; Extnl int. priority=11
MOV.B IPAO f20H ; Timer 0 int. priority=10
MOV.B IEL,#86H ; EA and Ex1, ETO enables
SETB TRO ; turn Timer O on
STAY: JMP STAY ; stay here wait for int.
TIMER: SETB P1.7 ; Timer O interrupt routine
CLR P1.7 ; toggling pin 7 on portl
JMP TIMER ; repeat
EXTNL: SETB P1l.4 ; Externall interrupt
CLR Pl.4 ; toggling pin 4 on portl
JMP EXTNL ; repeat
END ; end of assembly language
Simulation

The simulation response is shown in Figure 6.14. Note that the first interrupt
mask (IM), third line of the program, is less than those of the event interrupts.

164 The XA 16-bit microcontroller

PRl E3] [interrunt contrulier (progs)
Each Interrupt can be individually enabled

DEOH EXTN0 : Interrupl is DISABLED, Priority = NONE
084H TIMERD : Interrupt Iz ENABLED, Priority = 10

DADH XTI : Interrupt is CNADLED. Priority = 11

MECH TIMERT : Interrupl is DISABLEDL, Priority = NONE
090H TIMER? : Interrupt is DISABLED, Priority = NONE
0A0H SERD R : Interrupt is DISABLED, Priority = NONE
0A4H SERD T : Interrupt is DISADOLED. Priority = NONE
&HH SEHT Hax - Internopl is DISABLEL, Priority = NONE
DACH SERT T Interrupt s DISABLED, Priority = NONE
100H Software 1: Interrupt is DISADLED. Priority = NONE
104H Sottware 2 : Interrupt is DISABLED. Priority = NONE
108H Software 3 © Interrupt is DISABLED, Priority = NONE
10CH Softwarc 4 : Interrupt is DISABLED, Priority = NONE
1101 Software § : Interrupt is DISADLED. Priority = NONE

L=lix]

i MOV.E WFEELL #1ASH
il MIV.E WFEEDZ, #5AE
MOV.E THAD HOZH
MV B TLO HIDTH
MOV B FTLO, HOTDH
HIV.E IPAL HOZH
MV B IPAD, HE0H

L IEL #36E

4 SETB TRO T14H Solbware B 2 Inleroopl is DISAHLED, Prioriby = NONE
JHP STAY 118H Software 7 - Interrupt is DISABLED, Priority = NONE
SETB FL.7
LR PL.T

TINER ———

[& 1ime o (prog =) |1 G] [P Gara S

THL [FEE TCONE 0 HoConnectio 0] HoCorerciing

H'?PIIEUIE:T . |1£ L LATEH[E [HoConnection LATD—FF"_[Ho Correctian

OO [T TR [T GEEIOIR 1o Connecten. | i | Moernectin

[0 W I e Conrection | [020 L) | Graund

11— || Functiney s, E |j HeCarnnecln a [HaCeersctian
Stale: on gl T [He Conneclion <[=Ean [Ha Cerrectizn

Mo 2 2t sag TLOLwih [Ho Connechion [Mo Correction

SLEOMEOE Biced of RTLO N TAA 7 [Mo Conmecion 7[Mo Correciion

Figure 6.14 Simulation response showing the effect of an event interrupt

This has no effect on the reset because reset is the highest priority exception
vector.

In addition to the interrupt window, timer 0 and port 1 windows, the port 3
window is also accessed. External 1 interrupt is activated by making pin 3 of
port 3 go to logic 0. Pressing the animation button (shown in Figure 6.8) and
pressing GO will run the simulation. Quite soon the timer 0 register will over-
flow and the interrupt sequence will run, toggling pin 7 on port 1.

With the simulation it is possible to position the cursor at strategic spots and
by adjusting the cursor position the arrowhead cursor changes to a pointing
finger; clicking the left mouse button would allow the values pointed at to be
changed. While the timer 0 interrupt program is running if the mouse cursor is
moved over pin 3 of port 3 then the pin 3 voltage level can be changed to
ground and immediately the external 1 interrupt would break into the timer 0
interrupt routine and pin 4 would be toggled. If reset is pressed the program
re-runs straight to the external 1 interrupt because pin 3 on port 3 would stay
low and the interrupt is level activated.

Exercise 6.6
Write a C program to configure the timer 0 in mode 2 with interrupt priority of
10 and enable external interrupt 1 with priority of 11. Then show the effects of
these in simulation as was illustrated in Example 6.8.

Software interrupts are shown in Table 6.4. Software interrupts are similar to
event interrupts except they are activated by software writing to the appropriate
interrupt request bit in the relevant SFR. There are two SFRs:

SWR (42AH) — bit addressable

- SWR7 SWR6 SWR5S SWR4 SWR3 SWR2 SWRI1

Software interrupt request

SWE (47AH) — NOT bit addressable

Interrupts 165

- SWE7

SWE6

SWES SWE4

SWE3

SWE2 SWEI1

Software interrupt enable

The primary purpose of the software interrupt is to provide an organised way
in which portions of the event interrupt routine may be executed at a lower
priority level than the one at which the service routine began.

Table 6.4 XA software interrupts

Description Flag bit Vector address Enable bit Interrupt priority
Software interrupt 1 SWRI1 0100-0103 SWEI1 (fixed at 1)
Software interrupt 2~ SWR2 0104-0107 SWE2 (fixed at 2)
Software interrupt 3~ SWR3 0108-010B SWE3 (fixed at 3)
Software interrupt 4 SWR4 010C-010F SWE4 (fixed at 4)
Software interrupt 5 SWRS 0110-0113 SWE5S (fixed at 5)
Software interrupt 6 SWR6 0114-0117 SWEG6 (fixed at 6)
Software interrupt 7 SWR7 0118-011B SWE7 (fixed at 7)

Example 6.9

In the next program a timer 0 event interrupt is set up with a priority of 9 and a
software interrupt is set up with a priority of 1. Half way through the event interrupt,
its priority is lowered to zero allowing the software interrupt to be activated.

The idea is that whilst the low priority software interrupt is active it could be

interrupted by other important event interrupts.

Solution

Program

$INCLUDE (REGXAG49.INC)

ORG
DW
ORG
DW
ORG
DW
ORG
;Watchdog off
START: MOV.B
MOV.B
MOV.B

0

8000H, START

84H

100H

8000H, SWINT1

120H

WDCON, 70

WFEED2 , #5AH

;intialise Timer O

MOV.B
MOV.B

MOV.B RTLO,{0EEH

TMOD, #02H
TLO, #fOEEH

;initialise interrupts

MOV.B

IEL,##82H

; sfr addresses

reset address
SM=1, IM=0

; Timer O interrupt vector
8900H,TIMERO ; goto Timer O interrupt
; SWR1 interrupt vector

; goto SWR1 interrupt
program start address

; Watchdog control off
WFEED1,#f0ASH ; Watchdog feedl

; Watchdog feed?2

; Timer O in mode 2
; TLO loaded with hexEE

; hexEE into Reload

; Enable all and Timer O

166 The XA 16-bit microcontroller

MOV.B IPAO,#10H Timer O priority =9

OR.B SWE,#01H ; SWI priority =1
; Timer O on
SETB TRO ; turn Timer O on

STAY: JMP STAY

; Timer O Event interrupt

TIMER O: SETB P1.0
CLR P1.0
MOV.B IPAO,#0
SETB SWR1

; Software interrupt

SWINT1: CLR SWR1

stay wait for interrupts

set pin 0 to 1
clrpin 0O to O
lower Timer O priority =0
activate SWI priority =1

to allow repeat SWI

SETB P1.1 setpinl tol

CLR P1.1 clear pin 1l to O

MOV.B IPAO,#10H ; up Timer O priority =9
RETI return from interrupt
END end of assembly language

Simulation

The simulation response is shown in Figure 6.15. If the interrupt, port 1 and
timer 0 windows are accessed, the animation button pressed, and the program
single stepped through, it should be possible to see timer 0 event interrupt
enabled and priority set to 9. Then the software interrupt would be enabled
with a priority of 1. The TLO and RTLO registers have a large number, so it

0 P[] [nterust controfler(proati B =101 %)
4 INCLUDE |REGXAGAS ., IHC] ;=fr addresses |l Each pt can be individually bled
aRG o rreset addresa
o S400H, START ! 080H EXTO : Interrupt is DISABLED, Priority = NONE
ORG S 084H TIMERD : Interrupt is EMABLED, Priority = 9
ot E900H, TIERD 088H EXTI . Interrupt is DISABLED. Priority = NONE
ORG 1000 DBCH TIMER1 : Interrupt is DISABLED, Priority = NONE
ow S200H, SWINTL 090H TIMERZ : Interrupt is DISABLED. Priority = NONE
ORG 12080 DADH SERD Rx: Interrupt is DISABLED, Priority = NONE
sWatchdog off) . 0A4H SERD Tx : Interrupt is DISABLED, Priority = NONE
|| START: MOV.B. AmEON; 40 sEatckyy ool ant 0ASH SER1 Roc: Interrupt is DISABLED, Priority = NONE
| M-8 JMMEEDIHOASH sRatchiupifead] 0ACH SER1 Tx: Interrupt is DISABLED, Priarity = NONE
I il e SHaEcagy eoons 100H Software 1 : Interrupt is ENABLED, Prio
i ety ST Gy 104H Software 2 : Interruptis DISABLED, Pri
| i o e 108H Software 3 : Interrupt is DISABLED, P
i oot L s e Thes B 10CH Software 4 Interrupt is DISABLED, Pri
rinitialise interrupta 110H Software 5 : Interrupt is DISABLED. Prior
J MOV.B IEL, 4B2H :Ensble all and Timerd 114H Software 6 : Interrupt is DISABLED, Priori
¢l MOV B 1PAO, H10H STimer prioricy=9 118H Software 7 : Interrupt is DISABLED, Priority = NONE
¢l 0r.B SWE HO1H ZSWL priority=1
stimer0 on
Fl SETB TRD sturn Timer0 on
| STAY: JHP STAY sstay wait for interrupts m 1000 x|
:Tiner0 EVent interrupt :
j TIMERO: SEIB PL.D zgec pind ta 1 0 | No Bonn=ciion THLD [G0FE TCON[TT
A LATCH[FE [Mo Conreclion RTHLO[GOEE TFD [0
J D fy [Mo Conneclion TMOD [TRO
sSoftware interrupt ‘Fﬂ ;]’No Cannzclice m
| SNINTL ;; Tt E = T NoCanneciion Furclices; fimer.
J ar PL.L e [Mo Cenneciic St
| MOV B TPAD, #10H |' Mo Conneclicn Mlgde:j:calzl 'EQII[LLTDI}D““‘TLD\
| HETL T - : ALK 030 0l n
B Gend of assexbly L il ditaecis

Figure 6.15 Simulation response showing the effect of a software interrupt

Interrupts 167

would not take long in single step mode to roll over and cause a timer 0 event
interrupt.

The event interrupt task is simple, pin 0 on and off. Next the event priority is
reduced to zero and this would allow the priority 1 software interrupt to
become active. Again the task is simple, pin 1 on and off, before the event
interrupt is restored to its priority level of 9.

EVENT INTERRUPT AND SOFTWARE INTERRUPT PRIORITISING

Figure 6.16 gives an example. Event priority level 10 starts off, and then a
level 12 interrupts it. When the level 12 finishes, the level 10 resumes; a level 5
software interrupt comes in but this must wait for all event interrupts to
finish. Whilst level 10 is happening, a level 8 is activated but has to wait
until level 10 finishes. Level 10 finishes and then level 8 is serviced. Only
after all the event interrupts are over can the level 5 software interrupt be
serviced.

Level 10 Level 12 Software Level8 Return Return Return to
interrupt interrupt interrupt interrupt from level from level level O
occurs occurs 5issued, occurs, 10, level 8 8, level 5
: return to but waits interrupt software
: level 10 forlevel serviced interrupt
: : 10 to : serviced
complete
12+ 4f—l
104 [
8_.
Execution]
priority
01— S
Time

Figure 6.16 Example illustrating event and software interrupt prioritising

Remember software interrupts have priority levels 1 (Ilow) to 7 (high) whilst
event interrupts have priority levels 9 (low) to 15 (high). Level 8 disables the
event interrupt and lets the software interrupt in. Typical XA hardware is
shown in Figure 6.17.

168 The XA 16-bit microcontroller

7 | 139
PLCC
17 | 129
L]
18 28

Pin Function Pin Function
1 Ves 23 Vpp
2 P1.0/A0/WRH 24 P2.0/A12D8
3 P1.1/A1 25 P2.1/A13D9
4 P1.2/A2 26 P2.2/A14D10
5 P1.3/A3 27 P2.3/A15D11
6 P1.4/RxD1 28 P2.4/A16D12
7 P1.5/TxD1 29 P2.5/A17D13
8 P1.6/T2 30 P2.6/A18D14
9 P1.7/T2EX 31 P2.7/A19D15
10 RST 32 PSEN
11 P3.0/RxDO 33 ALE
12 NC 34 NC
13 P3.1/TxD0 35 EA/Vpp/WAIT
14 P3.2/INTO 36 P0.7/A11D7
15 P3.3/INTH 37 P0.6/A10D6
16 P3.4/TO 38 P0.5/A9D5
17 P3.5/T1/BUSW 39 P0.4/A8D4
18 P3.6/WRL 40 PO0.3/A7D3
19 P3.7/RD 41 P0.2/A6D2
20 XTAL?2 42 P0.1/A5D1
21 XTAL1 43 P0.0/A4DO
22 Vgg 44 Vpp

Figure 6.17 Pin functions for the XAG49 PLCC package

Summary

The XA microcontroller is the 16-bit version of the 8051 device.

The device has a watchdog timer which is on by default.

The watchdog timer has a time delay that can be set, within a maximum
value, by the user.

The XA has 16-bit registers.

The XA has two UARTS.

The device has four types of interrupts.

The device has two operating modes — system and user.

y

Project Applications

7.1 Introduction

The text for earlier chapters has concentrated on particular devices with
explanations, and relevant programs, on the use of the onboard peripherals
of the specified device. The examples presented in the earlier chapters are of
a relatively trivial nature in order to illustrate the use of timers, interrupts,
etc. This chapter will present examples of a more complex nature designed to
achieve a specific objective but using the principles outlined in the preceding
chapters. The reader is invited to develop the projects further by adding to,
or modifying, the original project. This is not offered as an exercise and no
solutions are provided since the alterations to the original project could take
different forms. The use of simulation should enable the reader to establish
whether any alteration carried out on the original project results in the
required outcome.

7.2 Project 1: speed control of a small DC motor

The requirement is to use a microcontroller to drive a DC motor in both
forward and reverse directions of shaft rotation and to implement a two-speed
(fast and slow) arrangement. Switches are to be used to produce the two speeds
and effect a reversal of shaft rotation. A possible arrangement is shown in the
block diagram of Figure 7.1, which uses a P§9C664 microcontroller.

The method of speed control is by the pulse width modulation (PWM)
technique, described in Chapter 4, using the P89C664 device. Putting pin 5 on
port 1 (P1.5) to logic 0 and applying the PWM to pin 4 (P1.4) causes the motor
shaft to rotate. Holding pin 4 at logic 0 and applying the PWM to pin 5 causes
the shaft rotation to reverse. This control of forward or reverse rotation is
achieved by the bridge design of the motor drive circuit.

170 Project applications

P89C664 micro

P1.4
Motor on > Motor drive

circuit
Reverse P1.5 >

Speed 1 | P11 | Switch 1

Speed 2 |« P1.2 Switch 2

Reverse |- P1.0 Switch 3

Figure 7.1 Block diagram for speed control of a small DC motor using a P§9C664
microcontroller

If a switch is not pressed then the motor shaft remains stationary. For the
purposes of this example it is assumed that switch 1 sets a PWM ratio of 6:4 and
switch 2 sets a PWM ratio of 9:1.

From Chapter 4, the description of the PWM technique shows that a
6:4 ratio has a total of 6 + 4 periods (i.e. 10 periods in total), so a 9:1 ratio will
have the same total of 10 periods. A 6:4 ratio means 6 periods at logic 1 and 4
periods at logic 0 whereas a 9:1 ratio has 9 periods at logic 1 and 1 period at
logic 0 giving a higher average value over 10 periods. The latter arrangement
will give a higher DC value over the 10 periods and hence produce a higher speed
of shaft rotation than that produced by the former arrangement.

The capture registers CCAPIL (low) and CCAP1H (high) are both 8 bits and
therefore have 2% or 256 increments.

. 256
Increments per period = T0 = 25.6

Therefore 6: 4 = 154 increments at logic 1, 102 increments at logic 0. Ratio 9: 1 =
230 increments at logic 1, 26 increments at logic 0. It is assumed that the
switches are normally at logic 1 and switch to logic 0 when pressed. A possible
arrangement is shown in Figure 7.2.

+5V DC

3.3k
Port pin

|

Figure 7.2 Circuit for achieving logic 1/0 levels

Project 1: speed control of a small DC motor 171

MOTOR DRIVE

A bridge arrangement is shown in Figure 7.3. The circuit utilises complemen-
tary pair NPN/PNP transistors T2/T3 and T4/TS. The motor takes no more
than half an ampere while the diodes greatly reduce the induced voltages caused
by quickly switching currents.

VCC (eg 5V DC)

1k \
+D1 +D3 1K
T2 ¢ DC motor | T4
2K7
P1.4 2k7 . () T8 P1.5
D2 D4
T3 T5
I
Ground

Figure 7.3 A bridge drive circuit using the inputs from port pins P1.4 and P1.5 to
control the DC motor speed and direction of rotation

Motor off

If P1.4 and P1.5 are both held at logic 0, the collectors of T1 and T6 will both be
high. Thus T2 and T4 will be ON (conducting) while T3 and T5 will be OFF
(non-conducting) and there will be no conduction path through the motor
between the 5V supply rail and ground.

Motor on

If P1.5 is held at logic 0, the collector of T6 will be high, T4 will be ON and T5
will be OFF. If a PWM signal is applied to P1.4 then when the PWM is high at
logic 1, T1 collector will be low; so T2 will be OFF and T3 will be ON. Hence
there is a conduction path from ground through transistor T3, the motor and
through transistor T4 up to the 5V supply rail.

Motor reverse

If P1.4 is held at logic 0, then transistor T2 will be ON and T3 will be OFF. If a
PWM signal is applied to P1.5 then when PWM is high, transistor T4 will be
OFF, TS will be ON giving a reverse conduction path through transistor TS5,
the motor and transistor T2.

PROGRAM PLAN

The program is to drive the motor in one direction from pin 4 of port 1 using
the PWM method constructed from the programmable counter array (PCA).
Reverse is achieved by applying the PWM through pin 5 of port 1.

172 Project applications

Two speeds are possible: fast (9:1) and slow (6:4). Reverse and the speeds are
chosen from active-low on/off switches. See Figure 7.1.

The program is forced to check the switches by the action of the active low
interrupt INTO on pin 2 of port 3. The following program lines declare the interrupt
vector address at 0003H and point to the interrupt chosen sequence, CHECK.

ORG 03H ; external interrupt 0 address
SIMP CHECK ; jump to interrupt routine

START

CFH = 1100 1111 binary and this forces pins 4 and 5 of port 1 to be zero and
so the first action of the program is to turn off the motor.

SETB ITO Sets the interrupt to occur on a high-to-low transition (i.e.
negative edge) of a switch action on pin 2 of port 3 (INTO).

MOV IENO,#81H Puts binary 1000 0001 into IE register IENO to enable
the action of INTO.

CHECK

The switches on port 1 pins 0 (REVERSE), 1 (6:4 SPEED1), 2 (9:1 SPEED?2) are
normally at logic 1. When they are pressed they go to logic 0 and JNB (jump if
not bit) becomes active and sends the program to the corresponding routine.

SPEED

For SPEED1 and SPEED2, the PWM action is through pin 4 on port 1
whereas for the reverse rotations, SPEEDIR and SPEED2R, the PWM action
is through pin 5 on port 1. So the action of the first two program lines of these
four subroutines is to disable the PWM action on the opposite pins.

Program
SINCLUDE (REG66x.INC) ; sfr addresses
ORG 0 ; reset address
SJMP START ; jump to start
ORG 03H ; external interrupt O address
SJMP CHECK ; jump to interrupt routine
ORG 40H ; program start address
START: MOV P1,jf0CFH ; motor drives to zero
SETB ITO ; interrupts on negative edge
MOV IENO.##81H ; external int INTO enabled
STAY: SJMP STAY ; stay here till int occurs
CHECK: JNB P1.0,REVERSE ; if selected goto reverse
JNB P1.1, SPEED1 ; goto speedl 6:4
JNB P1.2,SPEED2 ; goto speed2 9:1
SJMP CHECK ; check switches again
SPEED1: ANL CCAPM2,#f0FDH ; disable PWM drive on P1.5

CLR P1.5 ; put P1.5 to logic O

Project 1: speed control of a small DC motor 173

ORL CCAPML1{t42H ; set ECOM1 and PWM1 (P1.4)

MOV CCAP1L,#102 ; load 6:4 count

MOV CCAP1H,#102 ; 6:4 count reload

ORL CCON,#f40H ; set CR to turn PCA timer on

RETI ; return from interrupt
SPEED2 : ANL CCAPM2,JFOFDH ; disable PWM drive on P1.5

CLR P1.5 ; put P1.5 to logic O

ORL CCAPM1,#F42H ; set ECOM1 and PWM1 (P1.4)

MOV CCAP1L,#26 ; load 9:1 count

MOV CCAP1H,j26 : 9:1 count reload

ORL CCON,#f40H ; set CR to turn PCA timer on

RETI ; return from interrupt
REVERSE: JNB P1.1,SPEEDIR ; goto speedl reverse

JNB P1.2,SPEED2R ; goto speed?2 reverse

SJMP CHECK ; check input switches
SPEEDIR: ANL CCAPM1,ffOFDH ; disable PWM drive on P1.4

CLR Pl.4 ; put P1.4 to logic O

ORL CCAPM2,fF42H ; set ECOM2 and PWM2 (P1.5)

MOV CCAP2L,#102 ; load 6:4 count

MOV CCAP2H,#102 ; 6:4 count reload

ORL CCON,#f40H ; set CR to turn PCA timer on

RETI ; return from interrupt
SPEED2R: ANL CCAPM1,#fOFDH ; disable PWM drive on P1.4

CLR P1l.4 ; put P1.4 to logic O

ORL CCAPM2,ft42H ; set ECOM2 and PWM2

MOV CCAP2L,#26 ; load 9:1 count

MOV CCAP2H,{26 ; 9:1 count reload

ORL CCON,#f40H ; set CR to turn PCA timer on

RETI ; return from interrupt

END ; end of assembly language

Simulation
This uses the Raisonance software (see Chapter 3 for details). With the Trace
window activated, settings used are Mode = Continual, Maximum number of
records = 500. P1.4 and P1.5 are set in the Watches window and have Trace added
to them. Port 1 (motor drive and switches) and port 3 (active low interrupt on pin 2)
are also displayed, as are the PCA and main registers windows. See Figure 7.4.
CLM on the Animation icon (two red characters in film). Pin 1 on port 1 may be
changed to ground by moving the mouse cursor over the pin till the arrow changes
to a pointing finger, then CRM and selecting ground. CLM on GO will run the
simulation. Pins 4 and 5 should go to ground in the port and Trace windows. Whilst
the simulation is running, moving the mouse cursor over pin 2 (3rd pin down) of
port 3 and changing it to ground will cause an active low interrupt. Eventually the
Trace window should show the 6:4 PWM signal. If the trace labels do not show
then CLM on P1.4 and P1.5 buttons at the top of the trace window (see Figure 7.5).
As an exercise the reader is invited to experiment with different combinations
of the control switches. However, remember that the changed response will
only happen when pin 2 on port 3 has a high (V) to low (ground) transition.
Figure 7.6 shows the simulation response at the time when the 6:4 speed on
port 1 pin 4 has changed to a reverse rotation 9:1 speed driven from port 1 pin 5.

174 Project applications

I REITIITE
wo

o xx
A [T T e FT
SR ani .

Figure 7.4 Simulation response showing project 1 program window and other
relevant windows

Figure 7.5 Simulation response showing the trace waveforms for a 6:4 PWM signal
on P1.4

Other registers to observe during simulation include the PC and SP both in the
main registers window. The PC contains the program address and the SP is
increased when an interrupt occurs and is restored to its default value of 07H
when the program returns from interrupt.

PROGRAM DEVELOPMENTS

1. It is possible to progressively increment the PWM ratio from a low speed
value (e.g. 10:90) up towards a higher speed value (e.g. 90:10) and to stay at
a set speed when a switch is released.

2. Dynamic breaking is sudden and can be caused by putting the motor into
reverse for a very short time (e.g. 100 ms) and then turning off the PWM.

3. Where would you put a register decrement delay routine to cause a time
difference (software de-bounce) between the occurrence of the interrupt
and the testing of the control switches?

Project 2: speed control of a stepper motor 175

[+ Port 3 (el O [ml e} 1 Poct 1 (uralNSY =] 3|

1] [HoConnection o i Ground
LATCHJFF [Mo Connastion meHjFl' Yeo
Z IElwmﬂ = [ler\d
&__: i I' Mo Connection ﬁ—_: i [Mo Connaction
E [Mo Conneciin E f Mo Cennecton
<[FBADIf o Connection || KI=PADI Ho Connection
[Mo Connection [Mo Connaction
7 I' Mo Connection 7 [Mo Connaction

2 Trace (proji} | N | #E8
- firce |t | FC | souce | P4 | P5 |

|
0:00:05.701 0:00:00.001 0045 SIMP STAY FAL3SE FALZE :El
0:00:05.702 0:00:00.001 0048 SIMP STAY FALSE FALSE
0:00:05.7040:00:00.001 0048 SIMP STAY FALSE FALSE
0:00:05, 705 0:00:00, 0010048 SIMP STAY FALSE FALSE
0:00:05, 706 0:00:00, 001 0048 STMP STAY FALSE FALSE
0:00:05.707 0:00:00,001 0048 SIMP STAY FALSE FALSE
0:00:05.708 0:00:00.001 0045 SIMP 3TAY FALSE FALZE
0:00:05.708 0:00:00. 001 0045 SJMP STAY FAL3SE FALZE
0:00:05.710 0:00:00.001 0043 SIMP STAY FALSE FALSE
0:00:05.7L10:00:00.001 0048 SIMP STAY FALSE FALSE
0 0:00:05, 712 0:00:00,001 0048 SIHP STAY FALSE FALSE ;I

04008 200,000 0505900000 000 100,000 0008 200000

Figure 7.6 Simulation response showing the trace waveforms for a 9:1 PWM signal
on P1.5

7.3 Project 2: speed control of a stepper motor

The requirement is to use a microcontroller to drive a stepper motor in both
forward and reverse directions of shaft rotation and to implement a two-speed
(fast and slow) arrangement. Switches are to be used to produce the two speeds
and effect a reversal of shaft rotation. A possible arrangement is shown in the
block diagram of Figure 7.7, which uses a P89C664 microcontroller.

P89C664 micro

P17
P1.6 _ Motor drive
Motoron [p15 | circuit -
> T
P14
Speed 1 |«F11 | Switch 1

Speed 2 | P1.2 Switch 2

Reverse |- P1.0 Switch 3

Figure 7.7 Block diagram for speed control of a stepper motor using a P89C664
microcontroller

176 Project applications

Generally a stepper motor has four sets of coils. One end of each coil may be
connected together and then connected to DC supply. The remaining four ends
may be driven through transistors either separately or in integrated circuit form.

A four-bit code sequence continuously applied to the drive circuit from the
microcontroller port causes the motor shaft to rotate in angular steps. Cheap
(e.g. £12) stepper motors have step angles of 7.5 degrees whereas more expen-
sive (e.g. £45) motors have step angles of 1.8 degrees. Step resolution and
turning force (i.e. torque) may be improved by using a step-down gearbox.

The stepping code sequence may be obtained from the motor manufacturer
or distributor. The program in this example uses a common four-step sequence
of A 9 5 6 that, if sent continuously, would cause the motor shaft to rotate.
Figure 7.8 shows the driving signals from the port pins.

,,,,,,,,,,,

,,,,,,,,,,

Figure 7.8 Signal sequence from the port pins to cause the stepper motor to rotate

Sending the code in reverse 6 5 9 A causes the motor shaft rotation to reverse.
The rotation speed depends on the delay each step is held for. Details of a
suitable drive circuit are shown in Figure 7.9.

The transistors (TR) must be chosen to easily handle the coil current. If the
value of coil current is not given by the motor supplier then it is possible to
measure the coil resistance with a multimeter (a typical value would be
15 ohms). Dividing V. by the coil resistance gives a good estimate of the coil
current; double this value and select a transistor that has this current as its
maximum-rated value. In this way the transistors will not run hot. The value
of resistor R is chosen to control the input current of the transistor. The
transistor current ratio is given in component catalogues as spg, which is device
forward current gain in common-emitter mode. In this circuit /g is basically
the coil current divided by the input current to the transistor. Thus the tran-
sistor input current is:

input current = (coil current)/hpg

The 74L.S04 logic gate comprises eight inverter buffer circuits. Using two in
series will restore the voltage level at the input to resistor R to the same value as
the output from the relevant port pin. The voltage from the 74L.S04 logic gate
to turn on the transistor is 5 V. The voltage input to the transistor on the other
side of the resistor is approximately 0.7 V; so the voltage difference across the
resistor Ris (5—0.7)V=4.3V.

Project 2: speed control of a stepper motor 177

V,

CC
D, D D D
TR TR TR TR
R R R R
GND
741804
P1.7
P1.6
P1.5
P1.4

X4 Stepper motor coils

Figure 7.9 Suitable circuit arrangement to provide a drive for a stepper motor

The resistor value is given by:

R = (voltage across the resistor)/input current
R = (4.3 x hpg)/(coil current)

A logic 1 (5V) from the microcontroller port pin is applied through the two
inverter gates of the 74L.S04 to the resistor R. This sets up 0.7 V to the transistor
base that causes the transistor to behave as an electronic switch, turning the
device on and allowing current to flow through the coil. The logic gates act as a
buffer ensuring that the microcontroller port pin is not current loaded. The
diodes D reduce the large induced voltages caused when the current is suddenly
switched on or off.

TIMER VALUES FOR ROTATION SPEED

Consider a 7.5 degree stepper motor having a step sequence of A 9 5 6. Assume
it is desired to make the shaft rotate at 60 revolutions per minute or one
revolution every second.

360/7.5 = 48 steps in a revolution and the program action will basically be
step-delay; so this means 48 delays = one revolution.

48 delays = 1s
1 delay = (1/48)s = 20.833ms

178 Project applications

Suppose the microcontroller crystal frequency is 11.0592 MHz. If a P89C664
microcontroller is used the timer clock frequency is (11.0592/6) MHz.

Timer clock cycle time = 6/11.0592 MHz = 542.54 ns
Timer increments to roll-over = 20.833 ms/542.54 ns = 38400
Timer mode 1 base number = 65535 — 38400 = 27135 = 69FF hex

Similarly for a shaft speed of 40 revolutions per minute:

1 delay=1.5/48=31.25 ms

Timer increments to roll-over = 57599

Timer mode 1 base number = 65535 — 57599 = 7936 = 1F00 hex

Let us assume: speed1 =40 revs per minute, timer mode 1 base = 1FOOH

THO = 1FH
TLO =00H
speed2 =60 revs per minute; timer mode 1base = 69FFH
THO = 69H
TLO = OFFH

PROGRAM PLAN

When an interrupt occurs the program jumps to the interrupt routine and the
SP is incremented. On completion of the interrupt the main program resumes
its action and the SP assumes its prior value. It is possible for interrupts to
occur within interrupt routines, these are called nested interrupts but even
nested interrupts must be orderly and the SP must assume its prior value.

The SP (default value 07H) points to an address in RAM. If it were allowed to
increase indefinitely without returning (RETTI) to its prior value it would increment
into higher RAM space possibly corrupting register values including the SFRs.

In project 1 the PWM program controlling the DC motor used a negative
edge transition interrupt completing very quickly after the PWM rate was
configured. Once set up the PWM signal was continually transmitted from
the port 1 pin.

The stepper motor program is different in that the program continually
applies the stepping sequence code. This time the interrupt is level sensitive
and RETI is applied upon completion of the four-step sequence.

AT THE START

Pins 7, 6, 5, 4 of port 1 are turned off by MOV P1,#0FH so that current is not
flowing through the coils. I'TO is not SETB and assumes its default value of zero
making the external switched interrupt INTO level sensitive. Timer 0 is set to
mode 1 by MOV TMOD.#01H making it a 16-bit timer. INTO interrupt is
enabled with MOV IENO,#81H.

Project 2: speed control of a stepper motor 179

CHECK

The three active low switches, which are also connected to pin 3.2 (INTO), are
checked.

The forward and reverse data sequences are given at the bottom of the
program opposite labels FORWARD and REVERSE. The sequences are
defined using DB (define byte). The last number in each sequence OFOH is used
to mark the end of the stepping sequence.

This program uses the data pointer (DPTR), which is a 16-bit register.
It points to the first byte of the stepping data sequence using MOV DPTR,
#REVERSE and MOV DPTR,#FORWARD. It may be incremented to the

next byte with INC DPTR.

Program

SINCLUDE (REG66x.INC)

; sfr addresses

ORG O ; reset address at 0000H

SJMP START ; jump over reserved area

ORG 03H ; INTO interrupt address

SJMP CHECK ; jump to interrupt routine

ORG 40H ; program start address
START: MOV PL,#f0FH ; motor drives off

MOV ~ TMOD, #01H ; timer 0 in mode 1

MOV IENO,{#f81H ; INTO interrupt enabled
STAY: SJMP STAY ; stay till int. level changes
CHECK: JNB P1.0,REVERS ; check for reverse

JNB P1.1,SPEED ; check for speedl

JNB P1.2,SPEED ; check for speed2

SJMP CHECK ; keep checking switches
REVERS: JB P1.0,SPEED ; jump next if rev not chosen

MOV DPTR, #fREVERSE ; dptr =reverse data address

SJMP NEXT ; jump next if rev chosen
SPEED: MOV DPTR, #FORWARD ; dptr =forward data address
NEXT: MOV A, {0 ; accumulator A=0

MOVC A,@A +DPTR ; data at dptr address into A

CJNE A,{#fOFOH,NEXONE ; next dataif not sequence end

SJMP LOOP ; sequence end so goto RETI
NEXONE: MOV P1,A ; data to Port 1

JNB P1.2,SPEED2 ; check if speed2 chosen

ACALL DELAY1 ; 1f not then call DELAY1

SJMP OVER ; and jump over DELAY?2
SPEED2: ACALLDELAY?2 ; call DELAY2 for speed2
OVER: INC DPTR ; increment data pointer

SJMP NEXT ; repeat the data port loop
LOOP: RETI ; check level activeinterrupt
DELAY1: MOV THO,#1FH ; DELAY1 high byte

MOV TLO,#00H ; DELAY1 low byte

SJMP MISS ; jump over DELAY2
DELAY2: MOV THO,#69H ; DELAY2 high byte

180 Project applications

MOV TLO,{fOFFH ;
MISS: SETB TRO ;
FLAG: JNB TFO,FLAG ;

CLR TRO ;

CLR TFO ;

RET ;
FORWARD: DB OA7H,97H,57H,67H, 0F0H ;
REVERSE: DB 67H,57H,97H,0A7H, OFOH ;

END ;
Simulation

Check interrupt

; DELAY2 low byte

turn timer O on
stay till timer rolls over

; turn timer 0 of f

clear timer 0 flag
return from subroutine
forward data + stop
reverse data + stop

end of assembly language

The port 1 and port 3 windows should be accessed; also the interrupt controller
window can be viewed by selecting View on the main menu bar and then
Hardware Peripherals. The result is shown in Figure 7.10.

As Figure 7.10 shows, a breakpoint is required on the line.

P1.7, SPEED
CHECE
PL.0,5PEED
DPTE, HREVERSE
WEXT

DPFTE., HFORMARD
A.HO

A, EADPTR

A, HOFOH, HEXONE
LODP

PLA
P1.Z,SPEEDZ
DELATL

OVER

DELATZ

DETR

NEXT

THD, H1FH
TLO, HOOH
HISS

THO, #69H
TLD, HOFFH

OATH,97H, 57H, 67H, 0OFDH
&TH, 57H, 9TH, 0ATH, 0FDH

| § INCLUDE (REGGES:x . TNC)
ORG 0
3 SJUP
[T
4 SaHP
| ORG
4 START: MOV
£l MOV
4 MOV
) SaHP
4| CHECK: TG
4 JHE
4 JHD
7 SMEF
S REVERS: B
4 oy
g SqE
4| SPEED: oy
4 HEXT: oy
‘| BOve
7| CHE
gl SHP
4 NEXOME: MOV
£l JHE
7l ACALL
4 SaHP
J GPEEDZ: MOALL
J OVER: HE
vl 5P
4| Loge: RETI
4 DELAYL L
4 oy
l SqEF
J DELAYZ: MOV
¥l MoV
4| m13s: SETE
| FLAG: JHE
gl ar
4 ar
4 BET
FORMARD: OB
|REVERZE: OB
B
L1 1

SIMP STAY

=T - port i (orai = |

0] Mo Connection

sz il o oCamenim

P || LATCHIFF [Mo Connection || LATCHIFF [Na Cannecton
2/INTO 1 [Mo Connection [Ma Connecion
Hjump € 1 [Mo Conreciion

FprogEan 14 .

smotar d B [Nntmﬂmn

stiner 0 [[No Coanection

Mo Conrmctice
7 [Mo Coanscticn

scheck £
skeep ch
Fjunp nel
EL

Fjunp me
sdpte =

racoumnl
:data at
mext da
FBRqUEnC
sdata To
scheck L
JiE nor

sand jum
;eall DE
sincreme

D0BH TimerD : Interrupt is DISABLED, Priority = NONE
013H Extl : Interrupt is DISABLED. Priority = NONE
D1BH Timerl : Interrupt is DISABLED, Priority = NONE
023H UARTD : Interrupt is DISABLED, Priority = NONE
033H PCA: Interrupt is DISABLED, Priority = NONE
03BH Timer?2 : Interrupt is DISABLED, Priority = NONE

irepeat
scheck 1
zdelayl

zdelayl

JJunp ov
rdelayz |
rdelayz

JTurn Ty
;atay ti
Fturn Ti
;clear T
Frevurn

sforw
Jreve

zend oof =
H .

Figure 7.10 Simulation response showing project 2 program window and other

relevant windows

Then selecting Animation (icon, two red characters in film) and then GO
should indicate that the interrupt is enabled. Also the pins 7,6,5,4 on port
1 should go to logic 0 (see Figure 7.11).

IRz
4| START: L

4 BEVERS: am

Project 2: speed control of a stepper motor 181

[Fort + T« o s Gra AT

o[He Cznnzcen 0 Helernechan
LaToH|0= [He Cznnection | LATOH[F= [Ma Connestian
" [He Cznnsction [HalCernechan

4"' I T He Conrecion HaCrrnectinn
F: Ho Cornedia
[NoCcmeoﬁm

He Connection
<—EN0I He Connection

[Ho Cernection

E 7 [HaCroneetion

He Cennection

scheck fc ¢ | Mo Czancoton

;ié;;::g ::::; Pl [Lo errut Contrubier (proic) -

LHECK ckeep che Each Imemupt can be individually enabled

TL.C GREED siup mex

LETE HREVERE sdpse = 1 NIEH Extid: Inteempl is ERABLED, Priority =10

Figure 7.11 Simulation response indicating the port 1 and port 3 changes

Changing pin 2 on port 3 to ground activates the interrupt. Selecting GO should
then see the program continually checking the level of the active low switches.

Checking the data pointer (DPTR) contents

The interrupt window should now be cancelled and the Main Registers window
accessed by choosing View on the top menu bar and then Main Registers.
The result is shown in Figure 7.12. Pin 1 (second one down) on port 1 should be
set to ground to simulate the choice of Speed1 while pin 2 (third one down) on
port 3 should be set to ground to cause a level zero interrupt.

PEVERS:

SPEED: My

L

4| NE0ME:

=101 x| (REETENTET - (ol x| | IR (ol x

S80Iy 1 Mo Corraction 0 Mo Conrection

freset ad
STURT s3ump ave || LATCHIOF | Gioued LATCHIFF [Mo Conrection
LET] 2/IMTH 3 : Mo Correction -rs | Giourd
CHECK 3uBp T = In B : i ;
408 sprogean ﬂl‘ﬂ [HaEsrrection El'»m [e Fonnccton
PL,HOFE Nrssead E | HeCerrection | T7EEE 1| [Mo Conrection
THOD, §OL1 seaner 0 fCESPANE Mo Conrection | PRI o Conrection
'“B“(LN 1x Mo Correction Mo Conrection
P1.0, FEVERS 7 | Mo Correstinn 7 [Mo Convectian
P11, SFEED
BL.Z,5PEED
CHECK
P1.0,5PEED RE—@mn

: FC [foes [RE[a0 |@A0 oo FO
DFTR, HEEVERSE ;
NEXT “sump nex [|IACE [00_|RO[D_|@A [i_ A F
OFTR, HFORUARD sdntx - ¢ [||FSW [0 |F1 [0 |@DPTAFF F2 P
sP 07 |R2[00 [<ER0[FF P2 &3

A, CA+DFTR sdate atc DPTR[cOOD (A3 (30 |#BR1[FF TCOM |00
i, HOFOH, NEXONE snzxe dat f{g [ety THegl
LOOE ssequence ||| o e] i (2 i 0000
Pia [0 [R5 a0 = 0000
P1.2,SPEEDZ Eh [|RE[A0 |Tesh o0 THLZ[ZaAL
DELAYL (N A o L e
IVER
BELAYZ
OFTR
NEXT
THO, HOFFH
TLO, HOFAM
Hiss
THD, HOFTH

TLO, #OF2H

OATH, 971, 5TH, 67H, OFOK
57H,57H,37H, DATH, OFOK

Figure 7.12 Simulation response with port 1, port 3 and main register windows and

breakpoints set

A breakpoint is required on the line NEXT: MOV A #0 (this is after the line
that loads the DPTR with the FORWARD address). Another breakpoint is

182 Project applications

required on the line RET. This is one byte before FORWARD. It is not
possible to put a breakpoint on the FORWARD line because it does not have
an instruction; DB (define byte) is a directive.

These changes are illustrated in Figure 7.12. Also Figure 7.12 gives plenty of
information in the main registers window. As indicated:

Stack pointer (SP) default value of 07H
Accumulator A value

Values on the Ports

TH and TL (THL) values in Timers 0, 1 and 2

Program counter (PC) with current program address
Data pointer (DPTR) contents, default address is 0000H

Resetting the simulation (CLM on icon with finger pointing to red button) and,
without using Animation, CLM on GO causes the program to run to the first
breakpoint. At this point DPTR shows 0090 which is the hex address of the first
byte 0A7H on the FORWARD: line.

Pressing GO again results, after a short interval, in the program reaching the
second breakpoint. The PC should show 008F, one byte before 0090 the
address in the DPTR. At this juncture look again at the information contained
in the main registers window, which will show information set by the program.
It will not show port 1, pin 1 and port 3, pin 2 at ground because these were set
(simulated) by external hardware. It should show port 1 going to OF because
this was the action of the first program line MOV P1,#0FH.

At reset TCON SFR assumed its default value of 00.

TF1 TR1 TFO TRO IE1 IT1 IEO ITO

At the first breakpoint TCON is 02 showing that IE0 had set to 1, indicating
that an interrupt had occurred.

At reset the SP = 07 pointing to address 0007H in onboard RAM. At the first
breakpoint SP had changed to 09, pointing to address 0009H in onboard RAM
indicating that an address had been stored at locations 0007H, 0008H.

The contents of the onboard RAM may be checked by selecting from the top
menu bar:

View— > Data dump...— > Data View

The result is shown in Figure 7.13. From Figure 7.13 it can be seen that the
RAM contents at specific locations are:

Location 0007 = 00, location 0008 = 49

0049H is the address of the program line STAY: SJIMP STAY, this is the
address the program returns to when the interrupt has completed.

Pressing GO again, so that the program runs to the next breakpoint, and
checking the SP, shows that it has increased to 0B. Checking the RAM again

Project 2: speed control of a stepper motor 183

& Data (proj2}) =10l x|
oo: M oo oo oo oo oo oo oo M- ﬁl
08: 49 00 00 00 00 00O QOO0 OO0 I«

10: 00 00 00 0O OO0 00 00 00 . & v v o o & & j
Search:l | an =El

Figure 7.13 Window showing data stored in RAM for project 2 at specified
breakpoint

gives the result indicated in Figure 7.14. From Figure 7.14 it can be seen that
the RAM contents at specific locations are:

Location 0009 = 00, location 000A = 70

& Data (proj2) 3 =10 x|
00 00 00 00 00 00 0O 00 PN il
a: 45 00 70 00 0O 00 00 00 I .p.....

l0: 00 00 00 00 00 00 00 00 =l
Seaich: | oo wlEl

Figure 7.14 Window showing data stored in RAM for project 2 at a subsequent
specified breakpoint

0070H is the address of SIMP OVER, the next line after the first call. Placing
a breakpoint there can check this.

Measuring the step time delay

The Animation should be off and the existing breakpoints removed. P1.0 and
P1.1 should be kept at ground. A breakpoint should be placed on either side of
the program line FLAG: JNB TFO0,FLAG in the time delay routine. This is
indicated in Figure 7.15.

4| DELAYL: ROV THO, #OFFH :delayl high byte o ﬂ m o ﬂl

4 v TLO, H#OFAH +d 1 = d =101 B

4 SJP HI53 3 0 layz o[Ma Connectian 0 [Mo Carnectiar

SpELAvEZ: movw THO, HOFFH LMCHFF'—i Ground LA1m|T='F1'[Mo Carriechan

Fl TLO, HOF2H 7

o . Ma Cannectian D Ground

| FLAG «IME TE, FLAG y till tiner rolls over <} ! [No Connection | (<] I [Nn Carnectian

5 L, Mo Cannection = [Mo Carnectiar

i i B[Ha Connect FADIJ o Carnech

K EET H from subroutine | <l [s Tm <l [ol ran
FORUARD: DB OA7H, 97H, 57H, 67H,0F0H :forward data + stop [He Connestion] He Comectin
REVERSE: DB 67H, 57H,97H,0A7H,0F0H :xeverae data + stop | ?I' Ma Cannectian ?I Ma Cannectiar

-

¥ tend anf aasenhlv 1ancaoe

Figure 7.15 Simulation window showing the breakpoints to be used for measuring
the step time delay

Pressing reset and then GO will cause the program to run to the first break-
point. The timing panel at the bottom right of the screen will have some value
as shown in Figure 7.16(a).

184 Project applications

[0s.000ms 168 [05.000ms. 000 [0s031ms 220
(a) (b) (c)

Figure 7.16 (a) Possible initial timing value at the first breakpoint. (b) Putting zero
in the timing panel. (c) Time to the next breakpoint giving the step time response for
a step motor speed of 40 rpm

Pressing Ctrl T will zero the value in the timing panel as shown in Figure
7.16(b), while pressing GO will cause the program to run to the next
breakpoint when the panel should show the duration of the step time delay.
See Figure 7.16(c). By calculation the time delay was 31.250 ms; as shown in
Figure 7.16(c) the simulation value is very close to the calculated value.

If now P1.1 is changed to V. and P1.2 to ground and the above procedure
repeated, a step time value as shown in Figure 7.17 results. From Figure 7.17
the step time delay is 20.814 ms, which is close enough to the calculated value to
be acceptable.

4. Port 1 (proj2iis sl :J
0 ; Ground
LATCH[E7 [Vee
E Ground

‘F_: i F Mo Connection
g F MNa Connection
< —IFAD| [Mo Cornection

r Ma Connection
7 ; Ma Connection

Figure 7.17 Step time response for a step motor speed of 60 rpm

Stepping signal patterns

First of all the existing breakpoints should be removed. The actual time
delays are too long to quickly generate signal traces, so it is suggested that
THO is changed to #0OFFH for Delayl and Delay2 and that TLO is changed
to #0FAH for Delayl and #0F2H for Delay2; the signal patterns will be the
same.

The Watches window should then be set up using View — Watch and the
signals P1.4, P1.5, P1.6, P1.7 added; the signals should also be added to the
Trace. The Trace window should then be accessed using View — Trace —
View and the Trace options set using View — Trace — Options. The Mode
should be set to Continual while the Maximum number of records should be set
to 500 and rolling trace should be ticked.

Running the Trace with Animation on should show the signals setting up.
Running without Animation and stopping after several seconds shows the
complete pattern. This is illustrated in Figure 7.18.

Project 3: single wire multiprocessor system 185

| $TRELIGE [ERSa2 TH

Figure 7.18 Simulation response showing trace patterns on specified port pins for
project 2

PROGRAM DEVELOPMENTS

1. Check that the program drives the stepping motor when Reverse is chosen
but Speed] and Speed?2 are not.

2. Modify the program so that reverse only occurs when one of the speeds are
chosen.

3. Assuming four switches are connected to port 2 modify the program so that
the motor shaft stops after completion of 1 to 10 complete revolutions.

7.4 Project 3: single wire multiprocessor system

Serial master/slave buses exist either as onboard peripherals or as a separate
chip set. The P89C66x microcontroller family has the I>C bus as an onboard
peripheral, the principles of which have been explained in Chapter 4 (see also
Appendix D) and an example given. The Philips LPC932 microcontroller has
the SPI bus as well as the I°C.

For I2C systems the slave device is a special chip that is able to return an
acknowledge signal. The SPI slaves can be special devices, but non-special chips
employing serial shift registers to move data in and out can also be used.

The I2C bus is a two-wire system whereas in its simple mode the number of
wires required for an SPI bus depends on the number of slave devices. This
project presents a single wire bus system where the Master and Slaves are all
microcontrollers using their UARTs in mode 3, which is multiprocessor
mode. An example having two slaves is represented by Figure 7.19. The
receive (Rx) and transmit (Tx) pins of all the microcontrollers are connected
together and data can be shifted out of the master or into it but not at the
same time.

186 Project applications

Main
computer
COM1

Rx Tx

Tx Rx

UART1

Master
XAG49
microcontroller
UARTO

Tx|_ Rx

Tx|_ Rx

Slave1 Slave2
P89C664 P89C654
microcontroller microcontroller
UART UART

Tx|_ Rx

Single wire communication

Figure 7.19 Block diagram of a single wire communication system

The UART has four operation modes i.e. 0, 1, 2 and 3. Modes 0 and 1 are
used between two devices. Mode 0 is a fixed transfer rate dependent on the
microcontroller crystal frequency. Mode 1 is a variable transfer rate and can be
set at various baud rates; this example uses a baud rate of 9600 bits per second.
Modes 2 and 3 are used between a master device and multiple slave devices.
Mode 2 is the fixed transfer rate and mode 3 is the variable baud rate. In theory
there could be 256 slaves (i.e. 8-bit address) but in practice too many slave
devices would cause loading effects.

If this system uses the same microcontroller type for master and slaves then
mode 2 would be preferable to mode 3 since it would not be necessary to
program timers for baud rate generators. This example has an XA as a master
and two slave devices using the P89C664; hence mode 3 is to be used.
A communication protocol exists for data transfer between master and slave
devices as shown in Figure 7.20.

Details of the Serial Control (SCON) register are:

Serial control (SCON) register
SMO SM1 SM2 REN

TBS RBS TI RI

Mode 3 SMO =1
REN

TI

RI

SM

Project 3: single wire multiprocessor system

1=1

Enables serial reception
Transmit interrupt flag
Receive interrupt flag

SM2 = 1 Multiprocessor (master with all slaves) communication
SM2 = 0 Dual (master with addressed slave) communication

187

TB8 = 1 Transmitted bit § (all slaves can be interrupted, provided SM2 = 1)
TB8 = 0 Only addressed slave is interrupted because its SM2 = 0

RB8 =1

Initialise
Slave 1
TB8=0
SM2=1

Check
Slave 1

address

YES
\

NO

|

SM2=0

Readdata «——

}

Transmit —»
data to
Master

. J

SM2

Acknowledge —

Transmitted bit (TB8 = 1) is received into slave

Initialise Initialise
Master Slave 2
TB8=0 TB8=0
SM2=1 SM2=1
Pl il \ 1
Send /—:> Send Check
Address \ Address Slave 2
Slave 1 , Slave2 ———» address NO
1 YES
I
1
TBg=1 - ____ Acknowledge
TB8=0 , TB8=0 }
X SM2=0
1
I
Send I Send SM
Slave 1 ! Slave 2
task data X taskdata ___, Readdata
1
L TB8=11 l i
Receive ! Receive «————— Transmit
Slave 1 : Slave 2 data to
data \ data Master
1 * t

2=1

Figure 7.20 Communication protocol for master/slave communication

PROGRAM PLAN

The main controlling bits are SM2 and TB8. SM2 = 1 enables multiple pro-
cessor communication. Initially the master device and all the slave devices are
set up for multiple communication. When the master sets TB8 = 1 it interrupts

all the slave devices.

In this first interrupt the master sends through its UART the address of the
slave it wishes to communicate with. The chosen slave acknowledges and clears
its SM2 = 0. The master clears its TB8 = 0. The remaining slaves continue with

188 Project applications

SM2 = 1. In this condition any further UART interrupts from the master are
only received by the chosen slave whose SM2 = 0.

A slave device cannot be serially interrupted if its SM2 = 1 and the Master
TB8 = 0. The master now interrupts the chosen slave and sends data to it.
Figure 7.20 shows that the chosen slave may return data to the master,
although in this example it is not the case.

When communication between the master and slave is complete the slave sets
SM2 =1 and the master sets TB8 = I, resuming the condition for multiple
communication with all the slave devices. The master then seeks to address the
next slave device.

In this example both slave processors are each driving a stepper motor, the master
sends data that alters the step hold delay and in this way varies their rotation speed.

As suggested by Figure 7.19 the system information to the master could come
from a host PC. Since the XA processor has two UARTS, one of them could be
used to communicate with the host PC whilst the second could be used to
interface with the slave processors.

It is possible in a complex system for the P89C664 slaves to communicate
with each other via their I>C connections since the I?C system is capable of
multimaster communications. In this example the slave data has been arbitra-
rily chosen and originates from the master device.

Master program

SINCLUDE (REGXAG49.INC) ; sfr addresses
ORG 0 ; reset address
DW 8F00H, START ; define word hex8F00
ORG 120H ; program start address

START: MOV.B WDCON,#0 ; watchdog control off
MOV.B WFEEDI,#f0A5H ; watchdog feedl
MOV.B WFEEDZ2, ##5AH ; watchdog feed?2
MOV.B SOCON,#f0F8H ; mode 3 multi-processor
MOV.B TMOD,{#f20H ; timer 1 into mode 2
MOV.B RTLI,#238 ; set for 9600 baud
MOV.B TL1,#238 ; set for 9600 baud
SETB TR1 ; turn timer 1 on

LOOP: MOV.B R4L,{Jf01H ; slave 1 address into R4L
CALL ADDRESS ; send slave 1 address
MOV.B R4L,#33H ; slave 1 data into R4L
CALL SLVDATA ; send slave 1 data
MOV.B R4L,#02H : slave 2 address into R4L
CALL ADDRESS ; send slave 2 address
MOV.B R4L,{f66H ; slave 2 data into R4L
CALL SLVDATA ; send slave 2 data
JMP LOOP ; repeat

ADDRESS: SETB TBS8 ; set to interrupt all slaves
JMP SEND ; jump to SBUF

SLVDATA: CLR TBRS8 ; communicate with chosen slave

SEND: MOV.B SOBUF,R4L ; address or data into UART SBUF

Project 3: single wire multiprocessor system 189

WAITTTI: JNB TI,WAITTI ; transmit contents of SBUF
CLR TI ; clear TI to enable repeat

WAITRI: JNB RI,WAITRI ; await acknowledge from slave
CLR RI ; clear RI to enable repeat

RET return from transmit routine
END ; end of assembly language

Simulation

Having entered and compiled the program the simulation response is shown in
Figure 7.21. With the Animation on and CLM on GO, the simulation will run
until it tests the Receive Interrupt (RI), which is the acknowledgement back
from the slave. CLM on Stop (same icon as for GO).

