Mobile Camera Based Text Detection and
Translation

Derek Ma

Qiuhau Lin

Tong Zhang

Department of Electrical EngineeringDepartment of Electrical EngineeringDepartment of Mechanical Engineering

Stanford University
Email: derekxm@stanford.edu

Abstract—Inspired by the well-know iPhone app “Word
Lens”, we developed an Android-platform based text trans-
lation application that is able to recognize the text captured
by a mobile phone camera, translate the text, and display
the translation result back onto the screen of the mobile
phone. Our text extraction and recognition algorithm has
a correct-recognition rate that is greater than 85% on
character level. In this report, we demonstrate the system
flow, the text detection algorithm and detailed experiment
result.

Index Terms—Text Translation, Android, OCR, google
translate

I. INTRODUCTION

The motivation of a real time text translation mobile
application is to help tourists navigate in a foreign
language environment. The application we developed
enables the users to get text translate as ease as a button
click. The camera captures the text and returns the
translated result in real time.

The system we developed includes automatic text
detection, OCR (optical character recognition), text
correction, and text translation. Although the current
version of our application is limited to translation from
English to Chinese, it can be easily extended into a
much wider range of language sets.

A. Prior and Related Work

1) Text Extraction: Text extraction techniques are
widely studied because text embedded in images and
videos provides important information. Many character-
istics of text regions have been summarized and charac-
terized effectively by several features, e.g. text pixels
have near-homogenous color, character strokes form
distinct texture, etc. Y. Hasan and J. Karam developed
a text extraction algorithm that utilized morphological
edge/gradient detection [1]; Algorithm by Epshtein et al

Stanford University
Email: ghlin@stanford.edu

Stanford University
Email: tongzhang @stanford.edu

tackled the problem from another approach using text
stroke transform [9].

2) OpenCV: OpenCV stands for Open Source Com-
puter Vision. It is a library of programming functions
for real time computer vision. The library has more
than 2000 optimized algorithms and has been widely
used around the world. Befitting from this, android
programmers are able to implement many digital image-
processing algorithms in Android phone platform.

3) Optical Character Recognition: OCR, Optical
Character Recognition, is developed to translate scanned
images of handwritten, typewritten or printed text into
machine-encoded text. A lot of OCR software have
been developed to accomplish this mission. Tesseract,
originally developed as proprietary software at Hwelett-
Packard between 1985 and 1995, now sponsored by
Google, is considered to be one of the most accurate
open source OCR engine currently available. It is capable
of recognizing text in variety of languages in a binary
image format.

4) Text Correction: The text correction is a necessary
step after OCR text recognition, since the result returned
by the OCR engine is not be always correct due to
image imperfections. This type of errors can be
categorized into so called non-word error - which
means that the text string returned by OCR does not
correspond to any valid word in a given word set.
Existing robust text correction algorithms have a good
performance in correcting this type of non-word error.
Such text correction systems include Aspell, and also
the well-known Peter Norvig’s text correction algorithm.

II. SYSTEM FLOW
In this paper, we propose a text detection / recognition
/ translation algorithm that consists of following steps:
1) Morphological edge detection
2) Text feature filtering
3) Text region binarization

4) Optical character recognition
5) Text correction

6) Text translation

7) Display of the translation

A. Step 1 - Morphological Edge Detection

To perform the edge detection algorithm, we first
convert the input RGB color image to a gray-scale
intensity image Y using (1), where R, G, and B represent
red, green and blue components of the input image.

Y = 0.299R + 0.587G + 0.114B (1)

The gray-scale image is then blurred using open-close
and close-open filters to reduce false edge noise and
over-segmentation. Structuring element used for this
operation is a 3 by 3 8-connected element. Next, a
morphological gradient detection operation is performed
on the blurred image Y3;, as shown in (2).

Yy = MG(Yy, B) = dilation(Yy) — erosion(Yy) (2)

In order to get the threshold level of Y2, we use a
global nonhistogram-based thresholding technique. The
threshold level is determined by (3), where s is an edge
detector obtained by applying central difference edge
detection filter to Y5. [1]

Y5 -s

y= B2 3)

Ss

B. Step 2 - Text Feature Filtering

In order to reduce the number of connected compo-
nents that have to be analyzed, a close operation with
a 5 by 5 structuring element is performed to the binary
edge image obtained from Step 1.
After the close operation, all connected components of
the edge image are screened with their position, size,
and area information. A candidate of letter should meet
a set of constraints in size and shape. In our algorithm,
we select connected components as letter candidates if
the following requirements are met:
1) Width of the bounding box < 0.5 image width
2) Height of the bounding box < 0.3 image height
3) 0.1 < center width of the bounding box < 0.9
4) 0.3 < center height of the bounding box < 0.7
5) Width vs. height ratio < 10
6) Width of the bounding box > 10 pixels
7) 0.1 < Connected component filled area over (width
height of the bounding box) < 0.95

8) Width of the