£
a
AF0IH, START

e 3 [Made3:
r EEat Eutize
o ™ REC ASCH :RECQNE

| s By (OxFOy & HEx | ;
ETAET: BV UDCOK 0 3 FALEE [FastMode PE-POET | Tumnsrmit
MOV.E UFEZDL HOASH :

BT, QL TI FALZE —| ~Duffer:
B OFESDZ, SRR CENETET | | - -

HW.E 500K HOFEE smaded oulel-protesscr ook [

ERV.E TR, BEOL stixecl i
HV.E BTLL,B23Z
WOLE TLLHERE
I THL

[o Timer e TaTE] L ‘

THLY [0EE TEON[TD
STHU[OEE TR [T JI—
THEG 57— AR [T (.
Funcioe i

| Slae o0

Mcds 2 3k e |TLH ity
| wdonsic eosd ol ATLT i TLL.

00F: MR R4LHOTF
UL AR

I HOWVLE P41 HEE
CML SLVNA

WOVE 4L HOTE
CHL ANREST

WOV.E 4L HESH
CHLL SLYDATE

o LAk

~Hern Yala
[‘

Doause | Moci Coe | hen |

Figure 7.21 Master simulation for project 3

Positioning the cursor on RI in the watches window and CRM will cause a
small window to appear. Choosing Evaluate will produce an Evaluate Expres-
sion window for RI. If 1 is typed into the New Value space and CLM on
Modify then RI in the watches window will change to True.

The Evaluate Expression window should be left in place to enable the
simulation to get past the RI test point. CLM on GO will continue the simula-
tion. If the SOCON register is checked when the TB8 value changes, it should
equal 1 for slave addresses and be equal to 0 for slave data.

Slave program

SINCLUDE (REG66x.INC) ; sfr addresses
ORG O ; reset address
SJMP START ; jump to start

ORG 23H ; UART interrupt address

190 Project applications

SJMP
ORG
MOV
MOV
MOV
MOV
MOV
SETB
MOV
;stepper motor
MOTOR: MOV
ACALL
MOV
ACALL
MOV
ACALL
MOV
ACALL
SJMP
;step hold delay
DELAY: MOV
MOV
SETB
JNB
CLR
CLR
RET

START:

FLAG:

SERIAL
4OH
SCON,#fOF0H
IENO,##90H
TMOD,#21H
TH1,Jf0OFAH
TL1,#f0FAH
TR1
AJFOFAH

P1.#f0A7H
DELAY
P1,#f97H
DELAY
P1.457H
DELAY
P1,#67H
DELAY
MOTOR

THO, A
TLO, #fOFFH
TRO

TFO, FLAG
TRO

TFO

; UART interrupt from Master

SERTIAL: CLR
MOV
CJINE
CLR
JNB
CLR
MOV
SETB
RETI
END

WAITRTI:

OTHER:

Simulation

RI

A, SBUF
AJF01H, OTHER
SM2
RI,WAITRI

RI

A, SBUF

SM2

; jump to interrupt

program start

mode3, SM=1

enable UART interrupt
timerl mode2, timer0 model
timerl baudrate 9600

TL1 also initially set
turn timerl on

initial accumulator value

stepl =A
step hold delay
step2 =9
step hold delay
step3 =5
step hold delay
steps =6

step hold delay
back to stepl

main delay value from Master
LSByte delay value

turn timerO on

stay till timerO roll-over
turn timerO off

clear timerO flag

return fromdelay

clear RI, set by interrupt
SBUF contents into A

: RETI if Master not selects01H

SM2 =0, leavemultiproc comm

; next interrupt will be data

clear RI, set by interrupt
SBUF data into A

SM2 =1, back tomultiproc comm
return from interrupt

nomore assembly language

The simulation response for this program is shown in Figure 7.22. The timer 0
and timer 1 windows are accessed; timer 0 for the step hold delay and timer 1
for the serial baud rate generator. In the watches window SCON, SM2, RI,
TI, A, SBUF have been inserted. The evaluate expression window has been
set up for SBUF and RI, from the Watches window. The port 1 window has
been accessed, as has the interrupt controller window, which has been

resized.

Project 3: single wire multiprocessor system

[0 Times 0 (pu
THLO (ol
TROD (02
TCOH [0
TR o 7=f
F;rt‘lml‘ml:l :
Sade ot

Mocke 0, T30 gk TLI G &
dfvide-by 52 prescnss (5 ot
=

JRTRTIES] | o T Ll

191

nuils |

=lol=
THI [0 =
THOD [T

Lo [

1 o e

stade ot

Mode 0.7 Dbk egala Tl is e
driderhy 32 precals |5 e i)

jateprce wotat [arCvaluste Cnpreasion ETET|
[EOTOR: MOV PLHCATH
1 ROAL DELAT i Evpcsicn ————————————
v PLHETE S —
ROALL Lt [3
v FLIET
ROALL DALY
v FLICT vk ot
RCALL GELCE TRE har
SIEF ANE
st 1 &=l
L BRI ALk T Heefar———————————————
i Tl OFFH o
| SETR 0 f
[FlaG: R TF, L

Cyabiste Maip Cloz=
=T T

| L2 o f Hatamwnctinn
S OAITRL: MO ELMAITRL LATCH[FF [HaCaresctin
J LK EN [HaCanestion
iy 5, 5HLF
SH1E i
OTHRR: RETT
D

o Malonrecion

All Interrupt are disabled

- Irterrupt Contraller (pro

ANFH ExA : Interruptis DISARLED, Priarity = NONE
O0BH Timerl : Inberrupl is DISABLED, Privrity - NONE
013H Bl ; Intermpt Is DISABLED, Priority = NONE
O1BH Timerl : Interrupt is DISABLED, Privrity - NONE
023H UARTD ; Interrupt is DISABLED, Priority = NONE
033H PCA Interrupt is DISABLED, Priurity - NONE

Figure 7.22 Slave simulation for project 3

Putting the Animation on and CLM on GO will cause the simulation to put
A7H (1010 0111) onto port 1. While viewing the simulation on the PC screen
remember that green represents logic 1. The simulation will stick in the step hold
delay whilst Timer 0 increments up from FAFFH towards FFFFH and roll-over.

Halting the animation by CLM on Stop and entering 0x01 as a new value in
the SBUF evaluate expression window and then CLM on Modify will alter the
value in SBUF. This could be confirmed by checking in the watches window

that SBUF is 0x01, which is the address of the

first slave. Putting 1 as a New

Value in the RI evaluate expression window and CLM on Modify will cause the
Slave to interrupt when the simulation continues. In the THLO window of
Timer 0 the number may be edited, using the PC cursor and keyboard, to
FFFA so that it is close to roll-over. See Figure 7.23.

THLO E

TMOD |2
TCON
TFO

FFF,
7

Do

[0 TRO[1

=101 x|

&

r

Figure 7.23 Timer 0 window, used to alter the value in THLO

The simulation should be continued by single stepping. Because RI is set the
slave is interrupted and the simulation cursor will jump to the interrupt vector

address at 0023H. The simulation will then jump

to the UART interrupt. RI will

192 Project applications

be cleared and the contents of the SBUF (the slave address) transferred to
accumulator A. The slave address is checked at the third interrupt program
line. If it is not the address sent by the master to the SBUF then the slave will
jump to RETI and leave the communication with the master. In this example
the slave program is that for address#01H.

If single stepping is continued the program should clear SM2 to 0 and the
slave should come out of multiprocessing mode and have single communication
with the master. The simulation should stick at WAITRI: awaiting the next
interrupt from the master, which will convey the step, hold delay data.

Modifying the new value in the SBUF evaluate expression window to
0x33 and then modifying the new value in the RI evaluate expression window
to 1 and continuing single stepping will cause 0x33 to be transferred from the
SBUF into accumulator A and the simulation will leave the interrupt.

The stepper motor hold delay should now have changed; the timer 0 base
number has changed to THLO = 33FF, THO = 33H and TLO = FFH. The
value in THO can be changed by the master.

PROGRAM DEVELOPMENTS

1. What difference is required to write the program for slave 2?
How would the simulation be different?

3. Modify slave 1 program such that the slave returns data to the master. The
data could be number of revolutions completed since last communication.

4. What limitations would there be on this return data?

5. Modify the master program such that the slave data comes from a host PC
via the other XA UART.

7.5 Project 4: function generator

The requirement is to design a function generator, using the P87LPC769
microcontroller, with the minimal amount of external components, to generate
sine, square and sawtooth waveforms. The output of the circuit is not designed
to source an output current to the circuits under test and a buffer circuit is
required to enhance the current sourcing capability and also provide a low
output resistance for the function generator. A block diagram of a possible
circuit arrangement is shown in Figure 7.24.

PROGRAM PLAN

To generate the required waveforms, the P§7LPC769’s DACO is configured as a
digital to analogue converter by disabling the ADC and enabling DACO. This
could be achieved by clearing ADCI (A/D conversion complete flag), ADCS
(A/D conversion start flag) and ENADC (enable ADC).

The DACO is enabled by disabling P1 (DACI = P1.6 and DACO = P1.7)
pins digital output and setting them to input only (Hi Z). This achieved by

Project 4: function generator 193

o +5V

2K2 x 3

LPC769 (\j
L4 ° PO.1
Sine |:|
-

° PO.2 DACO|——o0
Square I:'

e

° P0.3 /\/l
Sawtooth:‘

o4

e OV

Figure 7.24 Block diagram of function generator using a P§7LPC769
microcontroller

using PIM2 and PIM1 registers and setting their appropriate pin to 0 and 1
respectively. Finally the DACO should be enabled by setting the ENDACO to 1.

For the generation of the waveforms, the sine wave requires most of the
work. For this a set of 180 sine wave values, scaled to 255 (8-bit register), is
generated and is put into the DACO one at a time. The square wave only uses
two values of 255 (5V) and 0 (0V). In this program to generate equal time of
logic 1 and logic 0, the value of 255 is written 3 times and 0 twice. Running a
simple ‘for’ loop and inputting the values of the loop into the DACO generates
the sawtooth waveform.

Program

/**

* Chapter seven :PROJECT s *
* 87LPC769 Function generator *
* June 2003 *
* This program generates Sine, Square and Sawtooth waves on *
* the DACO of the P87LPC769 microcontroller *

EE R R A A R R /

f#finclude <REG769.H>

sbit SineKey =P0"1; /* press this key to generate Sine */
sbit SquareKey =P0"2; /* press this key to generate Square */
sbit SawtoothKey = P0"3; /* press this key to generate Sawtooth */
code unsigned char Sine[] ={ /* Sine values */

127,131,136,140,145,149,153,158,162,166,170,175,
179,183,187,191,194,198,202,205,209,212,215,218,
221,224,227,230,232,235,237,239,241,243,245,246,
248,249,250,251,252,253,253,254,254,254,254,254,

194 Project applications

253,253,252,251,250,249,248,246,245,243,241,239,
237,235,232,230,227,224,221,218,215,212,209,205,
202,198,194,191,187,183,179,175,170,166,162,158,
153,149,145,140,136,131,127,123,118,114,109,105,
101, 96, 92, 88, 84, 79, 75, 71, 67, 64, 60, 56,
52, 49, 45, 42, 39, 36, 33, 30, 27, 24, 22,19,
17, 15, 13, 11, 9, 8, 6, 5, 4, 3, 2, 1,
1, o, O, 0, 0, o, 1, 1, 2, 3, 4, 5,
6, 8, 9, 11, 13, 15, 17, 19, 22, 24, 27, 30,
33, 36, 39, 42, 45, 49, 52, 56, 60, 63, 67,71,
75, 79, 84, 88, 92, 96, 101,105,109,114,118

}s

/**

* START of the PROGRAM *
Gk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok okkokokok ok okokok ok ok ok okkok /
void main (void) {
unsigned char i;
/*******4«**********************4«*****************************
* Disable the A/D Converter because of DACO AND *
* Enable the D/A Converter. *
Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok okokokokok ok ok ok ok ok ok ok ok ok /
ADCI =0; /* Clear A/D conversion complete flag */
ADCS = 0; /* Clear A/D conversion start flag */
ENADC =0; /* Disable the A/D Converter */
/**
* Disable P1, DAC pins digital Outputs and set the *
* DAC1 =P1.6, DACO=P1.7 to Input Only (Hi z) *
E R R A 2 I A] /
PI1M2 & =~ 0xCO; /* Set Pins for Input Only */
PIM1 | = 0xCO; ['P1M2 =0 & P1M1 =17/

/**

* Enable the D/A Converter *

B I 2 I A 2 2 I 2 2) /

ENDACO =1; /* Enable DACO */

/-k*-k************~k******~k-k*-k**********************************

* Create the waveforms on DACO *
Kok Kk /
while (1) { /* Run for ever */
while (!SquareKey) { /* if key pressed Run this */
DACO = 2553 [=/
DACO =255 /* generate 5volts, 3 times and
Ovolts */
DACO = 255 /*once, since while () statement
adds */
DACO = 0; /* to the Ovolts. */
DACO = 0; [=/
)
while (!sawtoothKey) { /* if key pressed Run this */
for(i=0;4i<255;i++)
DACO =1

Project 4: function generator 195

}
while (!SineKey) { /* if key pressed Run this */
for(i=0;1i<179;1i++)
DACO = Sine[i];
} * while (1) */
} /* main() */

Simulation
The best way to simulate this program is to use Keil software since it contains a
register for DACO. For the simulation the values of P0.1, P0.2 and P0.3 should
be set to zero for sine, square and sawtooth generation. If more than one is set
to zero, the last waveform continues to be generated. During debugging the
DACO window should be displayed using peripherals and then D/A from the
debug menu. Also port 0 should be displayed, so that the port pins P0.1, P0.2
and P0.3 can be set and reset.

After opening the Keil software a project should be created. A C file should be
added to the project and the project compiled. Details are shown in Figure 7.25.

i1 FunctionGen - p¥izion2

He Edt Wew Project Debug Hash Pepphersls Jook SVCS WWindow Help
BSHd L BR[Ze s ek -l | & @ (OE s s D
B2 W K Target1 -

B cokeihcsiibookiFunctionGen.c®

Froject Workzpace [
£3 Target 1
= 5 Source Group 1

= [F1 FunclionGen.c

IR

sbil sguarsiey - PO°Z:
sbil sawtcath¥ey - PO73:

Figure 7.25 Keil p Vision2 Simulation window

Using the debugger, the DACO and port 0 registers should be displayed.
Initially PO.1 should be set to zero and the program stepped through. The value
of the DACO will change as the sine wave is generated. See Figure 7.26.

Resetting the microcontroller and setting pin P0.2 to logic zero should run
the square-wave section of the program. A value of 4.9902V can be observed
in the capture, shown in Figure 7.27, which represents logic 1.

Finally resetting the controller and set pin P0.3 to logic zero should generate
a sawtooth waveform on the DACO output. See Figure 7.28.

1 FunctionGen -

| Fle Edt View Project Debug Flash Peripherak Tools SVCS Window Help
EFEH@| R D

T T % ~l@la @a oE 60|

FEIE e

e e
Register I\.l'alue I
= Create the waveforms on DACH

5-Regs

while(1l]{ e

Hun for sver #~
key prassed Run this »

if

P

while { !sguarekey | {-=
DACD = 255; P
DACD = 255; -
DACO = 255; =
DACO = 0 s
DACD = O L

}
while [|sawtooth¥ey) |
For(i-0:1¢255:1i++)
DACO = 1:
X
while { !sinekey)
For(i=0;id179;i++)
DACO = Sine[il;

Bl o R (G |

gensrate 5 wvolts, J times and
ongoe, since while() statement
to the O wolt. 7

s 0if

% if

key pressed Run this

key pressed Run this

0 volt
adds

Digital/Analeg Converter

—Analog Cuputl——— —Analog Cuiput 1
DAL [ixE3 W:]ND
DACOOL: I?.E'ﬂ'ﬁ“ DAL Ot 10‘“
[+ EMDACD [EMDACT
Fieference
et (50000

-Port
P10 RRRERT
Pk [0 T
Fove. 000
T T o

Fins: [WF0 R
[PIS [ENTI

IKNN|
*Fuaning with Code Size Limit: 2K
Load "0l 1S book s FunctionGen

Figure 7.26 Simulation window, with the DACO and port 0 windows added, for sine waveform generation

Eie Edit Mew Projedt Debug Fash Perpherds Took SVCS Window bBelp

PE S|P

IR R
bapece

a s /,.M,._\MMM,:,..;.....:...............u..uuu.,”., Eigital/Analog Convarter
5 s * Fa=ile the DA Converter * el DD ANy U
5 s W osoace -1 . & DD = D [1FF D [0
: 1
rt D00 e e e CaCaoul: |4 8902 W Oul: [
[D00 * Crmate the waveforms on DACO »
% o - [EMD&ZD || [T ENDAT
7 0x0C whila(1){ ## Run For ewver =/ '
5 5“' while [Isquarekay) {-* il kar pressad Fun this »- Fatererce
= — DACD - 255; ! . 3 : raf: 5.C000
w generate 5 welts, ¥ Clmes and O wall
8 o0 #n opee. since while(] stotement adds
= D7 . % to tha 0 walt, w7 =
-spoax Dk ¢ DACD = D; Paralle| Port 0
PC § C.0a0BC7 T
auxl (171 while [!sowtocthRey) { »= iF key pressed Run tais o~ Pzl
=+ - dpl U000 for(i=0:1¢255:1++) 2 7 Bt [i}
bia Lam N - i 1[0 el e[
e }
H:::; i;uu?::u'l.-’:h while [!sineKey) { oo 1P key pressed Mun tals e L5170 1 U ot ot o I
s Far(i=0:i<173:i++)
DACD = Sina[s FIMEZ: B0 T
BRGNS
P (MR e e [[e
[T RS [~ ENT1

Ruaning with Code Size Lim:t: ZK
Logd "CrwodieilsChlssbook~ Functlonden"

Figure 7.27 Simulation window, with the DACO and port 0 windows added, for square-waveform generation

]He Edit Wiew Project Debug Flash Perpherls Took SVCS Window Help

- IR e | ~ld4 || S m TE o r e

om [o@ @@ 00 | @ B

apTHOE |

=
B

[e

+ Epable the DsA Commerter

EMDACD - L;

R T T e P e T

#* Eneble DACO *-

% Cresta tha mavefcrms on DACD

while(1]q s
whila [lsguarafey | 7
DACD = 255;

n
o
.
n
e

= if xey pressed Bun this =
Rove: B0 T T T
}
} prran: o3 T
}
vos BT GERRT R
P18 [ENTI
B Fre g

-
Bup for ever =
if key prassed Run chis &

Digital/Analog Converter

— dnalng Cu - Analng G |

e [E | D [0
cweaou: [C1ER0 | ceciow [0
[« EMD&CI | [END&C

; Helerance =

geperale I ovalls, 3
Once. SiKce wille|) statenent adds

to the 0walt, #7

times apd D woll

werat: [E.00U

vopressed Bun this s

Fodl
i Ot 5}
N
Pant: B0 T

*|Eunning with Code Size Limi i
Hlaad 0 viEeil 051N book s FuncticnGan”

Figure 7.28 Simulation window, with the DACO and port 0 windows added, for sawtooth waveform generation

Project 4: function generator 199

Waveforms generated by the circuit and shown on an oscilloscope are shown
in Figure 7.29. The oscilloscope settings for the amplitude and timebase for
each waveform were as follows:

Sine wave: 1V/cm and 1 ms/cm
Square wave: 1V/cm and 2 ps/cm
Sine wave: 1V/cm and Ims/cm.

PROGRAM DEVELOPMENTS

1. Modify the software and hardware so that the frequency could be increased
or decreased. Use two port pins, one for increasing and one for decreasing
the frequency.

2. Use two more port pins to adjust the amplitude of the waveforms.

3. Add more waveforms of your choice to the project e.g. a triangular wave-
form.

Figure 7.29(a) Function generator output response for sine waveform generation

Figure 7.29(b) Function generator output response for square-waveform generation

Figure 7.29(c) Function generator output response for sawtooth waveform
generation

Solutions to Exercises

Chapter 1

EXERCISE 1.1
1023

EXERCISE 1.2

15
O0x1284+0x644+0x324+0x16+1x8+1x4+1x24+1x1
15 =00001111

250
Ix1284+1x644+1x32+1x16+1x84+0x4+1x2+0x1
250 = 11111010

EXERCISE 1.3

200
Answer 200/16 = 12 remainder §
200 = C8 Hex

EXERCISE 1.4

(1) 10000110 = 1000 0110
86 Hex
8 x 16 + 6 x 1 = 134 Decimal

(2) 10011000011 = 0100 1100 0011
4 C3 Hex
4 x256+12x 1643 x1=1219 Decimal

EXERCISE 1.5

No, there is no difference between the two instructions in terms of results. They
both add ‘1’ to the register A.

EXERCISE 1.6

No, there is no difference between the two instructions in terms of results. They
both take ‘1’ from the register A.

202 Solutions to exercises

EXERCISE 1.7

A = 00 Hex
B = 5E Hex

EXERCISE 1.8

A =17 Hex
B =01 Hex

EXERCISE 1.9
A =2D H=00101101 B & 3B H=00111011

0010 1101 And Logical
0011 1011

0010 1001
A =0010 1001 B =29 H = 41 Dec

EXERCISE 1.10
RO =38 H=00111000 B & 9A H = 10011010

0011 1000 OR Logical
1001 1010

1011 1010
RO = 1011 1010 B = BA H = 186 Dec

EXERCISE 1.11
PO =125 Dec =01111101 B

10000010 Complement

PO = 1000 0010 B =82 H = 130 Dec

EXERCISE 1.12
A =128 Dec = 10000000 B & B = 2 Dec = 00000010 B

RR A A = 0100 0000 & B = 0000 0010
RL B A = 0100 0000 & B = 0000 0100

Solutions to exercises 203

RR A A = 0010 0000 & B = 0000 0100
RR A A = 0001 0000 & B = 0000 0100
RL B A = 0001 0000 & B = 0000 1000

Therefore A = 16 Dec & B = 8 Dec

EXERCISE 1.13

With reference to Figure exercise 1.13

5V

N

P0.0

Figure exercise 1.13
R=05V-1)/I=(5V-0.7V)/10mA =43V/10mA =430

EXERCISE 1.14
MOV PSW, #18H

EXERCISE 1.15

ACALL calls up a subroutine; the subroutine must always have RET as its last
operation. ACALL range is limited to +127 places forward or —128 places
backward.

AJMP, similar to ACALL, jumps to addresses, which has a similar range but
no return from it.

EXERCISE 1.16

JNC The program jumps to a relative position in the program if carry
is 0.

JNB The program jumps to a relative position in the program if specified
bit = 0.

204 Solutions to exercises

EXERCISE 1.17

Clock frequency = 11.0592 MHz
Therefore clock cycle = 1/11.0592 MHz = 90.423 ns

Signal frequency = 20kHz

Therefore signal cycle = 1/20kHz = 50 ps

Delay = 25 us = (54 + 12 x number) 90.423 ns

Therefore number = ((25 pus/90.423 ns) — 54)/12 = 18 decimal (to the nearest

whole number)

$INCLUDE (REG66X.INC)
ORG 0
SJIMP START
ORG 0040H

START:JB P1.0,PULSE
CLRP1.7
SJMP START
PULSE:SETB P1.7
ACALL DELAY
NOP
NOP
NOP
NOP

CLR P1.7
ACALL DELAY
AJMP START
DELAY: MOV RO, #18
TAKE: DJNZ RO, TAKE
RET
END

Chapter 4

EXERCISE 4.1

; lists all sfr addresses

; sets start address to 0

; short jump to START label

; puts next program line at address

0040H

; jump to PULSE if pinO port1islogicl
; otherwise clear pin7 port 1 to zero

; go to START check switch

; set pin7 on port 1 to logicl

; hold logic 1 on pin7 port 1

; clear pin7 on port 1 to logic O

; go to START check switch

; nomore assembly language

(@) One cycle time T of the required square-wave signal equals

1/frequency.
T =1/2000 = 0.5ms

Delay time = 7/2 = 0.25ms

(b) Timer clock = micro clock/6
= 11.0592MHz/6 = 1.8432 MHz
Timer cycle time = 1/1.8432 MHz = 542.54 ns

Solutions to exercises 205

Delay count = (Delay time)/(Timer cycle time)
= 0.25ms/542.54 ns = 461 (nearest whole number)
Base number = 65535 — Delay count
= 65535 — 461 = 65074
THO = whole number of 65074/256
65074/256 = 254.1953125 = whole number of 254

THO = 254

TLO = (remainder of 65074/256) x 256
= (0.1953125) x 256 = 50
1.e. base number = 65074 decimal = FE32 Hex

EXERCISE 4.2

#finclude <regb66x.h>
ffdefine on 1
ffdefine off 0

sbit SqaureWavePin =P1"7;

void delay5KHz () ;

main() {
TMOD = 0x02;
THO = —184;
TLO = —184%;
while (1) {

SquareWavePin =on;
delay5KHz () ;

SquareWavePin = off;

delay5KHz () ;
)
}
void delay5KHz () (
TRO = on;
while (! TFO) ;

TRO = off;
TFO = off;
}
EXERCISE 4.3

#finclude <reg66x.h>

sbit SquareWavePin =P1"7;

// pwm=pin 7 of the PORT1

// delay-on() returns nothing and
// takes nothing

// start of the program

// Timerl : Gate=0CT=0M1=0M0=0
// Timer0O : Gate=0CT=0Ml =1
// MO =0 ; mode 2

// —(184) =—(bin:1011 1000) =

// bin:0100 1000 = hex:48

// load TLO for the first cycle

// do for ever

// P1.7 set tol

// wait for on time

// P1.7 set to O

// wait for off time

// while ()

// main ()

// set TRO of TCON to run TimerO
// wait for TimerO to set the

// Flag TFO

// stop the Timer0

// clear flag TFO

// delay ()

void TOintETO() interrupt 1 using 1 { // TimerO Interrupt Service

// Routine

SquareWavePin =~ SquareWavePin; // toggle Output

206 Solutions to exercises

)
main() {
TMOD = 0x02;

THO = —184;

ETO0O=1;
EA=1;
TRO =1;
while (1) ;

EXERCISE 4.4

#finclude <regb66x.h>
sbit SquareWavePin = P1"7;

void T2intET2() interrupt 7 using 1 {

SquareWavePin = ~SquareWavePin;

}

main () {
TH2 = 0xB7;
TL2 = OxFF;
RCAP2H = 0xB7;
RCAP2L = OxFF;
T2CON = 0x00;
ET2 =1;
EA=1;
TR2 =1;
while(1);

)

EXERCISE 4.5

ffinclude <reg66x.h>
sbit Pinl =P1"7;

void EX1intEX1 () interrupt 2 using 1 {

Pinl = ~Pinl;
)
main() {

ITl=1;

EX1 =1;

// start of the program

// Timerl: Gate=0CT =0
//M1=0M0=0

// Timer0: Gate =0 CT =0

// M1 =1M0=0 ; mode2

// —(184) = —(bin:10111000)
// =bin:0100 1000 = hex: 48
// Enable Timer0 interrupt
// Enable A1l interrupt

// start TimerO

// end of the program

// main ()

// Timer 2 Interrupt Service
// Routine
// toggle Output

// start of the program

// The Timer starts with

// correct values, first time
// B7H into RCAP2H

// FFH into RCAP2L

// Timer 2 : TF2 =0 EXF2=10
// RCLK =0

// EXEN2 =0 TR2 =0 CT2=0
// CP/RL2 = 0;AutoReload
// Enable Timer O interrupt
// Enable A1l interrupt

// start Timer O

// end of the program

// External 1 Interrupt
// Service Routine
// toggle Output

// start of the program
// set —ve edge triggered
// EnablPPPXTERNAL 1

// interrupt

EA=1;
while (1) ;

EXERCISE 4.6

#finclude <reg66x.h>

sbit outT0 =P1"0;

sbit outTl =P1"1;

void TOintETO() interrupt 1 using 1

outTO = ~outTO;
ACC = 0x55;
P2 = ACC;
ACC = 0x88;
P2 = ACC;
outTO = ~outTO;
}
void T1intET1() interrupt 3 using 3 {

outTl = ~outTl;
}

main() {
TH1 = OxEE;
THO = OxF8;
TL1 = OxEE;
TLO = 0xF8;
TMOD = 0x22;
IP = 0x0A;
IPH = 0x08;
ETO =1;
ET1 =1;
EA=1;
TRO =1;
TR1 =1;
while(1);

}

EXERCISE 4.7

Ratio2: 8 = 2 + § periods = 10 periods
8 bits = 0 to 255 = 256 increments

Solutions to exercises 207

// Enable All interrupt

// end of the program

// TimerO Interrupt
// Service Routine
// toggle Output

// toggle Output

// Timerl Interrupt
// Service Routine
// toggle Output

// start of the program

//

//

//

//

// Gate=0C/T=0M1l=1
// MO =0 both timers:

// autoreload

// Interrupt Priority (IP)
// PT2=0PPC=0PS1=0
// PSO=0PT1=1PX1=0
// PTO=1PX0 =0

// IPH(High byte)

// PT2H=0PPCH=0PS1H=20
// PSOH=0PT1H=1PX1H=0
// PTOH =0 PX0OH=0

// Enable TimerO interrupt
// Enable Timerl interrupt
// Enable A1l interrupt

// start TimerO

// start Timerl

// end of the program

208 Solutions to exercises

Therefore one period = 256/10 = 25.6 increments per period.

Mark (logic 1) = 2 periods

Therefore = 2 x 25.6 = 51 increments (nearest whole number)
CCAPIL (CCAPIH) = 256 — 51 = 205 decimal = CD, and when

CL < CCAPIL, means CEX1 = 0.

Since the PCA timer clock frequency = (micro oscillator frequency)/6. The
CMOD SFR can assume its default value of 00H. The CR bit in the CCON
SFR will have to be set to 1 to turn the PCA time base on.

PCA timer clock frequency = 11.0592 MHz/6 = 1.8432 MHz
PCA timer cycle time = 1/1.8432 MHz = 542.54 ns

Logic 0 is held for 205 x 542.54ns = 111.22 ps

Logic 1 is held for 51 x 542.54 ns = 22.69 ps

include <reg66x.h>

main() {
CCAPM1 |=0x42;
CCAP1L = 205;
CCAP1H = 205;
CR=1;
while(1);

)

EXERCISE 4.8

ffinclude <reg66x.h>
sbit output =P1"7;
int i;

void updateWDT () ;

main() {
CR=1;
CMOD = 0x40;
CCAPM4 = 0x438;
CCAP4L = OxFF;
CCAP4H = OxFF;
while (1) {

output = ~output;
//for(i=0;i<99;i++)
/75
updateWDT() ;
}
}
void updateWDT () {
CCAP4L = 0;
CCAP4H = CH + OxFF;
}

// start of the program

// set ECOM1 and PWM1

// load 2 : 8 count

// count reload

// turn on PCA timer in CCON

// end of the program

// label the output pin

// prototype

// start of the program

// turn on PCA timer in CCON

// WDT Enable

// set ECOM4 and MAT4, ie to WDT
// maximum into compare

// FFFF

// some delay or other tasks

// end of the program

Solutions to exercises 209

EXERCISE 4.9
ffinclude <reg66x.h>
main() { // start of the program
// Serial mode 1
SCON = 0x42; // SMO =0, SM1=1, SM2=0,

// REN=0, TR8 =0, RR8 =0,
// TI =0, RI=0
// Timer 1 in mode 2

TMOD = 0x20; // Tl:Gat=0, C/T=0, Ml =1,
//MO=0, TO:G=0, C/T=0,
//M1=0,MO=0

TH1 = 0xFA; // Baudrate = 9600
TL1 = OxFA;
TR1 =1; // start Timer 1
while (1) {
SBUF = ‘A’ ; // load ‘A’ into Serial
// BUFfer
while (!TI); // wait for completion of
// transmission
TI=0; // clear transmission flag
} // while (1)

} // end of the program

EXERCISE 4.10

ffinclude <reg66x.h>

main() { // start of the program

// Serial mode 1

SCON = 0x42; // SMO =0, SM1=1, SM2=0,
// REN=0, TR8 =0, RBR8 =0, TI =0,

RI=0

// Timer 1 in mode 2

RCAP2H = OxFF; // Baudrate = 9600

RCAP2L = 0xBS8;

TCLK =1; // Tx CLocK flag, forces use of T2
// in mode 1
//3

TR2 =1; // start Timer 1

while (1) {

SBUF = ‘A’; // load ‘A’ into Serial BUFfer
while(!TI);// wait for completion of transmission
TI=0; // clear transmission flag
} // while (1)
} // end of the program

EXERCISE 4.11

#finclude <regb66x.h>
char message[] = ‘“Ashes to Ashes, dust to dust~"";

210 Solutions to exercises

int charPos;

void sendChar (char ch) { // send one character
SBUF = ch; // load character into Serial
// BUFfer
while(!TI); // wait for completion of
// transmission
TI=0; // clear transmission flag
) // sendChar ()
void sendMessage () { // send a string
charPos =0; // reset to first character

=‘~"){
sendChar (message [charPos]) ;
charPos++; // point to the next
// character
} // while (message [charPos]
[/ 1=*~")
sendChar (0x0D) ; // send carriage return
sendChar (0x0A) ; // send line feed
) // sendMessage ()
main () { // start of the program
// Serial mode 1
SCON = 0x42; // SMO =0, SMI1 =1, SM2=0,
// REN=0, TB8 =0, RB8 =0,
// TI=0,RI=0
// Timer 1 in mode 2
TMOD = 0x20; // T1:Gat=0, C/T=0,Ml =1,
// MO=0T0:G=0, CT=0,
//M1=0,M0=0

while(message[charPos] !

TH1 = OxFA; // Baudrate = 9600
TL1 = OxFA;

TR1=1; // start Timer 1
while (1)

sendMessage () ;
} // end of the program

EXERCISE 4.12

ffinclude <reg66x.h>
void SerialPort () interrupt 4using 3 { // Serial port Interrupt
// Service Routine

while (!RI); // wait for interrupt flag
RI=0; // clear flag
Pl = SBUF; // send data to port 1
}
main() { // start of the program
// Serial mode 1
SCON = 0x50; // SMO=0, SM1=1, SM2=0,

// REN=1, TR8 =0, RB8=0,
// TI=0,RI=0

TMOD = 0x20;
TH1 = OxFA;
TL1 = OxFA;
ESO=1;
EA=1;
TR1 =1;
while (1) ;

1

EXERCISE 4.13

#finclude <reg66x.h>
main() {

S1CON = 0x45;

STA=1;
while (!SI);
STA=0;

S1DAT = 0xAOQ;

SI =0;
while(!SI);

S1DAT = 0x04;

ST =0;
while(!SI);

S1DAT = 0x66;

ST =0;
while(!SI);
STO=1;

ST =0;
while(!SI);
while (1) ;

EXERCISE 4.14

#finclude <reg66x.h>
main() {

S1CON = 0x45;

Solutions to exercises 211

// Timer 1 in mode 2

// Tl:Gat =0, C/T=0,
//Ml=1,M0=0T0:G=0,
// C/T=0,Ml1=0,M0O=0
// Baudrate = 9600

// Enable serial port
// interrupt

// Enable All interrupt
// start Timer 1

// wait for serial interrupt
// end of the program

// start of the program

// 1IC Serial clock speed 1/112 CR2 =0,
// CR1=0,CRO=1

// CR2,ENS1 =1,STA=0, STO=0,SI0=0,
// AA=1, CR1 =0, CRO=0

// start I1IC

// wait for serial interrupt

// clear start bit, donot want repeated
// start

// send EEPROM address +write to SIDAT
// clear SI bit

// wait for serial interrupt

// send EEPROM internal address

// clear SI bit

// wait for serial interrupt

// send byte to S1DAT

// clear SI bit

// wait for serial interrupt

// stop IIC

// clear ST bit

// wait for serial interrupt

// do nothing for ever

// end of the program

// start of the program

// 1IC Serial clock speed 1/112 CR2 =0,
// CR1=0, CRO=1

// CR2,ENS1 =1,STA=0,STO=0,SI0=0,
// AA=1,CR1=0,CRO=1

212

Solutions to exercises

STA=1;
while(!SI);
STA=0;

S1DAT = 0xAOQ;
SI=0;
while(!SI);
S1DAT = 0x04;
SI =0;
while(!SI);
STA=1;

SI =0;
while(!SI);
STA=0;
S1DAT = OxA1l;
SI =0;
while(!SI);
AA =0;

SI =0;
while(!SI);
STO=0;

SI =0;
while(!SI);
while (1) ;

Chapter 5

EXERCISE 5.1

/**

* Chapter 5 Exercise5.1

// start IIC

// wait for serial interrupt

// clear start bit, do not want repeated
// start

// write to slave address

// clear ST bit

// wait till complete

// data byte stored at address 04 Hex
// clear SI bit

// wait till complete

// generate a STArt

// clear SI bit

// wait till start complete

// ensure no repeated start

// send slave address to bus + read
// clear SI bit

// wait for serial interrupt

// master sends acknowledge

// clear SI bit

// wait till sent

// master microcontroller sends a stop
// clear SI bit

// wait till sent

// do nothing for ever

// end of the program

* ADC application of 87LPC769
* April 2003

*

* This program reads ADO and displays the results

*

on two seven segments as for example 3.7
ok hk ok ok ok ok ok ok ok ok okhkokkokokkkhkokkohkokkhkokokdhkohkokkhkokokhokkokokokokokokkohkkkhkokokhokokokok ok okokok /
ffinclude <REG769.H>

unsigned char Volts, Volts_tenth;

/**

* START of the PROGRAM *
*ok ok ok ok ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k ok ok kok ok ok k ok ok kok ok kk ok ok ok ok ok ok ok ok k ok ok ok ok ok ok ok ok ok ok ok ok ok % /
void main (void) {

unsigned char channel;
/**
* Disable PO, ADC pins digital Outputs and Inputs *
* AD3 =P0.6, AD2 =P0.5, AD1 = P0.4, ADO = PO0.3 *

Kok ok kokkkokokkokkkkkkhkkrkhhkrkhhkrkhkrhhdhdhrdhdhrhdhhkrdhdkhdhdthdhhkrdhkkhkhdxhkx* /

Solutions to exercises 213

POM2 & = ~0x40; /* Set Pin for Input Only */
POM1| = 0x40; /* POM2 =0 &POML =1 */
PTOAD = 0x40; /* Disable Digital Inputs */
/******9.-*********~k************9.-******************************
* Enable the A/D Converter and use the CPU clock *
* as the A/D clock. *
kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko k k k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kR ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k% /
ENADC = 1; /* enable ADC, 10 us before conv.*/
RCCLK =0; /* use CPU clock */
channel = 3; /* set to the first channel */
/**
* Update the channel number and store it in ADCON. *
kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko k k ok ok ok ok ok ok ok k ok ok ok ok ok ok ok ok kR kR ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k% /
ADCON & = ~0x03; /* clear channel number */
ADCON| = channel; /* set the channel number */

/***9.-

* Perform conversions forever. *
ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k ok ok ok ok ok ok ok ok ok kk ok ok ok ok ok k k ok k ok ok k ok ok ok ok ok ok k ok ok ok ok ok ok ok ok ok ok /
while (1)
/****'k*'k******'k******'k*'k****'k*'k******************************
* Start a conversion and wait for it to complete. *

EE R 2 R R a2 2R R /

ADCI = 0; /* Clear conversion flag */
ADCS =1; /* Start conversion */
while (ADCI ==0) ; /* Wait conversion end */
Volts = (unsigned char) DACO/51;

Pl =Volts;

Volts_tenth = (unsigned char) DACO%51;
PO =Volts_tenth/5;
ADCI =0; /* Clear conversion flag */
}
} /* end of the program */

EXERCISE 5.2

/**

* Chapter 5 Exercise 5.2 *
* DAC application of 87LPC769 *
* April 2003 *
* This program generates triangular wave on the *
* DACO of the P87LPC769 microcontroller *

IR a2 R 2 /

f#finclude <REG769.H>

/**

* START of the PROGRAM *

Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok okok ok kok ok okok ok okok ok kok ok okk ok okk ok kK ok kKK kKKK KKK KKK KK KK /

214 Solutions to exercises

void main (void) {

unsigned int i;
/**

* Disable P1, DAC pins digital Outputs and set the *
* DAC1 = P1.6, DACO = P1.7 to Input Only (Hi z) *
ok kkkhkhkkhkhhkhkhhkdkkhhdkhkhkkkkokkxkohk ok ok kkk ok ok kk ok k ok k ok ok k ok ok ok ok ok ok ok ok ok ok ok ok /
PIM2 & = ~0xCO0; /* Set Pins for Input Only */
P1M1| = 0xCO; /* P1M2=0 & P1M1=1 */
/******************-k***
* Disable the A/D Converter because of DACO *
* AND Enable the D/A ConverterS *
Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok /
ADCI =0; /*Clear A/D conversion complete flag */
ADCS =0; /* Clear A/D conversion start flag */
ENADC = 0; /* Disable the A/D Converter */
ENDACO = 1; /* Enable DACO */
/**
* Create a sawtooth wave on DACO and the opposite *
* sawtooth wave on DAC1. *
N N R T I Ty
while (1) {
for (i =0; 1 <255; i++)
DACO =1;
for (1 =255;1>0; i—-)
DACO =1;
}
}
EXERCISE 5.3
/****~)<***
* Chapter 5 Exercise5.3 *
* Comparator application of 87LPC769 *
* April 2003 *
* *
* Configures CMP1 with CIN1A (P0.4) as positive *
* input and Vref (1.28V) as the negative input and *
* CMP2 is configured with internal CMPREF (P0.5) as *
* negative input and CIN2B(P0.1) as positive input. *
* Both comparator outputs CMP1(P0.6) and CMP2 (P0.0) *
*are gated to output pins. *

E R R 2 I 2] /

#finclude <REG769.H>

/**

* START of the PROGRAM *
Kk ok ok ok ok ok ok ok hk ok okhk ok ok khkokkhkokkohkokkhkokkhkohkkkhkokkhkokkohkokkkokokkohkokkhkokokhk ok ok ok ok ok okok ok /
void main (void) f

unsigned char i;

/**

Solutions to exercises 215

* Disable PO, digital Outputs and Inputs *
* CMPREF = P0.5 *
* CIN1A =P0.4, CIN1B =P0.3, CMP1 = PO0.6 *
* CIN2A =P0.2, CIN2B =P0.1, CMP2 =P0.0 *
ok hk k ok hkok ok ok ok ok ok hkok ok ok ok ok ok ohk ok hkohk ok ok hkok ok ok ok ok hkohkok ok ok ok ok ok ox /

POM2 & = ~0x0C; /* Set Pins for Input Only */

POMl\ZOxOC; /* POM2 = 0 &POM1 =1 */

PTOAD = 0x0C; /* Disable Digital Inputs */
/**********************************‘k**********************‘k**
* Set CIN1A(P0.3) as +ve input, Vref as —ve *
* input and CMP1 Out(P0.0) *
* - - CEn CPn CNn OEn COn CMFn *
*00101100 *

I a2 R A 2 R R 2 /
CMP1 = 0x2C;

/**

* Set CIN2B(P0.2) as +ve input, CMPREF as —ve *

* input and CMP2 Out(PO.6) *

* - - CEn CPn CNn OEn COn CMFn *

*00110100 *

kk ok kR kR ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK /
CMP2 = 0x34;

/************~k******~k***************~k************************

* Do nothing delay 10 us *

IR A /

for (i=0; 1 <=10; i++);
while (1) {}; // Loop Forever
}

EXERCISE 5.4

/**«k******«k******«k*****-k**«k******«k***************«k***********

* Chapter 5 Exercise5.4 *
* SPI Master application of 89LPC932 *
* April 2003 *
* This programwrites some data to some slave *
* Devices. *
* Assumes, P0.0 =DeviceO.ss pin *

B a2 2 a2 2 R /

ffinclude <Reg932.h>
sbit DeviceO =P0"0;

/**

* Write one byte to the SPI *
EE R A A R R R A A A A A A A A A A A R R R A /
void SPI_Write (unsigned char dat)

{
SPDAT = dat; /* write Data to SPI bus */

216 Solutions to exercises

while ((SPSTAT & 0x80) ==0) ; /* wait completion */
SPSTAT| = 0x80; /* clear SPIF by writing 1 to it */
}

/**9.-*****************************9.-***************************

* START of the PROGRAM *

*ok ok ok ok ok k ok ok ok ok ok ok ok ok ok k ok ok ok ok ok k ok ok kok ok ok ok ok ok k ok ok kk ok k ok ok ok k ok ok ok ok ko ok ok ok ok ok ok ko ok ok ok /
void main (void) {
/**‘k******‘k****‘k*‘k******‘k*************‘k**********************

*

* Port 2 to quasi-bidirectional

* MOSI = P2.2, MISO =P2.3, SPICLK =P2.4, SS = P2.5 *
EE R A A R R B A A A A B R B R A /
P2M1 = 0xC3;
P2M2 = 0xC3;

/**

* *

configure SPI
* §S =1 MSTR determines device is master/slave

* SPEN =1 Enable SPI *
* DORD = 0 MSB of the data is transmitted first *
*MSTR =1 device is master *
* CPOL =1 SPICLK is high when idle. The leading *
* edge of SPICLK is falling edge. *
* CPHA =1 data is driven on the leading edge of *
* SPICLK and sampled on the trailing edge *
* SPR1 =1 SPI clock rate = CCLK/128 *
* SPRO=1 *

L a2 A 2 2R R T) /

SPCTL = 0xDF;

Device0 =0; /* select Device 0 */
while (1) {

SPI_Write(‘H’); /* write H to Device 0 */
SPI_Write(‘A’); /* write A to Device 0 */
SPI_Write(*S’); /* write S to Device 0 */
SPI_Write(‘S’); /* write S to Device 0 */
SPI_Write(‘A’); /* write A to Device 0 */
SPI_Write(*N’); /* write N to Device 0 */

}

EXERCISE 5.5

/**

*

* Chapter 5 Exercise5.5

* LPC932 EEPROM byte read and write applications *
* April 2003 *

* This programwrites to a row of 64 bytes to
* EEPROM memory *

I A 2 I I R 2 R) /

Solutions to exercises 217

#finclude <Reg932.h>
jfdefine dataAddress 0

/**

*Write a row of 64 bytes to the EEPROM *

EE R R I R R R R /

void writeByteRow(unsigned int adr, unsigned char dat)
{

DEECON = 0x20 ; /* row of 64 bytes write */
DEEDAT = dat; /* set write data */
DEEADR = (unsigned char) adr; /* start write */
while ((DEECON&Ox80) == 0) ; /* wait until complete */

}

/**

* START of the PROGRAM *

Kk kokkkkkkkkokkkokkokokkkkhkhkkhkhkkhkohhkrohdkhkhhrkhhkrhdkdhdkrhdhrkhdkdkhdtrdxrk /

void main (void) {

writeByteRow(dataAddress, ‘X’); /* write to EEPROM */
}
EXERCISE 5.6
/**
* Chapter 5 Exercise5.6 *
* LPC932 EEPROM byte read and write applications *
* April 2003 *
* *
* This programwrites 512 bytes to EEPROM memory *

kk ok ok ok ok ok ok ok ok okok ok okok ok okokokokokkokokkokokkokkkohhkhkohhkhkohhkhohdkhhdkrohhdhdhdkhdthdxkk /

#finclude <Reg932.h>
ffdefine dataAddress 0

/**«k***-k**«k*****-k«k********«k***-k**«k***************«k******«k****

* Write one byte to the EEPROM *

IR R 2 I I R /

void writeByte (unsigned int adr, unsigned char dat)

{

DEECON = 0x30; /* block write */
DEEDAT = dat; /* set write data */
DEEADR = (unsigned char)adr; /* Any address */
while ((DEECON&Ox80) == 0) ; /* wait until complete */

}

/**

* START of the PROGRAM *
d ok k k ok k ok ok ok k ok ok ok ok ok ok ok ohk ok hk ok hk ok ko hk ok ok ok hk ok hk ok hk ok ok ok hk ok hkok ok k ok k ok k ok kk ok k ok ko k ok ok ok /
void main (void) {

writeByte(dataAddress, ‘Y’); /* write to EEPROM */
}

218 Solutions to exercises

EXERCISE 5.7

/**

* Chapter 5 Exercise5.7 *
* LPC932 EEPROM byte read and write applications *
* April 2003 *
* *
* This program writes some data to EEPROM memory *
* and then reads the same data back *

I I A A I R R) /

#finclude <Reg932.h>

/**

*Write one byte to the EEPROM *

Kok ok ok ok ok ok okokkokokkokokkokokkokkkokkkhkrkhkkhdhdkhdhrthdhhkhhdkhdhdthdhhkdhkkhkhdhkhkxk /

void writeByte(unsigned int adr, unsigned char dat)
{

DEECON = 0x00; /* byte read/write */
DEEDAT = dat; /* set write data */
DEEADR = (unsigned char) adr; /* start write */
while ((DEECON&0x80) == 0) ; /*wait until complete */

}

/**

* read one byte from the EEPROM *

EE R A I 2 2 2R) /

unsigned char readByte (unsigned int adr)

{

DEECON = 0x00; /* byte read/write */
DEEADR = (unsigned char) adr; /* start read */
while ((DEECON&Ox80) == 0) ; /*wait until complete */
return DEEDAT; /* return data */

}

/*****«k******«k********«k******«k***-k**«k********«k******«k******«k*

* START of the PROGRAM *

B A I 2 I I /

void main (void) {

writeByte(0x10, ‘H’); /* write to EEPROM */
writeByte(0x11, ‘A’); /* write to EEPROM */
writeByte (0x12,‘S’); /* write to EEPROM */
writeByte(0x13,“S’); /* write to EEPROM */
writeByte(0x1l4, ‘A’); /* write to EEPROM */
writeByte (0x15, ‘N’) ; /* write to EEPROM */
writeByte(0x16, ') ; /* write to EEPROM */
writeByte(0x17, ‘F’); /* write to EEPROM */
writeByte (0x18, ‘R’); /* write to EEPROM */
writeByte(0x19, ‘E’); /* write to EEPROM */
writeByte(0x1A, ‘D’); /* write to EEPROM */
writeByte (0x1B, * ') ; /* write to EEPROM */
writeByte(0x1C, ‘D’); /* write to EEPROM */
writeByte(0x1D, ‘A’); /* write to EEPROM */

writeByte (0x1E, ‘V’); /* write to EEPROM */

Solutions to exercises 219

writeByte (0x1F, ‘I’); /* write to EEPROM */
writeByte (0x20, ‘D’); /* write to EEPROM */

PO = readByte (0x10
PO = readByte (0x11
PO = readByte (0x12
PO = readByte (0x13
PO = readByte (0x14
PO = readByte (0x15

() /* read from EEPROM */
() /* read from EEPROM */
() /* read from EEPROM */
() /* read from EEPROM */
() /* read from EEPROM */
() /* read from EEPROM */
PO = readByte (0x16) ; /* read from EEPROM */
PO = readByte(0x17); /* read from EEPROM */
PO = readByte (0x18) ; /* read from EEPROM */
PO = readByte (0x19) ; /* read from EEPROM */
PO = readByte (0x1A); /* read from EEPROM */
PO = readByte (0x1B) ; /* read from EEPROM */
PO = readByte (0x1C) ; /* read from EEPROM */
PO = readByte(0x1D) ; /* read from EEPROM */
PO = readByte (0x1E) ; /* read from EEPROM */
PO = readByte (0x1F) ; /* read from EEPROM */
PO = readByte (0x20) ; /* read from EEPROM */

Chapter 6

EXERCISE 6.1
/**
* Chapter XA Exercise6.1 *
* Timer O programming Application *
* April 2003 *
* *
* This toggles P1.7 port pin at 1KHz *

EE R A 2 2k R /

#finclude <REGXAG49.H>
sbit SquareWavePin =P1"7; /* pin 7 of the port 1 */
void delay () ; /* declare the delay function */

/************~k******~k***************~k************************

* START of the PROGRAM *
KKK KR K R R KK R K R X KK K R KK KK KK KR K KK KK KK K KKK KKK KR KRR KA KA KA
void main (void) {

WDCON = 0; /* watchdog off */

WFEED1 = O0xA5;

WFEED2 = 0x5A;

TMOD = 0x01; /* Timer 0 in mode 1 */
while (1) { /* do for ever */
SquareWavePin =1; /* pin 7 of port 1 set to 1 */
delay(); /* produce delay of 0.5ms */

SquareWavePin =0; /* pin 7 of port 0 set to 1 */

220 Solutions to exercises
delay();

}

/* produce delay of 0.5ms */
/* while () */
/* main() */

/**

* produce a delay of about 0.5ms

*

Kok ok ok ok ok ok ok ok ok ok ok ok okok ok koK ok kKK kKK kKKK KKK KKK KKK KKK KRk KRk Kk kKR kK ok ok kK kK /

void delay () {

THO = O0xFA;
TLO = 0x99;
TRO=1;
while (! TFO) ;
TRO=0;
TFO=0;

}

EXERCISE 6.2

*/
*/
*/
x/

/* set the high byte
/* set the low byte

/* start timer 0

/* wait for roll-over
/* stop timer 0 */

/* clear flag 0 */

/* delay () */

/**

* Chapter XA Exercise6.2
* WatchDog programming Application
* April 2003

*

* This toggles P1.7 port pin at 1KHz

E R /

{#finclude <REGXAG49.H>
sbit SquareWavePin =P1"7;
void delay();

/* pin 7 of the port 1 */

/* declare the delay function */

/-k*-k************~k******~k-k*-k**********************************

* START of the PROGRAM

*

E R I I I 2 2R A) /

void main (void) {

WDCON = 4 ;

WDL =51;

SCR=0;

TMOD = 0x01;

while (1) {
SquareWavePin =1;
delay();
SquareWavePin =0;
delay();

}
}

*/
*/
=/
*/
x/
=/
*/

/* watchdog pre-scale =32
/* watchdog auto-reload =51
/*timer clock pre-scale =24
/* timer 0 in mode 1

/* do for ever

/* pin 7 of port 1 set to 1
/* produce delay of 0.5ms

/* pin 7 of port O set to 1 */

/* produce delay of 0.5ms */

/* while() */

/* main() */

/**

* produces a delay of about 0.5ms

*

L A I) /

void delay () {
THO = OxFA;
TLO = 0x99;

/* set the high byte */
/* set the low byte */

Solutions to exercises 221

TRO = 1; /* start timer 0 */
while (!TFO) ; /* wait for roll-over */
TRO =0; /* stop timer 0 */
TFO=0; /* clear flag 0 */
WFEED1 = 0xA5; /* feed the watchdog */
WFEED2 = 0x5A; /* feed the watchdog */

} /* delay () */

EXERCISE 6.3
/***********‘k***************‘k*************‘k********‘k*********
* Chapter XA Exercise6.3 *
* UART programming application *
* April 2003 *

* This sends two messages to UART continuously

kok okokokokokkok kKoK koK /

#finclude <REGXAG49.H>

code char MessageOne[] = ‘‘Roses arered ~’’ ;

code char MessageTwo[] = ‘‘Violets are blue ~ *’ ;

const char CR = 0x0D; /* Carriage Return */
const char LF = 0x0A; /* Line Feed */

void send (unsigned char ch);
/**

* START of the PROGRAM *

kK kkokkkokkkkokokkkokkkokkkkkhkkkhkkhkohkhkrohhkhkhhkrkohhkrhdhrhdkrhkdhrhdhtkhdtrsxrk /

void main (void) {
unsigned int i;

WDCON = 0 /* watchdog control off */
WFEED1 = 0xA5; /* feed the watchdog */
WFEED2 = 0x5A; /* feed the watchdog */
SCON = 0x42; /* Serial mode 1, TI set */
TMOD = 0x20; /* Timer1l in mode 2 */
RTL1 = 238; /* Timerl reload set */
TL1 =238; /* TL1 also set initially */

TR1 =1; /* start Timerl */
while (1) { /* do for ever */
i=0;

while (MessageOne[i] != ‘~ ") {

send (MessageOne[i]);
i++;

}

send (CR) ; /* send Carriage Return */

send (LF) ; /* send Line Feed */

i=0;

while (MessageTwo[i] != ‘~ ") {

send (MessageTwo [1]) ;
i++;

222 Solutions to exercises

send (CR) ; /* send Carriage Return */
send (LF) ; /* send Line Feed */
) /* while(1)*/
) /* main () */

/**

* this function sends one character *

P R R I R R A I I R R R R R A I S /

void send (unsigned char ch) {

while(!TI); /* wait for SBUF clear to send */
TI=0; /* clear TI */
SOBUF = ch;
} /* send () */
EXERCISE 6.4
/**'k**‘k***'k******'k**‘k*‘k***'k**‘k***'k***************************
* Chapter XA Exercise6.4 *
* Exception programming Application *
* April 2003 *
* *
* This sends a messages to UART when an exception *
* occurs. *

I I 2 I R a2 /

Jinclude <REGXAG49.H>

code char Message[] = ‘‘Divide By Zero Exception~ "’ ;

const char CR = 0x0D; /* Carriage Return */
const char LF = 0x0A; /* Line Feed */
%R KR KKK KK Kk K Kk KK KK KR KR X R XK KKK K K KK KK KKK KRR X R KR KK KK KK K K
* START of the PROGRAM *

Kok ok ok ok ok ok okokkokokkokokkokkkkkkkkkhkrdhhkhdhrkhdhrthdhhkhhdkhdhdthdhhkddhkhdhdhkhkxk /

void main (void) {

WDCON = 0; /* watchdog control off */
WFEED1 = 0xA5; /* feed the watchdog */
WFEED2 = 0x5A; /* feed the watchdog */
SCON = 0x42; /* Serial mode 1, TI set */
TMOD = 0x20; /* timer 1 in mode 2 */
TH1 = 0xFA; /* TH1 set */
TL1 = 0xFA; /* TL1 also set initially */
TR1=1; /* start timer 1 */
while(1) f /* stay here for ever */
TLO = 44; /* divide by zero */
TLO = TLO/0;
}
} /* main() */

/**

* sends one character to the UART *

B R I R 2 I I) /

void send (unsigned char ch) {
while(!TI); /* wait for SBUF clear to send */

Solutions to exercises 223

TI=0; /* clear TI */
SOBUF = ch;
} /* send () */

/**

. - . N
handles divide by zero exceptions

khkkkhkhkkkhkhkhkkhkhhdkhhdkhkhkkkkohkkkkhkhk ok ok khk ok ok kk ok ok ok khk ok ok ok ok ok ok okk ok ok ok ok ok ok ok /

void DivideByZero() exception 4 using 1 {
int i =0;

while (Message[i] != ‘~ ") |
send (Message[i]);
i4++;
}
send (CR) ; /* send carriage return */
send (LF) ; /* send line feed */
} /* DivideByZero() exception */
EXERCISE 6.5
/****‘k******‘k***************‘k******‘k***************‘k******‘k**
* Chapter XA Exercise6.5 *
* Trap programming application *
* April 2003 *
* This program continuously toggles P1.4, while P1.0 is *
*at logic 1, and calls the trap 5 to toggle P1.7 when *
*P1.0is logic O. *

I I R /

#finclude <REGXAG49.H>
sbit portlPind = P174;
sbit portlPin0 =P1"0;
sbit portlPin7 =P1"7;

/**

* handles trap *
KR KKK K KKK KK KK KR KKK K KRR KKK KK KK KR KK KR KKK KKK R KKK KKK KKK KA R KRR/
int myTrap5() trap 5 {

portlPin7 =1;

portlPin7 =0;

return 0;
}

/**

* START of the PROGRAM *

B a2 R A 2 R R /

void main (void) {

WDCON = 0; /* watchdog control off */
WFEED1 = 0xA5; /* feed the watchdog */
WFEED2 = 0x5A; /* feed the watchdog */
SM=0; /* SM=0, therefore user mode */

while (1) {

224 Solutions to exercises

while(portl1Pin0) { /* while portl pin0 =1 */
portlPin4 =1; /* portl, pind=1 */
portlPin4 =0; /* portl, pind=0 */
}
myTrap5 () ;
)
} /* main() */
EXERCISE 6.6
/**
* Chapter XA Exercise6.6 *
* Interrupt Priority programming Application *
* April 2003 *

*

This program changes the priority of the external 1 to one
*higher than that of TimerO. *
KRR KR R K KKK KR KRR KRR KRR KRR KK KKK AR R KK KKK KA KRR KKK KAA AR KK KKK KA AR/
ffinclude <REGXAG49.H>
sbit portlPind = P1M4;
sbit portlPin7 =P1"7;

/**

* TimerO interrupt *
kR Rk Rk Rk R Rk Rk Rk Rk Rk kK K K K K K K K K K K K K K K R K K K kR ok ok k]
void TimerO(void) interrupt 1 {
while (1) {
portlPin7 =1;
portlPin7 =0;

}

/**

* External 1 interrupt *
khkkkhkhkhkkhkhhdkhdhrhkhdd ko hkFkk ok ok xkhk ok ok khkhk ok ok khk ok ok ok k ok k ok k ok ok ok ok ok ok ok ok ok ok ok /
void EXlternal() interrupt 2 priority 11 {

portlPind =1;

portlPin4d =0;
}

/**

* START of the PROGRAM *

B A 2 I I 2 2 I) /

void main (void) {

WDCON = 0; /* watchdog control off */
WFEED1 = 0xA5; /* feed the watchdog */
WFEED2 = 0x5A; /* feed the watchdog */
TMOD = 0x02; /* TimerO in mode 2 */
TLO = 0xDD; /* TimerO low byte set to DD */
RTLO = 0xDD; /* TimerO reload set to DD */

IPA1 = 0x03; /* External Int. Priority=11(8+3)*/

Solutions to exercises 225

IPAO = 0x20; /* TimerO Int. Priority =10(8+2)*/
IEL = 0x86; /* Enable EA, Ex1 and ETO */
TRO = 1; /* start Timer0O */
while (1) ; /* wait here for interrupts */

/* main() */

Appendix A

8051 Instruction Set

A.1 Introduction

The instructions for the 8051 device are dependent on the clock frequency and
are completed in a number of clock cycles. The basic 8051 device operates on a
minimum 12 clock cycles per instruction basis and this is reflected in the notes
that follow each type of instruction described below. However, some members
of the 8051 family operate on a minimum of 6 clock cycles per instruction,
hence performance is twice as fast as the basic 8051 for a specified clock
frequency. Other members of the 8051 family operate on a minimum of 2 clock
cycles with a consequent increase in operating speed for a given clock fre-
quency. Details of any variation in instruction timing for a particular 8051
family member referred to in this text are given in the relevant appendix.

A.2 Notes on instruction set

Rn Registers R7-R0 of the currently selected register bank.

direct 8-bit internal data location address. This could be internal data
RAM or an SFR.

@Ri 8-bit internal data RAM location addressed indirectly through

Register Ri (RO or RI).

addr 16 16-bit destination address. Used by LCALL and LIMP. A branch
can be anywhere within the 64 KB program memory space.

addr 11 11-bit destination address. Used by ACALL and AJMP. The
branch would be within the same 2 KB of program memory.

bit Direct addressed bit in internal data RAM or SFR.
#data 8-bit constant included in the instruction.

#data 16 16-bit constant included in the instruction.

C* Carry bit in the PSW register.

/ Complement byte or bit.

rel Signed (two’s complement) 8-bit offset byte.

A.3 Data transfer instructions

MOV A, Rn

MOV A, direct
MOV A, @Ri

MOV A, #data
MOV Rn, A

MOV Rn, direct
MOV Rn, #data
MOV direct, A
MOV direct, Rn
MOV direct, direct
MOV direct, @Ri
MOV direct, #data
MOV @Ri, A

MOV @Ri, direct
MOV @Ri, #data
MOV DPTR, #data 16
MOVC A, @A + PC
MOVC A,@A + DPTR
MOVX A,@Ri
MOVX A, @ DPTR
MOVX @DPTR,A
PUSH direct

POP direct

XCH A,Rn
XCH A, direct
XCH A,@Ri
XCHD A,@Ri

[DPTR{M}]

Appendix A 227

[Rn]

[direct]
[Ri{M}]
data

[A]

[direct]

data

[A]

[Rn]

[direct]
[Ri{M}]
data

[A]

[direct]

data

data (16-bit)
[[[A] + [PCII{M}]
[[A] + [DPTR]{M}]
Ri{M}]
DPTR {M}]
Al

SP]+1
direct]
SP{M}]

SP] -1

Rn]

direct]
Ri{M}]
Ri{M;_¢}]

— e e T —

The majority of data transfer instructions consist of 24-clock cycles. The

exceptions are:

MOV A #data
MOV Rn,A
MOV Rn,#data
MOV direct,A
MOV @Ri,A

MOV @Ri,#data

XCH A,Rn
XCH A, direct
XCH A,@Ri
XCHD A,@Ri

which consist of 12-clock cycles.

228 Appendix A

A.4 Arithmetic instructions

ADD A,Rn [A] < ——— J[A]+[Ri]
ADD A, direct [A] < ——— [A]+ [direct]
ADD A,@Ri [A] < ——— [A]l+[Ri{M}]
ADD A #data [A] < ——— [A]l+data
ADDC A,Rn [A] <——— [A]+[Ri]+C
ADDC A direct [A] < ——— [A]+ [direct] + C*
ADDC A,@Ri [A] < ——— [A]l+[Ri{M}]+C"
ADDC A #data [A] < ——— [A]+data+ C*
SUBB A, Rn [A] <——— [A]-[Rn]—
SUBB A, direct [A] <——— [A]- [dlrect] C*
SUBB A,@Ri [A] <——— [A]-[Ri{M}] -
SUBB A #data [A] < ——— [A]— data — C*
INC A [A] <——= [A]—H
INC Rn [Rn] <——— [Rn]+
INC direct [direct] < — — — [direct] + 1
INC @Ri [Ri{M}] < [RI{M}] +1
DEC A [A] <——— [Al-
DEC Rn [Rn] <——— [Rn]— 1
DEC direct [direct] < ——— [direct] — 1
DEC @Ri [Ri{M}] <——— [Ri{M}]-1
INC DPTR [DPTR] < - —— [DPTR]+1
MUL AB [A7-0] <——— [A]x[B]
[Bis—s] <——— [A]x[B]
DIV AB [Ars_s] < ——— [A)/[B]
{B7-0] < — — — remainder
DA A if [As_o] >9, OR Aux C* =1
then [Aso] < ——— [A30]+6
if [A7_4] >9, OR Aux C*'=1
then [A7_4] <——— [A7.4]+6

The majority of arithmetic instructions consist of 12-clock cycles. The excep-
tions are:

INC DPTR
which takes 24-clock cycles and:

MUL AB
DIV AB

both of which take 48-clock cycles.

A.5 Logical instructions

ANL A, Rn [A] <——=- [A] AND [Rn]
ANL A, direct [A] < === [A] AND [direct]

Appendix A 229

ANL A, @Ri [A] <——=- [A] AND [Ri{M}]
ANL A, #data [A] < === [A] AND data
ANL direct, A [direct] < === [direct] AND [A]
ANL direct, #data [direct] <= == [direct] AND data
ORL A, Rn [A] <—=- [A] OR [Rn]
ORL A, direct [A] < ——— [A] OR [direct]
ORL A, @Ri [A] <——=- [A] OR [Ri{M}]
ORL A, #data [A] < === [A] OR data
ORL direct, A [direct] <——=- [direct] OR [A]
ORL direct, #data [direct] < === [direct] OR data
XRL A, Rn [A] <—=- [A] XOR [Rn]
XRL A, direct [A] < == - [A] XOR [direct]
XRL A, @Ri [A] <——- [A] XOR [Ri{M}]
XRL A, #data [A] < === [A] XOR data
XRL direct, A [direct] <= == [direct] XOR [A]
XRL direct, #data [direct] <—=- [direct] XOR data
CLR A [A] < === 0
CPL A [A] <——=- [/A]
RL A [Anii] <——- [Apl,n =0-6
[Ao] < - - - [A7]
RLC A [Ani1] <—=- [Ay],n =0-6
[Ao] <-—-- c
C <—-—- [A7]
RRA [An] <——=- [Apii],n=0-6
[A7] <= == [Ao]
RRC A [An] <—=- [Ap1l,n=0-6
[A7] < - - - c
C <—-—- [Ao]
SWAP A [A3_0] <~ — = [A7_4]

The majority of logical instructions consist of 12-clock cycles. The excep-
tions are:

ANL direct,#data
ORL direct,#data
XRL direct,#data

which take 24-clock cycles.

A.6 Boolean variable manipulation instructions

CLR C C* <——— 0
CLR bit bit <—-—=-=0
SETB C C* <——— 1
SETB bit bit <—-———1
CPL C C* <—=—= /C*

CPL bit bit <——— |bit

230 Appendix A

ANL C, bit
ANL C,/bit
ORL C, bit
ORL C,/bit
MOV C, bit
MOV C,/bit
JC rel

INC rel
JB bit, rel
JNB bit, rel

JBC bit, rel

Cx
C*
C*
Cx
C*
C*
ifC* =1
ifC*'=0
if bit=1
if bit=0
if bit=1

[PC]
[PC]
[PC]
[PC]
[PC]
[PC]
[PC]
[PC]
[PC]
bit

[PC]

C* AND bit
C* AND /bit
C* OR bit
C* OR /bit
bit

[PC] + rel

The majority of Boolean variable manipulation instructions take 24-clock

cycles. The exceptions are:

CLR C
CLR bit
SETB C
SETB bit
CPL C
CPL bit

MOV C,bit

all of which take 12-clock cycles.

A.7 Program branching instructions

ACALL addr 11

LCALL addr 16

RET

[SP{M]]
[SP] -1

RETI

AJMP addr 11
LJMP addr 16
SIMP rel

JMP @ A + DPTR
JZ rel

INZ rel

CINE A, direct, rel

CINE A, #data,rel

CJINE Rn, #data, rel

CINE @R1, #data, rel

DJNZ Rn, rel

DJNZ direct, rel

NOP

if [A] -0

if A <> [direct]

if A < [direct]
else

if A <> data
if A < data
else

if [Rn] < > data [PC]

if [Rn] < data
else

[PCro] < ———
[SP] < — — —
[PCisg] < ———
[SP] < — — —
[PCro] < ——~—

g
caoococaoaooaaan

N
|
I
I

[e e e e e

VARWAN
(I
[
(.

e N

a

a
A
|
|
|

A A
(.
(.
(.

O Q
% %

< —_— —
[PC]
[PC]

[PC]
C*

C*
[PC]

if [Ri{M}] < > data

[PC]

if [Ri{M}] < > data

else

if [Rn]=0
[direct]

if [Rn] =0

[PC] < — ——
No operation

Appendix A 231

SP{M}]

[

[
[SP{M}]
[
[SP{M}]

[

[PC]+2
addr 11
[PC]+3
addr 16
[PC]+ 2
[PC] + rel

[PC] + rel

=<

Cl+2
-1

~
=]

]

]

1+ rel
142
irect] — 1
PC] + rel

5= Bs)
OO0

—_——— — — —
o

All program branching instructions take 24-clock cycles except for:

NOP

which takes 12-clock cycles.

Appendix B

Philips XA Microcontroller — XA and
8051 Instruction Set Differences

B.1 Arithmetic

8051 INSTRUCTIONS
INC ADD ADDC DA DEC SUBB MUL DIV

ADDITIONAL INSTRUCTIONS FOR THE XA

ADDS
ADD Short signed value (4-bit: +7 to —8) to destination.

Example:
ADDS Rd, #data4

[Rd] < ——— [Rd]+ datad
SUB (.b, .w)
SUBtract without borrow.
Example:
SUB Rd, Rs
[RA] < ——— [Rd]—[Rs]

MULU (.b, .w)
MULtiply Unsigned (8 x 8, 16 x 16).

Example:
MULU.b Rd, Rs

[RdH] < — — — most significant byte of [Rd] x [Rs]
[RAL] < — — — least significant byte of [Rd] x [Rs]

Appendix B 233

Example:
MULU.w Rd, Rs

[Rd+1] < ——— most significant byte of [Rd] x [Rs]
[Rd] < — — — least significant byte of [Rd] x [Rs]

DIVU (.b, .w, .d)
Divide Unsigned (8/8, 16/8, 32/16).

Example:
DIVU.b Rd, Rs
[RAL] < — — — 8-bit integer portion of [Rd]/[Rs]
[RdH] < — — — 8-bit remainder of [Rd]/[Rs]
Example:

DIVU.w Rd, Rs

[RAL] < — — — 8-bit integer portion of [Rd]/[Rs]
[RAH] < — — — 8-bit remainder of [Rd]/[Rs]
Example:
DIVU.d Rd, Rs
[Rd] < — — — 16-bit integer portion of [Rd]/[Rs]
[Rd+1] < ——— 16-bit remainder of [Rd]/[Rs]
SEXT (.b, .w)

Sign EXTend N flag (sign bit) into destination register.

Example:
SEXT.b Rd

[Rd] <——— FF if N=1
[Rd] <——— 00 if N=20
Example:

SEXT.w Rd
[Rd] <—-—— FFFF ifN=1

[Rd] <——— 0000 if N=0
B.2 Logical

8051 INSTRUCTIONS
CLR bit SETBbit CPL CLR RL RR RLC RRC ANL OR XOR

234 Appendix B

ADDITIONAL INSTRUCTIONS FOR THE XA

NEG (.b, .w)
NEGate destination register (two’s complement).

Example:
NEG Rd

[Rd] <-——— [Rd]+1

LSR (.b, .w, .d)
Logical Shift Right destination register, 1-31 number of bits.

Example:
LSR Rd, Rs (see Figure B.1)

Rd
0—| MSB — LSB |—>
Figure B.1

ASR (.b, .w, .d)
Arithmetic Shift Right destination register, 1-31 number of bits.

Example:
ASR Rd, Rs (see Figure B.2)

Rd
,—>_I\\/ISB — LSB ¢
| —{c|

Figure B.2

ASL (.b, .w, .d)
Arithmetic Shift Left destination register, 1-31 number of bits.

Example:
ASL Rd, Rs (see Figure B.3)

Rd
<—| MSB <— LSB |<—0

Figure B.3

NORM (.b, .w, .d)
Logically shifts left the contents of the destination register until MSB is set,
storing the number of shifts performed in the source register.

Appendix B 235

Example:
NORM Rd, Rs (see Figure B.4)

Rd
MSB <«— LSB 0

Figure B.4

CMP (.b, .w)
CoMPares the source with the destination by performing a two’s complement
binary subtraction of source from destination. Some flags are affected.

Example:
CMP Rd, Rs

[Rd] — [Rs]
AND (.b, .w)

ANDs bitwisely the contents of the source to the destination.

Example:
AND Rd.Rs

[Rd] < ——— [Rd]-[Rs]

B.3 Control transfer

8051 INSTRUCTIONS (UNCONDITIONAL)
SIMP rel LJMP addrl6 AJMP addrll LCALL addrl6 ACALL addrll

ADDITIONAL INSTRUCTIONS FOR THE XA (UNCONDITIONAL)

FJMP
Far JUMP absolute causes an unconditional branch to the absolute memory
location. The target address is always forced to be EVEN.

Example:
FIJMP addr24

[PC(23-0)] < ——— addr24
[PC(0)] <——= 0

CALL
CALL subroutine relative branches unconditionally in the range of
465 534 bytes to —65 536 bytes.

236 Appendix B

Example:

CALL rel26
[PC] <——— [PC]+3
[SP] <—-—— [SP]-
[SP(mem)] < ——— [PC(23-0)]
[PC] < ——— [PC]+rell6
[PC(0)] <—-=-=0

FCALL

Far CALL subroutine absolute causes an unconditional branch to an absolute
location in the 16 MB of XA address.

Example:
FCALL addr24

[PC] <——— [PC]+4
[SP] <——— [SP]-
[SP(mem)] < — — — [PC(23 — 0)]
[PC] < ——— addr24
[PCO] <——- 0

BR
Unconditional BRanch subroutine causes an unconditional branch to a
location in the range of 4254 bytes to —256 bytes.

Example:

BR rel8
[PC] <——— [PC]+2
[PC] < ——— [PC]+reld
[PCO)] <———- 0

8051 INSTRUCTIONS (CONDITIONAL)
JB JC JNC JNzZ Jz JBC CJNE DINZ

ADDITIONAL INSTRUCTIONS FOR THE XA (CONDITIONAL)

BOV
Branch if OVerflow flag is set to a location in the range of 4254 bytes to
—256 bytes.

Example:
BOV rel8

Appendix B 237

[PC] <—-———- [PC]+2
If [V-flag] = 1 then

[PC] < ——— [PC]+reld
[PC(0)] <-=——0

BNV
Branch No oVerflow, branches if overflow flag is not set, to a location in the
range of +254 bytes to —256 bytes.

Example:

BNV rel8
[PC] <——— [PC]+2
If [V-flag] = 0 then
[PC] < ——— [PC]+rel8
[PC(0)] <—-——0

BPL

Branch PLus, branch to a location in the range of +254 bytes to —256 bytes if
N flag is not set.

Example:

BPL rel8
[PC] <——— [PC]+2
If [N-flag] = 0 then
[PC] < ——— [PC]+rel8
[PC(0)] <—=——=0

BCC

Branch if Carry Clear, branches to a location in the range of +254 bytes to
—256 bytes if carry flag is not set.

Example:

BCC rel8
[PC] <——— [PC]+2
If [C-flag] = 0 then
[PC] < ——— [PC]+rel8
[PC(0)] <—=—-—0

BCS

Branch if Carry Set, branches to a location in the range of +254 bytes to
—256 bytes if carry flag is set.

Example:
BCS rel8

238 Appendix B

[PC] <——-= [PC]+2
If [C-flag] = 1 then

[PC] < ——— [PC]+rel8
[PC(0)] <—-=—=0

BEQ
Branch if EQual, branches to a location in the range of 4254 bytes to
—256 bytes if zero flag is set.

Example:

BEQ rel8
[PC] <——— [PC]+2
If [Z-flag] = 1 then
[PC] < ——— [PC]+rel8
[PC(0)] <———0

BNE

Branch if Not Equal, branches to a location in the range of +254 bytes to
—256 bytes if zero flag is reset.

Example:

BNE rel8
[PC] <——— [PC]+2
If [Z-flag] = 0 then
[PC] < ——— [PC]+rel8
[PC(0)] <-=—=0

BG

Branch Greater, branches to a location in the range of +254 bytes to
—256 bytes if the last ‘compare’ instruction had a destination value that was
greater than the source value in an ‘unsigned operation’.

Example:

BG rel8
[PC] <——— [PC]+2
If [Z-flag] OR [C-flag] = 0 then
[PC] < ——— [PC]+rel8
[PC(0)] <—-=—=0

BGE

Branch Greater than or Equal to, branches to a location in the range of
+254 bytes to —256 bytes if the last ‘compare’ instruction had a destination
value that was greater than or equal to the source value in a ‘signed
operation’.

Appendix B 239

Example:

BGE rel8
[PC] <——— [PC]+2
If [N-flag] XOR [V-flag] = 0 then
[PC] < ——— [PC]+reld
[PC(0)] <-=—0

BGT

Branch Greater Than, branches to a location in the range of +254 bytes to
—256 bytes if the last ‘compare’ instruction had a destination value that was
greater than the source value in a ‘signed operation’.

Example:

BGT rel8
[PC] <——— [PC]+2
If ([Z-flag] OR [N-flag]) XOR [V-flag] = 0 then
[PC] < ——— [PC]+rel8
[PC(0)] <—-=-=0

BLE

Branch Less than or Equal to, branches to a location in the range of +254 bytes
to —256 bytes if the last ‘compare’ instruction had a destination value that was
less than or equal to the source value in a ‘signed operation’.

Example:

BLE rel8
[PC] <—-——-— [PC]+2
If ([Z-flag] OR [N-flag]) XOR [V-flag] = 1 then
[PC] < ——— [PC]+rel8
[PC(0)] <-—-=0

BLT

Branch Less Than, branches to a location in the range of +254 bytes to
—256 bytes if the last ‘compare’ instruction had a destination value that was
less than the source value in a ‘signed operation’.

Example:

BLT rel8
[PC] <——— [PC]+2
If [N-flag] OR [V-flag] = 1 then
[PC] < ——— [PC]+reld

[PC(0)] <——— 0

240 Appendix B

BMI
Branch MInus, branches to a location in the range of +254 bytes to —256 bytes
if N-flag is set.

Example:

BMI rel8
[PC] <——— [PC]+2
If [N-flag] = 1 then
[PC] < ——— [PC]+rel8
[PC(0)] <—-=-=0

BL

Branch Less than or equal to, branches to a location in the range of +254 bytes
to —256 bytes if the last ‘compare’ instruction had a destination value that was
less than or equal to the source value in an ‘unsigned operation’.

Example:

BL rel8
[PC] <——— [PC]+2
If [Z-flag] OR [C-flag] = 1 then
[PC] < ——— [PC]+rel8
[PC(0)] <—-=-=0

B.4 Data transfer

8051 INSTRUCTIONS
MOV MOVC MOVX

ADDITIONAL INSTRUCTIONS IN THE XA

MOYVS (.b, .w)
MOVe Short, moves signed value (4-bit: +7 to —8) to destination.

Example:
MOVS Rd, # datad
[Rd] < ——— datad

LEA
Load Effective Address, adds the contents of the source register to the offset
value (8/16-bit), and stores the result into destination register.

Appendix B 241

Example:
LEARAJ, Rs + offset8/16

[Rd] < — — — [Rs]+ offset8/16

B.5 Miscellaneous

8051 INSTRUCTIONS
POP PUSH SWAP XCHD

ADDITIONAL INSTRUCTIONS FOR THE XA

POPU

POP User multiple, pops specified registers (one or more) from the stack (from
1 to 8 times). Any combination of bytes registers in group ROL to R3H or the
group R4L to R7H may be popped in a single instruction. Also any combination
of word registers in the group R0 to R7 may be popped in a single instruction.

Example:

POPU Rlist
[Ri] < ——— [SP(mem)]
[SP] <——— [SP]+2

Repeat for all selected Ri registers

PUSHU

PUSH User multiple, pushes specified registers (one or more) into the stack
(from 1 to 8 times). Any combination of bytes registers in group ROL to R3H or
the group R4L to R7H may be pushed in a single instruction. Also any
combination of word registers in the group R0 to R7 may be pushed in a single
instruction.

Example:
PUSHU Rlist

[SP] <——— [SP]-2
[SP(mem)] < ——— [Ri]
Repeat for all selected Ri registers

RESET
The chip is internally RESET without any external effects, when the RESET
instruction is executed.

242 Appendix B

Example:

RESET
[PC] < — — — vector (0) bytes 2 and 3
[PSW] < —— — wvector (0) bytes 0 and 1
[SFRs] < — — — reset values into SFRs

TRAP

This causes a specified software trap. The invoked routine is determined by
branching to the specified vector entry point. The RETI, return from interrupt
instruction, is used to resume execution after the trap routine has been com-

pleted.

Example:
RESET

C]
SSP]

(P

[
[SSP(mem)]
[SSP(mem)]
[PSW]
[PC(0-15)]
[PC(23-16, 0)]

BKPT

<——— [PC]+2

< ——— [SSP]—
<—-——— [PC]

< ——— [PSW]

< — — — trap vector
< — — — trap vector
<—-=—-=0

This causes a BreaK PoinT trap. The break point trap acts like an immediate
interrupt, using a vector call to a specific piece of code that will be executed in SM.

Example:
RESET

C]
SSP]

[P

[
[SSP(mem)]
[SSP(mem)]
[PSW]
[PC(0-15)]
[PC(23-16, 0)]

<——— [PC]+ 1

< ——— [SSP]—
<-—-- [PC]

< ——— [PSW]

< — — — Dbkpt vector
< — — — Dbkpt vector
<—=-=0

Some examples of specific applications using the XA instructions are as

follows:

add.b rOh, rOh

add.b r21, [r4 + $44]
add.b rOh,#8$11

add.b [r4 + $44],#%44

add.b rll, [r2]

add.b r2h, [r5 + $5555]
add.b [r2],#22

add.b [r5 + $5555]

add.b rlh, [r3 +]
add.b r31, $066
add.b [r3 +],#833
add.b $066,#566

add.w 19, r9
add.w R12, [RO + $0C]
add.w r9,#89999

add.w [RO + S0C],#8CCCC

adds.b rOh,#$1
adds.b [r4 + $44],#%4

adds.w r9,#—7
adds.w [RO],#—6

adds.w [RO + $ODDD],#—3

addc.b ROh,ROh
addc.b R21, [R4 + $44]

addc.w R9, 19
addc.w 112, [r0 + $0C]

sub.b rOh, rOh
sub.b r21, [r4 + $44]

sub.w 19, r9
sub.w RI2, [RO + $0C]

subb.b rOh, rOh
subb.b 121, [r4 + $44]

subb.w 19, 19

subb.w R12, [R0O + $0C]
move.b 101, [r0 +]
mov.b rlh, [r3 +]
mov.b r3l, $066

mov.b 00, [RO]

move.w R8, [RO +]
mov.w RIL, [RO +]
mov.w R14, SEE
mov.w $88, [RO]

movx.b r3h, [r7]

movs.b rOh,#8$1

movs.b [r4 + $44],#84
movs.w r9,#—7

movs.w [RO + $SOC],#—4

and.b rOh, rOh
and.b r21, [r4 + $44]

and.w 19, 19
and.wR12, [RO + $0C]

add.w R10, [RO]
add.w R13, [RO + $0DDD]
add.w[RO],#SAAAA

add.w [RO + SODDD],#$0DDD

adds.b [r2],#$2
adds.b [r5 + $5555],#35

adds.w [RO +],#—5
adds.w $SEE,# -2

adde.b R11, [R2]
addc.b R2h, [RS + $5555]

addc.w rl0, [r0]
addc.w rl3, [r0 + SODDD]

sub.b rll, [r2]
sub.b r2h, [r5 + $5555]

sub.w RI0, [RO]
sub.w RI3, [RO + $O0DDD]

subb.b rll, [r2]
subb.b r2h, [r5 + $5555]

subb.w RI10, [RO]

subb.w R13, [R0O + $0DDD]
mov.b rOh, rOh

mov.b r2l, [r4 + $44]

mov.b [r0 4], [r0 +]

mov.w 19, 19
mov.w RI2, [RO + $0C]
mov.w [10 +], [r0 +]

movx.w rl5, [r0]

movs.b [r2],#3$2
movs.b [r5 + $5555],#85
movs.w [RO],#—6

movs.w [RO + $SO0DDD],#—3

and.b rll, [r2]
and.b r2h, [r5 + $5555]

and.w RIO0, [RO]
and.w RI13, [RO + $0DDD]

Appendix B 243

add.w RIl, [RO +]
add.w R14, SEE
add.w[RO +].#SBBBB
add.w SEE,#SEEEE

adds.b [r3 +],#33
adds.b $066,#3$6

adds.w [RO + $0C],# —4

addc.b Rlh, [R3 +]
addc.b R31, $66

addc.w rll, [r0 +]
addc.w rl4, SEE

sub.b rlh, [r3 +]
sub.b r31, $066

sub.w RIl, [RO +]
sub.w R14, SEE

subb.b rlh, [r3 +]
subb.b r31, $066

subb.w RIl, [RO +]
subb.w R14, SEE
mov.b rll, [r2]

mov.b r2h, [r5 + $5555]
mov.b [r0], 00

mov.w RI0, [RO]
mov.w RI3,[R0 + $0DDD]
mov.w [r0], $88

movs.b [r3 +],#83
movs.b $066,#$6
movs.w [RO +],#-5
movs.w SEE,# -2

and.b rlh, [r3 +]
and.b r31, $066

and.w Rll, [RO +]
and.w R14, $SEE

244 Appendix B

or.b rOh, rOh
or.b r21, [r4 + $44]

or.w r9, r9
or.wR12, [RO + $0C]

xor.b rOh, rOh
xor.b 12, [r4 + $44]

xor.w 19, r9
xor.w RI2, [RO + $0C]

rr.b r01,#00
rlc.b R4h,#7
asl.b rOh,#1
Isr.b r01,#0

rr.w r8,#$8
rlc.w R7,#15

asl.w R9,#9
Isr.w R8,#8

asl.d R3, RO1
asr.d RS, #14

mulu.b ROI, ROl
mulu.b R41,#3$88

divu.b ROh, ROh
divu.b R41,#$88

divu.d R9,#$99
div.d RI5,R15

clr my_bit
mov my_bit,C
orl C,my_bit

xch.w r8,[R0O]
xch.b ROL[RO]

lea RO,RO + 0
norm.b rlh,r1h
fcall $443322

or.b rll, [r2]
or.b r2h, [r5 + $5555]

or.w RIO, [RO]
or.w Rl13, [R0O 4+ $0DDD]

xor.b rll, [r2]
xor.b r2h, [r5 + $5555]

xor.w RIO0, [RO]
xor.w RI3, [RO + $0DDD]

rl.b rlh,#3
sl.b rOh, rOh
asr.b rl1l,#2

rl.w RIL#11
asl.w R9, RO1

asr.w R10,#10

asr.d R5, RO1
Isr.d RL#12

mulu.w R4, R4
mul.w R9,#$99

divu.w R5, R2h
divu.w R8,#88

div.d R9,#$99

setb my_bit
anl C, my_bit
orl C,/my_bit

xch.w R8, $88
xch.b ROI, ROl

lea r0, RO + $88
norm.w R11, ROl
call $5566

or.b rlh, [r3 4]
or.b r31, $066

or.w Rll, [RO +]
or.w R14, $SEE

xor.b rlh, [r3 +]
xor.b r31, $066

xor.w R, [RO +]
xor.w R14, SEE

rrc.b r4h, #8$7
asr.b rll, rll
Isr.b 01, r01

rre.w rl5,#S$f
asr.w R10, RO1

Isr.w R8,RO1

asl.d R3,#13
Isr.dRI, ROl

mul.w R6, R6
mul.w R9,#$99

div.w R7, R3h
div.w R8,#88

divu.dR13, R13

mov C, my_bit
anl C,/my_bit

xch.b r01, 0
xch.w r8 R8

norm.d R7, R0O1
call [R6]

pushu.b R71,r6h,r61,r51,r4h,r41
pushu.w R15,R14,R13,R12,R11,R10,R9,R8

push.b R31,r2h,r21,rll,rOh,r01
push.w R7,R6,R5,R4,R3,R2,R1,R0

popu.b R71,r6h,r61,r51,r4h,r41
popu.w R15,R14,R13,R12,R11,R10,R9,R8

pop.b R71,r6h,r61,r51,r4h,r41
pop.w R15,R14,R13,R12,R11,R10,R9,R8

cmp.b rOh, rOh
cmp.b 121, [r4 + $44]

cmp.b rll, [r2]
cmp.b r2h, [r5 + $5555]

cmp.b rlh, [r3 +]
cmp.b r31, $066

cmp.w 19, 19

cmp.w R 14, SEE

cjne.b R1L, $22, dummy
cjne.w R10, $1AA, dummyl

cmp.w R10, [RO]
cmp.w Rl 1, [RO+]

cjne.b Rlh,#833, dummyl
djnz.w $1AA, dummyl

cjne.w [RO], #$SBBBB, dummyl

djnz.w rl5, dummy

jz dummyl
jbc my_bit, $

bee dummy?2
bnv dummy?2
bg dummy?2

bgt dummy?2

Jjmp [a + dptr]
jmp $5566

trap #0
trap #4
trap #8
trap #12

da r0l
cpl.w r8
reset

djnz.b $222, dummyl

jnz dummyl

bes dummy?2
bov dummy?2
bl dummy?2

ble dummy?2

jmp [[RO +1]]

trap #1
trap #5
trap #9
trap #13

cpl.b 101
neg.w r8
bkpt

Appendix B 245

cmp.w R13, [RO + $0ddd]
cmp.w R12, [RO + $OC]

b my_bit, $

bne dummy?2
bpl dummy?2
bge dummy?2
br dummy?2

Jmp [R6]

trap #2
trap #6
trap #10
trap #14

neg.b r0l
ret

cjne.b [R3],#33, dummyl
cjne.wRII,#$BBBB, dummy1

jnb my_bit,$

beq dummy?2
bmi dummy?2
bit dummy?2

fjmp $443322

trap #3
trap #7
trap #11
trap #15

sext r8
reti

Appendix C

8051 Microcontroller Structure

C.1 Introduction

There are a wide range of devices available in the 8051 family, differing in terms
of memory type and capacity, number of counter/timers, types of serial inter-
face, number of input/output ports, clock rates, frequency range, etc. However,
there is a commonality among all devices in that they have been developed from
the ‘core’ 8051 device with modifications to produce the particular attributes of
a different family member. Each member of the 8051 microcontroller family has
been designed with improved device specifications in mind and to provide the
customer with a device to suit particular user requirements.

This appendix will consider the basic 8051 architecture and hardware
arrangements in some detail. Three devices, each a member of the 8051 family,
are considered in the chapters that make up the text and each are considered in
the appendices that follow. The devices are the 8-bit 89C66x (Appendix D), the
89LPCI932 (Appendix E) and the 16-bit XAG-49 (Appendix F). All are flash
memory devices from the Philips Semiconductors microcontroller range and
grateful acknowledgement is given to that company for permission to repro-
duce details of their devices.

The Philips 80C51 can be considered as the core device, and functions such as
I/O ports, timer/counters, serial interfacing and interrupts will be discussed.
Any variations that exist for a particular family member will be dealt with in
the relevant appendix that covers a particular device.

The 80C51 is available in three different package types and is basically a
40-pin device (some packages have 44 pins but only 40 are internally connected)
with the following architecture:

e 4KB x 8 ROM;
128 x 8 RAM;
e four 8-bit I/O ports;

Appendix C 247

¢ full-duplex enhanced UART with framing error detection and automatic
address recognition;

e three 16-bit counter/timers;
a six-source four-priority level nested interrupt structure;
on-chip oscillator.

The arrangement for the 80CS51 device is shown in the block diagram of
Figure C.1.

P0.0-P0.7 P2.0-P2.7

i . :

Port 0 Port2
drivers drivers

RAM ADDR A Port 0 Port2 ‘ROM/EPHOMQ
register latch latch

T

\
\
‘ Oscillator
\
\

\
\
\
\
\
\
\
| \
1 { { { I
[}
\ @ ﬁ 8 ‘
\
B Stack |
] (=] |
\
‘ @ Program
! ™P2 ™P1 agaress K= |
| register |
\ \
\
! <:> Buffer <:> |
| ALU ‘
\
\ U SFRs o }
} Psw imers Im:rernenter<:‘> ‘
! 8 16 }
‘ Pro
gram
‘ counter <:> }
\
PSEN - }
ALE/PROG~{~| Timing 28 DPTR'S
— and a — Dl . K)
EA/VPPﬁ—» control % g‘ multiple }
RST = 5
\
\
\
\
\
\

Figure C.1 80C51 block diagram (courtesy Philips Semiconductors)

Variations exist according to the family member, i.e. the on-chip program
memory could be ROM or EPROM and the memory size could vary (the
80C52 has 8 KB ROM while the 87C52 has 8 KB EPROM). Also the on-chip
data memory size could vary (both the 80C52 and 87C52 devices have 256 bytes
of RAM).

248 Appendix C

C.2 Pin-out diagram for the 80C51

The 80C51 microcontroller is available in a 40-pin dual-in-line (DIL) package;
the arrangement is shown in Figure C.2. Other packages are available and
although the device pin functions are the same regardless of package config-
uration, pinout numbers vary. The pinout numbers referred to in the descrip-
tion that follows are valid only for the DIL package.

T2/P1.0 [1] - 140] Voo
T2EX/P1.1 [2] [39] P0.0/ADO
P1.2 [3] [38] PO.1/AD1
P1.3 [4] 37 P0.2/AD2
P1.4 [5] 36] P0.3/AD3
P1.5 [6] 35] P0.4/AD4
P1.6 [7] [34] P0.5/ADS
P1.7 [8] [33] P0.6/AD6
RST [9] [32] P0.7/AD7
RxD/P3.0 10| Dil [31] EA/Vpp
TxD/P3.1 [11| package [30] ALE
iNTO/P3.2 [12] [29) PSEN
iINT1/P3.3 [13] 28] P2.7/A15
To/P3.4 [14] 27] P2.6/A14
T1/P3.5 [15] [26] P2.5/A13
WR/P3.6 [16] [25] P2.4/A12
RD/P3.7 [17] [24] P2.3/A11
XTAL2 [1§] 23] P2.2/A10
XTAL1 [19) [22] P2.1/A9
Vss [20 21] P2.0/A8

Figure C.2 80C51 pin-out layout (courtesy Philips Semiconductors)

A brief description of the function of each of the pins is as follows:

Supply voltage (V.. and Vss). The device operates from a single +5V supply
connected to pin 40 (V) while pin 20 (Vss) is grounded.

Input/output (I/O) ports. 32 of the pins are arranged as four 8-bit 1/O ports
PO-P3. Twenty-four of these pins are dual purpose (26 on the 80C52/80C58)
with each capable of operating as a control line or part of the data/address bus
in addition to the I/O functions. Details are as follows:

e Port 0. This is a dual-purpose port occupying pins 32 to 39 of the device. The
port is an open-drain bidirectional I/O port with Schmitt trigger inputs. Pins

Appendix C 249

that have 1s written to them float and can be used as high-impedance inputs.
The port may be used with external memory to provide a multiplexed address
and data bus. In this application internal pull-ups are used when emitting 1s.
The port also outputs the code bytes during EPROM programming. External
pull-ups are necessary during program verification.

e Port 1. This is a dedicated I/O port occupying pins 1 to 8 of the device. The
pins are connected via internal pull-ups and Schmitt trigger input. Pins that
have Is written to them are pulled high by the internal pull-ups and can be
used as inputs; as inputs, pins that are externally pulled low will source
current via the internal pull-ups. The port also receives the low-order
address byte during program memory verification. Pins P1.0 and P1.1 could
also function as external inputs for the third timer/counter i.e.:

(P1.0) T2 Timer/counter 2 external count input/clockout
(P1.1) T2EX Timer/counter 2 reload/capture/direction control

e Port 2. This is a dual-purpose port occupying pins 21 to 28 of the device.
The specification is similar to that of port 1. The port may be used to
provide the high-order byte of the address bus for external program mem-
ory or external data memory that uses 16-bit addresses. When accessing
external data memory that uses 8-bit addresses, the port emits the contents
of the P2 register. Some port 2 pins receive the high-order address bits
during EPROM programming and verification.

e Port 3. This is a dual-purpose port occupying pins 10 to 17 of the device.
The specification is similar to that of port 1. These pins, in addition to the I/O
role, serve the special features of the 80C51 family; the alternate functions
are summarised below:

P3.0 RxD serial data input port

P3.1 TxD serial data output port

P3.2 INTO external interrupt 0

P3.3 INTI1 external interrupt 1

P34 TO timer/counter 0 external input

P35 TI timer/counter 1 external input
P3.6 WR external data memory writes strobe
P3.7 RD external data memory read strobe.

Reset (pin 9). The 80C51 is reset by holding this input high for a minimum of
two machine cycles before returning it low for normal running. An internal
resistance connects to pin 20 (Vss) allowing a power-on reset using an external
capacitor connected to pin 40 (V). The device internal registers are loaded
with selected values prior to normal operation.

XTAL1 and XTAL2 (pins 19 and 18 respectively). The 80C51 on-chip oscillator
is driven, usually, from an external crystal. The XTALI input also provides an
input to the internal clock generator circuits.

250 Appendix C

PSEN (program store enable) (pin 29). This pin provides an output read strobe to
external program memory. The output is active low during the fetch stage of an
instruction. The signal is not activated during a fetch from internal memory.

ALE/PROG (address latch enable/program pulse) (pin 30). The ALE signal is an
output pulse used to latch the low byte of an address during access to external
memory. The signal rate is 1/6 the oscillator frequency and can be used as a
general-purpose clock/timing pulse for the external circuitry. The pin also
provides the program pulse input (PROG) during EPROM programming.
ALE can be disabled by setting SFR auxiliary.0. With this bit set ALE will
be active only during a MOV X instruction.

EA/V,, (external access/programming voltage) (pin 31). This pin is either
tied high or low according to circuit requirements. If tied high the device
will execute programs from internal memory provided the address is not
higher than the last address in the internal ROM/OTP. When the EA pin
is tied low, thus disabling the internal ROM, program code is accessed
from external ROM. For a ROMless device the EA pin must be tied low
permanently and the program code accessed from external ROM could
be as much as 64 KB. EPROM versions of the device also use this pin for
the supply voltage (Vpp) necessary for programming the internal EPROM.
If security bit 1 is programmed, EA will be internally latched on reset.

C.3 80C51 family hardware

The 80CS51 architecture is shown in Figure C.1. Although not numbered, the
40 pins and the pin functions as described earlier for the DIL package can
be seen. The basic architecture is the same for all members of the 80C51 family
although there are differences for devices, which may have more, or less, ports,
comparators, ADC circuits, etc. Block diagrams for other relevant devices can
be seen in those appendices that cover their specification.

Reference has already been made in general terms to the 80C51 ports, timer/
counters, internal RAM and ROM/EPROM (where applicable). Specific fea-
tures include:

8-bit CPU with registers A (accumulator) and B
16-bit program counter (PC)

16-bit data pointer register (DPTR)

8-bit program status word register (PSW)

8-bit stack pointer (SP).

It is clear from the above that the 80C51 has a collection of 8-bit and 16-bit
registers and 8-bit memory locations. The internal memory of the 80C51 can
be shown by the programming model of Figure C.3. In fact the 80C51 has
more SFRs than shown in Figure C.3. Table C.1 lists the SFRs for the device

Appendix C 251

Register Register Register Register
bank 0 bank 1 bank 2 bank 3
00 RO 08 RO 10| Ro 18 RO
01 R1 09 R1 11 R1 19 R1
02 R2 0A R2 12| R2 1A R2
03 R3 0B R3 13| RS3 1B R3
04 R4 oC R4 14| R4 1C R4
05 R5 oD R5 15| R5 1D R5
06 R6 OE R6 16| Ré 1E R6
07 R7 OF R7 17| _R7 1F R7
Bit
;cifj'\;lessed Special function register ::r;(t;\r/rfal
20 80| Po 90[Pt 000
81| sp 98| scon
2F 82| ppL 99| sBUF
83| DPH AO| P2
General 87 | Pcon A8| E
purpose 88| TCON BO| P3
RAM 89 [T™OD B8 _IP
30 8A| TLO DO| _Psw
8B | Tu E0| Acc
3F 8C | _THo FoL_B FFF
8D | TH1

Figure C.3 80C51 programming model

and shows those SFRs that are modified versions or new additions to those
shown in Figure C.3.

C.4 Memory organisation

INTERNAL RAM

The 80C51 has 128 bytes of on-chip RAM plus a number of SFRs. Including
the SFR space gives 256 addressable locations but the addressing modes for
internal RAM can accommodate 384 bytes by splitting the memory space into
three blocks viz. the lower 128, the upper 128 and the SFR space. The lower 128
bytes use address locations 00H to 7FH and these can be accessed using direct
and indirect addressing. The upper 128 bytes use address locations 80H to FFH
and may be accessed using direct addressing only; locations in this space with
addresses ending with OH or 8H are also bit addressable. Some members of the
80C51 family have 256 bytes of on-chip RAM and the upper 128 bytes in this
case would be accessible only using the indirect addressing mode.

For the 80C51 device, the internal RAM of 128 bytes is broken down into:

¢ Four register banks 0 to 3, each of which contains eight registers R0 to R7.
The 32 bytes occupy addresses from 00H to 1FH. Each register can be
addressed specifically when its bank is selected or an address can identify
a particular register regardless of the bank, i.e. R2 of bank 2 can be specified
if bank 2 is selected or the same location can be specified as address 12H.
The register banks not selected can be used as general-purpose RAM. Bits 3

Table C.1 80C51/87C51/80C52/87C52 special function registers (SFRs)

Direct Bit address, symbol or alternative port function
Symbol Description address MSB LSB Reset value
ACC* Accumulator EOH E7 E6 E5 E4 E3 E2 El EO 00H
AUXR# Auxiliary 8EH _ — _ — — — AO xxxxxxx0B
AUXRI1# Auxiliary 1 A2H _ _ LPEP? | WUPD 0 _ DPS | xxx000x0B
B* B register FOH F7 Fo6 F5 F4 F3 F2 F1 FO 00H
DPTR: Data pointer
(2 bytes)
DPH Data pointer 83H 00H
high
DPL Data pointer 82H 00H
low
AF AE AD AC AB AA A9 A8
IE* Interrupt
enable AS8H EA - ET2 ES ET1 EX1 ETO EX0 | 0x000000B
BF BE BD BC BB BA B9 B8
IP* Interrupt
priority BSH - - PT2 PS PT1 PX1 PTO PXO0 xx000000B
B7 B6 B5 B4 B3 B2 Bl BO
IPH# Interrupt
priority high B7H - - PT2H | PSH | PTIH | PXIH | PTOH | PXOH | xx000000B
87 86 85 84 83 82 81 80
PO* Port 0 80H | AD7 | AD6 | AD5 | AD4 | AD3 | AD2 | ADI [ADO FFH

P1*
p2*
p3*

PCON#!

PSW*
RACAP2H#
RACAP2L#

SADDR#
SADEN#

SBUF
SCON*

SP

Port 1
Port 2
Port 3

Power
control

Program

status word
Timer 2

capture high
Timer 2

capture low
Slave address
Slave address

mask
Serial data buffer

Serial
control

Stack
pointer

90H

AOH

BOH

87TH

DOH
CBH

CAH

A9H
B9H

99H

98H
81H

97 96 95 94 93 92 91 90
L - [- [- [- [- [- J7mEx]| T2 |FFH
A7 A6 A5 A4 A3 A2 Al A0
| AD15 | ADI14 | AD13 [AD12 | AD11 | ADI0 | AD9 | AD8 | FFH
B7 B6 B5 B4 B3 B2 Bl BO
| RDO | WR | 11 | 10 [INTI | INTO | TxD | RxD | FFH
SMODI[SMOD0| - POF | GFl | GFO | PD | IDL | 00xx0000B
D7 D6 D5 D4 D3 D2 DI DO
cY AC FO RSI | RSO | OV - P | 000000x0B
00H
00H
00H
00H
XXXXXXxxB
9F 9E 9D 9C 9B 9A 99 98
SMO/FE| SM1 | SM2 | REN | TBS | RBS TI RI | 00H
07H

Table C.1 Continued

Direct Bit address, symbol, or alternative port function
Symbol Description address MSB LSB Reset value
8F 8E 8D 8C 8B 8A 89 88
TCON* Timer
control 88H TF1 TRI1 TFO TRO 1E1 IT1 1EO 1TO 00H
CF CE CD CC CB CA 9 C8
T2CON* Timer 2 _ N
control C8H TF2 EXF2 | RCLK | TCLK [EXEN2| TR2 C/T2 |CP/RL2| 00H
T2MOD# Timer 2
mode C9H - - - - — T20E | DCEN xxxxxx00B
control
THO Timer high 0 8CH 00H
THI Timer high 1 8DH 00H
TH2# Timer high 2 CDH 00H
TLO Timer low 0 8AH 00H
TLI1 Timer low 1 8BH 00H
TL2# Timer low 2 CCH 00H
TMOD Timer mode 89H |[GATE| T | Ml Mo |GATE| oT | Ml M0 00H
Note: Unused register bits that are not defined should not be set by the user’s program. If violated, the device could function incorrectly.

* SFRs are bit addressable.
SFRs are modified from or added to the 80C51 SFRs.

— Reserved bits.

1. Reset value depends on reset source.

2. LPEP — Low-power EPROM operation (OTP/EPROM only).

Appendix C 255

and 4 of the PSW register determine which bank is selected when a program
is running. Reset will cause bank 0 to be selected.

e Sixteen bytes that are bit addressable in the address range 20H to 2FH
giving 128 addressable bits. The bits have individual addresses ranging from
00H to 07H for byte address 20H, to 78H to 7FH for byte address 2FH.
Thus a bit may be addressed directly, say bit 78H, which is bit 7 of byte
address 2F.

® A general-purpose memory range from 30H to 7FH, which is addressable as
bytes.

In addition there are SFRs in the address range 80H to FFH. This address range
actually gives 128 addresses but only 32 are defined for the 80C51; the number
defined varies according to device, being much larger for some devices and less
for others. Details of the SFRs for the devices referred to in the main body of
the text can be found in Appendices D, E and F.

For the 80C51 the SFRs of the internal RAM are described in more detail as
follows:

e Accumulator. This 8-bit register, usually referred to as register A, is the
major register for data operations such as addition, subtraction, etc. and for
Boolean bit manipulation. The register is also used for data transfers
between the device and external memory, where applicable. The accumula-
tor is both bit and byte addressable with the byte address at EOH and the bit
addresses from EOH to E7H.

® B register. This 8-bit register is used for multiplication and division opera-
tions. For other instructions it can be considered another ‘scratch pad’
register. The B register is both bit and byte addressable with byte address
at FOH and bit addresses from FOH to F7H.

* Program status word (PSW). This 8-bit register at address DOH contains
program status information as shown below:

MSB LSB
CY AC FO RS1 RSO ov - P

D’H D6H DS5SH D4H D3H D2H DIH DOH

with the bit functions defined in Table C.2.

e Stack pointer (SP). This 8-bit register at address 81H is incremented before
data is stored during PUSH and CALL executions. The SP is initialised to
RAM address 07H after a reset, which causes the stack to commence at
location 08H.

¢ Data pointer (DP). This 16-bit register is intended to contain the two bytes
that make a 16-bit address, with the high byte (DPH) at address 83H and
the low byte (DPL) at address 82H. It may also be used as two independent
8-bit registers.

256 Appendix C

Table C.2 Program status word bit functions

Bit Symbol Function

PSW.7 CY Carry flag

PSW.6 AC Auxiliary carry flag (for BCD operations)

PSW.5 FO Flag 0 (available for general-purpose use)

PSW 4 RSI1 Register bank select control bit 1 set/cleared by
software to determine working register bank (see Note)

PSW.3 RSO Register bank select control bit set/cleared by software
to determine working register bank (see Note)

PSW.2 ov Overflow flag

PSW.1 - User definable flag

PSW.0 P Parity flag set/cleared by hardware each instruction cycle

to indicate an odd/even number of 1 bits in the accumulator

Note: The contents of (RSI,RS0) enable the working register banks as follows: (0,0) — Bank 0
addresses 00H to 07H; (0,1) — Bank 1 addresses 08H to OFH; (1,0) — Bank 2 addresses 10H to 17H;
(1,1) — Bank 3 addresses 18H to 1FH.

e Ports 0 to 3. PO, P1, P2 and P3 are the 8-bit SFR latches of ports 0, 1, 2 and
3 respectively. The addresses are 80H, 90H, AOH and BOH respectively.
Writing a ‘1’ to any bit of any of the port SFRs causes the corresponding
port output pin to go high; writing a ‘0’ causes the corresponding port
output pin to go low. When used as an input, the external state of any port
pin will be held in the port SFR.

e Serial data buffer (SBUF). This 8-bit register at address 99H is used for
serial data in both transmit and receive modes. Moving data to SBUF loads
the data ready for transmission while moving data from SBUF allows
access to received data.

¢ Timer registers. The 80C51 contains three 16-bit timer/counters. Timer 0
has a low byte TLO at address 8AH and a high byte THO at address SCH
while timer 1 has a low byte at address 8BH and a high byte at address
8DH. Timer 2 has a low byte at address CCH and a high byte at address
CDH. Timer 2 can operate as an event timer or event counter. An extra
SFR register, the T2CON register, at address C8H, controls this timer while
a timer 2 mode control register T2MOD is at address C9H.

e Control registers. Certain control registers are required to provide control
and status bits for the serial ports, timer/counters and the interrupt system.
The 8-bit control registers are:

TCON at address 88H

TMOD at address 89H

SCON at address 98H

IE at address ASH

IP at address BS8H

The effect of the control registers will be discussed later in this appendix.

Appendix C 257

INTERNAL ROM

As can be seen from Figure C.3, the 4 KB of ROM in the 80C51 occupy the
address range 0000H to OFFFH. The ROM in a microcontroller is provided so
that the control program can be resident on-chip. If the control program can be
accommodated within the 4 KB (or 8 KB in the case of the 80C52 device) then
no external program memory is required; if however, the control program
needs greater memory capacity external memory can be added up to 64 KB.
The PC can access program memory in the range 0000H to FFFFH so that any
program address higher than OFFFH will have to be located in external
program memory. As stated earlier, program memory can be exclusively exter-
nal (and would have to be for the ROMlIess devices 80C31/80C32, etc.) by
connecting to ground the external access pin EA. The read strobe for external
program memory is PSEN (see section on pinout functions).

On reset the CPU begins operations from memory location 0000H. Figure C.4
shows that for the 80C51 there are six interrupt sources located at memory
addresses starting at 0003H, each consisting of eight bytes (Table C.3).

~
\,\,\\
— 002BH
- 0023H
™ 001BH 73
Interrupt I 8 bytes
locations — 0013H L
— 000BH
— 0003H
Reset—| 0000H

Figure C.4 80C51 program memory and interrupt locations

Table C.3

Interrupt source Vector address
External 0 0003H

Timer 0 overflow 000BH
External 1 0013H

Timer 1 overflow 001BH

Serial port 0023H

Timer 2 overflow 002BH

For each of the interrupts the eight bytes may be sufficient to accommodate
the interrupt servicing routine but if not the programmer should provide a

258 Appendix C

jump to the service routine. Whether or not an interrupt is enabled depends on
the bit settings of the IE register. If no interrupts are used the programmer
could establish the program from location 0000H; but with interrupts the
programmer should enter a jump instruction from location 0000H to the
starting address of the main program. Interrupts are dealt with later in this
appendix.

EXTERNAL MEMORY

The 16-bit PC of the microcontroller will allow program memory addresses of up
to 64 KB; similarly the 16-bit DP allows data memory addresses of up to 64 KB.
Both address ranges are well beyond the capability of the microcontroller on its
own but, if required, both data and program memory can be extended beyond the
available on-chip values up to the 64 KB limit. Also involved with accessing
external memory are certain control pins and input/output ports. In the sections
that follow memory extension for program and data is dealt with separately
although in practice they could occur simultaneously.

External program memory access

For the 80C51, if extra program memory is required a circuit arrangement as
shown in Figure C.5 could be used. It can be seen from Figure C.5 that ports 0
and 2 are not available for I/O functions in this configuration but are used
instead for bus functions during external memory fetches. Port 0 acts as a
multiplexed address/data bus, sending the low byte of the PC (PCL) as an
address and then waiting for the arrival of the code byte from external memory.
The signal ALE clocks the PCL byte into the address latch during the period of
time that the PCL byte is valid on port 0. The latch will hold the low address
byte stable at the input to the external memory while the multiplexed bus is
made ready to receive the code byte from the external memory. Port 2 sends the
PC high byte (PCH) directly to the external memory; the signal PSEN then
strobes the external memory allowing the code byte to be read by the micro-
controller. The timing diagram for a program fetch from external memory is
shown in Figure C.6.

80C51 EPROM

o

ALE

ADDR

Latch

- /]

PSEN| OE

Figure C.5 Use of external program memory (courtesy Philips Semiconductors)

ALE:

PSEN:

PO:

XTAL2:

State 1
P1 | P2

State 3
P1 | P2

State 2
P1 | P2

State 4
P1 | P2

TUHHY

State 6
P1 | P2

State 5
P1 | P2

Appendix C 259

State 2
P1| P2

State 1
P1 | P2

JHUUUUL

=

|<«——— Data sampled

Data sampled

Data sampled

PCL

PCL

PCL

-

out

out

out

PCH out

PCH out

PCH out

P2:

Figure C.6 External memory program fetches (courtesy Philips Semiconductors)

External data memory access

Up to 64KB of read/write memory may be accessed by the 80C51 with the
connections for the data and address lines the same as for program memory.
The RD output from the microcontroller connects to the output enable (OE)
pin on the RAM while the WR output line connects to the RAM write enable
(WE) pin on the RAM. A possible arrangement is shown in Figure C.7.

- ro

B |- Ve RAM

Data

80C51

with
internal Latch
ROM

&

ALE

ADDR

|

]

— P3 P2
RD

ﬂ_ WA <:\> o X Page W_:

Figure C.7 Access of external data memory (courtesy Philips Semiconductors)

In this arrangement three lines of port 2 are being used to page the RAM.
Memory addresses can be one or two bytes wide. One byte addresses are often
used in conjunction with one or more other I/O lines to page the RAM as
shown in Figure C.7. Using port lines to page RAM is an economical way to
use external memory since any port lines not used for paging can be used for
normal I/O functions. A page consists of 256 bytes of RAM so that two port
lines are needed for accessing four pages and three port lines, as shown in
Figure C.7, to access eight pages (which is 2 KB RAM). If two byte addresses

260 Appendix C

are used the high address byte is connected via port 2 in the same way as for
accessing program memory. A typical timing diagram for a read cycle from
external memory is shown in Figure C.8.

State 4 State 5 State 6 State 1 State 2 State 3 State 4 State 5
Pt | P2| Pl | P2|P1 | P2|Pl | P2|PIl | P2|Pi | P2|PI|P2|PlI]| P2

~ JUUUTOUUIOUUILLL

ALE:

PCL out if program
memory is external

Data sampled —» -~
DPL or R Float Float N
PO: _ —
out |
. PCH or P2 PCH or P2
P2: el DPH or P2 SFR out A

Figure C.8 External data memory read cycle (courtesy Philips Semiconductors)

The timing for a write cycle is similar except that the WR line pulses low, RD
stays high and data is placed on port 0 lines as an input to the microcontroller.

C.5 1/0 port configurations

As described elsewhere the four ports of the 80C51 differ slightly in that ports 0 and
2 may be used for address/data lines while port 3 has other functions. The structure
of a port pin circuit varies according to the port but each port pin will have a bit
latch and I/O buffer. The arrangement for a port 1 pin is shown in Figure C.9.

Read Vee
latch

Internal
pullup®

P1.X
pin

Int. bus

Write to
latch

Read
pin

Figure C.9 80C51 port 1 bit latch (courtesy Philips Semiconductors)

The bit latch, shown as a D-type flip-flop, is one bit in the ports SFR. The
latch will clock in a value from the internal bus in response to a write to latch

Appendix C 261

signal from the CPU or place its output level on the bus in response to a read
signal from the CPU. The instructions that can be used to read a port can
activate the ‘read latch’ signal or the ‘read pin’ signal. The requirement to read
a latch rather than read a pin involves instructions known as ‘read-modify-
write’. These instructions would read the latch value, possibly modify the
value and write it back to the latch. The reason for reading the latch rather than
the pin under these circumstances is to avoid misinterpreting the pin voltage level
when the pin is heavily loaded, as would be the case if driving the base of an
external transistor. Suppose, for example, the port bit is connected to an external
transistor base and a 1 is written to the bit turning the external transistor on; the
CPU reading the pin would find the base-emitter voltage level of the on transistor
and read this as 0 while reading the latch output would register the correct level 1.

Ports 1, 2 and 3 have internal pull-up resistances. If a 1 is placed on the
internal bus and the write signal applied to the D-type clock input, Q goes low
and the field-effect transistor (FET) goes off, allowing the pin value to go high
via the pull-up resistor. Conversely a 0 on the bus latched into the flip-flop will
switch the FET on and connect the output pin to ground.

For ports 1, 2 and 3, to read the signal level on the pin a 1 is written to the flip-
flop which as before switches the FET off and connects the output pin via the pull-
up resistor to V. i.e. logic 1; this level can be pulled low by an external source. For
the output pin to go low the driving circuit must sink the current, which flows, via
the pull-up resistor from V,; a read signal on the lower buffer will cause the pin
signal to appear on the internal bus. The output buffers for port 1 (and ports 2
and 3) can each drive four low power Schottky (LS) TTL inputs. Port 0 has open
drain outputs and each output buffer can drive eight LS TTL inputs.

For simplicity Figure C.9 does not show the alternate functions for ports 0, 2
and 3. The alternate functions are:

port 0 — Address/data
port 2 — Address
port 3 — Alternate I/O function.

The output drivers of ports 0 and 2 are switchable using an internal control signal.
During external memory accesses, the P2 SFR remains unchanged but the PO
SFR has Is written into it. Also if a P3 bit latch contains a 1 the output level is
controlled by an ‘alternate output function’ signal while the actual port 3 pins
level is always available to the pin’s ‘alternate input function’ if any.

C.6 Timer/counters

The 80CS51 has three 16-bit timer/counter registers known as timer 0, timer 1
and timer 2. Timers 0 and 1 are up-counters and may be programmed to count
internal clock pulses (timer) or count external pulses (counter). Each counter is
divided into two 8-bit registers to give timer low and timer high bytes i.e. TLO,
THO and TL1, THI.

262 Appendix C

TLO is at address 8AH
TL1 is at address 8BH
THO is at address 8CH
THI1 is at address 8DH

None of these registers is bit addressable.

The operation of the timer/counters is controlled by the TMOD and TCON
registers of the SFRs. TMOD is the timer SFR and is in effect two identical
4-bit registers, one each for the two timers. TCON consists of control bits and
flags. Details of these two registers are shown below:

TMOD
MSB LSB
GATE C/T M1 MO GATE C/T M1 MO

--------------- TIMER 1 0307051 1 ——

The bit functions are:
GATE — When set timer/counter x is enabled when INTx pin is high and TRx
(see TCON) is set. When clear timer x is enabled when TRx bit set.
C/T - When clear, timer operation (input from internal clock). When set,
counter operation (input from Tx input pin).

The M1 and MO bit functions depend on the bit assignment as shown in Table C.4.

Table C.4

M1 MO Operation

0 0 8048 8-bit timer TLx serves as 5-bit prescaler

0 1 16-bit timer/counter. THx and TLx are cascaded. No prescaler

1 0 8-bit autoreload timer/counter. THx contents loaded into TLx when
it overflows

1 1 TLO is 8-bit counter controlled by timer 0 control bits. THO is 8-bit

timer controlled by timer 1 control bits
1 1 Timer 1 off

The TMOD byte is not bit addressable.

TCON
MSB LSB
TF1 TR1 TFO TRO IE] IT1 IEO ITO

8FH 8EH EDH 8CH 8BH 8AH 89H 88H

The eight bits of the TCON register are duplicated pairs of four as shown in
Table C.5.

Appendix C 263

Table C.5

Bit Function

TF1/0 Timer 1/0 overflow flag. Set by hardware on timer/counter overflow.
Cleared when CPU vectors to interrupt routine

TR1/0 Timer 1/0 run control bit. Set/cleared by software to turn timer/counter
on/off

1E1/0 Interrupt 1/0 edge flag. Set by hardware when external interrupt edge
detected. Cleared when interrupt processed

IT1/0 Interrupt 1/0 control bit. Set/cleared by software to specify falling edge/

low level triggered external interrupts

When the timer/counter is performing the counter function the register is
incremented in response to a falling edge transition at its external input pin
(TO or T1). The TMOD bit C/T must be set to 1 to enable the pulses from
the Tx pin to reach the control circuit. To count a certain number of
internal or external pulses a number is put into one of the counters; the
number inserted represents the maximum count, less the desired count, plus
one. It takes two machine cycles (24 oscillator periods) to recognise a 1-to-0
transition, the maximum count rate is 1/24 of the oscillator frequency.
There are no restrictions on the duty cycle of an external input cycle but
to ensure a given level is sampled at least once before it changes it should
be held for at least one full cycle. The counter will increment from the initial
number to the maximum and then resets to zero on the last pulse, setting the
timer flag. Testing the flag state allows confirmation of the completion of the
count or, alternatively, the flag may be used to interrupt the program.

When the timer counter is performing the timer function the register is
incremented every machine cycle. Thus with 12 oscillator periods per machine
cycle the count rate is 1/12 of the oscillator frequency.

The timer/counters have four operating modes (modes 0, 1, 2 and 3), which
are determined by the status of the bits MO and M1 in the TMOD register.
Modes 0, 1 and 2 are the same for both timer/counters but this is not the case
for mode 3. Some information has already been shown in abridged form under
the TMOD register description and is described below in more detail.

Mode 0

Setting the timer mode bits to 0 in the TMOD register provides an 8-bit counter
(THx), preceded by 5 bits of (TLx) which gives a divide-by-32 prescaler. The
pulse input is thus divided by 32 in TLx giving the oscillator frequency divided
by 384. The arrangement is shown in Figure C.10 for timer 1. The arrangement
for timer 0 is similar.

As the count rolls over from all 1s to all 0s the timer interrupt flag TFx is set.
Figure C.10 shows that the input is passed to the timer when TRx = 1 AND
GATE = 0 OR INT x = 1. TRx s a control bit in the TCON register while GATE
is in the TMOD register. Setting the run flag TRx does not clear the registers.

264 Appendix C

Osc. +12
C/T=0 -,
| TL1
= "./ ©bits) | @bits) [TTT [Interrupt
41 CIT=1
T1 Pin Control
TR1

Gate
INT1 pin

Figure C.10 Timer/counter mode 0 configuration (courtesy Philips
Semiconductors)

Mode 1
This is provided when the TMOD register mode bits M1 =0, MO =1 and
gives the same effect as mode 0 except that the timer register runs using all 16 bits.

Mode 2

This occurs when TMOD register mode bits M1 = 1, M0 = 0 and configures
the timer register as an 8-bit counter (TLx) with automatic reload. The arrange-
ment is shown in Figure C.11 for timer 1. The arrangement for timer 0 is similar.

Osc. +12
C/T=0
o 54 (8Tt|;i:s) TF1 | Interrupt
I C/T=1
T1 pin Control
TR1 Reload
Gate
o TH1
INTT pin (8 bits)

Figure C.11 Timer/counter mode 2 configuration (courtesy Philips
Semiconductors)

Only the register TLx is used as an 8-bit counter while THx holds a value set by
software that will be loaded into TLx every time TLx overflows. The overflow also
sets the timer flag. This facility provides an initial count value for TLx that can be
changed by software giving a predetermined time delay before overflow occurs.

Mode 3
This occurs when TMOD register mode bits M1 =1, MO = 1. Under these
conditions timer 1 is off and its count is inhibited. The control bit TR1 and
timer flag TF1 are then used by timer 0. Timer 0 has TLO and THO as two
separate counters with the arrangement shown in Figure C.12.

TLO sets timer flag TFO whenever overflow occurs while THO is controlled by
TRI1 and sets the timer flag TF1 whenever it overflows. Mode 3 is provided for
applications that require an extra 8-bit timer on the counter. With timer 0 in

Appendix C 265

Osc. =12 112 foge
112 fose —l C/T=0
i TLO
T~ — "'/: (8 bits) TFO | Interrupt
) 1 CIT=1
TOPin Control
TRO
Gate
INTO pin
e THO
112 fose ' (8 bits) TF1 — Interrupt

Control
TR1

Figure C.12 Timer/counter 0 mode 3 configuration (courtesy Philips
Semiconductors)

mode 3 the 80C51 can appear to have three timer/counters. When timer 0 is in
mode 3, timer 1 can be switched in and out of its own mode 3 (switching timer 1
to mode 3 will hold whatever count it had reached prior to the switch) or it can be
used by the serial port as a baud rate generator or any other mode 0, 1 or 2
application not requiring an interrupt (or any other use of the TF1 flag).

Timer 2 is a 16-bit timer consisting of two 8-bit registers TH2, which is the
timer 2 high byte at address CDH, and TL2, which is the timer 2 low byte,
situated at address CCH. Timer 2 can operate as an event timer or event
counter as selected by bit C/T2 in the SFR T2CON. Other bits, which affect
timer 2 operation, are found in the SFR T2MOD. Details of the T2CON and
T2MOD registers are shown below.

T2CON
address C8H.

MSB LSB
TF2 EXF2 | RCLK | TCLK |EXEN2| TR2 C/T2 |CP/RL2

7 6 5 4 3 2 1 0

Bit Symbol Function

7 TF2 Timer 2 overflow flag set by timer 2 overflow; must be cleared by
software. TF2 will not be set when either RCLK or TCLK = 1.

6 EXF2 Timer 2 external flag set when either a capture or reload is caused
by a negative transition on T2EX and EXEN2 = 1. When timer 2
interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the
timer 2 interrupt routine. EXF2 must be cleared by software.
EXF2 does not cause an interrupt in up/down counter mode
(DCEN = 1).

266 Appendix C

5 RCLK Receive clock flag. When set, causes the serial port to use timer 2
overflow pulses for its receive clock in modes 1 and 3. RCLK =0
causes timer 1 overflow to be used for the receive clock.

4 TCLK Transmit clock flag. When set, causes the serial port to use timer 2
overflow pulses for its transmit clock in modes 1 and 3. TCLK =0
causes timer 1 overflow to be used for the transmit clock.

3 EXEN2 Timer 2 external enable flag. When set allows a capture or reload
to occur as a result of a negative transition on T2EX if timer 2
is not being used to clock the serial port. EXEN2 = 0 causes timer 2
to ignore events at T2EX.

2 TR2 Start/stop control for timer 2. A logic 1 starts the timer.

1 C/T2 Timer 2 timer or counter select:

0 =internal timer (fos./12)
1 =external counter (falling-edge triggered).

0 CP/RL2 Capture/reload flag. When set, captures will occur on negative
transitions at T2EX if EXEN2 = 1. When cleared, auto-reloads will
occur either with timer 2 overflows or negative transitions at T2Ex
when EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is
ignored and the timer is forced to auto-reload on timer 2 overflow.

T2MOD

address OC9H.
not bit addressable.

MSB LSB
— - - - - - T20E | DCEN
7 6 5 4 3 2 1 0
Bit Symbol Function
7,6,5,4,3,2 — Not implemented, reserved for future use. User software

should not write to reserved bits. These bits may be used
in future to invoke new features in which case the reset or
inactive value of the new bit will be 0 while its active
value will be 1. The value read from a reserved bit
is indeterminate

1 T20E Timer 2 Output Enable bit

DCEN Down Count ENable bit. When set, this allows timer 2 to

be configured as an up/down counter

There are three operating modes for timer 2, namely:

1. capture
2. auto-reload (up/down counter)
3. baud rate generator.

Appendix C 267

The operating mode is selected by bits in the T2CON register as indicated in
Table C.6.

Table C.6

RCLK + TCLK CP/RL2 TR2 Mode

0 0 1 16-bit auto-reload
0 1 1 16-bit capture
1 X 1 Baud rate generator
X X 0 Off
CAPTURE MODE

In the capture mode there are two options each of which may be selected by bit
EXEN2 in T2CON. If EXEN2 = 0, then timer 2 is a 16-bit timer or counter (as
selected by C/T2 in T2CON) which, upon overflowing sets bit TF2, the timer 2
overflow bit. This bit can be used to generate an interrupt (by enabling the
timer 2 interrupt bit in the IE register). If EXEN2 = 1, timer 2 operates as
described above, but with the added feature that a transition from 1 to 0 at
external input T2EX causes the current value in the timer 2 registers, TL2 and
TH2 to be captured into registers RCAP2L and RCAP2H respectively. In
addition, the transition at T2EX causes bit EXF2 in T2CON to be set, and
EXF2, like TF2, can generate an interrupt which vectors to the same location
as timer 2 overflow interrupt. The timer 2 interrupt service routine can inter-
rogate TF2 and EXF2 to determine which event caused the interrupt. The
capture mode is illustrated in Figure C.13. (There is no reload value for TL2
and TH2 in this mode. Even when a capture event occurs from T2EX, the
counter keeps on counting T2EX pin transitions or fu,/12 pulses.)

Osc. =12

C/T2=0
TL2 TH2
e oo oo | o {2
t om ‘
C/T2=1 1
T2 pin

Control

TR2
Transition Capture

detector

:Z>_> Timer 2
interrupt
RCAP2L RCAP2H

T2EX pin— \ oo EXF2)
'

!

Control

EXEN2
Figure C.13 Timer 2 in capture mode (courtesy Philips Semiconductors)

AUTO-RELOAD MODE (UP OR DOWN COUNTER)

In the 16-bit auto-reload mode, timer 2 can be configured (as either a timer or
counter (C/T2 in T2CON)) then programmed to count up or down. The

268 Appendix C

Osc. =12
crmz=0 - TL2 TH2
— : (8 bits) (8 bits)
T C/T2=1 :
T2 pin ‘ Control
TR2 Reload
Transition
detector
TF2
Timer 2
interrupt
T2EX pin—» \ EXF2
Control
EXEN2

Figure C.14 Timer 2 in auto-reload mode (DCEN = 0) (courtesy Philips
Semiconductors)

counting direction is determined by bit DCEN that is located in the T2MOD
register. When reset is applied, DCEN = 0 which means timer 2 will default to
counting up. If DCEN bit is set, timer 2 can count up or down depending on the
value of the T2EX pin. Figure C.14 shows timer 2 which will count up auto-
matically since DCEN = 0. In this mode there are two options selected by bit
EXEN?2 in T2CON register. If EXEN2 = 0, then timer 2 counts up to OFFFFH
and sets the TF2 (overflow flag) bit upon overflow. This causes the timer 2
registers to be reloaded with the 16-bit value in RCAP2L and RCAP2H. The
values in RCAP2L and RCAP2H are preset by software means. If EXEN2 = 1,
then a 16-bit reload can be triggered either by an overflow or by a 1-to-0
transition at input T2EX. This transition also sets the EXF2 bit. The timer 2
interrupt, if enabled, can be generated when either TF2 or EXF2 is 1. In
Figure C.15 DCEN = 1 which enables timer 2 to count up or down. This mode
allows pin T2EX to control the direction of count. When a logic 1 is applied at pin

(Down counting reload value)

Toggle

I I X EXF2
Osc. C/T2=0
Overflow
oo TL2 TH2 TF2 Interrupt

T2 PIN _f C/T2=1 N
Control
TR2 Count

direction
I I 1=Up
0=Down
RCAP2L RCAP2H
(Up counting reload value) T2EX pin

Figure C.15 Timer 2 in auto-reload mode (DCEN = 1) (courtesy Philips
Semiconductors)

Appendix C 269

T2EX timer 2 will count up. Timer 2 will overflow at OFFFFH and set the TF2
flag, which can then generate an interrupt, if the interrupt is enabled. This timer
overflow also causes the 16-bit value in RCAP2L and RCAP2H to be reloaded
into the timer registers TL2 and TH2. When a logic 0 is applied at pin T2EX this
causes timer 2 to count down. The timer will underflow when TL2 and TH2
become equal to the value stored in RCAP2L and RCAP2H. Timer 2 underflow
sets the TF2 flag and causes OFFFFH to be reloaded into the timer registers TL2
and TH2. The external flag EXF2 toggles when timer 2 underflows or overflows.
This EXF2 bit can be used as a 17th bit of resolution if needed. The EXF2 flag
does not generate an interrupt in this mode of operation.

BAUD RATE GENERATOR MODE

Bits TCLK and/or RCLK in T2CON (Table C.6) allow the serial port transmit
and receive baud rates to be derived from either timer 1 or timer 2. When
TCLK =0, timer 1 is used as the serial port transmit baud rate generator.
When TCLK =1, timer 2 is used as the serial port transmit baud rate gen-
erator. RCLK has the same effect for the serial port receive baud rate. With
these two bits, the serial port can have different receive and transmit baud
rates — one generated by timer 1, the other by timer 2.

Figure C.16 shows the timer 2 in baud rate generation mode. The baud rate
generation mode is like the auto-reload mode, in that a rollover in TH2 causes
the timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H
and RCAP2L, which are preset by software. The baud rates in modes 1 and 3
are determined by timer 2’s overflow rate given below:

timer 2 overflow rate

Modes 1 and 3 baud rates = T

The timer can be configured for either ‘timer’ or ‘counter’ operation. In
many applications, it is configured for ‘timer’ operation (C/T2 = 0). Timer
operation is different for timer 2 when it is being used as a baud rate generator.

Usually, as a timer it would increment every machine cycle (i.e. 1/12 the
oscillator frequency). As a baud rate generator, it increments every state time
(i.e. 1/2 the oscillator frequency). Thus the baud rate formula is as follows:

oscillator frequency
32165536 — (RCAP2H, RCAP2L)]

Where RCAP2H, RCAP2L is the content of RCAP2H RCAP2L taken as a
16-bit unsigned integer.

The timer 2 as a baud rate generator mode shown in Figure C.16 is valid only if
RCLK and/or TCLK = 1 in T2CON register. Note that a rollover in TH2 does
not set TF2, and will not generate an interrupt. Thus, the timer 2 interrupt does
not have to be disabled when timer 2 is in the baud rate generator mode. Also if the
EXEN2 (T2 external enable flag) is set, a 1-to-0 transition in T2EX (timer/counter
2 trigger input) will set EXF2 (T2 external flag) but will not cause a reload from

Modes 1 and 3 baud rates =

270 Appendix C

Overflow

Note: Osc. freq. is divided by 2, not 12.

Osc. +22

C/T2=0

~o o0 i =\ 1 RCLK

) ciT2=1 I
T2 pin Control

TR2

+16 RX clock

Transition
detector

T2EX pin — -} oo |—» Timer 2
. interrupt

Control
EXEN2

Note availability of additional external interrupt.

Figure C.16 Timer 2 in baud rate generator mode (courtesy Philips
Semiconductors)

(RCAP2H, RCAP2L) to (TH2, TL2). Therefore when timer 2 is in use as a baud
rate generator, T2EX can be used as an additional external interrupt, if needed.

When timer 2 is in the baud rate generator mode, one should not try to read
or write TH2 and TL2. As a baud rate generator, timer 2 is incremented every
state time (fosc/2) or asynchronously from pin T2; under these conditions, a
read or write of TH2 or TL2 may not be accurate. The RCAP2 registers may be
read, but should not be written to, because a write might overlap a reload and
cause write and/or reload errors. The timer should be turned off (clear TR2)
before accessing the timer 2 or RCAP2 registers. Table C.7 shows commonly
used baud rates and how they can be obtained from timer 2.

Table C.7 Timer 2 generated commonly used baud rates

Timer 2
Oscillator

Baud rate frequency (MHz) RCAP2H RCAP2L
375k 12 FF FF
9.6k 12 FF D9
2.8k 12 FF B2
2.4%k 12 FF 64
1.2k 12 FE C8
300 12 FB 1E
110 12 F2 AF
300 6 FD 8F

110 6 F9 57

Appendix C 271

Summary of baud rate equations

Timer 2 is in baud rate generating mode. If timer 2 is being clocked through pin
T2 (P1.0) the baud rate is:

Baud rate = Timer 2 overflow rate
16

If timer 2 is being clocked internally, the baud rate is:

Oscillator frequency
32[65536 — (RCAP2H, RCAP2L)]

To obtain the reload value for RCAP2H and RCAP2L the above equation can
be rewritten as:

RCAP2H, RCAP2L = 65536 — [fise/(32 x baud rate)]

Timer/counter 2 set-up

Except for the baud rate generator mode, the values given for T2CON do not
include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to
turn the timer on. See Table C.8 for set-up of timer 2 as a timer. Also see Table C.9
for set-up of timer 2 as a counter.

Table C.8 Timer 2 as a timer

T2CON
Internal control External control
Mode (see note 1) (see note 2)
16-bit auto-reload 00H 08H
16-bit capture 01H 09H
Baud rate generator receive and 34H 36H
transmit same baud rate
Receive only 24H 26H
Transmit only 14H 16H

Notes: (1) Capture/reload occurs only on timer/counter overflow; (2) Capture/reload
occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when
timer 2 is used in the baud rate generator mode.

Programmable clock-out

A 50% duty cycle clock can be programmed to come out on P1.0. This pin,
besides being a regular I/O pin, has two alternate functions. It can be
programmed:

¢ to input the external clock for timer/counter 2, or
e to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz at a 16 MHz
operating frequency. To configure the timer/counter 2 as a clock generator,

272 Appendix C

Table C.9 Timer 2 as a counter

TMOD

Internal control External control
Mode (see Note 1) (see Note 2)
16-bit 02H 0AH
Auto-reload 03H 0BH

Notes: See Notes of Table C.8.

bit C/T2 (in T2CON) must be cleared and bit T2OE in T2MOD must be set.
Bit TR2 (T2CON.2) also must be set to start the timer. The clock-
out frequency depends on the oscillator frequency and the reload value of
timer 2 capture registers (RCAP2H, RCAP2L) as shown:

Oscillator frequency
4165536 — (RCAP2H, RCAP2L)]

where RCAP2H, RCAP2L is the contents of RCAP2H and RCAP2L taken as
a 16-bit unsigned integer.

In the clock-out mode timer 2 rollovers will not generate an interrupt. This is
similar to when it is used as a baud rate generator. It is possible to use timer 2 as
a baud rate generator and a clock generator simultaneously. Note, however,
that the baud rate and the clock-out frequency will be the same.

C.7 Serial interface

The 80C51 possesses an on-chip serial port to enable serial data transmission
between the device and external circuits. The serial port is full duplex so that it
can receive and transmit data simultaneously. The port is also buffered in
receive mode so that it can receive a second data byte before the first data byte
has been read from the register.

The serial port register is SBUF at address 99H in the SFR. SBUF is actually
two registers, one to handle receive data from the external source via RxD (P3.0)
and one to hold transmit data for outward transmission via TxD (P3.1). Writing
to SBUF loads data for transmission while reading SBUF accesses received data
in the physically separate receive register.

Register SCON at address 98H controls data communication while register
PCON at address 87H controls data rates. Details of the serial port control
(SCON) register are as follows:

MSB LSB
SMO/FE | SMI SM2 REN TB8 RB8 TI RI

9FH 9EH 9DH 9CH 9BH 9AH 99H 98H

Appendix C 273

FE Framing Error bit. The receiver sets this bit when an invalid stop bit is
detected. The FE bit is not cleared by valid frames but should be
cleared by software. The SMODO bit (located at PCON.6) must be set
to allow access to the FE bit.

SMO Serial port mode bit 0 (SMODO must be equal to 0 to access bit SMO0).

SM1 Serial port mode bit 1.

Bits SMO0 and SM1 specify the serial port mode as shown in Table C.10.

Table C.10 Serial port mode options

SMO0 SM1 Mode Description Baud rate

0 0 0 Shift register Sose/12

0 1 1 8-bit UART Variable

1 0 2 9-bit UART Josc/32 Or fos./64
1 1 3 9-bit UART Variable

SM2 Enables the automatic address recognition feature in modes 2 and 3.
If SM2 set to 1 then RI will not be set unless the received 9th data bit
RBS is 1, indicating an address, and the received byte is a given or
broadcast address. In mode 1, if SM2 =1 then RI will not be activated
unless a valid stop bit was received and the received byte is a given or
broadcast address. In mode 0, SM2 should be 0.

REN Set by software to enable serial reception. Clear by software to disable
reception.

TB8 The 9th data bit that will be transmitted in modes 2 and 3. Set/clear by
software.

RB8 In modes 2 and 3, is the 9th data bit received. In Mode 1 if SM2 =0,
RBS is the stop bit that was received. In Mode 0, RBS8 is not used.

TI Transmit interrupt flag. Set by hardware at the end of the 8th bit time
in mode 0, or at the start of the stop bit in other modes, in any serial
transmission. Must be cleared by software.

RI Receive interrupt flag. Set by hardware at the end of the 8th bit in
mode 0, or halfway through the stop bit time in the other modes, in
any serial reception (except see SM2). Must be cleared by software.

The serial port can operate in four modes:

Mode 0. Serial data enters and leaves via RXD. Pin TXD outputs the shift
clock and this is used to synchronise data transmission/reception. Data is in the
form of 8 bits with the LSB first. The rate of transmission (baud rate) is 1/12 of
the oscillator frequency. Transmission is initiated by any instruction that uses
SBUF as a destination register. The ‘write to SBUF’ signal will also load a 1
into the 9th position of the transmit shift register. Reception is initiated by the
condition REN =1 and RI =0. A generalised diagram of the serial data format
is shown in Figure C.17. This format is applicable to all modes with modifica-
tion i.e. the 9th data bit is shown but is not present on modes 0 and 1.

274 Appendix C

Serial data format

@[T T T 1T Telem]

Figure C.17 Generalised serial data format

Mode 1. Ten bits are transmitted/received through TxD/RxD respectively.
There is a start bit (low), 8 data bits (LSB first) followed by a stop bit (high).
For transmission the interrupt flag TI is set after all 10 bits have been sent.
The time for which each bit is at level 1 or 0 depends on the period set by
the baud rate frequency. For received data, reception is initiated by the
falling edge of the start bit and each bit is sampled in the centre of the
bit time interval. The data word will be entered into the SBUF register
provided:

RI =0 AND
SM2 = 0 OR stop bit = 1.

If RI =0 then the program has read any previous data and is ready for the next
byte. The stop bit set to 1 will complete data transfer to the SBUF register
regardless of the state of SM2. For SM2 =0 the byte will be transferred to
SBUF regardless of the stop bit level.

On receive the start bit is discarded, the data bits are in SBUF and the stop
bit is placed in RB8 of the SCON register to indicate a data byte has been
received. Note that if RI is set at the end of reception of a data byte, it
suggests that the previously received data byte has not been read by the
program; this would cause the new data to be lost since it will not be loaded.
Transmission is again initiated by any instruction that uses SBUF as a
destination register. In this mode however the bit times are synchronised to
the divide-by-sixteen counter and not the ‘write to SBUF’ signal, as was the
case for mode 0. Reception is initiated by the detection of a high-to-low
transition at RxD.

Mode 2. Eleven bits are transmitted/received through TxD/RxD respectively.
There is a start bit (low), 8 data bits (LSB first), a programmable 9th data bit
and a stop bit (high). For transmission the 9th data bit (TB8 in SCON) can
have the value 0 or 1 or the parity bit (P in the PSW) could be moved into TBS.
On receive the 9th data bit goes into RBS in the register SCON, while both the
start and stop bits are ignored. The conditions for received data are similar to
mode 1 i.e.:

RI =0 AND
SM2 = 0 OR 9th data bit = 1.

If either of these conditions is not met the received frame is irretrievably lost.

Mode 3. This is identical to mode 2 in all respects except that the baud rate is
not fixed (as it is for mode 2) but variable using timer 1 to provide the required
communication frequencies.

Appendix C 275

ENHANCED UART

The UART operates in all of the usual modes that are described above. In
addition the UART can perform framing error detect, by looking for missing
stop bits, and automatic address recognition. The UART also fully supports
multiprocessor communication. When used for framing error detect the UART
looks for missing stop bits in the communication. A missing bit will set the FE bit
in the SCON register. The FE bit shares the SCON.7 bit with SM0, and PCON.6
(SMODO) determines the function of SCON.7. If SMODO is set then SCON.7
functions as FE. The SCON.7 functions as SM0 when SMODQO is cleared. When
used as FE, SCON.7 can only be cleared by software. Refer to Figure C.18.

_

| Start I Data byte l OnlyinI Stop
bit mode 2, 3 bit

o/() l«—— Set FE bit if stop bit is 0 (Framing error)

Of—— SMO to UART mode control

N
|SMO/FE| SM1 | SM2| REN | TB8 | RB8 | TI | RI (SQ%%

PCON
SMOD1 | SMODO - POF GF1 GFO PD DL | (87H)

0:SCON.7 =SMo0
1:SCON.7=FE

Figure C.18 UART framing error detection (courtesy Philips Semiconductors)

AUTOMATIC ADDRESS RECOGNITION

Automatic address recognition is a feature, which allows the UART to recog-
nise certain addresses in the serial bit stream by using hardware to make the
comparisons. This feature saves a great deal of software overhead by eliminat-
ing the need for the software to examine every serial address, which passes by
the serial port. This feature is enabled by setting the SM2 bit in SCON. In the
9-bit UART modes, mode 2 and mode 3, the receive interrupt flag (RI) will be
automatically set when the received byte contains either the ‘Given’ address or
the ‘Broadcast’ address. The 9-bit mode requires that the 9th information bit is
a 1 to indicate that the received information is an address and not data.
Automatic address recognition is shown in Figure C.19.

The 8-bit mode is called mode 1. In this mode the RI flag will be set if SM2 is
enabled and the information received has a valid stop bit following the 8 address
bits and the information is either a given or broadcast address. Mode 0 is
the shift register mode and SM2 is ignored. Using the automatic address
recognition feature allows a master to selectively communicate with one or
more slaves by invoking the given slave address or addresses. All of the slaves

276 Appendix C

SCON

| SMo | SM1 | SM2 | REN | TB8 | RB8 | T | RI |(98H)

Received address DO TO D7 —————>|
Programmed address —————

Comparator

In UART mode 2 OR mode 3 and SM2 = 1;

Interrupt if REN = 1, RB8 = 1 and “Received address” = “Programmed address”
- When own address received, clear SM2 to receive data bytes
- When all data bytes have been received: SET SM2 to wait for next address.

Figure C.19 UART multiprocessor communication, automatic address recognition
(courtesy Philips Semiconductors)

may be contacted by using the broadcast address. Two SFRs are used to define
the slave’s address, SADDR, and the address mask, SADEN. SADEN is used
to define which bits in the SADDR are to be used and which bits are ‘don’t
care’. The SADEN mask can be logically ANDed with the SADDR to create
the ‘Given’ address, which the master will use for addressing each of the slaves.
Use of the given address allows multiple slaves to be recognised while excluding
others. The following examples will help to illustrate the point:

Slave 0 SADDR = 1100 0000
SADEN = 1111 1101
Given = 1100 00X0
Slave 1 SADDR = 1100 0000
SADEN = 1111 1110
Given = 1100 000X

In the above example SADDR is the same and the SADEN data is used to
differentiate between the two slaves. Slave 0 requires a 0 in bit 0 and it ignores
bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is ignored. A unique address for slave 0
would be 1100 0010 since slave 1 requires a 0 in bit 1. A unique address for slave
1 would be 1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be
selected at the same time by an address, which has bit 0 = 0 (for slave 0) and bit
1 = 0 (for slave 1). Thus, both could be addressed with 1100 0000. In a more
complex system the following could be used to select slaves 1 and 2 while
excluding slave 0:

Slave 0 SADDR = 1100 0000
SADEN = 1111 1001
Given = 1100 0XXO0

Slave 1 SADDR= 1110 0000
SADEN = 1111 1010
Given = 1110 0X0X

Slave 2 SADDR = 1110 0000
SADEN = 1111 1100
Given = 1110 00XX

Appendix C 277

In the above example the differentiation among the three slaves is in the lower 3
address bits. Slave 0 requires that bit 0 = 0 and it can be uniquely addressed by
1110 0110. Slave 1 requires that bit 1 = 0 and it can be uniquely addressed by
1110 and 0101. Slave 2 requires that bit 2 = 0 and its unique address is 1110
0011. To select slaves 0 and 1 and exclude slave 2 use address 1110 0100, since it
is necessary to make bit 2 =1 to exclude slave 2. Taking the logical OR of
SADDR and SADEN creates the broadcast address for each slave. Zeros in
this result are treated as don’t-cares. In most cases, interpreting the don’t-cares
as ones, the broadcast address will be FF hexadecimal.

Upon reset SADDR (SFR address 0A9H) and SADEN (SFR address 0B9H)
are loaded with 0s. This produces a given address of all ‘don’t cares’ as well as
a broadcast address of all ‘don’t cares’. This effectively disables the automatic
addressing mode and allows the microcontroller to use standard 80C51 type
UART drivers, which do not make use of this feature.

BAUD RATES

This has been described under the details of the SCON register. For mode 0 the
baud rate is fixed at oscillator frequency/12. For mode 2 the baud rate depends
on the value of the bit SMOD in the PCON SFR. If SMOD = 0 (which is the
value on RESET), the baud rate is oscillator frequency/64. If SMOD = 1, the
baud rate is oscillator frequency/32 i.e.: fos/32 or fosc/64 (12 clock mode).

SMOD
Baud rate =

x Oscillator frequency

In the 80C51 the baud rates in modes 1 and 3 are determined by the timer 1
overflow rate and the value of SMOD as follows:
SMOD

32

The timer 1 interrupt should be disabled in this application. The timer can be
configured for timer or counter mode and if used in timer operation in the auto-
reload mode the baud rate is given by:

Baud rate = x Timer 1 overflow rate

SMOD Qscillator frequency

32 12— (256 — (THI)]

The oscillator frequency should be chosen to generate the required range of
baud rates. Table C.11 shows variously commonly used baud rates and how
they can be obtained from timer 1.

Applications involving baud rates and the use of timer 1 can be found in Chapter 4.

Baud rate =

C.8 Interrupts

Whenever a computer program is running it can be forced to respond to
external conditions either by software techniques or the use of hardware signals

278 Appendix C

Table C.11 Timer 1 generated commonly used baud rates

Timer 1
Baud rate Sfosc SMODI1 C/T Mode Reload value
Mode 0 Max; 1.67MHz 20 MHz X X X X
Mode 2 Max; 625k 20 MHz 1 X X X
Mode 1.3 Max; 104.2k 20 MHz 1 0 2 FFH
19.2k 11.059MHz 1 0 2 FDH
9.6k 11.059MHz 0 0 2 FDH
4.8k 11.059 MHz 0 0 2 FAH
2.4k 11.059MHz 0 0 2 F4H
1.2k 11.059MHz 0 0 2 ESH
137.5 11.986 MHz 0 0 2 1DH
110 6 MHz 0 0 2 72H
110 12 MHz 0 0 1 FEEBH

called interrupts. Software techniques involve checking flags or the status of
port pins and could take up valuable processor time, while the interrupt signals
only stop the main software program when necessary. Interrupts may be
generated internally or externally; whatever the source of the interrupt request
it causes the device to switch to an interrupt subroutine that is located at
predetermined addresses in program memory (see under Internal ROM).

There are six interrupt sources provided by the 80C51 and these are shown in
Table C.12 together with details of the polling priority assigned to each inter-
rupt source.

Table C.12 Interrupt sources and polling priority levels

Source Polling priority Request bits Hardware clear? Vector address
X0 1 1EO N(L)!, Y(T)? 03H
TO 2 TFO0 Y 0BH
X1 3 IE1 N(L)!, Y(T)? 13H
Tl 4 TF1 Y I1BH
SP 5 RI, TI N 23H
T2 6 TF2, EXF2 N 2BH

Notes: 1. L = level activated; 2. T = transition activated.

There are three SFRs associated with interrupts. The registers are the inter-
rupt enable (IE) at address A8H, interrupt priority (IP) at address BSH and the
interrupt priority high (IPH) that provides a four-level interrupt routine. IPH is
situated at address B7H.

Two of the interrupts are triggered by external signals via INTO and INT1
while the remaining interrupts are generated by internal operations; timer 0,
timer 1, timer 2 and the ORed output of RI and TI. All of the bits that generate
interrupts can be set or cleared by software. Each interrupt source can be

Appendix C 279

enabled/disabled by the setting/clearing of a bit in the SFR IE. This register,
details of which are shown below, also has a global disable bit EA which
disables all interrupts at once.

MSB LSB
EA X ET2 ES ETI EXI1 ETO EXO0

AFH AEH ADH ACH ABH AAH A9H AS8H

IE register bit functions and symbols are shown in Table C.13.

Table C.13 IE register bit functions

Bit Symbol Function

IE.7 EA Disables ALL interrupts if EA = 0. If EA = 1 each interrupt
source is individually enabled/disabled by setting/clearing its
enable bit

IE.6 - Reserved

IE.5 ET2 Enables/disables the timer 2 overflow interrupt. If ET2 = 0 the
timer 1 interrupt is disabled

IE.4 ES Enables/disables the serial port interrupt. If ES = 0, the serial
port interrupt is disabled

1E.3 ET1 Enables/disables the timer 1 overflow interrupt. If ET1 =0
the timer 1 interrupt is disabled

1E.2 EX1 Enables/disables external interrupt 1. If EX1 = 0, external
interrupt 1 is disabled

IE.1 ETO Enables/disables the timer 0 overflow interrupt. If ET0 = 0
the timer O interrupt is disabled

1E.0 EXO0 Enables/disables external interrupt 0. If EX0 = 0, external

interrupt 0 is disabled

Each interrupt source can also be individually programmed to one of two
priority levels by setting/clearing a bit in SFR register IP. A low priority
interrupt can be interrupted in turn by a high priority interrupt but not by
another low priority interrupt. A high priority interrupt cannot be interrupted
by any other interrupt source. If requests of different priority level are received
simultancously the higher priority level is serviced first. If requests of the same
priority level are received simultaneously an internal polling sequence is
invoked which determines a second priority level as shown in Table C.14.

The address given is the starting address of the relevant interrupt sub-
routine. If the routine cannot be fitted into the available 8 bytes a jump
instruction should route the routine elsewhere in memory. The interrupt will
cause the main program to stop while the interrupt is serviced, with the PC
address being saved on the stack. A RETT instruction at the end of the service
routine restores the address reached by the PC prior to the interrupt back to
the PC and resets the interrupt logic so that another interrupt, should it occur,
can be serviced.

280 Appendix C

Table C.14

Priority Source Address
1 1EO 0003H
2 TFO 000BH
3 IEl 0013H
4 TF1 001BH
5 RI/TI 0023H
6 TF2/EXF2 002BH

Details of the IP register are:

MSB LSB
X X PT2 PS PT1 PX1 PTO PX0
BDH BCH BBH BAH B9H BSH

IP register functions and symbols are shown in Table C.15.

Table C.15 IP register bit functions

Bit Symbol Function

1P.7 - Reserved

IP.6 - Reserved

IP.5 PT2 Defines timer 2 interrupt priority level. PT1 =1
programs it to the higher priority level

IP.4 PS Defines serial port interrupt priority level. PS = 1
programs it to higher priority level

1P.3 PT1 Defines timer 1 interrupt priority level. PT1 =1
programs it to the higher priority level

1P.2 PX1 Defines external interrupt priority level. PX1 =1
programs it to the higher priority level

IP.1 PTO Enables/disables timer 0 interrupt priority level.
PTO = 1 programs it to the higher priority level

1P.0 PXO0 Defines the external interrupt 0 priority level. PX0 =1

programs it to the higher priority level

Details of the IPH register are:

MSB LSB
- - PT2H PSH PTIH | PXIH | PTOH | PXOH
B7H B6H B5SH B4H B3H B2H BIH BOH

Appendix C 281

IPH register functions and symbols are shown in Table C.16.

Table C.16 IPH register bit functions

Bit Symbol Function

IPH.7 - Reserved for future use

IPH.6 - Reserved for future use

IPH.5 PT2H Timer 2 interrupt priority bit high
IPH.4 PSH Serial Port interrupt priority bit high
IPH.3 PTIH Timer 1 interrupt priority bit high
IPH.2 PX1H External interrupt 1 priority bit high
IPH.1 PTOH Timer 0 interrupt priority bit high
IPH.O PXO0H External interrupt 0 priority bit high

Note: Priority bit=1 assigns higher priority while priority bit =0 assigns lower priority.

The combination of the IP and IPH registers determines the four-level interrupt
structure as shown in Table C.17.

Table C.17

Priority bits

IPH.x IP.x Interrupt priority level

0 0 Level 0 (lowest priority)
0 1 Level 1

1 0 Level 2

1 1 Level 3 (highest priority)

An interrupt will be serviced as long as an interrupt of equal or higher priority
is not already being serviced. If an interrupt of equal or higher level priority is
being serviced, the new interrupt will wait until the current interrupt is finished
before it is serviced. If a lower priority level interrupt is being serviced, it will be
stopped and the new interrupt serviced. When the new interrupt is finished the
lower priority level interrupt that was stopped will be completed.

Internal interrupts

When a timer/counter overflows the corresponding timer flag TFO or TF1 is set
to 1. The flag is cleared by on-chip hardware when the service routine is
vectored. The timer 2 flags TF2 and EXF2 must be cleared by software.

The serial port interrupt is generated by the logical OR of RI (set to 1 in the
SCON register when a data byte is received) and TI (set to 1 in the SCON
register when a data byte has been transmitted). Neither flag is cleared by
hardware when vectoring to the service routine. In practice the service routine

282 Appendix C

will have to determine whether it was RI or TI that generated the interrupt and
the bit cleared by software.

External interrupts

The external interrupts INTO and INTI1 can be level activated or transition
activated depending on the value of the bits ITO and IT1 in the TCON register.
The interrupts are actually generated by the flags IE0 and IE1 in TCON. When
an external interrupt is generated the flag that caused it is only cleared by
hardware when the service routine is vectored only if the interrupt was transi-
tion activated. Any level-activated interrupt must be reset by the programmer
when the interrupt is serviced by the service subroutine. The low level must
be removed from the external circuit before a RETI instruction is executed
otherwise an immediate interrupt will occur after the execution of the RETI
instruction.

Reset

The reset input is the RST pin and taking this pin high for at least two machine
cycles while the oscillator is running will cause the CPU to generate an internal
reset. Reset is a form of interrupt since the action of the RST pin overrides any
software, which the 80C51 may be running at the time. Unlike other interrupts
the value of the address on the PC is not saved but is reset to 0000H. In fact the
internal reset algorithm writes Os to all SFRs except the port latches, SP and
SBUF. The 80C51 reset values are shown in Table C.1. Internal RAM is not
affected by reset. However on power up the RAM values are indeterminate.

On-chip oscillators

The 8051 device is available in an NMOS version and a CMOS version, with
the latter having lower power consumption. In either case, although the circui-
try differs, the on-chip oscillator circuit is a positive reactance intended to
provide crystal-controlled resonance with externally connected capacitors.
The arrangement is shown in Figure C.20.

HMOS or
CMOS
XTAL2
Quartz crystal _L
or ceramic —~, _L_ C1
resonator [[
c2
T XTALA
1 Vss

Figure C.20 80C51 on-chip oscillator (courtesy Philips Semiconductors)

Appendix C 283

The crystal specifications and capacitance values are not critical and 30 pF
can be used at any frequency with good quality crystals. Where cost is critical
ceramic resonators may be used and this case the capacitor values should be
higher, typically 47 pF. To drive the device with an external clock source it is
usual, for the CMOS device, to drive the XTALI1 input with the external clock
and leave the input XTAL?2 floating. This is shown in Figure C.21.

80C51
NC—— XTAL 2
External
oscillator {>o XTALA
signal
T Vss
CMOS gate

Figure C.21 Using external clock sources (courtesy Philips Semiconductors)

For the NMOS device the external clock is connected to XTAL?2 input and
XTALI is grounded. The reason for the difference is that in NMOS devices the
internal timing circuits are driven by the signal at XTAL2 whereas in the
CMOS devices they are driven by the signal at XTALI.

Machine cycles

The oscillator formed by the crystal and associated circuit generates a pulse
train at the crystal frequency fos. This pulse train sets the smallest interval of
time P that exists within the microcontroller. The minimum time required by
the microcontroller to complete a simple instruction, or part of a more complex
instruction, is the machine cycle. The machine cycle consists of a sequence of six
states, numbered S1 through to S6, with each state time lasting for two
oscillator periods. Thus a machine cycle takes 12 oscillator periods. Each
state is divided into a phase 1 half (P1) and a phase 2 half (P2). Figure C.22
shows the fetch/execute sequences in states and phases for various kinds of
instructions.

Normally two program fetches are generated during each machine cycle even
if the instruction being fetched does not require it. If the instruction being
executed does not need extra code bytes the CPU ignores the extra fetch and the
PC is not incremented.

Execution of a one-cycle instruction begins during state 1 of the machine
cycle with the opcode latched into the instruction register. A second fetch
occurs during S4 of the same machine cycle and execution is completed at the
end of S6 of the machine cycle.

The MOV X instructions take two machine cycles to complete and no
program fetch is generated during the second cycle of the instruction. This is
the only time that program fetches are skipped. The sequences described are the
same regardless of whether the program memory is internal or external to the
chip since execution times do not depend on the location of code memory.

284 Appendix C

Osc.
(XTAL2)

ALE
_l

S1 S5

P1 P2

S6
P1 P2

S1 S6

P1 P2 | P1 P2

[

[

l— Read next opcode again

Read next
Read opcode opcode
(discard)
S1 ‘ S2 S3 S4 S5 S6

(a) 1-byte, 1-cycle instruc

r Read opcode (Read 2nd byte

ion, e.g., INC A

T Read next opcode

5[=] w] =] =] =

(b) 2-byte, 1-cycle instruction

Read next
opcode (discard)

, e.g., ADD, #data

Read next opcode again —

F Read opcode

| l

S1|S2|SS|S4|SS| S6

S1|SZ|SS|S4|SS| S6

(c) 1-byte, 2-cycle instruction, e.g., INC DPTR

No Read next opcode again —
fetch
Read opcode
No fetch
(MOVX) Read next ©
opcode (discard) ﬁ No ALE
—r

S1|SZ|SS|S4|SS|SS

81‘82‘83‘84‘35‘86

k ADDR

DATA

J

Figure C.22

Access external memory

(d) MOVX (1-byte, 2-cycle)

80C51 family state sequences (courtesy Philips Semiconductors)

The above description defines the situation for those devices that operate
using 12 oscillator periods. Some devices within the 8051 family are designed to

operate on six oscillator periods while the LPC device described in Appendix E
operates on two oscillator periods and is thus six times faster in operation than

standard 8051 devices for a given clock frequency.

Appendix D

P89C66x Microcontroller

Details of this device are reproduced with kind permission of Philips Semicon-
ductors. Data regarding the device may be found on the Philips website at
www.semiconductors.philips.com. The P89C660/662/664/666 device contains
a non-volatile 16 KB/32 KB/64 KB flash program memory (and 512 B/1 KB/
2KB/8 KB RAM) that is both parallel programmable and serial in-system
and in-application programmable. In-system programming (ISP) allows the
user to download new code while the microcontroller sits in the application.
In-application programming (IAP) means that the microcontroller fetches new
program code and reprograms itself while in the system. This allows for remote
programming over a modem link. A default serial loader (boot loader) program
in ROM allows serial ISP of the flash memory via the UART without the need
for a loader in the flash code. For IAP, the user program erases and reprograms
the flash memory by use of standard routines contained in ROM. This device
executes one instruction in 6 clock cycles, hence providing twice the speed of
a conventional 80C51. A one-time programmable (OTP) configuration bit gives
the user the option to select conventional 12-clock timing. This device is a
single-chip 8-bit microcontroller manufactured in advanced CMOS process
and is a derivative of the 80C51 microcontroller family. The instruction set is
100% executing and timing compatible with the 80CS51 instruction set. The
device also has four 8-bit I/O ports, three 16-bit timer/event counters, a multi-
source, four-priority-level, nested interrupt structure, an enhanced UART and
on-chip oscillator and timing circuits. The added features of the P§9C660/662/
664/668 make it a powerful microcontroller for applications that require pulse
width modulation, high-speed I/O an up/down counting capabilities such as
motor control.
Features include:

80C51 central processing unit;
on-chip flash program memory with ISP and IAP capability;

®* boot ROM contains low-level flash programming routines for downloading
via the UART;

e can be programmed by the end-user application (IAP);

286 Appendix D

e parallel programming with 87C51 compatible hardware interface to pro-
grammer;

six clocks per machine cycle operation (standard);

12 clocks per machine cycle operation (optional);

speed up to 20 MHz with 6 clock cycles per machine cycle (40 MHz equiva-
lent performance); up to 33 MHz with 12 clocks per machine cycle;

fully static operation;

RAM externally expandable to 64 KB;

four interrupt priority levels;

eight interrupt sources;

four 8-bit I/O ports;

full-duplex enhanced UART

1. framing error detection
2. automatic address recognition;

e power control modes

1. clock can be stopped and resumed
2. 1idle mode
3. power-down mode;

programmable clock out;

second DPTR register;
asynchronous port reset;

low EMI (Inhibit ALE);

I2C serial interface;

programmable counter array (PCA)

1. PWM
2. capture/compare;

o well suited for IPMI applications.

The basic block diagram is shown in Figure D.1.

D.1 Pin-out diagram for the 89C66x

Packages include a 44-pin plastic leaded chip carrier (PLCC) package and a
44-pin low quad flat pack (LQFP) package. The PLCC package is illustrated
in Figure D.2. Note that although both packages have 44 pins only 40 pins in
each case are utilised since four pins have no internal connections.

A brief description of the function of each of the pins is given in the text that
follows. Note that the pin number refers to the PLCC package. The functions
of the LQFP package are the same as for the LPCC package but pin numbers
vary between the packages.

Supply voltage (V.. and Vss). The device operates from a single supply con-
nected to pin 44 (V) while pin 22 (Vss) is grounded.

Appendix D 287

Accelerated 80C51 CPU
6-CLK mode (default)
12-CLK mode (optional)

A

K/64 KB
Code flash

A
Y

Full-duplex
e e
enhanced UART |q—+——

0.5/1K/2K/ <
8KB/data RAM |

Y

16 K/32

< > Timer 0 H.

o o Timer 1 «l >
Port 3 .
<) ~1 = i
; Configurable 1/Os :
! - - Timer 2 !

! >
I Port 2 i
> =7} I '

i Configurable I/Os >

! Programmable |[<++—>

| - p—| counterarray |,

, (PCA) -~
- Port1 - !
. Configurable 1/0Os .
1 -t p-| Watchdog timer | |
< : > lPortO . > E
Configurable 1/Os :
. o lIC i

Crystal or Oscillator B - interface -~

resonator

Figure D.1 89C66x block diagram (courtesy Philips Semiconductors)

Input/output (I/O) ports. Thirty-two of the pins are arranged as four 8-bit I/O

ports PO-P3 with each capable of operating as a control line or part of the
data/address bus in addition to the I/O functions. Details are as follows:

Port 0. This is a dual-purpose port occupying pins 36 to 43 of the device.
The port is an open-drain bidirectional I/O port. Pins that have 1s written to
them float and can be used as high-impedance inputs. The port may be used
with external memory to provide a multiplexed address and data bus. In this
application internal pull-ups are used when emitting Is.

Port 1. This is an 8-bit bidirectional I/O port occupying pins 2 to 9 of the
device with internal pull-ups on all pins except P1.6 and P1.7, which are
open-drain. Pins that have 1s written to them are pulled high by the internal
pull-ups and can be used as inputs; as inputs, pins that are externally pulled

288 Appendix D

6 1 40
(@]
7 139
PLCC
17 129
18 28
Pin Function Pin Function Pin Function
1 NIC* 16 P3.4/TO/CEX3 31 P2.7/A15
2 P1.0/T2 17 P3.5/T1/CEX4 32 PSEN
3 P1.1/T2EX 18 P3.6/WR 33 ALE
4 P1.2/ECI 19 P3.7/RD 34 NIC*
5 P1.3/CEX0 20 XTAL2 35 EA/Vj
6 P1.4/CEX1 21 XTAL1 36 PO0.7/AD7
7 P1.5/CEX2 22 Vg 37 P0.6/AD6
8 P1.6/SCL 23 NIC* 38 P0.5/AD5
9 P1.7/SDA 24 P2.0/A8 39 PO0.4/AD4
10 RST 25 P2.1/A9 40 PO0.3/AD3
11 P3.0/RxD 26 P2.2/A10 41 P0.2/AD2
12 NIC* 27 P2.3/A11 42 P0.1/AD1
13 P3.1/TxD 28 P2.4/A12 43 P0.0/ADO
14 P3.2/INTO 29 P2.5/A13 44 Ve
15 P3.3/INT1 30 P2.6/A14

L .
No internal connection

Figure D.2 89C66x 44-pin PLCC package (courtesy Philips Semiconductors)

low will source current via the internal pull-ups. The port pins have alter-
nate functions as follows:

(P1.0) T2 Timer/counter 2 external count input/clockout
(P1.1) T2EX Timer/counter 2 reload/capture/direction control
(P1.2) ECI External clock input to the PCA

(P1.3) CEX0 Capture/compare external I/O for PCA module 0
(P1.4) CEX1 Capture/compare external I/O for PCA module 1
(P1.5) CEX2 Capture/compare external I/O for PCA module 2
(P1.6) SCL I?C bus clock line (open drain)

(P1.7) SDA I?C bus data line (open drain)

e Port 2. This is an 8-bit bidirectional I/O port occupying pins 24 to 31 of the
device with internal pull-ups. Pins that have Is written to them are pulled
high by the internal pull-ups and can be used as inputs; as inputs, pins that
are externally pulled low will source current via the internal pull-ups. The
port may be used to provide the high-order byte of the address bus for
external program memory or external data memory that uses 16-bit
addresses. When accessing external data memory that uses 8-bit addresses,
the port emits the contents of the P2 register.

e Port 3. This is an 8-bit bidirectional I/O occupying pin 11 and pins 13 to 19
of the device with internal pull-ups. The specification is similar to that of

Appendix D 289

port 1. These pins, in addition to the I/O role, serve the special features of
the 89C66x family; the alternate functions are summarised below:

P3.0 RxD serial data input port
P3.1 TxD serial data output port
P3.2 INTO external interrupt 0
P3.3 INT1 external interrupt 1

P3.4 CEX3/T0 timer O external input; capture/compare external 1/O for
PCA module 3

P3.5 CEX4/T1 timer 1 external input; capture/compare external 1/O for
PCA module 4

P3.6 WR external data memory write strobe

P3.7 RD external data memory read strobe.

RESET (RST) (pin 10). The 89C66x is reset by holding this input high for a
minimum of two machine cycles before returning it low for normal running. An
internal resistance connects to pin 22 (Vss) allowing a power-on reset using an
external capacitor connected to pin 44 (V).

XTAL1 and XTAL2 (pins 21 and 20 respectively). The 89C66x on-chip oscillator
is driven, usually, from an external crystal. The XTALI input also provides an
input to the internal clock generator circuits.

PSEN (program store enable) (pin 32). This pin provides an output read strobe
to external program memory. When executing code from the external program
memory, PSEN is activated twice each machine cycle, except that two PSEN
activations are skipped during each access to external data memory. The signal
is not activated during a fetch from internal memory.

ALE (address latch enable) (pin 33). The ALE signal is an output pulse used to
latch the low byte of an address during access to external memory. In normal
operation ALE is emitted twice every machine cycle and can be used for
external timing or clocking. Note that one ALE pulse is skipped during each
access to external data memory. ALE can be disabled by setting SFR auxili-
ary0. With this bit set ALE will be active only during a MOVX instruction.

EA/V,, (external access/programming voltage) (pin 35). This pin is either held
high or low according to circuit requirements. If held low the device will fetch
code from external program memory locations. If held high the device executes
programs from internal memory. The value on the pin is latched when RST is
released and any subsequent changes have no effect. The pin also receives the
programming supply voltage (V,p) during flash programming.

D.2 Memory organisation

The P89C660/662/664/668 has internal data memory that is mapped into four
separate segments: the lower 128 bytes of RAM, upper 128 bytes of RAM,

290 Appendix D

128 bytes SFR and 256 bytes expanded RAM (ERAM) (256 bytes for the ‘660;
768 bytes for the ‘662; 1792 bytes for the ‘664; 7936 bytes for the ‘668). The four
segments are:

1. The lower 128 bytes of RAM (addresses 00H to 7FH), which are directly
and indirectly addressable.

2. The upper 128 bytes of RAM (addresses 80H to FFH), which are indirectly

addressable only.

The SFRs (addresses 80H to FFH), which are directly addressable only.

4. The 256/768/1792/7936-bytes expanded RAM (ERAM, 00H — FFH/
2FFH/6FFH/1FFFH), which are indirectly accessed by move external
instruction, MOVX. and with the EXTRAM bit cleared, see AUXR (Aux-
iliary Register), Table D.1.

w

AUXR (AUXILIARY REGISTER)
address SEH

MSB LSB
- - - - EXTRAM | AO

7 6 5 4 3 2 1 0

Table D.1 AUXR (auxiliary register)

Bit Symbol Function

72 - Reserved for future use

1 EXTRAM Internal/external RAM access using MOVX@Ri/@DPTR
EXTRAM Operating mode
0 Internal ERAM access using MOVX@Ri/

@DPTR

1 External data memory access

0 AO Disable/enable ALE
AO Operating mode
0 ALE is emitted at a constant rate of 1/3 the oscillator

frequency (6 clock mode, 1/6 fosc in 12 clock mode)

1 ALE is active only during off-chip memory access

The register is not bit addressable.

The lower 128 bytes can be accessed by either direct or indirect addressing. The
upper 128 bytes can be accessed by indirect addressing only. The upper
128 bytes occupy the same address space as the SFR. That means they have
the same address, but are physically separate from SFR space. When an
instruction accesses an internal location above address 7FH, the CPU knows
whether the access is to the upper 128 bytes of data RAM, or to SFR space by
the addressing mode used in the instruction. Instructions that use direct addres-
sing access SFR space. For example:
MOV 0AOH,A accesses the SFR at location 0AOH (which is P2)

Appendix D 291

Instructions that use indirect addressing, access the upper 128 bytes of data
RAM. For example:

MOV @RO,A

where RO contains 0AOH, accesses the data byte at address 0AOH, rather than
P2 (whose address is 0AOH).

The ERAM can be accessed by indirect addressing, with EXTRAM bit
cleared and MOVX instructions. This part of memory is physically located
on-chip, logically occupies the first 256 bytes (660), 768 (662), 1792 (664); 7936
(668) of external data memory. With EXTRAM = 0, the ERAM is indirectly
addressed, using the MOVX instruction in combination with any of the regis-
ters RO, R1 of the selected bank or DPTR. An access to ERAM will not affect
ports PO, P3.6 (WR#) and P3.7 (RD#). The P2 SFR is in output state during
external addressing. For example, with EXTRAM = 0,

MOVX @RO0,A

where RO contains 0AOH, accesses the ERAM at address 0AOH rather than
external memory. An access to external data memory locations higher than the
ERAM will be performed with the MOVX DPTR instructions in the same way
as in the standard 80C51 (with PO and P2 as data/address bus, and P3.6 and
P3.7 as write and read timing signals; refer to Figure D.3).

FF/2FF/6FF/1FFF FF FF FFFF
Upper Special External
128 bytes function data
internal RAM register memory
ERAM 80 80 —
256, 768,
1792 or 7936
bytes
Lower
128 bytes
Internal RAM
000 00 00 0000

Figure D.3 89C66x internal/external data memory address spaces (courtesy Philips
Semiconductors)

With EXTRAM =1, MOVX @Ri and MOVX @DPTR will be similar to
the standard 80C51. MOVX @ RI will provide an 8-bit address multiplexed
with data on port 0 and any output port pins can be used to output higher order
address bits. This is to provide the external paging capability. MOVX @DPTR
will generate a 16-bit address. Port 2 outputs the high-order eight address bits
(the contents of DPH) while port 0 multiplexes the low-order eight address bits
(the contents of DPL) with data: MOVX @RI and MOVX @DPTR will
generate either read or write signals on P3.6 (WR) and P3.7 (RD). The SP
may be located anywhere in the 256 bytes RAM (lower and upper RAM)
internal data memory. The stack may not be located in the ERAM.

292 Appendix D

FLASH EPROM MEMORY

The P89C660/662/664/668 flash memory augments EPROM functionality with
in-circuit electrical erasure and programming. The flash can be read and written as
bytes. The chip erase operation will erase the entire program memory. The block
erase function can erase any flash byte block; ISP and standard parallel program-
ming are both available. On-chip erase and write timing generation contribute to a
user-friendly programming interface. The P8IC66x flash reliably stores memory
contents even after 10000 erase and program cycles. The cell is designed to
optimise the erase and programming mechanisms. In addition, the combination
of advanced tunnel oxide processing and low internal electric fields for erase and
programming operations, produces reliable cycling. The P89C66x uses a +5V Vpp
supply to perform the program/erase algorithms.

ISP and IAP

Flash EPROM internal program memory with block erase.
Internal 1 KB fixed boot ROM, containing low-level ISP routines and a default
serial loader. User program can call these routines to perform IAP. The Boot
ROM can be turned off to provide access to the full 64 KB of flash memory.
e Boot vector allows user provided Flash loader code to reside anywhere in
the Flash memory space. This configuration provides flexibility to the user.
e Default loader in boot ROM allows programming via the serial port with-
out the need for a user provided loader.
e Up to 64 KB of external program memory if the internal program memory
is disabled (EA = 0).
Programming and erase voltage +5V (+12V tolerant).
Read/Programming/Erase using ISP/IAP:

1. Byte programming (20 ps)
2. Typical quick erase times:

Block erase (8§ KB or 16 KB) in 10s.
Full erase (64 KB) in 20s.

ISP

Programmable security for the code in the flash
10000 minimum erase/program cycles for each byte
10-year minimum data retention

Flash organisation

The P89C660/662/664/668 contains 16 KB/32 KB/64 KB of flash program mem-
ory. This memory is organised as five separate blocks. The first two blocks are
8 KB in size, filling the program memory space from address 0 through 3FFF
hex. The final three blocks are 16 KB in size and occupy addresses from
4000 through FFFF hex. Figure D.4 illustrates the flash memory configurations.

Appendix D 293

FFFF ; . FFFF
i Boot ROM :
S = 010[0)
Block 4 (1KB)
16 KB
89C664/89C668
C000
Block 3
Program 16 KB
address
8000
Block 2
16 KB
89C662
—_— 4000
Block 1
8 KB
89C660 2000
Block 0
8 KB
i 0000

Figure D.4 Flash memory configurations (courtesy Philips Semiconductors)

Flash programming and erasure

There are three methods of erasing or programming of the flash memory that
may be used. First, the flash may be programmed or erased in the end-user
application by calling low-level routines through a common entry point in the
boot ROM. The end-user application, though, must be executing code from a
different block than the block that is being erased or programmed. Second, the
on-chip ISP boot loader may be invoked. This ISP boot loader will, in turn, call
low-level routines through the same common entry point in the boot ROM that
can be used by the end-user application. Third, the flash may be programmed
or erased using the parallel method by using a commercially available EPROM
programmer. The parallel programming method used by these devices is similar
to that used by EPROM 87C51, but it is not identical, and the commercially
available programmer will need to have support for these devices.

BOOT ROM

When the microcontroller programs its own flash memory, all of the low-level
details are handled by code that is permanently contained in a 1 KB ‘Boot
ROM’ that is separate from the flash memory. A user program simply calls the
common entry point with appropriate parameters in the boot ROM to accom-
plish the desired operation. Boot ROM operations include things like: erase
block, program byte, verify byte, program security lock bit, etc. The boot
ROM overlays the program memory space at the top of the address space from

294 Appendix D

FCO00 to FFFF hex, when it is enabled. The boot ROM may be turned off so
that the upper 1 KB of flash program memory is accessible for execution.

D.3 Special function registers (SFRs)

Details of the SFRs in the 89C66x family are shown in Table D.2. Appendix C
deals with many of the SFRs that are common to the 80C51 and the 89C66x
family and if necessary reference should be made to Appendix C if an SFR is
not covered in detail in this appendix.

D.4 Timer/counters

Information regarding timers 0, 1 and 2 is discussed fully in Appendix C for the
standard 80C51 device and the detail is no different for the 89C66x family.
However, because the 89C66x devices can operate in the 6-clock mode, allow-
ance should be made for this where relevant in the timer/counter section of
Appendix C. For example, Figure C.13 of Appendix C shows timer 2 in capture
mode, with the oscillator frequency shown as being divided by 12. This is
correct for the 80C51 device and for the 89C66x device in 12-clock mode. For
the 89C66x device in 6-clock mode the oscillator frequency is divided by 6.
Similarly, Table C.7 of Appendix C shows timer 2 generated commonly used
baud rates. The baud rate shown in the Table for the 80C51 device is the same for
the 89C66x device in 12-clock mode but the value is doubled for the 89C66x
device 6-clock mode i.e. 375k becomes 750k, etc. Finally the formula for timer
2 baud rate when the timer is being clocked internally is shown in Appendix C as:

Oscillator frequency
32 [65536 — (RCAP2H, RCAP2L)]

which can be written, more generally, as:

Oscillator frequency
n [65536 — (RCAP2H, RCAP2L)]

where n =16 in 6-clock mode and n =32 in 12-clock mode. (RCAP2H,
RCAP2L) is the content of RCAP2H RCAP2L taken as a 16-bit unsigned
integer.

To obtain the reload value for RCAP2H and RCAP2L, the above equation
can be rewritten as:

RCAP2H, RCAP2L = 65536 — [fuse/(n x baud rate)]

where n has the same values as indicated above and f,. = oscillator frequency.
There is a 16-bit timer/counter used in the 89C66x that is not present in the
standard 80C51 device. This is the programmable counter array (PCA) and its
details follow.

Table D.2 89C66x special function registers (courtesy Philips Semiconductors)

Direct Bit address, symbol, or alternative port function Reset
Symbol Description address MSB LSB value
ACC* Accumulator EOH E7 E6 ES E4 E3 E2 El EO 00H
AUXR# Auxillary SEH - . - - . - EXTRAM| AO | xxxxxx10B
AUXRI# Auxillary 1 A2H - - ENBOOT - GF2 0 - DPS | xxxxx0x0B
B* B register FOH F7 F6 F5 F4 F3 F2 F1 FO 00H
CCAPOH# Module 0 capture high FAH XXXXXXXXB
CCAPIH# Module | capture high FBH XXxxxxxxB
CCAP2H# Module 2 capture high FCH XXXXXXXXB
CCAP3H# Module 3 capture high FDH XXXXxxxxB
CCAP4H# Module 4 capture high FEH XXXXXXXXB
CCAPOL# Module 0 capture low EAH XXXXXXXXB
CCAPIL# Module 1 capture low EBH XXXXXXXXB
CCAP2L# Module 2 capture low ECH XXXXXXXXB
CCAP3L# Module 3 capture low EDH XXXXXXXXB
CCAP4L# Module 4 capture low EEH XXXXXXXXB
CCAPMO# Module 0 mode C2H - ECOM | CAPP | CAPN | MAT TOG PWM | ECCF | x0000000B
CCAPMI# Module 1 mode C3H - ECOM | CAPP | CAPN | MAT TOG PWM | ECCF | x0000000B
CCAPM2# Module 2 mode C4H - ECOM | CAPP | CAPN | MAT TOG PWM | ECCE | x0000000B
CCAPM3# Module 3 mode CsH - ECOM | CAPP | CAPN | MAT TOG PWM | ECCF | x0000000B
CCAPM4# Module 4 mode C6H — ECOM CAPP CAPN MAT TOG PWM ECCF | x0000000B

Cc7 C6 C5 Cc4 C3 C2 Cl Co

CCON*# PCA counter control COH CF CR _ | CCF4 | CCF3 | CCF2 | CCF1 CCF0 | 00x00000B

Table D.2 Continued

Direct Bit address, symbol, or alternative port function Reset
Symbol Description address MSB LSB value
CH# PCA counter high FO9H 00H
CL# PCA counter low E9H 00H
CMOD# PCAcountermode CIH [CIDL | WDTE - - - CPS| CPS0 ECF | 00xxx000B
DPTR: Data pointer (2 bytes)
DPH Data pointer high 83H 00H
DPL Data pointer low 82H 00H
AF AE AD AC AB AA A9 A8
IENO* Interrupt enable 0 A8H EA EC ES1 ESO ET1 EXI1 ETO EX0 00H
IENT* Interrupt enable 1 E8 — — - — — - — ET2 xxxxxxx0B
BF BE BD BC BB BA B9 B8
[P* Interrupt priority BSH PT2 PPC PS1 PSO PT1 PX1 PTO PX0 x0000000B
IPH* Interrupt priority high B7H PT2H PPCH PSIH PSOH PT1H PX1H PTOH PX0H | x0000000B
87 86 85 84 83 82 81 30
PO* Port 0 8H | AD7 | AD6 | AD5 | AD4 | AD3 AD2 ADI AD0 | FFH
97 96 95 94 93 92 91 90
P1* Port 1 90H [spA | scL | CeEx2 | CEXI | CEXo0 ECI T2EX T2 | FFH
A7 A6 AS A4 A3 A2 Al A0
p2* Port 2 AOH | ADI5 | ADI14 | ADI13 | ADI2 | ADII ADI0 ADY ADs | FFH
B7 B6 B5 B4 B3 B2 Bl B0
p3* Port 3 BOH | RD | WR | TUCEX4]T0/CEX3 | INTI INTO TxD RxD | FFH
PCON#! Power control 87H | SMOD1 | SMODO0 | _ | POF | GF1 GFO0 PD IDL | 00xxx000B
D7 D6 D5 D4 D3 D2 D1 DO
PSW* Program status word DOH | CY | AC | FO | RS1 | RSO oV F1 P | 00000000B
RCAP2H# Timer 2 capture high CBH 00H
RCAP2L# Timer 2 capture low CAH 00H
SADDR# Slave address A9H 00H
SADEN# Slave address mask B9H 00H

SOBUF

SOCON*
SP
SIDAT#
SIADR#
SISTA#

SICON*#

TCON*

T2CON*
T2MOD#
THO

TH1
TH2#
TLO

TL1

TL2#
TMOD
WDTRST

Serial data buffer

Serial control
Stack pointer
Serial 1 data
Serial 1 address
Serial 1 status

Serial 1 control
Timer control

Timer 2 control
Timer 2 mode control
Timer high 0

Timer high 1

Timer high 2

Timer low 0

Timer low 1

Timer low 2

Timer mode
Watchdog timer reset

99H

98H
81H
DAH
DBH

D9H

DSH

88H

C8H
C9H
8CH
8§DH
CDH
8AH
8§BH
CCH
89H
A6H

9F 9E 9D 9C 9B 9A 99 98
[sMo/FE | smi sM2 | REN | TBS RBS TI RI |
Slave address GC
sca | sc3 sc2 | sci SCo 0 0 0
DF DE DD DC DB DA D9 D8
[cr2 | ENsI STA | sto [sI AA CRI CRO |
8F SE 8D 8C 8B SA 89 88
[tr1 | TRI TFO | TRO | IEI IT1 1E0 o |
CF CE CD CC CB CA C9 C8
TF2 EXF2 RCLK | TCLK | EXEN2 TR2 Cc/T2_| CPRI2
_ _ _ _ - - T20E | DCEN
GATE C/T Ml MO GATE C/T MI MO

XXXXXXXXB

00H
07H
00H
00H
F8H

00000000B

00H

00H
xxxxxx00B
00H
00H
00H
00H
00H
00H
00H

* SFRs are bit addressable.
SFRs are modified from or added to the 80C51 SFRs.
— Reserved bits.
1. Reset value depends on reset source.

298 Appendix D

PROGRAMMABLE COUNTER ARRAY (PCA)

The programmable counter array available on the §89C66x is a special 16-bit
timer that has five 16-bit capture/compare modules associated with it. Each of
the modules can be programmed to operate in one of four modes: rising and/or
falling edge capture, software timer, high-speed output, or pulse width mod-
ulator. Each module has a pin associated with it in port 1. Module 0 is
connected to P1.3 (CEXO), module 1 to P1.4 (CEX1), etc. The basic PCA
configuration is shown in Figure D.5.

— 16 bits —

Module 0
Module 1 [Jp1.41cEX1
! 16 bits |
PCA Timer/counter Module 2 [JP1.5/cEX2

Time base for PCA modules

Module 3 []P3.4/CEX3
Module functions:

16-bit capture

16-bit timer
16-bit high speed output Module 4 [Jpa.sicexa
8-bit PWM

Watchdog timer (module 4 Only)

[JP1.3/cEXO

Figure D.5 Programmable counter array (PCA) (courtesy Philips Semiconductors)

The PCA timer is a common time base for all five modules and can be
programmed to run at: 1/6 the oscillator frequency; 1/2 the oscillator fre-
quency; the timer 0 overflow; or the input on the ECI pin (P1.2). The timer
count source is determined from the CPS1 and CPS0 bits in the CMOD SFR as
shown in Table D.3.

CMOD
address C1H
MSB LSB
CIDL | WDTE — - - CPS1 CPS0O ECF
7 6 5 4 3 2 1 0

In the CMOD SFR, there are three additional bits associated with the
PCA. They are CIDL which allows the PCA to stop during idle mode,
WDTE which enables or disables the watchdog function on module 4, and
ECF which, when set, causes an interrupt and the PCA overflow flag CF (in
the CCON SFR) to be set when the PCA timer overflows. These functions
are shown in Figure D.6.

The watchdog timer function is implemented in module 4 (see Figure
D.12). The CCON SFR contains the run control bit for the PCA, and the
flags for the PCA timer (CF) and each module. Details of the CCON SFR
are shown in Table D.4.

Appendix D 299

Table D.3 PCA counter mode register (CMOD)

Bit Symbol

Function

7 CIDL

(=)}

WDTE

4,3 -
CPS1
CPSO
CPS1
0

— N WD

0

1
1

0 ECF

Counter idle control. CIDL = 0 programs the PCA counter to
continue functioning during idle mode. CIDL = 1 programs it
to be gated off during idle

Watchdog timer enable. WDTE = 0 disables watchdog timer
function on PCA Module 4. WDTE = 1 enables it

Reserved for future use

PCA count pulse select bit 1

PCA count pulse select bit 0

CPSO Selected PCA input

0 Internal clock. 1/6 oscillator frequency (6 clock mode);
1/12 oscillator frequency (12 clock mode)

1 Internal clock. 1/2 oscillator frequency (6 clock mode);
1/4 oscillator frequency (12 clock mode)

0 Timer 0 overflow

1 External clock at ECI pin (P1.2) (maximum rate =

1/4 oscillator frequency in 6-clock mode, 1/8 oscillator
frequency in 12-clock mode)
PCA Enable Counter Overflow Interrupt. ECF = 1 enables CF
bit in CCON to generate an interrupt. ECF = 0 disables that
function of CF.

OSC/6 (6 clock mode)
or

0OSC/12 (12 clock mode)
0OSC/2 (6 clock mode)

or
0OSC/4 (12 clock mode)

Timer 0 overflow

External input
(P1.2/ECI)

;
:
IDLE — .
cMoD
[oo Jwore| — | — | - [orsi]ocpso ecr [P

£

To PCA
> modules
~ Overfl
o ' verflow
1 ;
4 o070

16-bit up counter

Interrupt

O—rbd

CCON

| CF | CR | - | CCF4| CCF3| CCF2| CCF1 | CCFo | (COH)

Figure D.6 PCA timer/counter (courtesy Philips Semiconductors)

CCON
address 0COH
bit addressable

MSB

LSB

CF CR

- CCF4 | CCF3 | CCF2 | CCF1 | CCFoO

7 6

5 4 3 2 1 0

300 Appendix D

Table D.4 PCA counter control register (CCON)

Function

Bit Symbol
7 CF

6 CR

5

4 CCF4
3 CCF3
2 CCF2

1 CCFl
0 CCFoO

PCA counter overflow flag. Set by hardware when the counter rolls
over. CF flags an interrupt if bit ECF in CMOD is set. CF may be

set either by hardware or software but can only be cleared by
software
PCA counter run control bit. Set by software to turn the PCA

counter on. Must be cleared by software to turn the PCA counter off

Reserved for future use

PCA module 4 interrupt flag. Set by hardware when a match or
capture occurs. Must be cleared by software

PCA module 3 interrupt flag. Set by hardware when a match or
capture occurs. Must be cleared by software

PCA module 2 interrupt flag. Set by hardware when a match or
capture occurs. Must be cleared by software

PCA module 1 interrupt flag. Set by hardware when a match or
capture occurs. Must be cleared by software

PCA module 0 interrupt flag. Set by hardware when a match or
capture occurs. Must be cleared by software

To run the PCA the CR bit (CCON.6) must be set by software. The PCA is shut

off by clearing this bit. The CF bit (CCON.7) is set when the PCA counter
overflows and an interrupt will be generated if the ECF bit in the CMOD
register is set. The CF bit can only be cleared by software. Bits 0 through 4 of
the CCON register are the flags for the modules (bit 0 for module 0, bit 1 for
module 1, etc.) and are set by hardware when either a match or a capture
occurs. These flags also can only be cleared by software. The PCA interrupt
system is shown in Figure D.7.

PCA timer/counter

Module 0

Module 1

Module 2

Module 3

Module 4

nnman |

CCON

| CF | CR l - | CCF4| CCF3 | CCF2 | CCF1| CCFO| (COH)

4]l (ks

EC EA
o7 o : ;
il 5 i

To
interrupt
priority
decoder

_________ B

I

1y

- '
CMOD.0 CCAPMn.0 | ECCFn

Figure D.7 PCA interrupt system (courtesy Philips Semiconductors)

Appendix D 301

Each module in the PCA has a SFR associated with it. These registers are:
CCAPMO for module 0, CCAPM1 for module 1, etc. Details are shown in
Table D.5.

CCAPMN

address: CCAPMO O0C2H
CCAPM1 0C3H
CCAPM2 0C4H
CCAPM3 0C5H
CCAPM4 0C6H
not bit addressable

MSB LSB
- ECOMn | CAPPn | CAPNn | MATn | TOGn | PWMn | ECCFn

7 6 5 4 3 2 1 0

Table D.5 PCA modules compare/capture registers (CCAPMn)

Bit Symbol Function

7 - Reserved for future use

6 ECOMn Enable comparator. ECOMn = | enables the comparator function

5 CAPPn Capture positive. CAPPn = 1 enables positive edge capture

4 CAPNn Capture negative. CAPNn = 1 enables negative edge capture

3 MATn Match. When MATn = 1, a match of the PCA counter with this
module’s compare/capture register causes the CCFn bit in CCON
to be set, flagging an interrupt

2 TOGn Toggle. When TOGn = 1, a match of the PCA counter with this
module’s compare/capture register causes the CEXn pin to toggle

1 PWMn Pulse width modulation. PWMn = 1 enables the CEXn pin to be
used as a pulse width modulated output

0 ECCFn Enable CCF interrupt. Enables compare/capture flag CCFn in the
CCON register to generate an interrupt

The registers contain the bits that control the mode that each module will
operate in. The ECCF bit (CCAPMn.0 where n = 0,1,2,3 or 4 depending on the
module) enables the CCF flag in the CCON SFR to generate an interrupt when
a match or compare occurs in the associated module. PWM (CCAPMn.1)
enables the pulse width modulation mode. The TOG bit (CCAPMn.2), when
set, causes the CEX output associated with the module to toggle when there is
a match between the PCA counter and the module’s capture/compare register.
The match bit MAT (CCAPMn.3), when set, will cause the CCFn bit in the
CCON register to be set when there is a match between the PCA counter and
the module’s capture/compare register.

302 Appendix D

The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5) determine
the edge that a capture input will be active on. The CAPN bit enables the
negative edge, and the CAPP bit enables the positive edge. If both bits are set,
both edges will be enabled and a capture will occur for either transition.
The last bit ECOM (CCAPMn.6), when set, enables the comparator function.
Table D.6 shows the CCAPMn settings for the various PCA functions.

Table D.6 PCA module modes (CCAPMn register)

— ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn Module function

X0 0 0 0 0 0 0 No operation

X X 1 0 0 0 0 X 16-bit capture by a
positive-edge
trigger on CEXn

X X 0 1 0 0 0 X 16-bit capture by a
negative-edge
trigger on CEXn

X X 1 1 0 0 0 X 16-bit capture by a
transition on CEXn

X1 0 0 1 0 0 X 16-bit software timer

X1 0 0 1 1 0 X 16-bit high speed
output

X1 0 0 0 1 0 8-bit PWM

X1 0 0 1 X X Watchdog timer

There are two additional registers associated with each of the PCA modules.
They are CCAPnH and CCAPnL and these are the registers that store the 16-bit
count when a capture occurs or a compare should occur. When a module is used
in the PWM mode these registers are used to control the duty cycle of the output.

PCA CAPTURE MODE

To use one of the PCA modules in the capture mode, either one or both of the
CCAPM bits, CAPN and CAPP, for that module must be set. The external
CEX input for the module (on port 1) is sampled for a transition. When a valid
transition occurs, the PCA hardware loads the value of the PCA counter
registers (CH and CL) into the module’s capture registers (CCAPnL and
CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn
bit in the CCAPMn SFR are set, then an interrupt will be generated. Figure D.8
shows the PCA capture mode.

16-BIT SOFTWARE TIMER MODE

The PCA modules can be used as software timers by setting both the ECOM
and MAT bits in the modules CCAPMn register. The PCA timer will be

Appendix D 303

| cF|or| - ECCF4|CCF3|CCF2| C/F1|CCF0I|(C(’)%‘3|:‘)
""""" T —
el -
(TO CCFn) T oA tmereomer
| ot | o |

| CCAPnH | CCAPnL|

[oro]
cExnl] =4 1707 CAPTURE %?_ﬁ?
]

| _ |ECOMn|CAPPn|CAF:Nn| MATn |TOGn | PWMn|ECCFn CCAPMn, n=0 to 4
- S (C2H—C6H)

Figure D.8 PCA capture mode (courtesy Philips Semiconductors)

compared to the module’s capture registers, and when a match occurs, an
interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn
SFR) bits for the module are both set, see Figure D.9.

(o Ton [~ JeorsTooraoomacomToom] 50

*—@—V PCA interrupt

Write to
CCAPnH Reset

Write to
CCAPNL
0 1

| CCAPNH | CCAPnL| (TO CCFn)

Enable

PCA timer/counter

CCAPMn, n=0to 4

| - |ECOMn|CAPPn|CAPNn| MAITn | TOGn | PWMnl ECCFn (C2H--C6H)

0 0 0 0

Figure D.9 PCA compare mode (courtesy Philips Semiconductors)

HIGH SPEED OUTPUT MODE

In this mode, the CEX output (on port 1) associated with the PCA module will
toggle each time a match occurs between the PCA counter and the module’s
capture registers. To activate this mode, the TOG, MAT and ECOM bits in the
module’s CCAPMn SFR must be set, see Figure D.10.

PULSE WIDTH MODULATOR MODE

All of the PCA modules can be used as PWM outputs. Figure D.11 shows the
PWM function. The frequency of the output depends on the source for the
PCA timer. All the modules will have the same frequency of output because
they all share the PCA timer. The duty cycle of each module is independently

304 Appendix D

Wite to [oF [cn [- [cora|cors|ccre] C/F1|CCF0!%CC(3H)

CCAPnH Reset . !
Write to f_@_, PCA interrupt
Writeto. | ccapnH | coapnL | (TO CGF)
Enablg 16-bit comparator

0 1
ch

Toggle
oo [>F>cExn

PCA timer/counter

CCAPMn, n=0to 4

| - |ECOMn|CAPPn|CAPNn| MATn | TOGn | PWMn | ECCFn (C2H--C6H)

0 0 1 0

Figure D.10 PCA high-speed output mode (courtesy Philips Semiconductors)

CCAPNH

—\

CCAPNL
Enable ,AL‘ CL<CCAPNL
8-bit s D
comparator ¢ CEXn
CL>=CCAPNL
Overflow
PCA timer/counter
| - |ECOMn CAPPn | CAPNn | MATn TOGn PWMn | ECCFn CCAPMn, n=0to 4
(C2H-C6H)
0 0 0 0 0

Figure D.11 PCA PWM mode (courtesy Philips Semiconductors)

variable by using the module’s capture register CCAPLn. When the value of the
PCA CL SFR is less than the value in the module’s CCAPLn SFR, the output
will be low. When it is equal to or greater than, the output will be high. When
CL overflows from FFH to 00H, CCAPLn is reloaded with the value in
CCAPHRn; this allows PWM update without glitches. The PWM and ECOM
bits in the module’s CCAPMn register must be set to enable the PWM mode.

PCA WATCHDOG TIMER

An onboard watchdog timer is available with the PCA to improve the relia-
bility of the system without increasing chip count. Watchdog timers are useful

Appendix D 305

for systems that are susceptible to noise, power glitches or electrostatic dis-
charge. Module 4 is the only PCA module that can be programmed as a
watchdog. However, this module can still be used for other modes, if the
watchdog is not needed. Figure D.12 shows a diagram of how the watchdog
works.

| cioL | WDTE | - | - | - | cps1| CcPSO | Ecr | CMOD

) (C1H)
Write to T
CCA4L Reset L ittt 1
1
1
Write to | CCAP4H CCAP4L | Module 4 !
CCAP4H i
1 0 L L H
Enable . | Match B
16-bit comparator | o7 O Reset

|ﬁ|ﬁ|

PCA timer/counter

| - | ECOMn

CCAPM4

MATn cath

CAPPn | CAPNn TOGn PWMn ECCFn

} 0 0 1 X 0 X

Figure D.12 PCA watchdog timer m (module 4 only) (courtesy Philips
Semiconductors)

The user pre-loads a 16-bit value in the compare registers. Just like the other
compare modes, this 16-bit value is compared to the PCA timer value. If a
match is allowed to occur, an internal reset will be generated. This will not
cause the RST pin to be driven high. In order to hold off the reset, the user has
three options:

1. Periodically change the compare value, so it will never match the PCA timer.
Periodically change the PCA timer value, so it will never match the com-
pare values.

3. Disable the watchdog by clearing the WDTE bit before a match occurs and
then re-enable it.

The first two options are more reliable because the watchdog timer is
never disabled as in option #3. If the PC ever goes astray, a match will
eventually occur and cause an internal reset. The second option is also not
recommended if other PCA modules are being used. The PCA timer is the
time base for all modules; changing the time base for other modules would not
be a good idea. Thus, in most applications the first solution is the best option.
The watchdog timer requires initialising using a suitable WATCHDOG
routine. Module 4 can be configured in either compare mode, and the WDTE
bit in CMOD must also be set. The user’s software must periodically change
(CCAP4H,CCAP4L) to keep a match from occurring with the PCA timer
(CH,CL). The WATCHDOG routine should not be part of an interrupt

306 Appendix D

service routine, because if the PC goes astray and gets stuck in an infinite
loop, interrupts will still be serviced and the watchdog will keep getting
reset. Thus, the purpose of the watchdog would be defeated. Instead, this
subroutine should be called from the main program within 2'® count of the
PCA timer.

D.5 Serial interface

The 89C66x device has two serial ports, which can operate independently of
each other. The ports are SIO0, which is a full duplex UART port identical to
the 80C51, and SIO1, which is used for the I?C bus.

SIO0. This port operates in the same way as the 80C51 serial port and also
uses timer 1 as a baud rate generator.

SIO1. The I°C bus operates with two lines, SDA (serial data line) and SCL
(serial clock line) in order to transfer data between the microcontroller and
other devices connected to the bus. For this port to be enabled, the output
latches of P1.6 (the SCL line) and P1.7 (the SDA line) must be set to logic 1.

FULL-DUPLEX ENHANCED UART
Standard UART operation

A full-duplex serial port can transmit and receive simultaneously. It is also
receive buffered, meaning it can commence reception of a second byte before a
previously received byte has been read from the register. (However, if the first
byte still has not been read by the time reception of the second byte is complete,
one of the bytes will be lost.) The serial port receive and transmit registers are
both accessed at SFR SBUF. Writing to SBUF loads the transmit register, and
reading SBUF accesses a physically separate receive register. The serial port can
operate in four modes:

Mode 0. Serial data enters and exits through RxD. TxD outputs the shift
clock. Eight bits are transmitted/received (LSB first). The baud rate is fixed at
1/12 the oscillator frequency in 12-clock mode or 1/6 the oscillator frequency in
6-clock mode.

Mode 1. Ten bits are transmitted (through TxD) or received (through RxD);
a start bit (0), 8 data bits (LSB first) and a stop bit (1). On receive, the stop bit
goes into RB8 in SFR SCON. The baud rate is variable.

Mode 2. Eleven bits are transmitted (through TxD) or received (through
RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit and
a stop bit (1). On transmit, the 9th data bit (TB8 in SCON) can be assigned the
value of 0 or 1. Or, for example, the parity bit (P, in the PSW) could be moved
into TB8. On receive, the 9th data bit goes into RB8 in SFR SCON, while the
stop bit is ignored. The baud rate is programmable to either 1/32 or 1/64 the
oscillator frequency in 12-clock mode or 1/16 or 1/32 the oscillator frequency in
6-clock mode.

Appendix D 307

Mode 3. Eleven bits are transmitted (through TxD) or received (through
RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit and a
stop bit (1). In fact, mode 3 is the same as mode 2 in all respects except baud
rate. The baud rate in mode 3 is variable.

In all four modes, transmission is initiated by any instruction that uses SBUF
as a destination register. Reception is initiated in mode 0 by the condition
RI =0 and REN = 1. Reception is initiated in the other modes by the incom-
ing start bit if REN = 1.

MULTIPROCESSOR COMMUNICATIONS

Modes 2 and 3 have a special provision for multiprocessor communications. In
these modes, 9 data bits are received. The 9th bit goes into RB8. Then comes
a stop bit. The port can be programmed such that when the stop bit is received,
the serial port interrupt will be activated only if RB8 = 1. This feature is
enabled by setting bit SM2 in SCON. A way to use this feature in multi-
processor systems is as follows.

When the master processor wants to transmit a block of data to one of
several slaves, it first sends out an address byte, which identifies the target slave.
An address byte differs from a data byte in that the 9th bit is 1 in an address
byte and 0 in a data byte. With SM2 = 1, no slave will be interrupted by a data
byte. An address byte, however, will interrupt all slaves, so that each slave can
examine the received byte and see if it is being addressed. The addressed slave
will clear its SM2 bit and prepare to receive the data bytes that will be coming.
The slaves that were not being addressed leave their SM2s set and go on about
their business, ignoring the coming data bytes.

SM2 has no effect in mode 0. In mode 1, it can be used to check the validity
of the stop bit. In a mode 1 reception, if SM2 = 1, the receive interrupt will not
be activated unless a valid stop bit is received.

SERIAL PORT CONTROL REGISTER

The serial port control and status register is the SFR SOCON. This register
contains not only the mode selection bits, but also the 9th data bit for transmit
and receive (TB8 and RBS8), and the serial port interrupt bits (TT and RI).
Register SOCON at address 98H controls data communication while register
PCON at address 87H controls data rates.

S0OCON
address 98H
bit addressable

MSB LSB
SMO/FE | SM1 SM2 REN TBS8 RBS§ TI RI

7 6 5 4 3 2 1 0

308 Appendix D

Bit Symbol Function

7 FE Framing error bit. This bit is set by the receiver when an invalid
stop bit is detected. The FE bit is not cleared by valid frames but
should be cleared by software. The SMODO bit (located at
PCON.6) must be set to allow access to the FE bit

7 SMO Serial port mode bit 0

6 SM1 Serial port mode bit 1

Bits SM0 and SM1 specify the serial port mode as shown in Table D.7

Table D.7 Serial port mode options

SMO

SM1 Mode Description Baud rate

0 0 Shift register Jfose/12 (12-clock mode)
fose/6 (6-clock mode)
1 1 8-bit UART Variable
0 2 9-bit UART Jfose/32 or fosc/64 (12-clock mode)
fose/32 or fose/16 (6-clock mode)
1 3 9-bit UART Variable

SM2

REN

TBS

RB8

TI

RI

Enables the multiprocessor feature in modes 2 and 3. In modes 2 or 3,
if SM2 is set to 1 then RI will not be activated if the received 9th data
bit RBS8 is 0, indicating an address and the received byte is a given or
broadcast address. In mode 1, if SM2 =1 then RI will not be acti-
vated if a valid stop bit was not received. In mode 0, SM2 should be 0
Set by software to enable serial reception. Clear by software to
disable reception

The 9th data bit that will be transmitted in modes 2 and 3. Set/clear
by software

In modes 2 and 3, is the 9th data bit received

In mode 1 if SM2 = 0, RB8 is the stop bit that was received

In mode 0, RBS8 is not used

Transmit interrupt flag. Set by hardware at the end of the 8th bit time
in mode 0, or at the start of the stop bit in other modes, in any serial
transmission. Must be cleared by software

Receive interrupt flag. Set by hardware at the end of the 8th bit in
mode 0, or halfway through the stop bit time in the other modes, in
any serial reception (except see SM2). Must be cleared by software.

BAUD RATES

The baud rate in mode 0 is fixed i.e. mode 0 baud rate = oscillator frequency/
12 (12-clock mode) or /6 (6-clock mode). The baud rate in mode 2 depends

Appendix D 309

on the value of bit SMOD in SFR PCON. If SMOD = 0 (which is the value
on reset), and the port pins in 12-clock mode, the baud rate is 1/64 the
oscillator frequency. If SMOD =1, the baud rate is 1/32 the oscillator
frequency. In 6-clock mode, the baud rate is 1/32 or 1/16 the oscillator
frequency, respectively.

SMOD
Mode 2 baud rate =baud rate =

xoscillator frequency

where n = 64 in 12-clock mode, 32 in 6-clock mode.
The baud rates in modes 1 and 3 are determined by the timer 1 or timer 2
overflow rate.

Using timer 1 to generate baud rates. When timer | is used as the baud rate
generator (T2CON.5 = 0, T2CON.4 = 0), the baud rates in modes 1 and 3 are
determined by the timer 1 overflow rate and the value of SMOD as follows:

SMOD
baud rate =

X (timer 1 overflow rate)

where n = 32 in 12-clock mode, 16 in 6-clock mode.

The timer 1 interrupt should be disabled in this application. The timer itself
can be configured for either ‘timer’ or ‘counter’ operation, and in any of its
3 running modes. In the most typical applications, it is configured for ‘timer’
operation, in the auto-reload mode (high nibble of TMOD = 0010B). In that
case the baud rate is given by the formula:

SMOD - ggcillator frequency

n 121256 — (THI)]

baud rate =

where n = 32 in 12-clock mode, 16 in 6-clock mode.

Very low baud rates with timer 1 can be achieved by leaving the timer
1 interrupt enabled, and configuring the timer to run as a 16-bit timer (high
nibble of TMOD = 0001B), and using the timer 1 interrupt to do a 16-bit
software reload. Table D.8 lists various commonly used baud rates and how
they can be obtained from timer 1.

ENHANCED UART

The UART operates in all of the usual modes that are described above. In
addition the UART can perform framing error detect, by looking for missing
stop bits, and automatic address recognition. The UART also fully supports
multiprocessor communication. When used for framing error detect the UART
looks for missing stop bits in the communication. A missing bit will set the FE
bit in the SOCON register. The FE bit shares the SOCON.7 bit with SM0 and
the function of SOCON.7 is determined by PCON.6 (SMODO). If SMODO is
set then SOCON.7 functions as FE. SOCON.7 functions as SM0O when SMODO

310 Appendix D

Table D.8 Timer 1 generated commonly used baud rates

Baud rate Timer 1
12-clock 6-clock

Mode mode mode Sose SMOD C/T Mode Reload value

Mode 0 max 1.67MHz 3.34 MHz 20MHz X X X X

Mode 2 max 625k 1250k 20 MHz 1 X X X

Mode 1,3 max 104.2k 208.4k 20 MHz 1 0 2 FFH
19.2k 38.4k 11.059 MHz 1 0 2 FDH
9.6k 19.2k 11.059 MHz 0 0 2 FDH
4.8k 9.6k 11.059MHz 0 0 2 FAH
2.4k 4.8k 11.059MHz 0 0 2 F4H
1.2k 2.4k 11.059 MHz 0 0 2 ESH
137.5 275 11.059MHz 0 0 2 1DH
110 220 6 MHz 0 0 2 72H
110 220 6 MHz 0 0 1 FEEBH

is cleared. When used as FE SOCON.7 can only be cleared by software. Refer to
Figure D.13.

‘

I 1 |
Ste_art ! Data byte Only in Stop
bit Mode 2, 3 Bit

O} l«—— Set FE bit if stop bit is 0 (framing error)

o—— SMO To UART mode control

| SMO/FE | SM1 | SM2 | REN | B8 | RB8 | Tl | RI |Sgg|?)N
I,
h

| SMOD1 | SMODO| - | POF | LVF | GFO | GF1 | IDL |T8C7?_|';l

0:SOCON.7 = SMO
1:SOCON.7 =FE

Figure D.13 UART framing error detection (courtesy Philips Semiconductors)

AUTOMATIC ADDRESS RECOGNITION

Automatic address recognition is a feature, which allows the UART to recog-
nise certain addresses in the serial bit stream by using hardware to make the
comparisons. This feature saves a great deal of software overhead by eliminat-
ing the need for the software to examine every serial address, which passes by
the serial port. This feature is enabled by setting the SM2 bit in SOCON. In the
9-bit UART modes, modes 2 and 3, the receive interrupt flag (RI) will be

Appendix D 311

automatically set when the received byte contains either the ‘Given’ address or
the ‘Broadcast’ address. The 9-bit mode requires that the 9th information bit is
1 to indicate that the received information is an address and not data. Auto-
matic address recognition is shown in Figure D.14.

| SMo | SM1 | SM2| REN | TB8 | RB8 | Tl | RI |SOCON
(98H)

Received address DO to D7
Programmed address

Comparator

In UART mode 2 or mode 3 and SM2 = 1:

Interrupt if REN = 1, RB8 = 1 and ‘Received address’ = ‘Programmed address’
— When own address received, clear SM2 to receive data bytes
— When all data bytes have been received: set SM2 to wait for next address

Figure D.14 UART multiprocessor communication, automatic address recognition
(courtesy Philips Semiconductors)

The 8-bit mode is called mode 1. In this mode the RI flag will be set if SM2
is enabled and the information received has a valid stop bit following the
8 address bits and the information is either a given or broadcast address. Mode
0 is the shift register mode and SM2 is ignored.

Using the automatic address recognition feature allows a master to selec-
tively communicate with one or more slaves by invoking the given slave address
or addresses. All of the slaves may be contacted by using the broadcast address.
Two SFRs are used to define the slave’s address, SADDR and the address
mask, SADEN. SADEN is used to define which bits in the SADDR are to be
used and which bits are ‘don’t care’. The SADEN mask can be logically
ANDed with the SADDR to create the ‘Given’ address which the master will
use for addressing each of the slaves. Use of the given address allows multiple
slaves to be recognised while excluding others. The following examples will help
to illustrate the point:

Slave 0 SADDR = 1100 0000
SADEN = 1111 1101
Given = 1100 00X0
Slave 1 SADDR = 1100 0000
SADEN = 1111 1110
Given = 1100 000X

In the above example SADDR is the same and the SADEN data is used to
differentiate between the two slaves. Slave 0 requires a 0 in bit 0 and it ignores
bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is ignored. A unique address for
slave 0 would be 1100 0010 since slave 1 requires a 0 in bit 1. A unique address

312 Appendix D

for slave 1 would be 1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves
can be selected at the same time by an address that has bit 0 =0 (for slave 0) and
bit 1 =0 (for slave 1). Thus, both could be addressed with 1100 0000. In a more
complex system the following could be used to select slaves 1 and 2 while
excluding slave 0:

Slave 0 SADDR = 1100 0000
SADEN = 1111 1001
Given = 1100 0XXO0

Slave 1 SADDR = 1110 0000
SADEN = 1111 1010
Given = 1110 0X0X

Slave 2 SADDR = 1110 0000
SADEN = 1111 1100
Given = 1110 00XX

In the above example the differentiation among the three slaves is in the
lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be uniquely
addressed by 1110 0110. Slave I requires that bit I = 0 and it can be uniquely
addressed by 1110 and 0101. Slave 2 requires that bit 2 =0 and its unique
address is 1110 0011. To select slaves 0 and 1 and exclude slave 2 use address
1110 0100, since it is necessary to make bit 2 = 1 to exclude slave 2.

The broadcast address for each slave is created by taking the logical OR of
SADDR and SADEN. Zeros in this result are treated as don’t-cares. In most cases,
interpreting the don’t-cares as ones, the broadcast address will be FF hexadecimal.

Upon reset SADDR (SFR address 0A9H) and SADEN (SFR address 0B9H)
are loaded with Os. This produces a given address of all ‘don’t cares’ as well as a
broadcast address of all ‘don’t cares’. This effectively disables the automatic
addressing mode and allows the microcontroller to use standard 80C51 type
UART drivers that do not make use of this feature.

I’C SERIAL COMMUNICATION

The P89C660/662/664/668 PC pins are alternate functions to port pins P1.6 and
P1.7. Because of this, P1.6 and P1.7 on these ports do not have a pull-up
structure as found on the 80CS51. Therefore P1.6 and P1.7 have open drain
outputs on the P89C660/662/664/668. The I°C bus uses two wires (SDA and
SCL) to transfer information between devices connected to the bus. The main
features of the bus are:

bidirectional data transfer between masters and slaves;
multimaster bus (no central master);
arbitration between simultaneously transmitting masters without corrup-
tion of serial data on the bus;

e serial clock synchronisation allows devices with different bit rates to com-
municate via one serial bus;

Appendix D 313

e serial clock synchronisation can be used as a handshake mechanism to
suspend and resume serial transfer;
e the I°C bus may be used for test and diagnostic purposes.

The output latches of P1.6 and P1.7 must be set to logic 1 in order to enable
SIO1. The P89C66x on-chip I2C logic provides a serial interface that meets the
I2C bus specification and supports all transfer modes (other than the low-speed
mode) from and to the I>C bus. The SIO1 logic handles bytes transfer auton-
omously. It also keeps track of serial transfers, and a status register (SISTA)
reflects the status of SIO1 and the I>C bus. The CPU interfaces to the I>C logic
via the following four SFRs: SICON (SIOI1 control register), SISTA (SIO1
status register), SIDAT (SIO1 data register) and SIADR (SIOI1 slave address
register). The SIO1 logic interfaces to the external I>C bus via two port 1 pins:
P1.6/SCL (serial clock line) and P1.7/SDA (serial data line). A typical PC bus
configuration is shown in Figure D.15.

VoD
Rp Rp
SDA
11C bus {
SCL
P1.7/SDA P1.6/SCL
Other device with Other device with
P89C6B6x IIC interface IIC interface

Figure D.15 Typical I>C bus configuration (courtesy Philips Semiconductors)

Figure D.16 shows how a data transfer is accomplished on the bus. Depend-
ing on the state of the direction bit (R/W), two types of data transfers are
possible on the I>C bus:

1. Data transfer from a master transmitter to a slave receiver. The first byte
transmitted by the master is the slave address. Next follows a number of
data bytes. The slave returns an acknowledge bit after each received byte.

2. Data transfer from a slave transmitter to a master receiver. The first byte (the
slave address) is transmitted by the master. The slave then returns an acknowl-
edge bit. Next follows the data bytes transmitted by the slave to the master.
The master returns an acknowledge bit after all received bytes other than the
last byte. At the end of the last received byte, a ‘not acknowledge’ is returned.

The master device generates all of the serial clock pulses and the START and
STOP conditions. A transfer is ended with a STOP condition or with a repeated

314 Appendix D

SDA
MsB
l«——— Slave address ————>|=— _ —»|

Stop

J—
i« condition
Repeated

T start

condition

I e |

L
RIW

1
1
1
1
1
T
1
1
| Acknowledgement
1 direction
1

1

1

1

1

1

1

1

1

1

1

signal from receiver

bit

p—

signal from receiver Clock line held low while

I

I

I

I

I

I

I

Acknowledgement I
I

interrupts are serviced |
I

I

I

I

1%
o
[
-
[
I
[
o
~

ACK ACK PiS

]
|« Repeated if more bytes —-_—
Start are transferred
condition

Figure D.16 Data transfer on the I>C bus (courtesy Philips Semiconductors)

START condition. Since a repeated START condition is also the beginning of
the next serial transfer, the PC bus will not be released.

MODES OF OPERATION

The on-chip SIO1 logic may operate in the following four modes:

1.

Master transmitter mode. Pins P1.6 and P1.7 are outputs (serial data on
P1.7 (SDA) and serial clock on P1.6 (SCL)). The first byte transmitted
contains the address of the slave receiving device (7 bits) and the data
direction bit, which in this case is logic 0 (data direction bit R/W deter-
mines data direction and is logic 1 for read and logic 0 for write). Serial
data is transmitted 8 bits at a time and after each byte an acknowledge bit
is received. START and STOP conditions are also output to indicate the
beginning and end of a serial transfer.

Master receiver mode. Similar to 1 above except that P1.6 (SCL) and P1.7
(SDA) are inputs and the data direction bit is logic 1 (for read). Serial data
is received through SDA while SCL outputs the serial clock. Serial data is
received a byte at a time and after each byte an acknowledge bit is
transmitted. START and STOP conditions are also output to indicate the
beginning and end of a serial transfer.

Slave receiver mode. Serial data and serial clock are received through pins
P1.7 (SDA) and P1.6 (SCL) respectively. After each byte is received an
acknowledge bit is transmitted. START and STOP are recognised as the
beginning and end respectively of the serial transfer. Recognition of the
address is performed by hardware after reception of the slave address and
direction bit.

Slave transmitter mode. The first byte is received and handled as in the slave
receiver mode. However, in this mode, the direction bit will show that the
direction of data transfer is reversed. As before serial data is through P1.7
(SDA) and serial clock through P1.6 (SCL). START and STOP conditions
are also output to indicate the beginning and end of a serial transfer.

Appendix D 315

SIO1 can operate as a master or a slave. As a slave the SIO1 hardware looks
for its own slave address and the general call address and if one of these
addresses is detected, an interrupt is requested. If the microcontroller wishes
to become the master, the hardware waits until the bus is free before the master
mode is entered in order not to interrupt a possible slave action. If bus
arbitration is lost in the master mode, SIO1 switches to the slave mode imme-
diately and can detect its own slave address in the same serial transfer.

SIO] IMPLEMENTATION AND OPERATION

Figure D.17 shows how the on-chip I>C bus interface is implemented, and the
following text describes the individual blocks.

8 :>W
S1ADR Address register
RO
i
~—-> P17 ﬂ
1 i
1 1
S S
i
|
! Comparator
1
H Input | ——
: filter T \r
P1.7/SDA <-4 il
Output | . S1DAT Shift register «— ACK J
stage
8)
| .
3
o
Arbitration & g
Input sync.logic [T _. . L
filter Timing <
1 & e 4
P1.6/SDA <— control
: Serial clock logic
| Output generator <«———Interrupt
H stage
|
E Timer 1 1 T
i overflow
i
E S1CON Control register
“->i P16
ﬁ ; N
I S Status
Status bits { | decoder
—
S1STA Status register
8
[.
M

Figure D.17 I°C bus serial interface block diagram (courtesy Philips
Semiconductors)

316 Appendix D

INPUT FILTERS AND OUTPUT STAGES

The input filters have I>C compatible input levels. If the input voltage is less
than 1.5V, the input logic level is interpreted as 0; if the input voltage is greater
than 3.0V, the input logic level is interpreted as 1. Input signals are synchro-
nised with the internal clock (fos/4), and spikes shorter than three oscillator
periods are filtered out.

The output stages consist of open drain transistors that can sink 3mA at
Vout < 0—4 V. These open drain outputs do not have damping diodes to Vpp;
thus, if the device is connected to the I2C bus and Vpp is switched off, the I2C
bus is not affected.

ADDRESS REGISTER, SIADR

This 8-bit SFR may be loaded with the 7-bit slave address (7 most significant
bits) to which SIOI will respond when programmed as a slave transmitter or
receiver. The LSB (GC) is used to enable general call address (00H) recognition.

COMPARATOR

The comparator compares the received 7-bit slave address with its own slave
address (7 most significant bits in SIADR). It also compares the first received
8-bit byte with the general call address (00H). If equality is found, the appropriate
status bits are set and an interrupt is requested.

SHIFT REGISTER, SIDAT

This 8-bit SFR contains a byte of serial data to be transmitted or a byte that has
just been received. Data in SIDAT is always shifted from right to left; the first
bit to be transmitted is the MSB (bit 7) and, after a byte has been received, the
first bit of received data is located at the MSB of SIDAT. While data is being
shifted out, data on the bus is simultancously being shifted in; SIDAT always
contains the last byte present on the bus. Thus, in the event of lost arbitration,
the transition from master transmitter to slave receiver is made with the correct
data in SIDAT.

ARBITRATION AND SYNCHRONISATION LOGIC

In the master transmitter mode, the arbitration logic checks that every
transmitted logic 1 actually appears as a logic 1 on the I?C bus. If another
device on the bus overrules a logic 1 and pulls the SDA line low, arbitration
is lost, and SIOl immediately changes from master transmitter to slave
receiver. SIO1 will continue to output clock pulses (on SCL) until transmis-
sion of the current serial byte is complete. Arbitration may also be lost in
the master receiver mode. Loss of arbitration in this mode can only occur

Appendix D 317

while SIOI is returning a ‘not acknowledge’ (logic 1) to the bus. Arbitration
is lost when another device on the bus pulls this signal low. Since this
can occur only at the end of a serial byte, SIO1 generates no further clock
pulses.

The synchronisation logic will synchronise the serial clock generator with the
clock pulses on the SCL line from another device. If two or more master devices
generate clock pulses, the ‘mark’ duration is determined by the device that
generates the shortest ‘marks’, and the ‘space’ duration is determined by the
device that generates the longest ‘spaces’. A slave may stretch the space dura-
tion to slow down the bus master. The space duration may also be stretched for
handshaking purposes. This can be done after each bit or after a complete byte
transfer. SIO1 will stretch the SCL space duration after a byte has been
transmitted or received and the acknowledge bit has been transferred. The
serial interrupt flag (SI) is set, and the stretching continues until the serial
interrupt flag is cleared.

SERIAL CLOCK GENERATOR

This programmable clock pulse generator provides the SCL clock pulses when
SIOLl is in the master transmitter or master receiver mode. It is switched off
when SIO1 is in a slave mode. The programmable output clock frequencies are:
Jose /120, fose /9600 (12-clock mode) or fos. /60, fosc /4800 (6-clock mode) and the
timer 1 overflow rate divided by eight. The output clock pulses have a 50% duty
cycle unless the clock generator is synchronised with other SCL clock sources as
described above.

TIMING AND CONTROL

The timing and control logic generates the timing and control signals for serial
byte handling. This logic block provides the shift pulses for SIDAT, enables the
comparator, generates and detects start and stop conditions, receives and
transmits acknowledge bits, controls the master and slave modes, contains
interrupt request logic, and monitors the I>C bus status.

CONTROL REGISTER, SICON

This 7-bit SFR is used by the microcontroller to control the following SIO1
functions; start and restart of a serial transfer, termination of a serial transfer,
bit rate, address recognition and acknowledgement.

STATUS DECODER AND STATUS REGISTER

The status decoder takes all of the internal status bits and compresses them into
a 5-bit code. This code is unique for each IC bus status. The 5-bit code may be
used to generate vector addresses for fast processing of the various service
routines. Each service routine processes a particular bus status. There are

318 Appendix D

26 possible bus states if all four modes of SIO1 are used. The 5-bit status code is
latched into the five most significant bits of the status register when the serial
interrupt flag is set (by hardware) and remains stable until the interrupt flag is
cleared by software. The three least significant bits of the status register are
always zero. If the status code is used as a vector to service routines, then the
routines are displaced by eight address locations. Eight bytes of code are
sufficient for most of the service routines.

THE FOUR SI101 SPECIAL FUNCTION REGISTERS

The microcontroller interfaces to SIO1 via four SFRs. These four SFRs
(STADR, SIDAT, SICON and S1STA) are described individually in the fol-
lowing sections. The address of each of the SFRs together with their reset
values can be seen in Table D.2.

The address register, SIADR

The CPU can read from and write to this 8-bit, directly addressable SFR.
S1ADR is not affected by the SIO1 hardware. The contents of this register
are irrelevant when SIO1 is in a master mode. In the slave modes, the seven
most significant bits must be loaded with the microcontroller’s own slave
address, and, if the least significant bit is set, the general call address (00H) is
recognised; otherwise it is ignored.

X X X X X X X GC
7 6 5 4 3 2 1 0
< Own slave address >

The most significant bit corresponds to the first bit received from the I>C bus
after a start condition. A logic 1 in SIADR corresponds to a high level on the
I?C bus, and a logic 0 corresponds to a low level on the bus.

The data register, SIDAT

SD7 SD6 SD5 SD4 SD3 SD2 SD1 SDO

7 6 5 4 3 2 1 0

< Shift direction

SIDAT contains a byte of serial data to be transmitted or a byte that has
just been received. The CPU can read from and write to this 8-bit, directly
addressable SPR while it is not in the process of shifting a byte. This occurs
when SIO1 is in a defined state and the serial interrupt flag is set. Data in

Appendix D 319

SIDAT remains stable as long as SI is set. Data in SIDAT is always shifted
from right to left: the first bit to be transmitted is the MSB (bit 7), and, after
a byte has been received, the first bit of received data is located at the MSB
of SIDAT. While data is being shifted out, data on the bus is simultaneously
being shifted in. SIDAT always contains the last data byte present on the
bus. Thus, in the event of lost arbitration, the transition from master
transmitter to slave receiver is made with the correct data in SIDAT.

SD7-SDO0 are the 8 bits to be transmitted or just received. A logic | in
SIDAT corresponds to a high level on the I?C bus, and a logic 0 corresponds
to a low level on the bus. Serial data shifts through SIDAT from right to left.
Figure D.18 shows how data in SIDAT is serially transferred to and from the
SDA line.

>~
L
{ Internal bus (

SDA——+¢ ﬁa

%7 BSD7 S1DAT ACK
A

+
SCL. ™~ 1 j

I/ Shift pulses

Figure D.18 Serial input/output configuration (courtesy Philips Semiconductors)

SIDAT and the ACK flag form a 9-bit shift register which shifts in or shifts
out an 8-bit byte, followed by an acknowledge bit. The ACK flag is controlled
by the SIO1 hardware and cannot be accessed by the CPU. Serial data is shifted
through the ACK flag into SIDAT on the rising edges of serial clock pulses on
the SCL line. When a byte has been shifted into SIDAT the serial data is
available in SIDAT and the acknowledge bit is returned by the control logic
during the ninth clock pulse. Serial data is shifted out from SIDAT via a buffer
(BSD7) on the falling edges of clock pulses on the SCL line. When the CPU
writes to SIDAT BSD7 is loaded with the content of SIDAT.7, which is the
first bit to be transmitted to the SDA line (see Figure D.19). After nine serial
clock pulses, the 8 bits in SIDAT will have been transmitted to the SDA line,
and the acknowledge bit will be present in ACK. Note that the eight trans-
mitted bits are shifted back into SIDAT.

The control register, SICON

The CPU can read from and write to this 8-bit, directly addressable SFR. Two
bits are affected by the SIO1 hardware: the SI bit is set when a serial interrupt is
requested, and the STO bit is cleared when a STOP condition is present on the
I2C bus. The STO bit is also cleared when ENS1=0.

320 Appendix D

SDA | D7 | D6 | D5 | D4 | D3 | D2 | D1 | Do | A |
SCL
Shift ACK & S1DAT |_| |_| |_| |_| |_| |_| |_| |_| Shift in

o @[@ e [@ [a]a][e]

sox [0 @ [[@ @ [@ @ @ e]w
S TN I
wor | o [w]w [w @@ @]e

Loaded by the CPU
(1) Valid data in SIDAT

(2) Shifting data in S1DAT and ACK
(3) High level on SDA

Figure D.19 Shift-in and shift-out timing (courtesy Philips Semiconductors)

CR2 ENSI STA STO SI AA CR1 CRO

ENSI, the SIO1 Enable Bit

ENS1=0. When ENSI is 0, the SDA and SCL outputs are in a high impedance
state. SDA and SCL input signals are ignored, SIO1 is in the ‘not addressed’
slave state, and the STO bit in SICON is forced to 0. No other bits are affected.
P1.6 and PI .7 may be used as open drain I/O ports.

ENS1=1. When ENSI is 1, SIO1 is enabled. The P1.6 and P1.7 port latches
must be set to logic 1. ENSI1 should not be used to temporarily release SIOI
from the I>C bus since, when ENSI is reset, the I?C bus status is lost. The AA
flag should be used instead.

In the description that follows, it is assumed that ENS1= 1.

The ‘START’ Flag STA

STA = 1. When the STA bit is set to enter a master mode, the SIO1 hardware
checks the status of the I°C bus and generates a START condition if the bus is
free. If the bus is not free, then SIO1 waits for a STOP condition (which will
free the bus) and generates a START condition after a delay of half a clock
period of the internal serial clock generator. If STA is set while SIO1 is already
in a master mode and one or more bytes are transmitted or received, SIO1
transmits a repeated START condition. STA may be set at any time. STA may
also be set when SIO1 is an addressed slave.

Appendix D 321

STA=0. When the STA bit is reset, no START condition or repeated
START condition will be generated.

The STOP Flag STO

STO=1. When the STO bit is set while SIO1 is in a master mode, a STOP
condition is transmitted to the I>C bus. When the STOP condition is detected
on the bus, the SIO1 hardware clears the STO flag. In a slave mode, the STO
flag may be set to recover from an error condition. In this case, no STOP
condition is transmitted to the I2C bus. However, the SIO1 hardware behaves as
if a STOP condition has been received and switches to the defined ‘not addressed’
slave receiver mode. The STO flag is automatically cleared by hardware.

Ifthe STA and STO bits are both set, the STOP condition is transmitted to the I*C
bus if SIO1 is in a master mode (in a Slave mode SIO1 generates an internal STOP
condition which is not transmitted). SIO1 then transmits a START condition.

STO=0. When the STO bit is reset, no STOP condition will be generated.

The serial interrupt flag, SI
SI=1. When the SI flag is set, then, if the EA and ES1 (interrupt enable
register) bits are also set, a serial interrupt is requested. SI is set by hardware
when one of 25 of the 26 possible SIO1 states is entered. The only state that
does not cause SI to be set is state F8H, which indicates that no relevant state
information is available. While SI is set the low period of the serial clock on
the SCL line is stretched, and the serial transfer is suspended. A high level on
the SCL line is unaffected by the serial interrupt flag. SI must be reset by
software.

SI=0. When the SI flag is reset, no serial interrupt is requested, and there is
no stretching of the serial clock on the SCL line.

The assert acknowledge flag, AA
AA = 1. If the AA flag is set, an acknowledge (low level to SDA) will be
returned during the acknowledge clock pulse on the SCL line when:

1. the ‘own slave address’ has been received;

the general call address has been received while the general call bit (GC) in
SIADR is set;

a data byte has been received while SIOL1 is in the master receiver mode;
4. adata byte has been received while SIO1 is in the addressed slave receiver mode.

had

AA=0. If the AA flag is reset, a not acknowledge (high level to SDA) will be
returned during the acknowledge clock pulse on SCL when:

1. a data byte has been received while SIO1 is in the master receiver mode;
2. adata byte has been received while SIO1 is in the addressed slave receiver mode.

When SIOI is in the addressed slave transmitter mode, state C8H will be
entered after the last serial data is transmitted.

322 Appendix D

When Sl1 is cleared, SIOI leaves state C8H, enters the not addressed slave
receiver mode, and the SDA line remains at a high level. In state C8H, the
AA flag can be set again for future address recognition. When SIOI is in
the not addressed slave mode, its own slave address and the general call
address are ignored. Consequently, no acknowledge is returned, and a serial
interrupt is not requested. Thus, SIOI can be temporarily released from the
I°C bus while the bus status is monitored. While SIOI is released from the
bus, START and STOP conditions are detected, and serial data is shifted
in. Address recognition can be resumed at any time by setting the AA flag.
If the AA flag is set when the part’s own slave address or the general call
address has been partly received, the address will be recognised at the end
of the byte transmission.

The clock rate bits CR0, CR1 and CR2
These three bits determine the serial clock frequency when SIOT1 is in a master
mode. The various serial rates are shown in Table D.9.

A 12.5kHz bit rate may be used by devices that interface to the I>°C bus via
standard I/O port lines which are software driven and slow. 100 kHz is usually the
maximum bit rate and can be derived froma 16 MHz, 12 MHz or a 6 MHz oscillator.
A variable bit rate (0.5 kHz to 62.5 kHz) may also be used if timer 1 is not required for
any other purpose while SIO1 is in a master mode. The frequencies shown in Table
D.9 are unimportant when SIO1 is in a slave mode. In the slave modes, SIO1 will
automatically synchronise with any clock frequency up to 100 kHz.

The status register, SISTA

SISTA is an 8-bit read-only SFR. The three least significant bits are always
zero. The five most significant bits contain the status code. There are 26
possible status codes. When SISTA contains F8H, no relevant state informa-
tion is available and no serial interrupt is requested. All other SISTA values
correspond to defined SIO1 states. When each of these states is entered, a serial
interrupt is requested (SI = 1). A valid status code is present in SISTA one
machine cycle after SI is set by hardware and is still present one machine cycle
after SI has been reset by software.

D.6 Interrupt priority structure

The P89C660/662/664/668 has an 8-source four-level interrupt structure (see
Table D.10). There are four SFRs associated with the four-level interrupt. They
are the IENO, IP, IPH and IEN1 registers. Details of these registers are shown
in Tables D.11, D.12, D.13 and D.14 respectively. The IPH (interrupt priority
high) register makes the four-level interrupt structure possible. The SFR
addresses and their reset values are shown in Table D.2. The function of the
IPH SFR, when combined with the IP SFR, determines the priority of each
interrupt. The priority of each interrupt is determined as shown in Table D.15.

Table D.9 Serial clock rates

Appendix D 323

6-clock mode

Bit frequency (kHz) at fosc

CR2 CR1 CR0O 3MHz 6MHz 8MHz 12MHz> 15MHZ> fy divided by

0 0 0 23 47 62.5 94 117! 128

0 0 1 27 54 71 107" 134! 112

0 1 0 31 63 83.3 125! 156! 96

0 1 1 37 75 100 150! 188! 80

1 0 0 625 12.5 17 25 31 480

1 0 1 50 100 133! 200! 250! 60

1 1 0 100 200 267! 400! 500! 30

1 1 1 0.24<62.5 0.49<62.5 0.65<55.6 0.98<50.0 1.22<52.1 48 x (256—

0<255 0<254 0<253 0<251 0<250 (reload value timerl))

Reload value timer 1
in mode 2

12-clock mode Bit frequency (kHz) at fos

CR2 CRI CRO 6 MHz 12MHz 16MHz 24MHZz> 30MHZ?> fy divided by

0 0 o0 23 47 62.5 94 17! 256

0 0 127 54 71 107! 134! 224

0 1 0 3l 63 83.3 125! 156 192

0 1 1 37 75 100 150! 188! 160

1 0 0 625 12.5 17 25 31 960

1 0 1 50 100 133! 200" 250! 120

1 1 0 100 200 267" 400" 500! 60

1 1 1 0.24<62.50.49<62.5 0.65<55.6 0.98<50.0 1.22<52.1 96 x (256—

0<255

0<254

0<253

0<251

0<250

(reload value timer 1))
Reload value timer 1
in mode 2

1. These frequencies exceed the upper limit of 100 kHz of the I>C-bus specification and cannot be
used in an I>C-bus application.
2. At fose = 12MHz/15MHz the maximum I?C bus rate of 100 kHz cannot be realised due to the
fixed divider rates.
3. At fisc = 24 MHz/30 MHz the maximum I>C bus rate of 100 kHz cannot be realised due to the
fixed divider rates.

Table D.10 Interrupt table

Polling
Source priority Request bits Hardware clear? Vector address
X0 1 1E0 N(@L)'Y(T)? 03H
S101(1>C) 2 - N 2BH
TO 3 TPO Y 0BH
X1 4 IE1 N(L) Y(T) 13H
Tl 5 TF1 Y 1BH
SP 6 RI,TI N 23H
T2 7 TF2, EXF2 N 3BH
PCA 8 CF, CCFnn=0-4 N 33H

Notes: 1. L=Level activated; 2. T=Transition activated.

324 Appendix D

Table D.11 Details of the IENO register

MSB LSB
EA EC ES1 ESO ETI EX1 ETO EXO0
7 6 5 4 3 2 1 0

Enable Bit = 1 enables the interrupt
Enable Bit = 0 disables it.

Bit Symbol Function

7 EA Global disable bit. If EA = 0, all interrupts are disabled.
If EA =1, each interrupt can be individually enabled or
disabled by setting or clearing its enable bit

6 EC PCA interrupt enable bit

5 ESl I?C interrupt enable bit

4 ESO Serial port interrupt enable bit
3 ET1 Timer 1 interrupt enable bit

2 EX1 External interrupt 1 enable bit
1 ETO Timer 0 Interrupt enable bit

0 EXO0 External interrupt 0 enable bit

Table D.12 Details of the IP register
MSB LSB
PT2 PPC PS1 PSO PTI PX1 PTO PX0

7 6 5 4 3 2 1 0

Priority Bit = 1 assigns high priority
Priority Bit = 0 assigns low priority

Bit Symbol Function

7 PT2 Timer 2 interrupt priority bit

6 PPC PCA interrupt priority bit

5 PS1 Serial 1/01 (I2C) interrupt priority bit
4 PSO Serial port interrupt priority bit

3 PT1 Timer 1 interrupt priority bit

2 PX1 External interrupt 1 priority bit

1 PTO Timer 0 interrupt priority bit

Appendix D 325

Table D.13 Details of the IPH register
MSB LSB
PT2H | PPCH | PSIH PSOH | PTIH | PX1H | PTOH | PXOH
7 6 5 4 3 2 1 0
Priority bit = 1 assigns higher priority
Priority bit = 0 assigns lower priority
Bit Symbol Function
7 PT2H Timer 2 interrupt priority bit high
6 PPCH PCA interrupt priority bit
5 PS1H Serial 1/O (I>C) interrupt priority bit high
4 PSOH Serial port interrupt priority bit high
3 PTIH Timer 1 interrupt priority bit high
2 PX1H External interrupt 1 priority bit high
1 PTOH Timer 0 interrupt priority bit high
0 PXO0H External interrupt O priority bit high
Table D.14 Details of the IENT1 register
MSB LSB
- — - - — - - ET2
7 6 S 4 3 2 1 0

Enable Bit = 1 enables the interrupt
Enable Bit = 0 disables the Interrupt

Bit Symbol Function

7 _

6 _

5 —

4 _

3 _

2 _

1 _

0 ET2 Timer 2 interrupt enable bit

The priority scheme for servicing the interrupts is the same as that for the
80C51, except that there are four interrupt levels rather than two (as on the
80C51). An interrupt will be serviced as long as an interrupt of equal or higher

326 Appendix D

Table D.15 89C66x interrupt priority
levels

Priority bits
IPH.x IP.x Interrupt priority level

0 0 Level 0 (lowest priority)
0 1 Level 1
1 0 Level 2
1 1 Level 3 (highest priority)

priority is not already being serviced. If an interrupt of equal or higher level
priority is being serviced, the new interrupt will wait until it is finished before
being serviced. If a lower priority level interrupt is being serviced, it will be
stopped and the new interrupt serviced. When the new interrupt is finished, the
lower priority level interrupt that was stopped will be completed.

Appendix E

P89LPC932 Microcontroller

Details of this device are reproduced with kind permission of Philips Semicon-
ductors. Data regarding the device may be found on the Philips website at
www.semiconductors.philips.com. This device is a development of the 80C51
device and offers high-integration with low cost; additionally operation is at an
improved speed compared to 80C51 devices operating at the same frequency.
Features include a low pincount and a 2.4V to 3.6 V operating range for Vpp.
The basic block diagram is shown in Figure E.1.

The LPC932 uses an enhanced 80C51 CPU which runs at 6 times the speed of
standard 80C51 devices. A machine code consists of two CPU clock cycles and
most instructions execute in one or two machine cycles.

Other device features include:

e Two 16-bit counter/timers with each timer able to be configured to toggle a
port output or to become a PWM (pulse width modulation) output.

e CCU (capture/compare unit), which provides PWM, input capture and
output compare functions.
Two analogue comparators with selectable inputs and reference sources.
UART with fractional baud rate generator, framing error detection, versa-
tile interrupt capabilities, etc.
I’C and SPI communication ports.
Four interrupt priority levels.

e Watchdog timer with separate on-chip oscillator, requiring no external
components. The watchdog timeout is selectable from 8 values.

e LED drive capability of 20 mA on all port pins, subject to a maximum limit
for the entire chip.

® A minimum of 23 I/O pins. If using on-chip oscillator and reset options this
may be increased to 26 1/O pins.

o Serial flash programming allows simple in-circuit production coding.

328 Appendix E

High performance

| |
I
' :
| |
| LPC932 CPU |
I
| |
| |
: A .
8 KB code < » | > E——
| ¢ < | UART
! flash Internal bus ‘_:_
|
|
I
256 byte < > |
| data RAM - = 2c >
I
|
|
| 512 byte > _ |
| auxiliary RAM [~ L - SPI >
| <—:—>
|
| 512 byte data | _ . :
! EEPROM - g > »| Real-time clock/ |
: system timer |
Port 3 |
“— | configurable 1/0s [~ > |
! Timer 0 <—:>
: Port 2 . | = Timer1 e
~&— P configurable I/0s | o I
| A __ | Watchdog timer :
| < > ;
< > Port 1 < - and oscillator |
. | configurable 1/0s o I
R
|
| Port 0 ¢ »| CCU (capture/ |15
~—) - compare unit) |J———*>
7| configurable 1/0s ‘_'_<I_
| Y |
: Keypad P Anal D
| interrupt < - alog -~
comparators [>
I |
| Programmable CPU v ~
! oscillator divider %= 5ok |
: 4 Power monitor |
| P (power-on reset, |
) . n-chi 1
Crystal o~ Configurable | _| ¢ P brownout reset) |
resonator oscillator oscillator I
' :
|

Figure E.1 LPC932 block diagram (courtesy Philips Semiconductors)
Packages include a 28-pin TSSOP package and a 28-pin PLCC package. The
latter package is illustrated in Figure E.2.

E.1 Device pin functions

SUPPLY VOLTAGE (Vpp AND Vss)

The device operates from a single supply connected to pin 21 (Vpp) while pin 7
(Vss) is grounded.

Appendix E 329

2 =
g 2
N S~
™~ % - < &
- 5§ o< g Z2
e 8a gL00
g 29 SRNe=
09200 YR
IEIRISIEINIE
ocB/P1.6[5 | [25] P0.2/CIN2A/KB12
RST/P1.5[6 | [24] P0.3/CIN1B/KB13
Vss [7] (23] P0.4/CIN1A/KB14
XTAL1/P3.1[8 | [22] P0.5/CMPREF/KB15
CLKOUT/XTAL2/P3.0 [9 | 21] Vip
INT1/P1.4[10] 20] P0.6/CMP1/KB16
SDA/INTO/P1.3 [11] [19] P0.7/T1/KB17
ElEIEEIEEE
N Aol gg
idfsoxk
E888szg
=53 o
n o

Figure E.2 PLCC 28-pin package (courtesy Philips Semiconductors)

INPUT/OUTPUT (1/0) PORTS
Details are as follows:

Port 0. This is an 8-bit I/O port with user configurable output type. During
reset port 0 latches are configured in the input only mode with the internal pull-
up disabled. The operation of the port pins as inputs or outputs depends on the
port configuration selected. The keypad interrupt feature operates with port 0
pins. Special functions of port 0 pins are as follows:

Pin number Input/output Function
3 (0] Comparator 2 output (CMP2)

I Keyboard input 0 (KBIO)

26 1 Comparator 2 positive input B (CIN2B)
I Keyboard input 1 (KBI1)

25 I Comparator 2 positive input A (CIN2A)
1 Keyboard input 2 (KBI2)

24 I Comparator 1 positive input B (CIN1B)
I Keyboard input 3 (KBI3)

23 1 Comparator 2 positive input A (CIN2A)
I Keyboard input 4 (KBI4)

330 Appendix E

22 Comparator reference (negative) input
Keyboard input 5 (KBIS)
Comparator 1 output (CMP1)
Keyboard input 6 (KBI6)
(0] Timer/counter 1 external count input or
overflow output

1 Keyboard input 7 (KBI7)

20

===~

19

Pin numbers 3, 26, 25, 24, 23, 22, 20 and 19 also function for port 0 as bit 0,
bit 1, bit 2, bit 3, bit 4, bit 5, bit 6 and bit 7 respectively. In this case each pin is
an I/O pin.

Port 1. This is an 8-bit I/O port with user configurable output type (except
for three pins, noted below). During reset port 1 latches are configured in the
input only mode with the internal pull-up disabled. The operation of the port
pins as inputs or outputs depends on the port configuration selected. P1.2 and
P1.3 are open-drain when used as outputs while P1.5 is input only. Special
functions of port 1 pins are as follows:

Pin number Input/output Function

18 (0] Transmitter output for the serial port (TxD)
17 1 Receiver input for the serial port (RxD)
12 I1x0O Timer/counter 0 external count input or

overflow output (open-drain when used
as outputs)

I1x0O I?C serial clock input/output (SCL)
11 1 External interrupt 0 input (INTO)
10 1 External interrupt 1 input (INT1)
6 1 External reset during power-on or if selected via

UCFG1. When functioning as a reset input a low
on this pin resets the microcontroller, causing 1/O
ports and peripherals to take on their default
states, and the processor begins execution at
address 0. Also used during a power-on sequence
to force ISP mode.

Output compare B (OCB)

4 (0] Output compare C (OCC)

W
o

Pin numbers 18, 17, 12, 5, and 4 also function for port 1 as bit 0, bit 1, bit 2, bit
6 and bit 7 respectively. In this case each pin is an I/O pin. Pin numbers 11, 10
and 6 also function for port 1 as input pins for bit 3, bit 4 and bit 5 respectively.

Port 2. This is an 8-bit I/O port with user configurable output type. During
reset port 2 latches are configured in the input only mode with the internal pull-
up disabled. The operation of the port pins as inputs or outputs depends on the
port configuration selected. Special functions of port 2 pins are as follows:

Appendix E 331

Pin number Input/output Function
1 I Input capture B (ICB)
2 O Output compare D (OCD)

13 1/0 SPI master out slave in. When configured as
master, this pin is output; when configured as
slave, this pin is input (MOSI)

14 1/0 SPI master in slave out. When configured as
master, this pin is input; when configured as
slave, this pin is output (MISO)

15 I SPI slave select (SS)

16 I/O SPI clock. When configured as
master, this pin is output; when configured as
slave, this pin is input (SPICLK)

27 O Output compare A (OCA)

28 1 Input capture A (ICA)

Pin numbers 1, 2, 13, 14, 15, 16, 27 and 28 also function for port 2 as bit 0, bit 1,
bit 2, bit 3, bit 4, bit 5, bit 6 and bit 7 respectively. In this case each pin is an I/O pin.

Port 3. This is a 2-bit I/O port with user configurable output type. During
reset port 3 latches are configured in the input only mode with the internal pull-
up disabled. The operation of the port pins as inputs or outputs depends on the
port configuration selected. Special functions of port 3 pins are as follows:

Pin number

Input/output

Function

9

(¢

Output from the oscillator amplifier (when a crystal
oscillator option is selected via the FLASH
configuration) (XTAL2)

CPU clock divided by 2 when enabled via SFR bit
(ENCLK — TRIM.6). It can be used if the CPU clock
is the internal RC oscillator, watchdog oscillator or
external clock input, except when XTAL1/XTAL2 is
used to generate clock source for the real-time
clock/system timer (CLKOUT)

input to the oscillator circuit and internal clock
generator circuits (when selected via the FLASH
configuration). It can be a port pin if internal RC
oscillator or watchdog oscillator is used as the CPU
clock source, AND if XTAL1/XTAL2 are not used to
generate the clock for the Real-Time clock/system
timer (XTALT1)

Pin numbers 9 and 8 also function for port 3 as bit 0 and bit 1 respectively. In
this case each pin is an I/O pin. The device has SFRs as shown in Table E.1.

Table E.1 Special function registers (courtesy Philips Semiconductors)

SFR Bit functions and addresses Reset value
Name Description address MSB LSB Hex Binary
E7 E6 ES E4 E3 E2 El EO
ACC* Accumulator EOH 00H 00000000
AUXRI1# Auxiliary function A2H
. CLKLP EBRR ENTI ENTO SRST 0 — DPS 00H' 000000x0
register
F7 Fo6 F5 F4 F3 F2 Fl1 FO
B* B register FOH 00H 00000000
BRGRO#§ Baud rate generator BEH 00H 00000000
rate low
BRGRI#§ Baud rate generator BFH 00H 00000000
rate high
BRGCON# Baud rate generator BDH
- - - - - - SBRGS BRGEN 00H % xxxxxx00
control
CCCRA# Capture compare A EAH
control register ICECA2 ICECA1 ICECAO ICESA ICNFA FCOA OCMAI OCMAO0 00H 00000000
CCCRB# Capture compare B EBH
control register ICECB2 ICECBI1 ICECBO ICESB ICNFB FCOB OCMBI1 OCMBO0 00H 00000000
CCCRC# Capture compare C
ECH
control register C - - - - - FCOC OCMCI | OCMCO | 00H xxxxx000
CCCRD# Capture compare D
EDH _ _ _ _ _
control register FCOD OCMDI1 OCMDO0 00H xxxxx000
CMPI1# Comparator 1 control
reg}zster ACH - - CEl CP1 CNI OEl col CMFI1 00H' xx000000
CMP2# Comparator 2 control
b ADH - - CE2 cP2 N2 OE2 co2 CMF2 | 00H' xx000000

register

DEECON#
DEEDAT#

DEEADR#

DIVM#

DPTR
DPH
DPL
12ADR#
12CON*#
12DAT#

12SCLH#

12SCLL#

12STAT#

ICRAH#

ICRAL#

ICRBH#

Data EEPROM control
register

Data EEPROM data
register

Data EEPROM
address register

CPU clock divide-by-M
control

Data pointer (2 bytes)
Data pointer high
Data pointer low

I2C slave address
register

I>C control register
I2C data register

Serial clock generator/
SCL duty cycle
register high

Serial clock generator/
SCL duty cycle
register low

12C status register

Input capture A register
high

Input capture A register
low

Input capture B register
high

FIH
F2H

F3H

95H

83H

82H

DBH

D8H
DAH

DDH

DCH

D9H

ABH

AAH

AFH

EEIF HVERR ECTLI1 ECTLO - - - EADRS
12ADR.6 12ADR.5 12ADR .4 12ADR.3 12ADR.2 12ADR.1 12ADR.O GC
DF DE DD DC DB DA D9 D8
- 12EN STA STO SI AA - CRSEL
STA.4 STA.3 STA.2 STA.1 STA.0 0 0 0

OEH
00H

00H

00H

00H

00H

00H

00H

00H

F8H

00H

00H

00H

00001110
00000000

00000000

00000000

00000000
00000000

00000000

x00000x0

00000000

00000000

11111000

00000000

00000000

Table E.1 Continued
SFR Bit functions and addresses Reset value
Name Description address MSB LSB Hex Binary
ICRBL# Input capture B register AEH 00H 00000000
low
AF AE AD AC AB AA A9 A8
TENO* Interrupt enable 0 A8H EA | EWDRT | EBO | ES/ESR | ETI | EX1 | ETO | EX0 | 00H 00000000
EF EE ED EC EB EA E9 E8
IEN1*# Interrupt enable 1 ESH EIEE | EST | _ | Bccu | ®spt | EC | EKBI | ERC | 00H' 00x00000
BF BE BD BC BB BA B9 B8
1PO* Interrupt priority 0 BSH _ | PWDRT | PBO | PS/PSR | PT1 | PX1 | PTO | PX0 | 00H' x0000000
IPOH# Interrupt priority 0 high B7H
pip Y ¢ - PWI]_?RT PBOH PSH/PSRH PTIH PX1H PTOH PX0H 00H' x0000000
FF FE FD FC FB FA F9 F8
IP1*# Interrupt priority 1 F8H PIEE l PST | _ | PCCU l PSPI I PC | PKBI l PI2C | 00H' 00x00000
IP1H# Interrupt priority 1 high F7H PIEEH | PSTH | | PCCUH | PSPIH | PCH | PKBIH | PI2CH | O0H' 00x00000
KBCON# Keypad control register 94H _ I _ | _ | _ I _ | _ | PATN SEL I KBIF | 00H! xxxxxx00
KBMASK# Keypad interrupt mask ~ 86H 00H 00000000
register
KBPATN# Keypad pattern register 93H FFH 11111111
OCRAH# Output compare A EFH 00H 00000000
register high
OCRAL# Output compare A EEH 00H 00000000
register low
OCRBH# Output compare B FBH 00H 00000000
register high
OCRBL# Output compare B FAH 00H 00000000

register low

OCRCH#
OCRCL#
OCRDH#

OCRDL#

PO*

P1*

P2*

P3*

POM1#
POM2#
PIM1#
PIM2#
P2M1#
P2M2#
P3M1#
P3M2#

PCON#
PCONA#

Output compare C
register high
Output compare C
register low
Output compare D
register high
Output compare D
register low

Port 0

Port 1

Port 2

Port 3

Port 0 output mode 1
Port 0 output mode 2
Port 1 output mode 1
Port 1 output mode 2
Port 2 output mode 1
Port 2 output mode 2
Port 3 output mode 1
Port 3 output mode 2

Power control register
Power control register A

FDH

FCH

FFH

FEH

80H

90H

AOH

BOH

84H
85H
91H
92H
A4H
ASH
BIH
B2H

87TH
B5SH

87 86 85 84 83 82 81 80
TUKBT CMPI/ | CMPREF/| CINIA/ | CINIB/ | CIN2A/ | CIN2B/ CMP2/

/ KB6 KBS KB4 KB3 KB2 KBI KBO
97 96 95 94 93 92 91 90
oce OCB RST INTI INTO/ TO/SCL RxD TxD

SDA

A7 A6 AS A4 A3 A2 Al A0
ICA ocA | spICLK | ss MisO | Most | ocp | 1cB |
B7 B6 BS B4 B3 B2 Bl BO

- - | ~ | - - | ~ | xtaLi | xrtAL2 |
POMLY7) | PoM16) | (PoML3) | (PoM14) | (PoM13) | (POM12) | (POMLD) | (POML.0)
PoM2.7) | (POM2.6) | (POM2.5) | (POM2.4) | (POM23) | (POM2.2) | (POM2.1) | (POM2.0)
(PIML7) | (PIML6) _ (PIM1L4) | PIML3) | (PIML2) | (PIMLI) | (PIMLO)
(PIM2.7) | (P1M2.6) - (PIM2.4) | (PIM2.3) | (PIM22) | (PIM2.1) | (PIM2.0)
@®2ML7) | (PaML6) | (P2ML5) | (PaM1L4) | (P2M13) | (PaM12) | (P2MLD) | (P2ML.0)
PM2.7) | am2.6) | pam2.5) | (pam24) | (paM2.3) | (pam22) | (paM2.1) | (PaM2.0)

- - - - - - (P3MLD) | (P3MLO)

- _ _ - _ _ (P3M2.1) | (P3M2.0)
SMODI_| SMODO BOPD BOIL GFl GF0 PMODI_| PMODO
RTCPD | DEEPD VCPD 12PD SPPD SPD CCUPD

00H
00H
00H

00H

Note 1

Note 1

Note 1

Note 1

FFH
00H
D3H!
00H'
FFH
00H
03H'
00H'

00H
00H!

00000000

00000000

00000000

00000000

II111111
00000000
11x1xx11
00x0xx00
IT111111
00000000
xxxxxx11
xxxxxx00

00000000
00000000

Table E.1 Continued

SFR Bit functions and addresses Reset value
Name Description address MSB LSB Hex Binary
D7 D6 D5 D4 D3 D2 Dl D0
PSW#* Program status word DOH CcY AC 200 RSI1 RSO oV F1 P 00H 00000000
PTOAD# Port 0 digital input
d isableg P F6H - - PTOAD.5 | PTOAD.4 | PTOAD.3 | PTOAD.2 | PTOAD.I - 00H xx00000x
RSTSRC# Reset source register DFH _ _ BOF POF R BK R.WD R_SF R _EX Note 2
RTCCON# Real-time clock control DIH RTCF RTCS1 RTCSO _ _ _ ERTC RTCEN 60H'> 011xxx00
RTCH# Real-time clock register D2H 00H> 00000000
high
RTCL# Real-time clock register D3H 00H’® 00000000
low
SADDR# Serial port address A9H 00H 00000000
register
SADEN# Serial port address B9H 00H 00000000
enable
SBUF# Serial port data buffer 99H xxH XXXXXXXX
register
9F 9E 9D 9C 9B 9A 99 98
SCON* Serial port control 98H SMO/FE SM1 SM2 REN TBS8 RBS8 TI RI 00H 00000000
SSTATH# Serial port extended
BAH 00H 00000000
status register DBMOD INTLO CIDIS DBISEL FE BR OE STINT
SP Stack pointer 81H 07H 00000111
SPCTL# SPI control register E2H SSIG SPEN DORD MSTR CPOL CPHA SPR1 SPRO 04H 00000100
SPSTAT# SPI status register EIH SPIF WCOL _ _ _ _ _ _ 00H 00XXXXXX

SPDAT# SPI data register E3H 00H 00000000

TAMOD# Timer 0 and 1 auxiliary SFH B B B TIM B B B TOM? 00H Xxx0xxx0

mode

8F 8E 8D 3C 8B 8A 89 38

TCON* Timer 0 and 1 control ~ 88H TF1 TRI1 TFO TRO IE1 IT1 1E0 1TO 00H 00000000
TCR20*# CCU control register 0 C8H PLEEN HLTRN HLTEN ALTCD ALTAB TDIR2 | TMOD21 | TMOD20 | 00H 00000000
TCR21# CCU control register | F9H TCOU2 _ _ _ PLLDV.3 | PLLDV.2 | PLLDV.1 | PLLDV.0 | 00H 0xxx0000
THO Timer 0 high 8CH 00H 00000000
TH1 Timer 1 high 8§DH 00H 00000000
TH2# CCU timer high CDH 00H 00000000
TICR2# CCU interrupt control

register C9H TOIE2 TOCIE2D | TOCIE2C | TOCIE2B | TOCIE2A - TICIE2B TICIE2A 00H 00000x00
TIFR2# CCU interrupt flag E9H

register TOIF2 TOCF2D TOCF2C TOCF2B TOCF2A - TICF2B TICF2A 00H 00000x00
TISE2% CCUinterrupt status - ppy | - - - - ENCINT.2 | ENCINT.1 | ENCINT.0 | 00H xxxxx000

encode register)))
TLO Timer 0 low 8AH 00H 00000000
TL1 Timer 1 low 8BH 00H 00000000
TL2# CCU timer low CCH 00H 00000000
TMOD Timer 0 and I mode 89H TIGATE TIC/T TIMI TIMO TOGATE TOC/T TOMI TOMO 00H 00000000
TOR2H# CCU reload register CFH 00H 00000000

high
TOR2L# CCU reload register CEH 00H 00000000

low
TPCR2H# Prescaler control

CBH - - - - - - TPCR2H.1 | TPCR2H.0 | 00H xxxxxx00

register high
TPCR2L# Prescaler control
register low

CAH TPCR2L.7 | TPCR2L.6 | TPCR2L.5 | TPCR2L.4 | TPCR2L.3 | TPCR2L.2 | TPCR2L.1 | TPCR2L.0 | 00H 00000000

TRIM# Internal oscillator trim

register 96H - ENCLK TRIM.5 TRIM.4 TRIM.3 TRIM.2 TRIM.1 TRIM.O Notes 4,5

WDCON# Watchdog control

register ATH PRE2 PREI PREO - - WDRUN | WDTOF | WDCLK | Notes 3,5

Table E.1 Continued

SFR Bit functions and addresses Reset value
Name Description address MSB LSB Hex Binary
WDL# Watchdog load ClH FFH 11111111
WFEEDI1# Watchdog feed 1 C2H
WFEED2# Watchdog feed 2 C3H

Notes:

* SFRs are bit addressable.

SFRs are modified from or added to the 80C51 SFRs.

~ Reserved bits, must be written with 0s.

§ BRGR1 and BRGRO must only be written if BRGEN in BRGCON SFR is ‘0. If any of them is written if BRGEN = 1, result is unpredictable.
Unimplemented bits in SFRs (labeled ‘—’) are X (unknown) at all times. Unless otherwise specified, ones should not be written to these bits since they
may be used for other purposes in future derivatives. The reset values shown for these bits are ‘0’s although they are unknown when read.

1. All ports are in input only (high impendance) state after power-up.

2. The RSTSRC register reflects the cause of the LPC932 reset. Upon a power-up reset, all reset source flags are cleared except POF and BOF-the
power-on reset value is xx110000.

3. After reset, the value is 111001x1, i.e., PRE2-PREQ are all 1, WDRUN = | and WDCLK = 1. WDTOF bit is 1 after watchdog reset and is 0 after
power-on reset. Other resets will not affect WDTOF.

4. On power-on reset, TRIM SFR is initialised with a factory preprogrammed value. Other resets will not cause initialisation of the TRIM register.
5. The only reset source that affects these SFRs is power-on reset.

Appendix E 339

E.2 Memory organisation

The LPC932 memory map is shown in Figure E.3. The various LPC932
memory spaces are as follows:

FFEFH § :
FFOOH | IAP boot flash :
01FFH
1FFFH
ISP code (512B) Data
1E00H XDATA EEPROM
1CO0H Sector 7 (512B)
1BFFH AUX
Sector 6 RAM
1800H (5128)
17FFH (Access via
Sector 5 0000H SFRs)
1400H
13FFH
tor 4
1000H seter FFH
OFFFH)) IDATA (incl. DATA)
Speua! function 128 bytes on-chip
Sector 3 . registers data memory (stack and
0COOH (directly addressable) indirect addr.)
OBFFH 80H
Sector 2 DATA 7FH
0800H 128 bytes on-chip
07FFH data memory (stack,
Sector 1 direct and indir_addr.) 00H
0400H 4 reg. banks RO-R7
03FFH
Sector 0
Data memory
0000H (DATA, IDATA)

Figure E.3 LPC932 memory map (courtesy Philips Semiconductors)

e DATA 128 bytes of internal data memory space (0OH—7FH) accessed via
direct or indirect addressing, using instructions other than MOVX and
MOVC. All or part of the stack may be in this area.

e IDATA (indirect data) 256 bytes of internal data memory space
(0OOH-FFH) accessed via indirect addressing using instructions other than
MOVX and MOVC. All or part of the stack may be in this area. This area
includes the DATA area and the 128 bytes immediately above it.

e SFR (special function registers) Selected CPU registers and peripheral con-
trol and status registers, accessible only via direct addressing.

o XDATA (‘External’ data or auxiliary RAM) Duplicates the 80C51 64 KB
memory space addressed via the MOVX instruction using the DPTR, RO

340 Appendix E

or R1. All or part of this space could be implemented on-chip. The LPC932
has 512 bytes of on-chip XDATA memory.

® CODE 64 KB of code memory space, accessed as part of program execution
and via the MOVC instruction. The LPC932 has 8 KB of on-chip code
memory.

The LPC932 also has 512 bytes of on-chip data EEPROM that is SFR based,
byte readable, byte writeable and erasable (via row fill and sector fill). The user
can read, write and fill the memory via SFRs and one interrupt. This data
EEPROM provides 100 000 minimum erase/program cycles for each byte.

Byte mode: In this mode, data can be read and written one byte at a time.
Row fill: In this mode, the addressed row (64 bytes) is filled with a single
value. The entire row can be erased by writing 00H.

o Sector fill: In this mode, all 512 bytes are filled with a single value. Writing
00H can erase the entire sector.

After the operation finishes, the hardware will set the EEIF bit, which if
enabled will generate an interrupt. The flag is cleared by software.

DATA RAM ARRANGEMENT
The 768 bytes of on-chip RAM organised as shown in Table E.2.

Table E.2 On-chip data memory usages (courtesy Philips Semiconductors)

Type Data RAM Size (bytes)

DATA Memory that can be addressed directly and 128
indirectly

IDATA Memory that can be addressed indirectly 256

XDATA Auxiliary (‘external data’) on-chip memory that is 512

accessed using the MOVX instructions

FLASH PROGRAM MEMORY

The LPC932 flash memory provides in-circuit electrical erasure and program-
ming. The flash can be read and written as bytes. The sector and page erase
functions can erase any flash sector (1 KB) or page (64 bytes). The chip erase
operation will erase the entire program memory. In-system programming and
standard parallel programming are both available. On-chip erase and write
timing generation contribute to a user-friendly programming interface. The
LPC932 flash reliably stores memory contents even after 10000 erase and
program cycles. The cell is designed to optimise the erase and programming
mechanisms. The LPC932 uses Vpp as the supply voltage to perform the
program/erase algorithms.

Appendix E 341
Features:

Internal fixed boot ROM, containing low-level in-application programming
(IAP) routines.

User programs can call these routines to perform IAP.

Default loader providing ISP via the serial port, located in upper end of user
program memory.

Boot vector allows user provided flash loader code to reside anywhere in the
flash memory space, providing flexibility to the user.

Programming and erase over the full operating voltage range.
Read/programming/erase using ISP/IAP.

Any flash program/erase operation in 2 ms.

Parallel programming with industry-standard commercial programmers.
Programmable security for the code in the flash for each sector.

10 000 minimum erase/program cycles for each byte.

10-year minimum data retention.

E.3 1/0 ports

The LPC932 has four I/O ports: port 0, port 1, port 2 and port 3. Ports 0,1 and
2 are 8-bit ports and port 3 is a 2-bit port. The exact number of pins available
for I/O depends upon the clock and reset options chosen. Table E.3 shows the
number of I/O pins available depending on the clock source.

Table E.3 Number of I/O pins available for the LPC932 28-pin package (courtesy
Philips Semiconductors)

Clock source Reset option Number of I/O pins
On-chip

oscillator or No external reset (except during power-up) 26

watchdog

oscillator External RST pin supported 25
External clock No external reset (except during power-up) 25

input External RST pin supported 24
Low/medium/ No external reset (except during power-up) 24

high speed

oscillator

(external

crystal or

resonator) External RST pin supported 23
PORT CONFIGURATIONS

All but three I/O port pins on the LPC932 may be configured by software to
one of four types on a bit-by-bit basis. These are: quasi-bidirectional (standard

342 Appendix E

80C51 port outputs), push-pull, open drain and input-only. Two configuration
registers for each port select the output type for each port pin.

e P1.5 (RST) can only be an input and cannot be configured.
e P1.2 (SCL/T0) and P1.3 (SDA/INTO) may only be configured to be either
input-only or open drain.

Quasi-bidirectional output configuration

Quasi-bidirectional output type can be used as both an input and output
without the need to reconfigure the port. This is possible because when the
port outputs a logic HIGH, it is weakly driven, allowing an external device to
pull the pin LOW. When the pin is driven LOW, it is driven strongly and able to
sink a fairly large current. These features are somewhat similar to an open drain
output except that there are three pull-up transistors in the quasi-bidirectional
output that serve different purposes. LPC932 is a 3V device, but the pins are
5 V-tolerant. In quasi-bidirectional mode, if a user applies 5V on the pin, there
will be a current flowing from the pin to Vpp, causing extra power consump-
tion. Therefore, applying 5V in quasi-bidirectional mode is discouraged.
A quasi-bidirectional port pin has a Schmitt-triggered input that also has a glitch
suppression circuit.

Open drain output configuration

The open drain output configuration turns off all pull-ups and only drives
the pull-down transistor of the port driver when the port latch contains a
logic 0. To be used as a logic output, a port configured in this manner must
have an external pull-up, typically a resistor tied to Vpp. An open drain
port pin has a Schmitt-triggered input that also has a glitch suppression
circuit.

Input-only configuration

The input-only port configuration has no output drivers. It is a Schmitt-
triggered input that also has a glitch suppression circuit.

Push-pull output configuration

The push-pull output configuration has the same pull-down structure as both
the open drain and the quasi-bidirectional output modes, but provides a con-
tinuous strong pull-up when the port latch contains a logic 1. The push-pull
mode may be used when more source current is needed from a port output.
A push-pull port pin has a Schmitt-triggered input that also has a glitch suppres-
sion circuit.

Appendix E 343

PORT 0 ANALOG FUNCTIONS

The LPC932 incorporates two analog comparators. In order to give the best
analog function performance and to minimise power consumption, pins that
are being used for analog functions must have the digital outputs and digital
inputs disabled. Digital outputs are disabled by putting the port output into the
input-only (high impedance) mode as described earlier. Digital inputs on port 0
may be disabled through the use of the PTOAD register, bits 1:5. On any reset,
PTOADI.5 defaults to Os to enable digital functions.

ADDITIONAL PORT FEATURES

After power-up, all pins are in input-only mode. After power-up, all I/O pins
except P1.5, may be configured by software. Pin P1.5 is input only. Pins P1.2
and P1.3 are configurable for either input-only or open drain. Every output on
the LPC932 has been designed to sink typical LED drive current. However,
there is a maximum total output current for all ports, which must not be
exceeded. All ports pins that can function as an output have slew rate con-
trolled outputs to limit noise generated by quickly switching output signals.
The slew rate is factory-set to approximately 10 ns rise and fall times.

E.4 Timers/counters 0 and 1

The LPC932 has two general-purpose counter/timers which are upward com-
patible with the standard 80C51 timer 0 and timer 1. Both can be configured to
operate either as timers or event counter. An option to automatically toggle the
TO and/or T1 pins upon timer overflow has been added. In the “Timer’ function,
the register is incremented every machine cycle. In the ‘Counter’ function, the
register is incremented in response to a 1-to-0 transition at its corresponding
external input pin, TO or T1. In this function, the external input is sampled once
during every machine cycle. Timers 0 and 1 have five operating modes (modes
0, 1, 2, 3 and 6). Modes 0,1, 2 and 6 are the same for both timers/counters.
Mode 3 is different.

Mode 0. Putting cither timer into mode 0 makes it look like an 8048 timer,
which is an 8-bit counter with a divide-by-32 prescaler. In this mode, the timer
register is configured as a 13-bit register. Mode 0 operation is the same for timer 0
and timer 1.

Mode 1. This mode is the same as mode 0, except that all 16 bits of the timer
register are used.

Mode 2. Configures the timer register as an 8-bit counter with automatic
reload. Mode 2 operation is the same for timer 0 and timer 1.

Mode 3. When timer 1 is in mode 3 it is stopped. Timer 0 in mode 3 forms two
separate 8-bit counters and is provided for applications that require an extra
8-bit timer. When timer 1 is in mode 3 it can still be used by the serial port as
a baud rate generator.

344 Appendix E

Mode 6. In this mode, the corresponding timer can be changed to a PWM
with a full period of 256 timer clocks.

TIMER OVERFLOW TOGGLE OUTPUT

Timers 0 and 1 can be configured to automatically toggle a port output when-
ever a timer overflow occurs. The same device pins that are used for the TO and
T1 count inputs are also used for the timer toggle outputs. The port outputs will
be a logic 1 prior to the first timer overflow when this mode is turned on.

REAL-TIME CLOCK/SYSTEM TIMER

The LPC932 has a simple real-time clock that allows a user to continue running
an accurate timer while the rest of the device is powered down. The real-time
clock can be a wake-up or an interrupt source. The real-time clock is a 23-bit
down counter comprised of a 7-bit prescaler and a 16-bit loadable down
counter. When it reaches all Os, the counter will be reloaded again and the
RTCEF flag will be set. The clock source for this counter can be either the CPU
clock (CCLK) or the XTAL oscillator, provided that the XTAL oscillator is
not being used as the CPU clock. If the XTAL oscillator is used as the CPU
clock, then the RTC will use CCLK as its clock source. Only power-on reset
will reset the real-time clock and its associated SFRs to the default state.

E.5 Capture/compare unit (CCU)
This unit features:

a 16-bit timer with 16-bit reload on overflow;

selectable dock, with prescaler to divide clock source by any integral num-
ber between 1 and 1024,

4 compare/PWM outputs with selectable polarity;
symmetrical/asymmetrical PWM selection;

2 capture inputs with event counter and digital noise rejection filter;

7 interrupts with common interrupt vector (one overflow, 2Xcapture,
4Xcompare);

e safe 16-bit read/write via shadow registers.

CCU CLOCK (CCUCLK)

The CCU runs on the CCUCLK, which is either PCLK in basic timer mode, or
the output of a phase-locked loop (PLL). The PLL is designed to use a clock
source between 0.5 MHz and 1 MHz that is multiplied by 32 to produce a
CCUCLK between 16 MHz and 32 MHz in PWM mode (asymmetrical or
symmetrical). The PLL contains a 4-bit divider to help divide PCLK into a
frequency between 0.5 MHz and 1 MHz.

Appendix E 345

CCU CLOCK PRESCALING

This CCUCLK can be further divided down by a prescaler. The prescaler is
implemented as a 10-bit free-running counter with programmable reload at
overflow.

BASIC TIMER OPERATION

The timer is a free-running up/down counter with a direction control bit. If the
timer counting direction is changed while the counter is running, the count sequence
will be reversed. The timer can be written or read at any time. When a reload occurs,
the CCU timer overflow interrupt flag will be set, and an interrupt generated if
enabled. The 16-bit CCU timer may also be used as an 8-bit up/down timer.

OUTPUT COMPARE

There are four output compare channels A, B, C and D. Each output compare
channel needs to be enabled in order to operate and the user will have to set the
associated I/O pin to the desired output mode to connect the pin. When
the contents of the timer matches that of a capture compare control register,
the timer output compare interrupt flag — TOCFx becomes set. An interrupt
will occur if enabled.

INPUT CAPTURE

Input capture is always enabled. Each time a capture event occurs on one of the
two input capture pins, the contents of the timer are transferred to the corres-
ponding 16-bit input capture register. The capture event can be programmed to
be either rising or falling edge triggered. A simple noise filter can be enabled on
the input capture by enabling the input capture noise filter bit. If set, the
capture logic needs to see four consecutive samples of the same value in order
to recognise an edge as a capture event. An event counter can be set to delay a
capture by a number of capture events.

PWM OPERATION

PWM operation has two main modes, symmetrical and asymmetrical. In
asymmetrical PWM operation the CCU timer operates in down-counting mode
regardless of the direction control bit. In symmetrical mode, the timer counts
up/down alternately. The main difference from basic timer operation is the
operation of the compare module, which in PWM mode is used for PWM
waveform generation. As with basic timer operation, when the PWM (com-
pare) pins are connected to the compare logic, their logic state remains
unchanged. However, since bit FCO is used to hold the halt value, only a
compare event can change the state of the pin. An example of symmetrical
PWM waveform generation is shown in Figure E.4.

346 Appendix E

TOR2

Compare value

Timer value

0

Non-inverted

Inverted

Figure E.4 Symmetrical PWM waveform (courtesy Philips Semiconductors)

Alternating output mode

In asymmetrical mode, the user can set up PWM channels A/B and C/D as
alternating pairs for bridge drive control. In this mode the output of these
PWM channels is alternately gated on every counter cycle.

PLL OPERATION

The PWM module features a phase locked loop that can be used to generate a
CCUCLK frequency between 16 MHz and 32MHz. At this frequency the
PWM module provides ultrasonic PWM frequency with 10-bit resolution
provided that the crystal frequency is 1 MHz or higher. The PLL is fed an
input signal of 0.5— 1 MHz and generates an output signal of 32 times the input
frequency. This signal is used to clock the timer. The user will have to set a
divider that scales PCLK by a factor of 1-16. This divider is found in the SFR
register TCR21. The PLL frequency can be expressed as follows:

PCLK
N +1

where N is the value of PLLDV3:0. Since N ranges in 0-15, the CCLK
frequency can be in the range of PCLK to PCLK/16.

PLL frequency =

WATCHDOG TIMER

The watchdog timer causes a system reset when it underflows as a result of a
failure to feed the timer prior to the timer reaching its terminal count. It
consists of a programmable 12-bit prescaler and an 8-bit down counter. The
down counter is decremented by a tap taken from the prescaler. The clock
source for the prescaler is either the PCLK or the nominal 40 kHz watchdog
oscillator. The watchdog timer can only be reset by a power-on reset. When the

Appendix E 347

watchdog feature is disabled, it can be used as an interval timer and may
generate an interrupt. Figure E.5 shows the watchdog timer in watchdog mode.
Feeding the watchdog requires a two-byte sequence. If PCLK is selected as the
watchdog clock and the CPU is powered down, the watchdog is disabled. The
watchdog timer has a timeout period that ranges from a few microseconds to
a few seconds.

MOV WFEED1,#0A5H
MOV WFEED2,#05AH

Watchdog
oscillator O\\D-’ Prescaler) 8-bit down RESET
PCLK © ol counter Watchdog reset can also be caused

H by an invalid feed sequence, or by
[) writing to WDCON not immediately
! followed by a feed sequence

" Control register) | | Shadow
. L register for

L. L
T

|PRE2 | PRE1 | PREO | | |WDRUN|WDTOF|WDCLK| WDCON (A7H)

Figure E.5 Watchdog timer in watchdog mode (WDTE = 1) (courtesy Philips
Semiconductors)

E.6 Serial interface

UART

The LPC932 has an enhanced UART that is compatible with the conventional
80C51 UART except that Timer 2 overflow cannot be used as a baud rate
source. The LPC932 does include an independent baud rate generator. The
baud rate can be selected from the oscillator (divided by a constant), timer |
overflow or the independent baud rate generator. In addition to the baud rate
generation, enhancements over the standard 80C51 UART include framing
error detection, automatic address recognition, selectable double buffering
and several interrupt options. The UART can be operated in four modes: shift
register, 8-bit UART, 9-bit UART and CPU clock/32 or CPU clock/16.

Mode 0. Serial data enters and exits through RxD. TxD outputs the shift
clock. Eight bits are transmitted or received, LSB first. The baud rate is fixed at
1/16 of the CPU clock frequency.

Mode 1. Ten bits are transmitted (through TxD) or received (through RxD):
a start bit (logical 0), 8 data bits (LSB first) and a stop bit (logical 1). When data
is received, the stop bit is stored in RB§ in SFR SCON. The baud rate is
variable and is determined by the timer 1 overflow rate or the baud rate
generator.

348 Appendix E

Mode 2. Eleven bits are transmitted (through TxD) or received (through
RxD): start bit (logical 0), 8 data bits (LSB first), a programmable 9th data bit
and a stop bit (logical 1). When data is transmitted, the 9th data bit (TB8 in
SCON) can be assigned the value of 0 or 1. Or, for example, the parity bit (P, in
the PSW) could be moved into TB8. When data is received, the 9th data bit
goes into RB8 in SFR SCON, while the stop bit is not saved. The baud rate is
programmable to either 1/16 or 1/32 of the CPU dock frequency, as determined
by the SMOD1 bit in PCON.

Mode 3. Eleven bits are transmitted (through TxD) or received (through
RxD): a start bit (logical 0), 8 data bits (LSB first), a programmable 9th data bit
and a stop bit (logical 1). In fact, mode 3 is the same as mode 2 in all respects
except baud rate. The baud rate in mode 3 is variable and is determined by the
timer 1 overflow rate or the baud rate generator.

SFR space
The UART SFRs are at the locations shown in Table E.4.

Table E.4 SFR locations for UARTS (courtesy Philips Semiconductors)

Register Description SFR location
PCON Power control 87H

SCON Serial port (UART) control 98H

SBUF Serial port (UART) data buffer 99H
SADDR Serial port (UART) address A9H
SADEN Serial port (UART) address enable B9H

SSTAT Serial port (UART) status BAH
BRGRI1 Baud rate generator rate high byte BFH
BRGRO Baud rate generator rate low byte BEH
BRGCON Baud rate generator control BDH

Baud rate generator and selection

The LPC932 enhanced UART has an independent baud rate generator. The baud
rate is determined by a baud rate preprogrammed into the BRGR1 and BRGRO
SFRs, which together form a 16-bit baud rate divisor value that works in a similar
manner as timer 1. If the baud rate generator is used, timer 1 can be used for other
timing functions. The UART can use either timer 1 or the baud rate generator
output (see Figure E.6). Note that timer T1 is further divided by 2 if the SMOD1
bit (PCON.7) is set. The independent baud rate generator uses OSCCLK.

Framing error

Framing error is reported in the status register (SSTAT). In addition, if
SMODO (PCON.6) is 1, framing errors can be made available in SCON.7

Appendix E 349

SMOD1=1

Timer 1 overflow SBRGS=0
(PCLK-based) T" .
© ° Baud rate modes 1 and 3
SMOD1=0 ’—“
Baud rate generator SBRGS=1

(PCLK-based)

Figure E.6 Baud rate sources for UART (modes 1, 3) (courtesy Philips
Semiconductors)

respectively. If SMODO is 0, SCON.7 is SMO. It is recommended that SM0 and
SM1 (SCON.7-6) are set up when SMODO is ‘0’.

Break detect

Break detect is reported in the status register (SSTAT). A break is detected
when 11 consecutive bits are sensed low. The break detect can be used to reset
the device and force the device into ISP mode.

Double buffering

The UART has a transmit double buffer that allows buffering of the next
character to be written to SBUF while the first character is being transmitted.
Double buffering allows transmission of a string of characters with only one
stop bit between any two characters, as long as the next character is written
between the start bit and the stop bit of the previous character. Double buffer-
ing can be disabled. If disabled (DBMOB,i.e. SSTAT.7=0), the UART is
compatible with the conventional 80C51 UART. If enabled, the UART allows
writing to SnBUF while the previous data is being shifted out. Double buffering
is only allowed in modes 1, 2 and 3. When operated in mode 0, double buffering
must be disabled (DBMOD = 0).

Transmit interrupts with double buffering enabled (Modes 1, 2 and 3)

Unlike the conventional UART, in double buffering mode, the Tx interrupt is
generated when the double buffer is ready to receive new data.

The 9th bit (Bit 8) in double buffering (Modes 1, 2 and 3)

If double buffering is disabled TB8 can be written before or after SBUF is
written, as long as TB8 is updated some time before that bit is shifted out. TB8
must not be changed until the bit is shifted out, as indicated by the Tx interrupt.
If double buffering is enabled, TB8 MUST be updated before SBUF is written,
as TB8 will be double-buffered together with SBUF data.

350 Appendix E

I>C SERIAL INTERFACE

The IC bus uses two wires (SDA and SCL) to transfer information between
devices connected to the bus and has the following features:

bidirectional data transfer between masters and slaves;
multimaster bus (no central master);
arbitration between simultaneously transmitting masters without corrup-
tion of serial data on the bus;

e serial dock synchronisation allows devices with different bit rates to com-
municate via one serial bus;

e serial clock synchronisation can be used as a handshake mechanism to
suspend and resume serial transfer;

e the I?C bus may be used for test and diagnostic purposes.

A typical IC bus configuration is shown in Figure E.7. The LPC932 device
provides a byte-oriented I°C interface that supports data transfers up to

400 kHz.
Rp [T]Rp

SDA

1’C-bus

SCL

P1.3/SDA P1.2/SCL Other device with 1°C Other device with 12C
LPC932 interface interface

Figure E.7 I°C bus configuration (courtesy Philips Semiconductors)

SERIAL PERIPHERAL INTERFACE (SPI)

The LPC932 device provides another high-speed serial communication interface —
the SPI interface. SPI is a full-duplex, high-speed, synchronous communication
bus with two operation modes: master mode and slave mode. Up to 3 Mbit/s
can be supported in either master or slave mode. It has a transfer completion
flag and write collision flag protection.

The SPI interface has four pins; SPICLK, MOSI, MISO and SS.

e SPICLK, MOSI and MISO are typically tied together between two or more
SPI devices. Data flows from master to slave on MOSI (master out slave in)
pin and flows from slave to master on MISO (master in slave out) pin. The

Appendix E 351

SPICLK signal is output in the master mode and is input in the slave mode.
If the SPI system is disabled, i.e. SPEN (SPCTL.6) = 0 (reset value), these
pins are configured for port functions.

e SSis the optional slave select pin. In a typical configuration, an SPI master
asserts one of its port pins to select one SPI device as the current slave. An
SPI slave device uses its SS pin to determine whether it is selected. Typical
connections are shown in Figure E.8(a)—(c).

Master 1 Slave
MISO MISO
8-bit shift o i o 8-bit shift
register Lo MOsI E MOsiI I register
SPICLK , SPICLK
SPI clock o T —
generator Port . SS

Figure E.8(a) SPI single master, single slave configuration (courtesy Philips

Semiconductors)
Master . Slave
MISO i MISO
8-bitshift | ' o 8-bit shift
register L. . - register
MOSI ; MOSI
SPICLK : SPICLK
SPI clock o ' "7l SPlclock
generator . generator

Figure E.8(b) SPI dual device configuration, where either device can be master or
slave (courtesy Philips Semiconductors)

E.7 Interrupts

The LPC932 uses a four-priority level interrupt structure. This allows great
flexibility in controlling the handling of the LPC932’s 15 interrupt sources.
Each interrupt source can be individually enabled or disabled by setting or
clearing a bit in the IE registers IENO or IEN1. The IENO register also contains
a global enable bit, EA, which enables all interrupts. Each interrupt source can
be individually programmed to one of four priority levels by setting or clearing
bits in the interrupt priority registers [P0, IPOH, IP1 and IP1H. An interrupt
service routine in progress can be interrupted by a higher priority interrupt, but
not by another interrupt of the same or lower priority. The highest priority
interrupt service cannot be interrupted by any other interrupt source. If two

352 Appendix E

Master . Slave
MISO E MISO
8-bit shift ! 771 8-bit shift
register |___[MosI ! MOsI I register
SPlclock | ___| SPICLK ; SPICLK |
generator Port E 3SS
Slave
MISO
o 8-bit shift
MOsI I register
SPICLK
Port s

Figure E.8(c) SPI single master, multiple slaves configuration (courtesy Philips
Semiconductors)

requests of different priority levels are received simultaneously, the request of
higher priority level is serviced. If requests of the same priority level are pending
at the start of an instruction cycle, an internal polling sequence determines
which request is serviced. This is called the arbitration ranking. The arbitration
ranking is only used for pending requests of the same priority level. Table E.5
summarises the interrupt sources, flag bits, vector addresses, enable bits, prior-
ity bits, arbitration ranking and whether each interrupt may wake up the CPU
from a power down mode.

Interrupt priority structure

There are four SFRs associated with the four interrupt levels: IPO, IPOH, IP1,
IP1H. Every interrupt has two bits in IPx and IPxH (x=0,1) and can therefore
be assigned to one of four levels, as shown in Table E.6.

External interrupt inputs

The LPC932 has two external interrupt inputs in addition to the keypad
interrupt function. The two interrupt inputs are identical to those present on
the standard 80C51 microcontrollers. These external interrupts can be pro-
grammed to be level triggered or edge triggered by clearing or setting bit IT1
or ITO in register TCON. If ITn = 0, external interrupt n is triggered by a low
level detected at the INTn pin. If ITn = 1, external interrupt n is edge triggered.

Appendix E 353

Table E.5 Summary of interrupts (courtesy Philips Semiconductors)

Power
Interrupt Vector Interrupt Interrupt Arbitration down
Description flag bit(s) address enable bit(s) priority ranking wakeup
External 1EO 0003H EXO0 (IEN0.0) TPOH.0,IP0.0 1 (highest) Yes
interrupt 0
Timer 0 TFO 000BH ETO (IENO.1) IPOH.1,IP0.1 4 No
interrupt
External IE1 0013H EXI1 (IENO0.2) IPOH.2,IP0.2 7 Yes
interrupt 1
Timer 1 TF1 001BH ETI1 (IENO0.3) TPOH.3,IP0.3 10 No
interrupt
Serial port TI & RI 0023H ES/ESR IPOH.4,1P0.4 13 No
Tx/Rx'4 (IENO0.4)
Serial port RI
RX1.4
Brownout BOF 002BH EBO IPOH.5,1IP0.5 2 Yes
detect (IENO.5)
Watchdog WDOVF/ 0053H EWDRT IPOH.6,IP0.6 3 Yes
timer/real- RTCF (IENO.6)
time clock
I?C interrupt ~ SI 0033H EI2C IPIH.0,IP1.0 5 No
(IEN1.0)
KBI interrupt KBIF 003BH EKBI IP1H.1,IP1.1 8 Yes
(IENI1.1)
Comparators CMF1/ 0043H EC (IEN1.2) IP1H.2,IP1.2 11 Yes
1/2 interrupt CMF2
SPI interrupt ~ SPIF 004BH ESPI IP1H.3,IP1.3 14 No
(IEN1.3)
Capture/ See Note 2 005BH ECCU IP1H.4,IP1.4 6 No
compare (IEN1.4)
unit?
Reserved 0063H (EN1.5) IPIH.5,IPL.5 9 Yes
Serial port Tx® TI 006BH EST IP1H.6,IP1.6 12 No
(IEN1.6)
Data EEPROM 0073H IIEE IP1H.7,IP1.7 15 (lowest) No
EEPROM (IEN1.7)
write
completed
Notes:

1. SSTAT.5 = 0 selects combined serial port (UART) Tx and Rx interrupt; SSTAT.5 = 1 selects
serial port Rx interrupt only (Tx interrupt will be different, see Note 3 below).

2. CCU interrupt has multiple sources. Any source in the TIFR2 SFR can cause a CCU interrupt.
3. This interrupt is used as serial port (UART) Tx interrupt if and only if SSTAT.5 =1, and is
disabled otherwise.

4. If SSTAT.O = 1, the following serial port additional flag bits can cause this interrupt: FE, BR, OE.

354 Appendix E

Table E.6 Interrupt priority level (courtesy Philips Semiconductors)

Priority bits

IPxH IPx Interrupt priority level

0 0 Level 0 (lowest priority)
0 1 Level 1

1 0 Level 2

1 1 Level 3 (highest priority)

In this mode if consecutive samples of the INTn pin show a high level in one
cycle and a low level in the next cycle, interrupt request flag [En in TCON is set,
causing an interrupt request. Since the external interrupt pins are sampled once
each machine cycle, an input high or low level should be held for at least one
machine cycle to ensure proper sampling. If the external interrupt is edge
triggered, the external source has to hold the request pin high for at least one
machine cycle, and then hold it low for at least one machine cycle. This is to
ensure that the transition is detected and that interrupt request flag IEn is set.
IEn is automatically cleared by the CPU when the service routine is called. If
the external interrupt is level triggered, the external source must hold the
request active until the requested interrupt is generated. If the external interrupt
is still asserted when the interrupt service routine is completed, another inter-
rupt will be generated. It is not necessary to clear the interrupt flag IEn when
the interrupt is level sensitive, it simply tracks the input pin level. If an external
interrupt is enabled when the LPC932 is put into power down or idle mode, the
interrupt occurrence will cause the processor to wake up and resume operation.

External interrupt pin glitch suppression

Most of the LPC932 pins have glitch suppression circuits to reject short glitches.
However, pins SDA/INTO0/P1.3 and SCL/T0/P1.2 do not have the glitch suppres-
sion circuits. Therefore, INT1 has glitch suppression while INTO does not.

Keypad interrupt (KBI)

The Keypad interrupt function is intended primarily to allow a single interrupt
to be generated when port 0 is equal to or not equal to a certain pattern. This
function can be used for bus address recognition or keypad recognition. The
user can configure the port via SFRs for different tasks. The keypad interrupt
mask register (KBMASK) is used to define which input pins connected to port
0 can trigger the interrupt. The keypad pattern register (KBPATN) is used to
define a pattern that is compared to the value of port 0. The keypad interrupt
flag (KBIF) in the keypad interrupt control register (KBCON) is set when the
condition is matched while the keypad interrupt function is active. An interrupt
will be generated if enabled. The PATN_SEL bit in the keypad interrupt

Appendix E 355

control register (KBCON) is used to define equal or not-equal for the comparison.
In order to use the keypad interrupt as an original KBI function the user needs to
set KBPATN = OFFH and PATN_SEL =1 (not equal), then any key connected
to port 0 which is enabled by the KBMASK register will cause the hardware to set
KBIF and generate an interrupt if it has been enabled. The interrupt may be used
to wake up the CPU from idle or power down modes. This feature is particularly
useful in handheld, battery-powered systems that need to carefully manage power
consumption yet also need to be convenient to use. In order to set the flag and
cause an interrupt, the pattern on port 0 must be held longer than 6 CCLKs.

E.8 Analog comparators

Two analog comparators are provided on the LPC932. Input and output
options allow use of the comparators in a number of different configurations.
Comparator operation is such that the output is a logical one (which may be
read in a register and/or routed to a pin) when the positive input (one of two
selectable pins) is greater than the negative input (selectable from a pin or an
internal reference voltage). Otherwise the output is a zero. Each comparator
may be configured to cause an interrupt when the output value changes.

Comparator configuration

Each comparator has a control register, CMP1 for comparator 1 and CMP2 for
comparator 2. The control registers are identical. The overall connections to
both comparators are shown in Figure E.9.

CP1

(P04 CINTA ; Comparator 1 OE1
8 + I
: 0 o
(P0.3) CIN1B co e] CMP1 (P0.6)
(P0.5) CMPREF
Vref —
CN1
—— Interrupt
|
P2 EC
. - c : Comparator 2
(P0.2) CIN2A U A
(P0.1) CIN2B [} ‘ ‘ [] CMP2 (P0.0)
CO2
B N 1
| IS ! !
! OE2
CN2

Figure E.9 Comparator input and output connections (courtesy Philips
Semiconductors)

There are eight possible configurations for each comparator, as determined by
the control bits in the corresponding CMPn register: CPn, CNn and OEn. When

356 Appendix E

each comparator is first enabled, the comparator output and interrupt flag are not
guaranteed to be stable for 10 ps. The corresponding comparator interrupt should
not be enabled during that time, and the comparator interrupt flag must be cleared
before the interrupt is enabled in order to prevent an immediate interrupt service.

CMPn (Comparator control registers (CMPI and CMP2))

Address: ACh for CMP1, ADh for CMP2

7 6 5 4 3 2 1 0

- - CEn CPn CNn OEn COn | CMFn

Not bit addressable
Reset source(s): any reset
Reset value: xx000000B

Bit Symbol Function

CMPn.7, 6 - Reserved for future use. Should not be set to 1 by user programs

CMPn.5 CEn Comparator enable. When set, the corresponding comparator
function is enabled. Comparator output is stable 10 pus after
CEn is set

CMPn.4 CPn Comparator positive input select. When 0, CINnA is selected
as the positive comparator input. When 1, CINnB is
selected as the positive comparator input

CMPn.3 CNn Comparator negative input select. When 0, the comparator
reference pin CMPREF is selected as the negative
comparator input. When 1, the internal comparator
reference, Vref, is selected as the negative comparator input

CMPn.2 OEn Output enable. When 1, the comparator output is connected
to the CMPn pin if the comparator is enabled (CEn=1).
This output is asynchronous to the CPU clock

CMPn.1 COn Comparator output, synchronised to the CPU clock to allow
reading by software

CMPn.0 CMFn Comparator interrupt flag. This bit is set by hardware
whenever the comparator output COn changes state.

This bit will cause a hardware interrupt if enabled.
Cleared by software

Internal reference voltage

An internal reference voltage, Vref, may supply a default reference when a
single comparator input pin is used.

Comparator interrupt

Each comparator has an interrupt flag CMFn contained in its configuration
register. This flag is set whenever the comparator output changes state. The flag

Appendix E 357

may be polled by software or may be used to generate an interrupt. The two
comparators use one common interrupt vector. The interrupt will be generated
when the IE bit EC in the IENI1 register is set and the interrupt system is
enabled via the EA bit in the IENO register. If both comparators enable
interrupts, after entering the interrupt service routine, the user will need to read
the flags to determine which comparator caused the interrupt.

Comparators and power reduction modes

Either or both comparators may remain enabled when power down or idle
mode is activated, but both comparators are disabled automatically in total
power down mode. If a comparator interrupt is enabled (except in total power
down mode), a change of the comparator output state will generate an interrupt
and wake up the processor. If the comparator output to a pin is enabled, the pin
should be configured in the push-pull mode in order to obtain fast switching
times while in power down mode. The reason is that with the oscillator stopped,
the temporary strong pull-up that normally occurs during switching on a quasi-
bidirectional port pin does not take place. Comparators consume power in
power down and idle modes, as well as in the normal operating mode. This
should be taken into consideration when system power consumption is an issue.
To minimise power consumption, the user can power down the comparators by
disabling the comparators and setting PCONA.5 to ‘1’, or simply putting the
device in total power down mode.

E.9 Clocks

Clock definitions
The LPC932 device has several internal clocks defined as:

e OSCCLK - Input to the DIVM clock divider. OSCCLK is selected from
one of four clock sources and can also be optionally divided to a slower
frequency.

Note: fo 1s defined as the OSCCLK frequency.

¢ CCLK — CPU clock; output of the clock divider. There are two CCLK
cycles per machine cycle, and most instructions are executed in one to two
machine cycles (two or four CCLK cycles).
RCCLK - The internal 7.373 MHz RC oscillator output.
PCLK - Clock for the various peripheral devices and is CCLK/2.

CPU clock (OSCCLK)

The LPC932 provides several user-selectable oscillator options in generating
the CPU clock. This allows optimisation for a range of needs from high

358 Appendix E

precision to lowest possible cost. These options are configured when the
FLASH is programmed and include an on-chip watchdog oscillator, an
on-chip RC oscillator, an oscillator using an external crystal, or an external
clock source. The crystal oscillator can be optimised for low, medium or high
frequency crystals covering a range from 20 kHz to 12 MHz.

Low speed oscillator option. This option supports an external crystal in the
range of 20kHz to 100 kHz. Ceramic resonators are also supported in this
configuration.

Medium speed oscillator option. This option supports an external crystal in
the range of 100 kHz to 4 MHz. Ceramic resonators are also supported in this
configuration.

High speed oscillator option. This option supports an external crystal in the
range of 4 MHz to 12 MHz. Ceramic resonators are also supported in this
configuration.

Figure E.10 shows the connections for a crystal oscillator.

Quartz crystalor ____
ceramic resonator \ LPC 932

The oscillator must be configured in
one of the following modes:

—Low frequency crystal XTALA
—Medium frequency crystal
—High frequency crystal
XTAL2
*A series resistor may be required to limit
crystal drive levels.This is especially .

important for low frequency crystals. -

Figure E.10 Using the crystal oscillator (courtesy Philips Semiconductors)

Clock output

The LPC932 supports a user selectable dock output function on the XTAL2/
CLKOUT pin when crystal oscillator is not being used. This condition occurs if
another clock source has been selected (on-chip RC oscillator, watchdog oscil-
lator, external clock input on X1) and if the real-time clock is not using the
crystal oscillator as its clock source. This allows external devices to synchronise
to the LPC932. This output is enabled by the ENCLK bit in the TRIM register.
The frequency of this clock output is half that of the CCLK. If the clock output
is not needed in idle mode, it may be turned off prior to entering idle, saving
additional power.

On-chip RC oscillator option. The LPC932 has a 6-bit TRIM register that can
be used to tune the frequency of the RC oscillator. During reset, the TRIM
value is initialised to a factory preprogrammed value to adjust the oscillator
frequency to 7.373 MHz, +2.5%. End user applications can write to the trim
register to adjust the on-chip RC oscillator to other frequencies.

Appendix E 359

TRIM register
7 6 S 4 3 2 1 0
— | ENCLK | TRIM.5 | TRIM .4 | TRIM.3 | TRIM.2 | TRIM.1 | TRIM.O

Address: 96H

Not bit addressable

Reset source(s): power-up only

Reset value: on power-up reset, ENCLK = 0 and TRIM.5-0 are loaded with
the factory programmed value.

Bit Symbol Function

TRIM.7 - Reserved

TRIM.6 ENCLK When ENCLK = 1, CCLK/2 is output on the XTAL2 pin
(P3.0) provided that the crystal oscillator is not being used.
When ENCLK = 0, no clock output is enabled

TRIM.5-0 Trim value

Note: On reset, the TRIM SFR is initialised with a factory preprogrammed
value. When setting or clearing the ENCLK bit, the user should retain the
contents of bits 5:0 of the TRIM register. This can be done by reading the
contents of the TRIM register (into the ACC for example), modifying bit 6 and
writing this result back into the TRIM register. Alternatively, the ‘ANL direct’
or ‘ORL direct’ instructions can be used to clear or set bit 6 of the TRIM
register.

Watchdog oscillator option. The watchdog has a separate oscillator, which
has a frequency of 400 kHz. This oscillator can be used to save power when
a high clock frequency is not needed.

External clock input option. In this configuration, the processor clock is
derived from an external source driving the XTAL1/P3.1 pin. The rate may
be from 0 Hz up to 12 MHz. The XTAL2/P3.0 pin may be used as a standard
port pin or a clock output.

Appendix F

XAG49 Microcontroller

F.1 Introduction

Details of this device are reproduced with kind permission of Philips Semicon-
ductors. Data regarding the device may be found on the Philips website at
www.semiconductors.philips.com.

GENERAL DESCRIPTION

The XAG49 is a member of Philips’ 80C51 XA (extended architecture) family of
high performance 16-bit single-chip microcontrollers. The XA range offers com-
patibility with the 80C51, giving the user enhanced performance with increased
memory capacity. The XAG49 contains 64 KB of flash program memory, and
provides three general purpose timers/counters, a watchdog timer, dual UARTs
and four general-purpose 1/O ports with programmable output configurations.
A default serial loader program in the boot ROM allows ISP of the flash memory
without the need for a loader in the flash code. User programs may erase and
reprogram the flash memory at will through the use of standard routines
contained in the boot ROM (in-application programming).

FEATURES

64 KB of on-chip flash program memory with ISP capability;

five flash blocks; two 8 KB blocks and three 16 KB blocks;

nearly identical to XA-G3, except for double the program and RAM memories;
single supply voltage ISP of the flash memory (V,, = Vpp or Vipp = 12V if
desired);

® boot ROM contains low-level flash programming routines for in-application
programming and a default serial loader using the UART;

2048 bytes of on-chip data RAM;

supports off-chip program and data addressing up to 1 MB (20 address lines);

Appendix F 361

e three standard counter/timers with enhanced features (same as XA-G3 TO,

T1 and T2). All timers have a toggle output capability;

watchdog timer;

two enhanced UARTSs with independent baud rates;

seven software interrupts;

four 8-bit I/O ports, with four programmable output configurations for each

pin;

30 MHz operating frequency at 5V;

® power saving operating modes: idle and power down. Wake-Up from
power down via an external interrupt is supported;

¢ 44-pin PLCC and 44-pin LQFP packages.

The basic block diagram is shown in Figure F.1.

XA CPU core

I
[
I
I
[
I
I
[
: bus
[
I
I
[
I
I
[

Program
memory SFR
bus
T
64 KB «
FLASH I
Data
bus
2048 bytes P —
static RAM |
I

Timer 0, 1

Timer 2

Watchdog
timer

Figure F.1 XAG49 block diagram (courtesy Philips Semiconductors)

F.2 Pin-out diagram for the XAG49

Packages include a 44-pin PLCC package and a 44-pin low quad flat pack
(LQFP) package. The PLCC package is illustrated in Figure F.2. Note that
although both packages have 44 pins only 42 pins in each case are utilised since
2 pins have no internal connections (NC).

362 Appendix F

6 1 40
7 [139
PLCC
17 129
L] L]
18 28
Pin Function Pin Function
1 Vg 23 Vpp
2 P1.0/A0/WRH 24 P2.0/A12D8
3 P1.1/A1 25 P2.1/A13D9
4 P1.2/A2 26 P2.2/A14D10
5 P1.3/A3 27 P2.3/A15D11
6 P1.4/RxD1 28 P2.4/A16D12
7 P1.5/TxD1 29 P2.5/A17D13
8 P1.6/T2 30 P2.6/A18D14
9 P1.7/T2EX 31 P2.7/A19D15
10 RST 32 PSEN
11 P3.0/RxDO 33 ALE
12 NC 34 NC
13 P3.1/TxDO 35 EA/Vpop/WAIT
14 P3.2/INTO 36 P0.7/A11D7
15 P3.3/INT1 37 P0.6/A10D6
16 P3.4/T0 38 P0.5/A9D5
17 P3.5/T1/BUSW 39 P0.4/A8D4
18 P3.6/WRL 40 PO0.3/A7D3
19 P3.7/RD 41 P0.2/A6D2
20 XTAL2 42 P0.1/A5D1
21 XTAL1 43 P0.0/A4DO

Figure F.2 XAG49 PLCC package pin-out layout (courtesy Philips
Semiconductors)

A brief description of the function of each of the pins, as applicable to the
PLCC package, is as follows:

SUPPLY VOLTAGE (VDD and Vgs)

The device operates from a single +5V supply connected to pins 23 and
44 (Vpp) while pins 1 and 22 (Vss) are grounded.

INPUT/OUTPUT (1/O) PORTS

Thirty-two of the pins are arranged as four 8-bit I/O ports PO—P3. These pins
are dual purpose with each capable of operating as a control line or part of the

Appendix F 363

data/address bus in addition to the I/O functions. Each port operates as an
8-bit I/O port with a user-configurable output type. Port latches have 1s written
to them and are configured in the quasi-bidirectional mode during reset.
Operation of the port pins as inputs or outputs depends on the selected port
configuration. Each port pin may be configured independently. Details of each

port are as follows:

e Port 0 (pins 36 to 43). When the external program/data bus is used, the
port becomes the multiplexed low data/instruction byte and address lines

4toll.

e Port 1 (pins 2 to 9). The port pins also serve special functions as follows:

P1.0 AO/WRH

P1.1 Al
P1.2 A2
P1.3 A3
P1.4 RxD1
P1.5 TxDl1
P1.6 T2
P1.7 T2EX

Address bit 0 of the external address bus when the
external data bus is configured for an 8-bit width.
When the external data bus is configured for 16-bit
width, this pin becomes the high byte write strobe
Address bit 1 of the external address bus

Address bit 2 of the external address bus

Address bit 3 of the external address bus

Receiver input for serial port 1

Transmitter output for serial port 1

Timer/counter 2 external count input/clockout
Timer/counter 2 reload/capture/direction control

e Port 2 (pins 24 to 31). When the external program/data bus is used in 8-bit
mode the number of address lines that appear on the port is user program-
mable; when used in 16-bit mode the port becomes the multiplexed low
data/instruction byte and address lines 12 to 19.

e Port 3 (pins 11 and pins 13 to 19). These pins, in addition to the I/O role,
serve the special functions summarised below:

P3.0 RxDO
P3.1 TxDO
P3.2 INTO
P3.3 INT1
P3.4 TO

P3.5 T1/BUSW

P3.6 WRL
P3.7 RD

Receiver serial data input port

Transmitter serial data output port

External interrupt 0 input

External interrupt 1 input

Timer/counter 0 external input, or timer 0 overflow

output

Timer/counter | external input, or timer 1 overflow

output. The value on this pin is latched as the external

reset input is released and defines the default external

data bus width (BUSW) where 0=28-bit bus and
1 =16-bit bus

External data memory low byte write strobe

External data memory read strobe

364 Appendix F

RST (RESET) (PIN 10)

When this input goes low the microcontroller is reset, causing the I/O ports and
peripherals to assume their default values. The processor also begins execution
at the address contained in the reset vector.

XTALI AND XTAL2 (PINS 21 AND 20 RESPECTIVELY)

The XTALI input provides an input to the inverting amplifier used in the
oscillator circuit and an input to the internal clock generator circuits. The
XTAL?2 pin provides an output from the oscillator amplifier.

PSEN (PROGRAM STORE ENABLE) (PIN 32)

This pin provides an output read strobe to external program memory. The
output is active low during the fetch stage of an instruction. The signal is not
activated during a fetch from internal memory.

ALE (ADDRESS LATCH ENABLE) (PIN 33)

A high ALE signal is an output pulse used to latch the address portion of the
multiplexed address/data bus. The signal only occurs when it is needed in order
to process a bus cycle.

EA/WAIT|V pp (EXTERNAL ACCESS/WAIT/PROGRAMMING
VOLTAGE) (PIN 35)

The EA input determines whether the internal program memory of the micro-
controller is used for code execution. The value on the EA pin is latched as the
external reset input is released and applies during later execution. When latched
as a 0, external program memory is used exclusively; when latched as a 1,
internal program memory will be used up to its limit, with external program
memory used above that point. After reset is released this pin takes on the
function of bus Wait input. If wait is asserted high during any external bus
access, the cycle will be extended until Wait is released. During EPROM
programming this pin is also the programming supply voltage input.

F.3 Memory organisation

INTRODUCTION

The memory space of XA is configured such that code and data memory
(including SFRs) are organised in separate address spaces. The XA architecture
supports 16 MB (24-bit address) of both code and data space. The size and type
of memory are specific to an XA derivative. The XAG49 has only 20 address

Appendix F 365

lines with a limit of 1 MB of memory. The XA supports different types of both
code and data memory e.g. code memory could be EPROM, EEPROM, OTP
ROM, Flash and Masked ROM whereas data memory could be RAM,
EEPROM or Flash. The XAG49 has flash code memory and RAM data
memory.

THE XA REGISTER FILE

The XA architecture is optimised for arithmetic, logical and address-computation
operations on the contents of one or more registers in the XA register file. The
register file (see Figure F.3) allows access to eight words of data at any one time;
the eight words are also addressable as 16 bytes.

| System stack pointer J
R7 R7H User 'stack R7L M
7 pointer 7
Ré R6H R6L
Global registers
R5 R5H R5L
R4 R4H R4L
R3 R3H R3L mE
R2 R2H R2L]
Banked registers
R1 R1H R1L
RO ROH RoOL
I
I

Figure F.3 XA register file diagram (courtesy Philips Semiconductors)

The bottom four word registers are ‘banked’. That is, there are four groups
of registers, any one of which may occupy the bottom four words of the register
file at any one time. This feature may be used to minimise the time required for
context switching during interrupt service, and to provide more register space
for complicated algorithms. For some instructions — 32-bit shifts, multiplies
and divides — adjacent pairs of word registers are referenced as double words.
The upper four words of the register file are not banked. The topmost word
register is the SP, while any other word register may be used as a general-
purpose pointer to data memory. The entire register file is bit addressable.
That is, any bit in the register file (except the three unselected banks of the
bottom four words) may be operated on by bit manipulation instructions.

366 Appendix F

The XA instruction encoding allows for future expansion of the register file by
the addition of eight word registers. If implemented, these additional registers
will be word data registers only and cannot be used as pointers or addressed as
bytes. The overall XA register file structure provides a superset of the 80C51
register structure.

There are two stack pointers, one for user mode and another for SM. At any
given instant only one stack pointer is accessible and its value is in R7. When
PSW.SM is 0, user mode is active and the USP is accessible via R7. When
PSW.SM is 1, the XA is operating in SM, and SSP is in SP (R7). (Note that all
interrupts save stack frames on the system stack, using the SSP, regardless of
the current operating mode.) There are four distinct instances of registers RO
through R3. At any given time, only one set of the four banks is active,
referenced as RO through R3, and the contents of the other banks are inaccessible.
This allows high-speed context-switching, for example, for interrupt service
routines. PSW bits RS1 and RS0 select the active register bank:

RS1 RSO Visible register bank

0 0 Bank 0
0 1 Bank 1
1 0 Bank 2
1 1 Bank 3

BIT ACCESS TO REGISTERS

The XA registers are all bit addressable. Figure F.4 shows how bit addresses
overlie the basic register file map. In general, absolute bit references as given in
this map are unnecessary.

XA software development tools provide symbolic access to bits in registers.
For example, bit 7 may be designated as ‘R0.7’ with no ambiguity. Bit refer-
ences to banked registers R0 through R3 access the currently accessible register
bank, as set by PSW bits RS1, RSO and the currently selected stack pointer
USP or SSP. The unselected registers are inaccessible.

THE XA MEMORY SPACES

The XA divides physical memory into program and data memory spaces.
Twenty-four address bits, corresponding to a 16 MB address space, are defined
in the XA architecture. In any given XA implementation, fewer than all
24 address bits may actually be used, and there is provision for a small-memory
mode which uses only 16-bit addresses. Code and data memory may be on-chip
or external, depending on the XA variant and the user implementation.
Whether a specific region is on-chip or external does not, in general, affect
access to the memory. As mentioned earlier the XAG49 utilises only 20 address
lines with a 1 MB address space.

Appendix F 367

R15 |FF|FE|FD|FC|FB|FA|F9| F8|F7|Fe|F5| F4F3| F2| F1|FO

R14 |EF|EE[ED|EC|EB|EA|E9|E8|E7|E6|E5|E4|E3|E2| E1/EO

R7 |7F|7E|7D|7C|7B|7A|79|78|77|76|75|74|73|72|71|70

R6 (6F|6E|6D|6C|6B|6A|69|68|67(66(65|64|63|62(61(60

R5 |5F|5E|5D|5C|5B|5A(59 58|57 |56 |55|54(53|52(51 |50
R4 |4F|4E|4D|4C|4B|4A|49 48|47 |46|45|44|43|42|41 |40

R3 [3F|3E|3D|3C|3B|3A|39|38|37|36(35|34|33|32|31(30

R2 (2F|2E|2D|2C|2B|2A|29|28|27 |26(25|24|23|22|21 |20
R1 (1F|1E|1D|1C|1B|1A|19|18]|17|16{15|14|13|12|11{10

RO |OF|0OE|0D|0C|0B|0A|09|08]07|06|05|04|03|02|01|00

RnH RnL

Figure F.4 XA bit address to registers (courtesy Philips Semiconductors)

DATA MEMORY

The XA architecture supports a 16 MB data memory space with a full 24-bit
address. Some derivative parts may implement fewer address lines for a smaller
range. The data space beginning at address 0 is normally on-chip and extends to
the limit of the RAM size of a particular XA derivative. For addresses above
that on a derivative, the XA will automatically roll over to external data
memory. Data memory in the XA is divided into 64 KB segments (Figure F.5)
to provide an intrinsic protection mechanism for multi-tasking systems and to
improve performance.

Segment registers provide the upper eight address bits needed to obtain a
complete 24-bit address in applications that require large data memories. The
XA provides two segment registers used to access data memory, the data
segment register (DS) and the extra segment register (ES). Each pointer register
is associated with one of the segment registers via the segment select (SSEL)
register. Pointer registers retain this association until it is changed under
program control. Address generation using the segment select register is shown
in Figure F.6.

A 0 in the SSEL bit corresponding to the pointer register selects DS (default
on RESET) and 1 selects the ES. For example, when R3 contains a pointer
value, the full 24-bit address is formed by concatenating DS or ES, as deter-
mined by the state of SSEL bit 3, as the most significant 8 bits. As a conse-
quence of segmented addressing, the XA data memory space may be viewed as
256 segments of 64 KB each.

368 Appendix F

Segment 255,

:‘ (Segmentn) -~

T Segment1 .-

Segment 0

64KB

Figure F.5 XA data memory segments (courtesy Philips Semiconductors)

SSEL |ESWEN |R6SEG |R5SEG | R4SEG |R3SEG | R2SEG | R1SEG | ROSEG

8-bit segment

DS identifier
Segment |
registers X
d
ES ® R3 16-bit segment offset
1 |
Complete
24-bit memory
address

Figure F.6 Use of segment registers for XA address generation (courtesy Philips
Semiconductors)

The XA provides flexible data addressing modes. Most arithmetic, logic and
data movement instructions support the following modes of addressing data
memory:

Direct. The first 1 KB of data on each segment may be accessed by an address
contained within the instruction.

Indirect. A complete 24-bit data memory address is formed by an 8-bit
segment register concatenated with 16 bits from a pointer register.

Indirect with offset. An 8-bit or 16-bit signed offset contained within the
instruction is added to the contents of a pointer register, then concatenated with

Appendix F 369

an 8-bit segment register to produce a complete address. This mode allows access
into a data structure when a pointer register contains the starting address of the
structure. It also allows subroutines to access parameters passed on the stack.

Indirect with auto-increment. The address is formed in the same manner as
plain indirect, but the pointer register contents are automatically incremented
following the operation.

Data movement instructions and some special purpose instructions also
have additional data addressing modes. The XA data memory addressing
scheme provides for upward compatibility with the 80C51. The memory map
for the XAG49 is shown in Figure F.7.

Data segment 0 Other data segments
FFFFFH FFFFFH
Data memory
(indirectly addressed,
off-chip)
Data memory
(indirectly addressed,
off-chip)
_________ 0800H
. O7FFH
Data memory
(indirectly addressed,
on-chip)
0400H o400H| |
_________ 03FFH) 03FFH
2KB Data memory - Data memory
on-chip data % (directly and indirectly (dc;:jectly agld |n;;1f|rer$tly)/
mermory addressable, on-chi addressable, off-chip
(RAM) e e, on-chip)
Directly addressed data
_________ 0040H (1 KB per segment) 0040H -]
Bit-addressable 003FH 003FH Bit-addressable
data area 0020H 0020H data area
Data memory 001FH 001FH Data memory
(directly and indirectly (directly and indirectly
L addressable, on-chip) 0000H _J 0000H addressable, off-chip)

Figure F.7 XAG49 data memory map (courtesy Philips Semiconductors)

CODE MEMORY

The XA is a Harvard architecture device, meaning that the code and data
spaces are separate. The XA provides a continuous, unsegmented linear code
space that may be as large as 16 megabytes. In XA derivatives with on-chip
ROM or EPROM code memory, the on-chip space always begins at code
address 0 and extends to the limit of the on-chip code memory. Above that,
code will be fetched from off-chip. Most XA derivatives will support an
external bus for off-chip data and code memory, and may also be used in a

370 Appendix F

ROM-less mode with no code memory used on-chip. In some cases, code
memory may be addressed as data. Special instructions provide access to
the entire code space via pointers. Either a special segment register (CS or code
segment) or the upper 8 bits of the PC may be used to identify the portion of
code memory referenced by the pointer. The arrangement for the XAG49
device is shown in Figure F.8.

FFFFFH

1 Upto1mB

I~ total code <=
memory
oooHY) 0 FFFFH
FFFFH 64 KB |__2KBboot ROM__ | FgooH
on-chip

code memory
0000H

Note: The boot ROM replaces the top 2 KB of Flash memory when it is enabled.

Figure F.8 XAG49 program memory map (courtesy Philips Semiconductors)

FLASH EPROM MEMORY

The XAG49 flash memory augments EPROM functionality with in-circuit
electrical erasure and programming. The flash can be read and written as bytes.
The chip erase operation will erase the entire program memory. The block erase
function can erase any single flash block. In-circuit programming and standard
parallel programming are both available. On-chip erase and write timing gen-
eration contribute to a user-friendly programming interface. The XAG49 flash
reliably stores memory contents even after 10000 erase and program cycles. The
cell is designed to optimise the erase and programming mechanisms. In addi-
tion, the combination of advanced tunnel oxide processing and low internal
electric fields for erase and programming operations produces reliable
cycling. For ISP, the XAG49 can use a single +5V power supply. Faster ISP
may be obtained, if required, through the use of a +12V ¥V, supply. Parallel
programming (using separate programming hardware) uses a +12V Vp,

supply.

Appendix F 371

Features

¢ Flash EPROM internal program memory with single voltage programming
and block erase capability.

¢ Internal 2 KB fixed boot ROM, containing low-level programming routines
and a default loader. The boot ROM can be turned off to provide access to
the full 64 KB flash memory.

® Boot vector allows user provided flash loader code to reside anywhere in the
flash memory space. This configuration provides flexibility to the user.

e Default loader in boot ROM allows programming via the serial port with-
out the need for a user provided loader.

e Up to 1 MB external program memory if the internal program memory is
disabled (EA = 0) .

® Programming and erase voltage: Vpp, = Vpp (5V power supply), or 12V
+5% for ISP. Using 12V ¥}, for ISP improves programming and erase time.

e Read/programming/erase in ISP:

1. Byte-wise read (60 ns access time).
2. Byte programming (3—4min for 64 KB flash, depending on clock
frequency).

¢ In-circuit programming via user-selected method, typically RS232 or paral-
lel 1/O port interface.
Programmable security for the code in the flash.
10000 minimum erase/program cycles each byte over operating tempera-
ture range.

¢ [0-year minimum data retention.

Flash memory organisation

The XAG49 contains 64 KB of flash program memory. This memory is organ-
ised as five separate blocks. The first two blocks are 8 KB in size, filling the
program memory space from address 0 through 3FFF hex. The final three
blocks are 16 KB in size and occupy addresses from 4000 through FFFF hex.
Figure F.9 shows the flash memory configuration.

Flash programming and erasure

The XAG49 flash microcontroller supports a number of programming possi-
bilities for the on-chip flash memory. The flash memory may be programmed in
a parallel fashion on standard programming equipment in a manner similar to an
EPROM microcontroller. The XAG49 microcontroller is able to program its own
flash memory while the application code is running. Also, a default loader built
into a boot ROM allows programming blank devices serially through the UART.

Using any of these types of programming, any of the individual blocks may
be erased separately, or the entire chip may be erased. Programming of the flash
memory is accomplished one byte at a time.

372 Appendix F

[' FFFF
FRFF ! BootROM |
b eeeeee—--1 F800
Block 4
16 KB
C000
Block 3
16 KB
Program
address 8000
Block 2
16 KB
4000
Block 1
8KB
2000
Block 0
8KB
0000

Figure F.9 XAG49 flash memory configuration (courtesy Philips Semiconductors)

BOOT ROM

When the microcontroller programs its own flash memory, all of the low level
details are handled by code that is permanently contained in a 2KB ‘Boot
ROM’ that is separate from the flash memory. A user program simply calls the
entry point with the appropriate parameters to accomplish the desired oper-
ation. Boot ROM operations include things like: erase block, program byte,
verify byte program security lock bit, etc. The boot ROM overlays the program
memory space at the top of the address space from F800 to FFFF hex, when it
is enabled by setting the ENBOOT bit at AUXR1.7. The boot ROM may be
turned off so that the upper 2 KB of flash program memory are accessible for
execution.

ENBOOT AND PWR.VLD

Setting the ENBOOT bit in the AUXR register enables the boot ROM and
activates the on-chip Vy, generator if V,;, is connected to Vpp rather than 12V
externally. The PWR_VLD flag indicates that V}, is available for programming
and erase operations. This flag should be checked prior to calling the boot
ROM for programming and erase services. When ENBOOT is set, it typically
takes 5 us for the internal programming voltage to be ready.

The ENBOOT bit will automatically be set if the status byte is non-zero
during reset, or when PSEN is low, ALE is high and EA is high at the falling

Appendix F 373

edge of reset. Otherwise, ENBOOT will be cleared during reset. When pro-
gramming functions are not needed, ENBOOT may be cleared. This enables
access to the 2 KB of flash code memory that is overlaid by the boot ROM,
allowing a full 64 KB of flash code memory.

F.4 Special function registers

Special function registers (SFRs) provide a means for the XA to access core
registers, internal control registers, peripheral devices and 1/O ports. Any SFR
may be accessed by a program at any time without regard to any pointer or
segment. An SFR address is always contained entirely within an instruction.
The core registers that are accessed as SFRs include PCON, SCR, SSEL,
PSWH, PSWL, CS, ES and DS. Communication with these registers as well
as on-chip peripheral devices is via the dedicated SFR bus, which is shown in
Figure F.1.

SFR ADDRESS SPACE

The total SFR space is 1 KB in size. This is further divided into two 512 byte
regions. The lower half is assigned to on-chip SFRs, while the second half is
reserved for off-chip SFRs. This provides a means to add off-chip I/O devices
mapped into the XA as SFRs. Off-chip SFR access is not implemented on all
XA derivatives. On-chip SFRs are implemented as needed to provide control
for peripherals or access to CPU features and functions. Each XA derivative
may have a different number of SFRs implemented because each has a different
set of peripheral functions. Many SFR addresses will be unused on any parti-
cular XA derivative.

The first 64 bytes of on-chip SFR space are bit addressable. Any CPU or
peripheral register that allows bit access will be allocated an address within that
range. The complete list of SFRs available for the XAG49 device is illustrated
in Table F.1.

I/O port output configuration. Each I/O port pin can be user configured to
one of four output types. The types are:

e quasi-bidirectional (essentially the same as standard 80CS51 family
I/O ports)
open-drain
push-pull

e off (high impedance).

The default configuration after reset is quasi-bidirectional. However, in the
ROMIess mode (the EA pin is low at reset), the port pins that comprise the
external data bus will default to push—pull outputs. I/O port output config-
urations are determined by the settings in port configuration SFRs. There are
two SFRs for each port, called PnCFGA and PnCFGB, where ‘n’ is the port

Table F.1 XAG49 special function registers (courtesy Philips Semiconductors)
Special function registers

SFR Reset

Name Description address MSB Bit functions and addresses LSB value
AUXR Auxiliary function

rei 44C ENBOOT | FMIDLE [PWR_VLD - — - - —

egister —
BCR Bus configuration

reci 46A - - - WAITD BUSD BC2 BCl1 BCO Note 1

egister
BTRH Bus timing register

high byte 469 DW1 DWO DWALI DWAO0 DRI DRO DRAI DRAO FF
BTRL Bus timing register EF

1 468 WMI WMO ALEW - CR1 CRO CRAl CRAO0

ow byte
CS Code segment 443 00
DS Data segment 441 00
ES Extra segment 442 00

33F 33E 33D 33C 33B 33A 339 338

IEH* Interrupt enable

high byte 427 - - - - ETI1 ERI1 ETIO ERIO 00

337 336 335 334 333 332 331 330

IEL* Interrupt enable

low byte 426 EA — - ET2 ET1 EX1 ETO EXO0 00
IPAO Interrupt priority 0 4A0 _ PTO _ PX0 00
IPA1 Interrupt priority 1 4A1 _ PT1 _ PX1 00
IPA2 Interrupt priority 2 4A2 _ _ _ PT2 00
IPA4 Interrupt priority 4 4A4 — PTIO _ PRIO 00
IPAS Interrupt priority 5 4AS _ PTI1 _ PRII 00

PO*

P1*

p2*

P3*

POCFGA

PICFGA

P2CFGA

P3CFGA

POCFGB

PICFGB

P2CFGB

P3CFGB

PCON*

Port 0
Port 1
Port 2
Port 3

Port 0
configuration A
Port 1
configuration A
Port 2
configuration A
Port 3
configuration A
Port 0
configuration B
Port 1
configuration B
Port 2
configuration B
Port 3
configuration B

Power control
register

430

431

432

433

470

471

472

473

4F0

4F1

4F2

4F3

404

387 386 385 384 383 382 381 380

| AD7 AD6 AD5 | AD4 AD3 | AD2 | ADI | AD0 |
38F 38E 38D 38C 38B 38A 389 388

| T2EX T2 TxDI | RxDI A3 | a2 | a1 | wre |
397 396 395 394 393 392 391 390

X P2.6 P25 | P24 P23 | P22 | P21 | P20 |
39F 39E 39D 39C 39B 39A 399 398

| RD WR L | TO INTL | INTO | TxDO | RxDO |
227 226 225 224 223 222 221 220
- - - - - - PD IDL

Note 5

Note 5

Note 5

Note 5

Note 5

Note 5

Note 5

Note 5

00

Table F.1 Continued

SFR Bit functions and addresses Reset
Name Description address MSB LSB value
20F 20E 20D 20C 20B 20A 209 208
PSWH* Program status
word (high byte) 401 SM ™ RSI RSO IM3 M2 IM1 IMO Note 2
207 206 205 204 203 202 201 200
PSWL* Program status
word (low byte) 400 C AC - - - v N z Note 2
217 216 215 214 213 212 211 210
PSWS51* 80C51 compatible
PSW 402 C AC FO RS1 RSO A% F1 P Note 3
RTHO Timer 0 extended 455 00
reload, high byte
RTHI Timer | extended 457 00
reload, high byte
RTLO Timer 0 extended 454 00
reload, low byte
RTLI1 Timer 1 extended 456 00
reload, low byte
307 306 305 304 303 302 301 300
SOCON* Serial port 0
control register 420 SMO0_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TIO RIO 00
30F 30E 30D 30C 30B 30A 309 308
SOSTAT* Serial port 0
extended status 421 - - - - FEO BRO OEO0 STINTO | 00
SOBUF Serial port 0 460
buffer register X
SOADDR Serial port 0 461 00

address register

SOADEN

SICON*

SISTAT*

S1BUF

SIADDR

SIADEN

SCR

SSEL*

SWE

Serial port 0
address enable
register

Serial port 1
control register

Serial port 1
extended status
Serial port 1
buffer register
Serial port 1
address register
Serial port 1
address enable
register

System
configuration
register

Segment selection
register

Software interrupt
enable

462

424

425
464

465

466

440

403

47A

327 326 325 324 323 322 321 320
SMO 1 | SMI_1 | SM21 | REN_1 | TB8_I RBS_I TL 1 RI I
32F 32E 32D 32C 32B 2A 329 328
- - - - FEI BRI OEl STINTI
- - - - PTI PTO CcM PZ
21F 21E 21D 21C 21B 21A 219 218
ESWEN | R6SEG | RSSEG | R4SEG | R3SEG | R2SEG | RISEG | ROSEG
- SWE7 SWE6 SWES SWE4 SWE3 SWE2 SWEI

00

00

00

00

00

00

00

00

Table F.1 Continued

SFR Bit functions and addresses Reset
Name Description address MSB LSB value
357 356 355 354 353 352 351 350
SWR* Software interrupt
request 42A - SWR7 SWR6 SWRS SWR4 SWR3 SWR2 SWRI1 00
2C7 2C6 2C5 2C4 2C3 2C2 2C1 2C0
T2CON* Timer 2 control
register 418 TF2 EXF2 RCLKO | TCLKO EXEN2 TR2 C/T2 CP/RL2 | 00
2CF 2CE 2CD 2CC 2CB 2CA 2C9 2C8
T2MOD* Timer 2 mode
control 419 — - RCLK1 TCLK1 - — T20E DCEN 00
TH2 Timer 2 high byte 459 00
TL2 Timer 2 low byte 458 00
T2CAPH Timer 2 capture 45B 00
register, high byte
T2CAPL Timer 2 capture 45A 00
register, low byte
287 286 285 284 283 282 281 280
TCON* Timer 0 and 1
control register 410 TF1 TRI1 TFO TRO IE1 ITI IEO ITO 00
THO Timer 0 high byte 451 00
TH1 Timer 1 high byte 453 00
TLO Timer 0 low byte 450 00
TL1 Timer 1 low byte 452 00
TMOD Timer 0 and 1 mode
control 45C GATE C/T Ml MO GATE C/T Ml Mo 00
28F 28E 28D 28C 28B 28A 289 288
TSTAT* Timer 0 and 1
411 - - - - - TIOE - TOOE 00

extended status

2FF 2FE 2FD 2FC 2FB 2FA 2F9 2F8

WDCON* Watchdog control
register 41F PRE2 PREI] PREO - WDRUN | WDTOF - Note 6
WDL Watchdog timer 45F 00
reload
WFEEDI1 Watchdog feed 1 45D X
WFEED2 Watchdog feed 2 45E X
Notes:

* SFRs are bit addressable.

1. Atreset, the BCR register is loaded with the binary value 0000 0all, where “a” is the value on the BUSW pin. This defaults the address bus size to 20 bits since the XA-G49 has only
20 address lines.

2. SFR is loaded from the reset vector.

3. All bits except F1, FO and P are loaded from the reset vector. Those bits are all 0.

4. Unimplemented bits in SFRs are X (unknown) at all times. Ones should not be written to these bits since they may be used for other purposes in future XA derivatives. The reset
value shown for these bits is 0.

5. Port configurations default to quasi-bidirectional when the XA begins execution from internal code memory after reset, based on the condition found on the EA pin. Thus all
PnCFGA registers will contain FF and PnCFGB registers will contain 00. When the XA begins execution using external code memory, the default configuration for pins that are
associated with the external bus will be push-pull. The PnCFGA and PnCFGB register contents will reflect this difference.

6. The WDCON reset value is E6 for a Watchdog reset, E4 for all other reset causes.

7. The XA-G49 implements an 8-bit SFR bus, as stated in Chapter 8 of the X4 User Guide. All SFR accesses must be 8-bit operations. Attempts to write 16 bits to an SFR will
actually write only the lower 8 bits. Sixteen-bit SFR reads will return undefined data in the upper byte.

8. The AUXR reset value is typically 00H. If the Boot Loader is activated at reset because the Flash status byte is non-zero or because the Boot Vector has been forced (by PSEN = 0,
ALE = 1, EA =1 at reset), the AUXR reset value will be 1x00 0000B. Bit 6 will be a 1 if the on-chip Vpp generator is running and ready, otherwise it will be a 0.

380 Appendix F

number. One bit in each of the two SFRs relates to the output setting for the
corresponding port pin, allowing any combination of the two output types to
be mixed on those port pins. For example, the output type of port 1 pin 3 is
controlled by the setting of bit 3 in the SFRs PICFGA and PICFGB. Table F.2
shows the configuration register settings for the four port output types.

Table F.2 Port configuration register settings

PnCFGB PnCFGA Port output mode

Open drain
Quasi-bidirectional
Off (high impedance)

0
0
1
1 Push—Pull

—_—0 = O

Note: Mode changes may cause glitches to occur during
transitions. When modifying both registers, WRITE
instructions should be carried out consecutively.

F.5 Timer/counters

The XA has two standard 16-bit enhanced timer/counters: timer 0 and timer 1.
Additionally, it has a third 16-bit up/down timer/counter, T2. A central timing
generator in the XA core provides the time-base for all XA timers and counters.
The timer/event counters can perform the following functions:

measure time intervals and pulse duration
count external events

generate interrupt requests

generate PWM or timed output waveforms.

All of the timer/counters (timers 0, 1 and 2) can be independently programmed
to operate either as timers or event counters via the C/T bit in the TnCON register.
All timers count up unless otherwise stated. These timers may be dynamically read
during program execution. The base clock rate of all of the timers is user pro-
grammable. This applies to timers TO, T1 and T2 when running in timer mode (as
opposed to counter mode) and the watchdog timer. The clock driving the timers is
called TCLK and is determined by the setting of two bits (PT1, PTO0) in the system
configuration register (SCR). Details of the SCR register are shown in Table F.3.

The frequency of TCLK may be selected to be the oscillator input divided by
4 (fosc/4), the oscillator input divided by 16 (fosc/16), or the oscillator input divided
by 64 (fosc/04). This gives a range of possibilities for the XA timer functions,
including baud rate generation, timer 2 capture. Note that this single rate setting
applies to all of the timers. When timers TO, T1 or T2 are used in the counter mode,
the register will increment whenever a falling edge (high to low transition) is
detected on the external input pin corresponding to the timer clock. These inputs
are sampled once every two oscillator cycles, so it can take as many as four
oscillator cycles to detect a transition. Thus the maximum count rate that can be

Appendix F 381

Table F.3 SCR register bit functions
SCR.

address 440H

not bit addressable

MSB LSB
— - — — PT1 PTO CM Pz
7 6 5 4 3 2 1 0
Bit Symbol Function
7,6,5 4 — Reserved for future use
3,2 PT1, PTO Sets operating conditions as follows:
PT1 PTO Prescaler selection
0 0 fosc/4
0 1 Jose/16
1 0 Josc/64
1 1 reserved
1 CM Compatibility mode allows the XA to execute most translated

80CS51 code on the XA. The XA register file must copy the
80C51 mapping to data memory and mimic the 80C51
indirect addressing scheme

0 Pz Page zero mode forces all program and data addresses to
16-bits only. This saves stack space and speeds up execution
but limits memory access to 64 KB

supported is fos./4. The duty cycle of the timer clock inputs is not important, but any
high or low state on the timer clock input pins must be present for two oscillator
cycles before it is guaranteed to be ‘seen’ by the timer logic.

TIMER 0 AND TIMER 1

The ‘timer’ or ‘counter’ function is selected by control bits C/T in the SFR
TMOD. These two timer/counters have four operating modes, which are
selected by bit-pairs (M1, M0) in the TMOD register. Timer modes 1, 2 and
3 in XA are kept identical to the 80C51 timer modes for code compatibility.
Only the mode 0 is replaced in the XA by a more powerful 16-bit auto-reload
mode. This will give the XA timers a much larger range when used as time
bases. The recommended M1, MO settings for the different modes are shown in
Table F.4.

Table F.4 TMOD register bit functions
TMOD.

address 45CH

not bit addressable

382 Appendix F

MSB LSB
GATE C/T M1 MO GATE C/T Ml MO

--------------- TIMER 1 TIMER 0 ----------memm-
The bit functions are:

GATE When set timer/counter x is enabled when INTX pin is high and TRx
(see TCON) is set. When clear timer x is enabled when TRx bit set

C/T When clear, timer operation (input from internal clock)
When set, counter operation (input from Tx input pin)

The M1 and MO bit functions depend on the bit assignment as shown below:

Ml MO Operation

0 0 16-bit auto-reload timer/counter

0 1 16-bit non-auto-reload timer/counter
1 0 8-bit auto-reload timer/counter

1 1 Dual 8-bit timer mode (timer 0 only)

Mode 0

For timers TO or T1 the 13-bit count mode on the 80C51 (current mode 0)
has been replaced in the XA with a new enhanced 16-bit auto-reload mode.
Four additional 8-bit data registers (two per timer: RTHn and RTLn) are
created to hold the auto-reload values. In this mode, the TH overflow will set
the TF flag in the TCON register and cause both the TL and TH counters to be
loaded from the RTL and RTH registers respectively.

These new SFRs will also be used to hold the TL reload data in the 8-bit
auto-reload mode (mode 2) instead of TH. The overflow rate for timer 0 or
timer 1 in mode 0 may be calculated as follows:

fOSC
N#(65536 — Timer_reload_value)

where N = the TCLK prescaler value: 4 (default), 16, or 64.

Mode 1

Mode 1 is the 16-bit non-auto-reload mode.

Mode 2

Mode 2 configures the timer register as an 8-bit counter (TLn) with auto-
matic reload. Overflow from TLn not only sets TFn, but also reloads TLn with
the contents of RTLn, which is preset by software. The reload leaves THn
unchanged. Mode 2 operation is the same for timer/counter 0. The overflow
rate for timer 0 or timer 1 in mode 2 may be calculated as follows:

fOSC
N(256 — Timer_Reload_value)

where N = the TCLK prescaler value: 4, 16 or 64.

Timer_rate =

Timer_rate =

Appendix F 383

Mode 3

Timer 1 in mode 3 simply holds its count. The effect is the same as setting
TR1 = 0. Timer 0 in mode 3 establishes TLO and THO as two separate counters.
TLO uses the timer 0 control bits: C/T, GATE, TR0, INT0 and TF0. THO is
locked into a timer function and takes over the use of TR1 and TFI from timer 1.
Thus, THO now controls the ‘timer 1’ interrupt.

Mode 3 is provided for applications requiring an extra 8-bit timer. When
timer 0 is in mode 3, timer 1 can be turned on and off by switching it out of and
into its own mode 3, or can still be used by the serial port as a baud rate
generator, or in fact, in any application not requiring an interrupt. Details of
the TCON register are shown in Table F.5.

Table F.5 TCON register bit functions
TCON.

address 410H

bit addressable

MSB LSB
TF1 TR1 TFO TRO IEI IT1 1EO ITO
7 6 5 4 3 2 1 0

Bit Symbol Function

7 TF1 Timer 1 overflow flag. Set by hardware on timer/counter overflow.
This flag will not be set if TIOE (TSTAT.2) is set
Cleared by hardware when processor vectors to interrupt routine, or
by clearing the bit in software

6 TR1 Timer 1 run control bit. Set/cleared by software to turn counter/timer
1 on/off
5 TFO Timer 0 overflow flag. Set by hardware on timer/counter overflow.

This flag will not be set if TOOE (TSTAT.0) is set. Cleared by
hardware when processor vectors to interrupt routine, or by clearing
the bit in software

4 TRO Timer 0 run control bit. Set/cleared by software to turn counter/timer
0 on/off

3 1IE1 Interrupt 1 edge flag. Set by hardware when external interrupt edge
detected. Cleared when interrupt processed

2 IT1 Interrupt 1 type control bit. Set/cleared by software to specify falling
edge/low-level triggered external interrupts

1 1E0 Interrupt 0 edge flag. Set by hardware when external interrupt edge
detected. Cleared when interrupt processed

0 ITO Interrupt 0 type control bit. Set/cleared by software to specify falling

edge/low-level triggered external interrupts

NEW TIMER-OVERFLOW TOGGLE OUTPUT

In the XA, the timer module now has two outputs, which toggle on overflow from
the individual timers. The same device pins that are used for the TO and T1 count

384 Appendix F

inputs are also used for the new overflow outputs. An SFR bit (TnOE in the
TSTAT register) is associated with each counter and indicates whether port-SFR
data or the overflow signal is output to the pin. These outputs could be used in
applications for generating variable duty cycle PWM outputs (changing the auto-
reload register values). Also, variable frequency (fosc/8 to fosc/8,388,608) outputs
could be achieved by adjusting the prescaler along with the auto-reload register
values. With a 30.0 MHz oscillator, this range would be 3.58 Hz to 3.75 MHz.
Details of the SFR register TSTAT are shown in Table F.6.

Table F.6 TSTAT register bit functions
TSTAT

address 411H

bit addressable

MSB LSB
- - - - TIOE - TOOE
7 6 5 4 3 2 1 0

Bit Symbol Function

2 TIOE When 0, this bit allows the T1 pin to clock timer 1 when in the counter mode.
When 1, T1 acts as an output and toggles at every timer 1 overflow

0 TOOE When 0, this bit allows the TO pin to clock timer 0 when in the counter mode.
When 1, TO acts as an output and toggles at every timer 0 overflow

TIMER T2

Timer 2 in the XA is a 16-bit timer/counter, which can operate as either a timer
or as an event counter. This is selected by C/T2 in the SFR T2CON. Upon timer
T2 overflow/underflow, the TF2 flag is set, which may be used to generate an
interrupt. It can be operated in one of three operating modes: auto-reload (up or
down counting), capture or as the baud rate generator (for either or both UARTSs
via SFRs T2MOD and T2CON). These modes are shown in Table F.7. Details of
the T2MOD and T2CON registers are shown in Tables F.8 and F.9 respectively.

Table F.7 Timer 2 operating modes

TR2 CP/RL2 RCLK+TCLK DCEN Mode

0 X X X Timer off (stopped)
1 0 0 0 16-bit auto-reload, counting up
1 0 0 1 16-bit auto-reload, counting up/down

depending on T2EX pin
16-bit capture
Baud rate generator

1 1 0
X 1

> X

Appendix F 385

Table F.8 Details of the T2MOD register bit functions
T2MOD

address 419H

bit addressable

MSB LSB
- RCLK1 | TCLK1 - — T20E | DCEN
7 6 5 4 3 2 1 0
Bit Symbol Function
7,6,3,2 — Not implemented, reserved for future use
5 RCLK1 Receive clock flag
4 TCLK1 Transmit clock flag. RCLK1 and TCLKI1 are used to select
timer 2 overflow rate as a clock source for UART 1 instead
of timer 1
1 T20E Timer 2 output enable bit
0 DCEN Down count enable bit. When set, this allows timer 2 to be

configured as an up/down counter

Table F.9 Details of the T2CON register bit functions
T2CON

address 418H

bit addressable

MSB LSB
TF2 EXF2 |RCLKO|TCLKO | EXEN2| TR2 C/T2 |CP/RL2

7 6 5 4 3 2 1 0

Bit Symbol Function

7 TF2 Timer 2 overflow flag set by hardware on timer/counter overflow.
Must be cleared by software. TF2 will not be set when RCLKO,
TCLKO, RCLK1, TCLKI or T20E =1
6 EXF2 Timer 2 external flag set when either a capture or reload is caused
by a negative transition on T2EX and EXEN2 = 1. This flag will
cause a timer 2 interrupt when this interrupt is enabled. EXF2 is
cleared by software
RCLKO Receive clock flag
4 TCLKO Transmit clock flag. RCLKO and TCLKO are used to select timer 2
overflow rate as a clock source for UARTO instead of timer 1
3 EXEN2 Timer 2 external enable flag. Allows a capture or reload to occur
as a result of a negative transition on T2EX
2 TR2 Start/stop control for timer 2. A logic 1 starts the timer

W

386 Appendix F

Table F.9 Continued

Bit Symbol Function

1 C/T2 Timer 2 timer or counter select:
0 = internal timer
1 = external event counter (falling-edge triggered).

0 CP/RL2 Capture/reload flag. If CP/RL2 and EXEN2 = 1 captures will occur
on negative transitions of T2EX. If CP/RL2 = 0, EXEN2 =1
auto-reloads occur with either timer 2 overflows or negative
transitions at T2EX. If RCLK or TCLK =1 the timer is set to
auto-reload on timer 2 overflow, this bit has no effect

CAPTURE MODE

In the capture mode there are two options which are selected by bit EXEN2 in
T2CON. If EXEN2 = 0, then timer 2 is a 16-bit timer or counter, which upon
overflowing sets bit TF2, the timer 2 overflow bit. This will cause an interrupt when
the timer 2 interrupt is enabled. If EXEN2 = 1, then timer 2 still does the above, but
with the added feature that a 1-to-0 transition at external input T2EX causes the
current value in the timer 2 registers, TL2 and TH2, to be captured into registers
RCAP2L and RCAP2H, respectively. In addition, the transition at T2EX causes bit
EXF2 in T2CON to be set. This will cause an interrupt in the same fashion as TF2
when the timer 2 interrupt is enabled. The capture mode is illustrated in Figure F.10.

AUTO-RELOAD MODE (UPIDOWN COUNTER)

In the auto-reload mode, the timer registers are loaded with the 16-bit value in
T2CAPH and T2CAPL when the count overflows. T2CAPH and T2CAPL are
initialised by software. If the EXEN2 bit in T2CON is set, the timer registers
will also be reloaded and the EXF2 flag set when a 1-to-0 transition occurs at
input T2EX. The auto-reload mode is shown in Figure F.11.

In this mode, timer 2 can be configured to count up or down. This is done by
setting or clearing the bit DCEN (down counter enable) in the T2MOD SFR
(see Table F.7). The T2EX pin then controls the count direction. When T2EX is high,
the count is in the up direction; when T2EX is low, the count is in the down direction.

Figure F.11 shows timer 2, which will count up automatically, since
DCEN = 0. In this mode there are two options selected by bit EXEN?2 in the
T2CON register. If EXEN2 = 0, then timer 2 counts up to FFFFH and sets the
TF2 (overflow flag) bit upon overflow. This causes the timer 2 registers to be
reloaded with the 16-bit value in T2CAPL and T2CAPH, whose values are preset
by software. IfEXEN2 = 1, a 16-bit reload can be triggered either by an overflow
or by a 1-to-0 transition at input T2EX. This transition also sets the EXF2 bit. If
enabled, either TF2 or EXF2 bit can generate the timer 2 interrupt.

In Figure F.12, DCEN = 1; this enables the timer 2 to count up or down. In
this mode, the logic level of T2EX pin controls the direction of count. When a
logic 1 is applied at pin T2EX, the timer 2 will count up. The timer 2 will

o0 TOo

o

TL2 TH2
! (8 bits) (8 bits)
T2 pin 41 CiT2=1 -
Control
Transition
detector TR2 Capture :
T2CAPL T2CAPH
T2EX pin —— ~ ‘\ o-To
- i
i
Control
EXEN2

Figure F.10 Timer 2 in capture mode (courtesy Philips Semiconductors)

Timer 2
interrupt

388 Appendix F

TL2 TH2
o oo (@bits) | (8 bits)
S T | C/T2 =1 :

Control

" TR2 Reload
Transition

detector

T2CAPL T2CAPH

Timer 2
interrupt

T2EX Pin—| ~7x oTo
T
< !

| Control
EXEN2

Figure F.11 Timer 2 in auto-reload mode (DCEN = 0) (courtesy Philips
Semiconductors)

overflow at FFFFH and set the TF2 flag, which can then generate an interrupt
if enabled. This timer overflow also causes the 16-bit value in T2CAPL and
T2CAPH to be reloaded into the timer registers TL2 and TH2, respectively.

A logic 0 at pin T2EX causes timer 2 to count down. When counting down,
the timer value is compared to the 16-bit value contained in T2CAPH and
T2CAPL. When the value is equal, the timer register is loaded with FFFF hex.
The underflow also sets the TF2 flag, which can generate an interrupt if
enabled. The external flag EXF2 toggles when timer 2 underflows or overflows.
This EXF2 bit can be used as a 17th bit of resolution, if needed; the EXF2 flag
does not generate an interrupt in this mode. As the baud rate generator, timer
T2 is incremented by TCLK.

BAUD RATE GENERATOR MODE

By setting the TCLKn and/or RCLKn in T2CON or T2MOD, the timer 2 can
be chosen as the baud rate generator for either or both UARTSs. The baud rates
for transmit and receive can be simultaneously different.

Programmable clock-out

A 50% duty cycle clock can be programmed to come out on pin P1.6. This pin,
besides being a regular 1/O pin, has two alternative functions. It can be
programmed:

1. to input the external clock for timer/counter 2 or
2. to output a 50% duty cycle clock ranging from 3.58 Hz to 3.75 MHz at a
30 MHz operating frequency.

To configure the timer/counter 2 as a clock generator, bit C/T2 (in T2CON)
must be cleared and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) also
must be set to start the timer. The clock-out frequency depends on the oscillator

(Down counting reload value)

FFH FFH Toggle
X EXF2
TCLK C/T2=0
Overflow
o070 > TL2 TH2 > > TF2 Interrupt
_ |
T2PIN _4 Cr2=1 i
| Control l/\l
TR2 ¢ < Count
A direction
1=up
0=down
T2CAPL T2CAPH
(Up counting reload value) T2EX PIN

Figure F.12 Timer 2 auto-reload mode (DCEN =1) (courtesy Philips Semiconductors)

390 Appendix F

frequency and the reload value of timer 2 capture registers (TCAP2H,
TCAP2L) as shown in this equation:

TCLK
2(65536 — TCAP2H, TCAP2L)

In the clock-out mode timer 2 roll-overs will not generate an interrupt. This is
similar to when it is used as a baud-rate generator. It is possible to use timer 2 as
a baud rate generator and a clock generator simultaneously. Note, however,
that the baud-rate will be 1/8 of the clock-out frequency.

WATCHDOG TIMER

The watchdog timer subsystem protects the system from incorrect code execu-
tion by causing a system reset when the watchdog timer underflows as a result
of a failure of software to feed the timer prior to the timer reaching its terminal
count. It is important to note that the watchdog timer is running after any type
of reset and must be turned off by user software if the application does not use
the watchdog function.

Watchdog function

The watchdog consists of a programmable prescaler and the main timer.
The prescaler derives its clock from the TCLK source that also drives timers
0, 1 and 2. The watchdog timer subsystem consists of a programmable 13-bit
prescaler and an 8 bit main timer. The main timer is clocked (decremented) by a
tap taken from one of the top 8 bits of the prescaler as shown in Figure F.13.

The clock source for the prescaler is the same as TCLK (same as the clock
source for the timers). Thus the main counter can be clocked as often as once
every 32 TCLKs (see Table F.10).

WDL
Watchdog feed sequence I

MOV WFEED1, #A5H »\ /e

MOV WFEED2, #5AH
| Prescaler 70 8-bitdown | ¢ o |nternal reset
TCLK ——> ! counter
A A A !
_____________ :
1
y
| PRE2 |PRE1 | PREO| - | - |WDRUN|WDTOF| - |WDCON

Figure F.13 XAG49 watchdog timer arrangement (courtesy Philips
Semiconductors)

Appendix F 391

Table F.10 Prescaler select values in WDCON

PRE2 PREI PREO Divisor
0 0 0 32
0 0 1 64
0 1 0 128
0 1 1 256
1 0 0 512
1 0 1 1024
1 1 0 2048
1 1 1 4096

The watchdog generates an underflow signal (and is auto-loaded from WDL)
when the watchdog is at count 0 and the clock to decrement the watchdog
occurs. The watchdog is 8 bits wide and the auto-load value can range from 0 to
FFH. (The auto-load value of 0 is permissible since the prescaler is cleared
upon auto-load.) This leads to the following user design equations:

tmin = losc X 4% 32 (W=0,N=4)
tmax = losc X 64 x 4096 x 256 (W:255, N:64)
Ip = fose X NXPx (W41)

where 7, 1s the oscillator period, N is the selected prescaler tap value, W is the
main counter auto-load value, P is the prescaler value from Table F.10, #;, is
the minimum watchdog time-out value (when the auto-load value is 0), fnax 1S
the maximum time-out value (when the auto-load value is FFH), 7p is the
design time-out value.

The watchdog timer is not directly loadable by the user. Instead, the value to
be loaded into the main timer is held in an autoload register. In order to cause
the main timer to be loaded with the appropriate value, a special sequence of
software action must take place. This operation is referred to as feeding the
watchdog timer. To feed the watchdog, two instructions must be sequentially
executed successfully. No intervening SFR accesses are allowed, so interrupts
should be disabled before feeding the watchdog. The instructions should move
ASH to the WFEEDI register and then SAH to the WFEED?2 register. If
WFEEDI is correctly loaded and WFEED?2 is not correctly loaded, then an
immediate watchdog reset will occur. The program sequence to feed the watch-
dog timer or cause new WDCON settings to take effect is as follows:

clr ea ; disable global interrupts.
mov.b wfeedl, #A5H ; do watchdog feed part 1
mov.b wfeed2, #f5AH ; do watchdog feed part 2

setb ea ; re-enable global interrupts

392 Appendix F

This sequence assumes that the XA interrupt system is enabled and there is a
possibility of an interrupt request occurring during the feed sequence. If an
interrupt were allowed to be serviced and the service routine contained any
SFR access, it would trigger a watchdog reset. If it is known that no interrupt
could occur during the feed sequence, the instructions to disable and re-enable
interrupts may be removed.

The software must be written so that a feed operation takes place every
tp seconds from the last feed operation. Some tradeoffs may need to be made.
It is not advisable to include feed operations in minor loops or in subroutines
unless the feed operation is a specific subroutine. To turn the watchdog timer
completely off, the following code sequence should be used:

mov.b wdcon,#0 ; set WD control register to clear WDRUN
mov.b wfeedl,#A5SH ; do watchdog feed part 1
mov.b wfeed2,#5AH ; do watchdog feed part 2

This sequence assumes that the watchdog timer is being turned off at the
beginning of initialisation code and that the XA interrupt system has not yet
been enabled. If the watchdog timer is to be turned off at a point when
interrupts may be enabled, instructions to disable and re-enable interrupts
should be added to this sequence.

Watchdog control register (WDCON)

The reset values of the WDCON and WDL registers will be such that the
watchdog timer has a timeout period of 4 x 4096 X ¢, and the watchdog is
running. WDCON can be written by software but the changes only take effect
after executing a valid watchdog feed sequence.

Watchdog detailed operation
When external RESET is applied, the following takes place:

watchdog run control bit set to ON (1)
auto-load register WDL set to 00 (min. count)
watchdog time-out flag cleared

prescaler is cleared

prescaler tap set to the highest divide
auto-load takes place.

When coming out of a hardware reset, the software should load the auto-
load register and then feed the watchdog (cause an auto-load). If the watchdog
is running and happens to underflow at the time the external RESET is applied,
the watchdog time-out flag will be cleared.

Appendix F 393

When the watchdog underflows, the following action takes place (see
Figure F.13):

autoload takes place

watchdog time-out flag is set

watchdog run bit unchanged

autoload (WDL) register unchanged
prescaler tap unchanged

all other device action same as external reset.

Note that if the watchdog underflows, the PC will be loaded from the reset
vector as in the case of an internal reset. The watchdog time-out flag can be
examined to determine if the watchdog has caused the reset condition. The
watchdog time-out flag bit can be cleared by software. The watchdog control
register (WDCON) bit definitions are shown in Table F.11.

Table F.11 WDCON register bit definitions

Bit Symbol Function
7 PRE2 Prescaler select 2, reset to 1
6 PREI Prescaler select 1, reset to 1
5 PREO Prescaler select 0, reset to 1
4 _
3 _
2 WDRUN Watchdog run control bit, reset to 1
1 WDTOF Timeout flag
0 _
F.6 UARTS

The XAG49 includes two UART ports that are compatible with the enhanced
UART used on the 8xC51FB. Baud rate selection is somewhat different due to
the clocking scheme used for the XA timers. Some other enhancements have
been made to UART operation. The first is that there are separate interrupt
vectors for each UART’s transmit and receive functions. The UART transmitter
has been double buffered, allowing packed transmission of data with no gaps
between bytes and less critical interrupt service routine timing. A break detect
function has been added to the UART. This operates independently of the
UART itself and provides a start-of-break status bit that the program may test.
Finally, an overrun error flag has been added to detect missed characters in the
received data stream. The double-buffered UART transmitter may require some
software changes in code written for the original XA G49 single-buffered UART.

Each UART baud rate is determined by either a fixed division of the
oscillator (in UART modes 0 and 2) or by the timer 1 or timer 2 overflow rate
(in UART modes | and 3). Timer 1 defaults to clock both UARTO and

394 Appendix F

UART]I. Timer 2 can be programmed to clock either UARTO through T2CON
(via bits ROCLK and TOCLK) or UARTI through T2MOD (via bits RICLK
and T1CLK). In this case, the UART not clocked by T2 could use T1 as the
clock source. The serial port receive and transmit registers are both accessed at
SFR SnBUF. Writing to SnBUF loads the transmit register, and reading
SnBUF accesses a physically separate receive register.

The serial port can operate in four modes:

Mode 0. Serial I/O expansion mode. Serial data enters and exits through
RxDn. TxDn outputs the shift clock. 8 bits are transmitted/received (LSB first).
(The baud rate is fixed at 1/16 the oscillator frequency.)

Mode 1. Standard 8-bit UART mode. Ten bits are transmitted (through
TxDn) or received (through RxDn): a start bit (0), 8 data bits (LSB first) and
a stop bit (1). On receive the stop bit goes into RB8 in SFR SnCON. The baud
rate is variable.

Mode 2. Fixed rate 9-bit UART mode. Eleven bits are transmitted (through
TxD) or received (through RxD): start bit (0), 8 data bits (LSB first), a
programmable 9th data bit and a stop bit (1). On transmit, the 9th data bit
(TB8_n in SnCON) can be assigned the value of 0 or 1. Or, for example, the
parity bit (P, in the PSW) could be moved into TB8_n. On receive, the 9th data
bit goes into RB8_n in SFR SnCON, while the stop bit is ignored. The baud
rate is programmable to 1/32 of the oscillator frequency.

Mode 3. Standard 9-bit UART mode. Eleven bits are transmitted (through
TxDn) or received (through RxDn): a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit and a stop bit (1). In fact, mode 3 is the same as
mode 2 in all respects except baud rate. The baud rate in mode 3 is variable.

In all four modes, transmission is initiated by any instruction that uses
SnBUF as a destination register. Reception is initiated in mode 0 by the
condition RI_n=0 and REN_n = 1. Reception is initiated in the other modes
by the incoming start bit if REN_n=1.

Serial port control register

The serial port control and status register is the SFR SnCON, shown in
Table F.12. This register contains not only the mode selection bits, but also the
9th data bit for transmit and receive (TB8_n and RB8_n) and the serial port
interrupt bits (T1_n and Rl n).

TI flag

In order to allow easy use of the double-buffered UART transmitter feature,
the TI_n flag is set by the UART hardware under two conditions. The first
condition is the completion of any byte transmission. This occurs at the end of
the stop bit in modes 1, 2 or 3, or at the end of the eighth data bit in mode 0.
The second condition is when SnBUF is written while the UART transmitter is
idle. In this case, the TI_n flag is set in order to indicate that the second UART
transmitter buffer is still available.

Appendix F 395

Table F.12 SnCON register bit functions

SnCON
address: SOCON 420H
SICON 424H
bit addressable
MSB LSB
SMO SM1 SM2 REN TBS RB8 TI RI
7 6 5 4 3 2 1 0
Bit Symbol Function
7,6 SMO0, SM1 Specify the serial port mode as follows:
SM0O0 SM1 Mode Description Baud rate
0 0 0 shift register Ffose/16
0 1 1 8-bit UART variable
1 0 2 9-bit UART Jose/32
1 1 3 9-bit UART variable
5 SM2 Enables the multiprocessor communication feature in
modes 2 and 3. In mode 2 or 3, if SM2 is set to 1, then
RI will not be activated if the received ninth data bit (RB8)
is 0. In mode 1, if SM2 =1 then RI will not be activated
if a valid stop bit was not received. In mode 0, SM2
should be 0
4 REN Set by software to enable reception. Clear by software to
disable reception
3 TB8 The ninth data bit that will be transmitted in modes 2 and 3.
Set or cleared by software as desired. The TBS bit is not
double buffered
2 RBS This is the ninth data bit received in modes 2 and 3. In mode 1,
if SM2 =0, RBS is the stop bit that was received. In mode 0,
RB8 is not used
1 TI Transmit interrupt flag. Set when another byte may be written
to the UART transmitter. Must be cleared by software
0 RI Receiver interrupt flag. Set by hardware at the end of the eighth

bit time in mode 0, or at the end of the stop bit time in the
other modes (except, see SM2). Must be cleared by software

Typically, UART transmitters generate one interrupt per byte transmitted.
In the case of the XA UART, one additional interrupt is generated as defined
by the stated conditions for setting the TI _n flag. This additional interrupt
does not occur if double buffering is bypassed as explained below. Note that if
a character-oriented approach is used to transmit data through the UART,
there could be a second interrupt for each character transmitted, depending

396 Appendix F

on the timing of the writes to SBUF. For this reason, it is generally better to
bypass double buffering when the UART transmitter is used in character-
oriented mode. This is also true if the UART is polled rather than interrupt
driven, and when transmission is character oriented rather than message or
string oriented. The interrupt occurs at the end of the last byte transmitted
when the UART becomes idle. Among other things, this allows a program to
determine when a message has been transmitted completely. The interrupt
service routine should handle this additional interrupt. The recommended
method of using the double buffering in the application program is to have
the interrupt service routine handle a single byte for each interrupt occur-
rence. In this manner the program essentially does not require any special
considerations for double buffering. Unless higher priority interrupts cause
delays in the servicing of the UART transmitter interrupt, the double buffer-
ing will result in transmitted bytes being tightly packed with no intervening

gaps.

9-bit mode

Note that the ninth data bit (TBS) is not double buffered and care must be
taken to ensure that the TB8 bit contains the intended data at the point where it
is transmitted. Double buffering of the UART transmitter may be bypassed as
a simple means of synchronising TB8 to the rest of the data stream.

Bypassing double buffering

The UART transmitter may be used as if it is single buffered. The recom-
mended UART transmitter interrupt service routine (ISR) technique to
bypass double buffering first clears the T1_n flag upon entry into the ISR, as
in standard practice. This clears the interrupt that activated the ISR. Sec-
ondly, the Tl_n flag is cleared immediately following each write to SnBUF.
This clears the interrupt flag that would otherwise direct the program to write
to the second transmitter buffer. If there is any possibility that a higher
priority interrupt might become active between the write to SnBUF and the
clearing of the Tl n flag, the interrupt system may have to be temporarily
disabled during that sequence by clearing, then setting the EA bit in the IEL
register.

Clocking scheme/baud rate generation

The XA UARTS clock rates are determined by either a fixed division (modes 0
and 2) of the oscillator clock or by the timer 1 or timer 2 overflow rate (modes 1
and 3). The clock for the UARTSs in XA runs at 16x the baud rate. If the timers
are used as the source for baud clock, then since maximum speed of timers/
baud clock is f,s./4, the maximum baud rate is timer overflow divided by 16 i.e.
Jfose/64. In mode 0, it is fixed at f,s/16. In mode 2, however, the fixed rate

1S fose/32.

Appendix F 397

The prescaler for timers 0, 1 and 2 is controlled by bits PT1 and PTO in the
SCR register (see Table F.3).
Baud rate for UART mode 0:

Baud rate :flo—sg
Baud rate calculation for UART modes 1 and 3:
Baud rate — Timer rate
16
Timer rate = Jose

N(Timer range — Timer reload value)

where N = the TCLK prescaler value: 4, 16 or 64 and timer range is equal to
256 for timer 1 in mode 2 and 65536 for timer 1 in mode 0 and timer 2 in count
up mode.

The timer reload value may be calculated as follows:

. . fOSC
T load value=T -
imer reload value =Timer range (Bau drate x N < 16

Notes:

1. The maximum baud rate for a UART in mode 1 or 3 is fos./64.

2. The lowest possible baud rate (for a given oscillator frequency and N value)

may be found by using a timer reload value of 0.

The timer reload value may never be larger than the timer range.

4. If atimer reload value calculation gives a negative or fractional result, the baud
rate requested is not possible at the given oscillator frequency and N value.

hed

Baud rate for UART mode 2:

Baud rate ==
aud rate D)

Using timer 2 to generate baud rates

Timer T2 is a 16-bit up/down counter in XA. As a baud rate generator, timer 2
is selected as a clock source for either/both UARTO and UART1 transmitters
and/or receivers by setting TCLKn and/or RCLKn in T2CON and T2MOD.
As the baud rate generator, T2 is incremented as fo,./N where N =4, 16 or 64
depending on TCLK as programmed in the SCR bits PT1 and PTO. So, if T2 is
the source of one UART, the other UART could be clocked by either T1
overflow or fixed clock, and the UARTS could run independently with different
baud rates. Details of the T2MOD and T2CON registers can be found in
Tables F.8 and F.9 respectively.

398 Appendix F

F.7 Interrupt scheme

There are separate interrupt vectors for each UART’S transmit and receive
functions and these are shown in Table F.13.

Table F.13 Vector locations for UARTSs in XA

Vector address Interrupt source Arbitration
AOH-A3H UART 0 receiver 7
A4H-ATH UART 0 transmitter 8
A8H-ABH UART 1 receiver 9
ACH-AFH UART 1 transmitter 10

Note: The transmit and receive vectors could contain the same ISR address to
work like an 80C51 interrupt scheme.

ERROR HANDLING, STATUS FLAGS AND BREAK DETECT

The UARTS in XA have error flags as shown in the serial port extended status
register SnSTAT which is described in Table F.14.

MULTIPROCESSOR COMMUNICATIONS AND AUTOMATIC
ADDRESS RECOGNITION

This is discussed fully in Appendix D and will not be repeated here.

INTERRUPTS

The XAG49 supports 38 vectored interrupt sources. These include 9 maskable
event interrupts, 7 exception interrupts, 16 trap interrupts and 7 software inter-
rupts. The maskable interrupts each have 8 priority levels and may be globally
and/or individually enabled or disabled. The XA defines four types of interrupts:

1. Exception interrupts — These are system level errors and other very import-
ant occurrences, which include stack overflow, divide-by-0 and reset.

2. Event interrupts — These are peripheral interrupts from devices such as
UARTsS, timers and external interrupt inputs.

3. Software interrupts — These are equivalent of hardware interrupt, but are
requested only under software control.

4. Trap interrupts — These are TRAP instructions, generally used to call
system services in a multi-tasking system.

Exception interrupts, software interrupts and trap interrupts are generally
standard for XA derivatives while event interrupts tend to be different on
different XA derivatives.

Appendix F 399

Table F.14 SnSTAT register bit functions
SnSTAT.
address SOSTAT 421H
SISTAT 425H
not bit addressable.

MSB LSB

- - - - FEn BRn OEn |STINTn
7 6 5 4 3 2 1 0

Bit Symbol Function

7,6,5 4 - Not implemented, reserved for future use

3 FEn Framing error flag is set when the receiver fails to see a valid

STOP bit at the end of the frame. Cleared by software
2 BRn Break detect flag is set if a character is received with all bits,

including STOP bit, being logic 0. Thus it gives a ‘start of
break detect’ on bit 8 for mode 1 and bit 9 for modes 2
and 3. The break detect feature operates independently of
the UARTSs and provides the START of break detect status
bit that a user program may poll. Cleared by software

1 OEn Overrun error flag is set if a new character is received in the
receiver buffer while it is still full (before the software has
read the previous character from the buffer) i.e. when bit 8
of a new byte is received while RI in SnCON is still set.
Cleared by software

0 STINTn This flag must be set to enable any of the above status flags
to generate a receive interrupt (Rin). The only way it can be
cleared is by a software write to this register

The XAG49 supports a total of 9 maskable event interrupt sources (for the
various XA peripherals), 7 software interrupts, 5 exception interrupts (plus reset)
and 16 traps. The maskable event interrupts share a global interrupt disable bit
(the EA bit in the TEL register) and each also has a separate individual IE bit
(in the IEL or IEH registers). Only three bits of the IPA register values are used
on the XAG49. Each event interrupt can be set to occur at one of 8§ priority levels
via bits in the interrupt priority (IP) registers, IPAO through IPAS. The value 0 in
the TPA field gives the interrupt priority 0, in effect disabling the interrupt.
A value of 1 gives the interrupt a priority of 9; the value 2 gives priority 10, etc.
The result is the same as if all four bits were used and the top bit set for all
values except 0. Details of the priority scheme may be found in the XA user
guide.

The complete interrupt vector list for the XAG49, including all 4 interrupt
types, is shown in Table F.15. The table includes the address of the vector for

400 Appendix F

Table F.15 XA interrupt vectors
Exception/traps precedence

Description Vector address Arbitration ranking

Reset (h/w, watchdog, s/w) 0000-0003 0 (high)

Breakpoint (h/w trap 1) 0004-0007 1

Trace (h/w trap 2) 0008-000B 1

Stack Overflow (h/w trap 3) 000C-000F 1

Divide by 0 (h/w trap 4) 0010-0013 1

User RETI (h/w trap 5) 0014-0017 1

TRAP 0-15 (software) 0040-007F 1

Event interrupts

Description Flag Vector Enable bit Interrupt Arbitration
bit address priority ranking

External interrupt 0
Timer 0 interrupt
External interrupt 1
Timer 1 interrupt
Timer 2 interrupt

Serial port 0 Rx
Serial port 0 Tx
Serial port 1 Rx
Serial port 1 Tx

IEO 0080-0083 EXO0
TFO 0084-0087 ETO
IE1 0088-008B EX1
TF1 008C-008F ET1
TF2 0090-0093 ET2

(EXF2)

RI.O 00A0—-00A3 ERIO
T1.0 00A4—-00A7 ETIO
RI.1 00A8—-00AB ERI1
TI.1 00AC—-00AF ETI1

IPA0.2—0(PX0)
IPAO0.6—4(PTO0)
IPA1.2-0(PX1)
IPA1.6-4(PTI)
IPA2.2-0(PT2)

AN N W

IPA4.2—0(PRI0) 7
IPA4.6-4(PTI0) 8
IPAS,2—0(PRII) 9
IPAS5.6-4(PTII) 10

Software interrupts

Description

Flag bit Vector address

Enable bit Interrupt priority

Software interrupt 1
Software interrupt 2
Software interrupt 3
Software interrupt 4
Software interrupt 5
Software interrupt 6
Software interrupt 7

SWRI1 0100-0103
SWR2 0104-0107
SWR3 0108-010B
SWR4 010C-010F
SWRS 0110-0113
SWR6 0114-0117
SWR7 0118-011B

SWE1 (fixed at 1)
SWE2 (fixed at 2)
SWE3 (fixed at 3)
SWE4 (fixed at 4)
SWES5S (fixed at 5)
SWE6 (fixed at 6)
SWE7 (fixed at 7)

each interrupt, the related priority register bits (if any), and the arbitration
ranking for that interrupt source. The arbitration ranking determines the order
in which interrupts are processed if more than one interrupt of the same priority
occurs simultaneously.

Appendix G

P89C66x and XAG49
Microcontroller PCB Board Layouts

Details are given in the introduction to Chapter 2 regarding application notes,
produced by Philips Semiconductor engineers, which describe the in-circuit
programming of the P§9C66x and XAG49 devices; the data included suggested
schematic circuits.

The authors adapted the schematic designs to produce PCBs suitable for
the P89C664 and XAG49 devices. Each design was based on the 44 pin
PLCC package. The schematic circuit diagrams are shown in Chapter 2. Com-
parison of the schematic circuit diagram for each device shows many simila-
rities but some differences. For example the reset of the P89C664 is active
high, same as all the standard 8051 devices, whereas the XA reset is active
low; also the XAG49 does not have an I°C peripheral and so has no need
for pull-up resistors on pins 6 and 7 of port 1.

This appendix includes a full-size PCB board layout for both the
P89C66x and the XAG49 devices that could be used to produce boards
similar to those used by the authors. The design utilises single-sided
copper faced PCB material that is readily available from electronic
retailers.

G.1 P89C66x board

The artwork for the connection pads and wiring is shown in Figure G.1
while Figure G.2 shows the arrangement for the layout of the compon-
ents required to complete the circuit. The numbering of the components
in Figure G.2 matches the numbering in the schematic circuit diagram
of Chapter 2. The latter diagram also indicates the values required for
the passive components.

402 Appendix G

.L

Figure G.1 Full-size single-sided artwork for the P89C66x microcontroller board

G.2 XAG49 board

The artwork for the connection pads and wiring is shown in Figure G.3 while
Figure G.4 shows the arrangement for the layout of the components required to
complete the circuit. The numbering of the components in G.2 matches the
numbering in the schematic circuit diagram of Chapter 2. The latter diagram
also indicates the values required for the passive components.

Appendix G 403

]
EMS

-

[L[]]

TITTT
Co4
||

{of} —
[os
IC2
—TP2 +{¥0] [0k
[C5 J+[C6]
TP3
SK1

Figure G.2 Component layout for the P§9C66x microcontroller board

Appendix G 405

fdl
sw3

RERRER
Cco2
L]

2l =5
8« Qe
=] [c2]

T
S
|CO4

IC2
—pz- +[c4] [ork
[C5 |+[C6]
_TP3
SK1

Figure G.4 Component layout for the XAG49 microcontroller board

This page intentionally left blank

Index

ADC 2,115

Analog comparators 125, 355

Analog functions 115

Analog to Digital converter
(see ADC)

Animation icon 56, 154

ASCII 2, 95

Assembler files 52

Assembly language 38, 66

Auto-reload mode 384

Automatic address recognition 308

Automatic reload 74, 79

Baud rate 79, 96, 277, 306
Baud rate generator mode 388
Binary 8

Bits 7

Breakpoints 48, 56, 145, 180
Build window 44

Burst memory addressing 38
Bytes 7

C language 38, 66

C programs 49
Capture mode 79, 386
Clock 10, 22, 66, 357
Command window 73
CPU 3

Crystal frequency 55
Current sink 16
Current source 16

DAC 2, 123
Debugging/simulation 38, 45, 54
Digital to Analog converter (see DAC)

Evaluation software (see under Simulation):

Keil 38, 39

Raisonance 38, 50
Extended Architecture (see XA)
External interrupt 82

Flash Magic 34
Flow diagram 39
Full duplex 94

Half duplex 94
Hardware peripherals 56
Hexadecimal (hex) 8

I°C 10, 55, 67, 103, 310, 353
Instruction operations:

arithmetic 11

branch 11, 19

data transfer 11, 17

logical 11,13
Instruction set (8051) 226
Instruction set (XA and 8051 differences) 232
In-system programming (ISP) 285
Interrupt enable 77

Interrupt priority 84, 167
Interrupt vector address 77
Interrupts 156, 277, 351, 398

Latch window 56
LED 15
Light Emitting Diode (see LED)

Machine code 19
Machine cycle 118
Memory 249, 287, 339, 366
Memory type:

EEPROM 2, 10, 107, 136
EPROM 2, 10

PROM 5, 10

RAM 2, 10

ROM 2, 10
Microcontroller Board:
P89C66x 28

XAG49 28
Microcontroller types 2
8051: 246

Baud rate 277

408 Index

Hardware 246 Packages:
I/O port configurations 258 dual-in-line (dil) 248
Interrupts 277 Linear quad flat pack (LQFP) 3,
Memory organisation 251 286, 361
Pin-out diagram 248 Plastic leaded chip carrier (PLCC) 3, 36, 168,
Serial interface 272 328, 361
SFRs 250 PCA 55, 67, 86, 92, 171, 298
Timer/counter 261 PCB (printed circuit board) 28, 401
PS7LPC769: 114 Programmable Counter Array (see PCA)
Analog comparators 125 Projects:
Analog functions 115 Function generator 192
P89C66x: 4, 66, 285 Single wire multiprocessor system 185
I°C 103, 310 Speed control of a small DC motor 169
Interrupt priority structure 84, 322 Speed control of a stepper motor 175
Interrupts 77 Pulse Width Modulation (see PWM)
Memory organisation 289 PWM 88, 169
Pin-out diagram 286
Serial interface 306 Reset 38
SFRs 294 Rollover 71
Timer 2 79, 263 RS232 94
Timers 0 and 1 67, 294
UART 94, 306 Serial Clock (SCL) line 103
Watchdog timer 92, 304 Serial Data (SDA) line 103
P8ILPC932: 128, 327 Serial Peripheral Interface (see SPI)
Analog comparators 355 SFRs 49, 87, 250, 294, 331, 373
Capture/compare unit (CCU) 344 Simulation:
EEPROM memory 136 Keil 72,76, 78, 81, 83, 85, 93, 97, 99, 102, 109,
I/O ports 341 119, 195
Interrupts 351 Raisonance 91, 146, 151, 154, 158, 161, 163,
Memory organisation 339 166, 173, 180, 189
Pin functions 129, 328 Single stepping 48, 123
Serial interface 347 Special Function Registers (see SFRs)
Serial peripheral interface (SPI) 129 SPI 10, 129, 350
SFRs 331 Syntax error 44
Timer/counters 343 System mode 147
Watchdog timer 148, 390
XAG49: 37, 52, 142, 360 Time delay 24, 47
8051 compatibility 155 Timer interrupt 77
Interrupts 156, 398 Timers (see under Microcontroller types)
Memory organisation 364 Trace 59
Pin-out diagram 361 Trace mode 147
Registers 146 Translate 44
SFRs 373
Timer/counters 380 UART 5, 94, 185, 393
UART 152, 393 User mode 147
Multiprocessor communications 307
Multiprocessor systems 95 Watchdog timer 92, 148, 390
Multitasking 79 Watches window 55, 190
WinISP 31

Negative-edge transitions 82
Nibbles 7 XA 3

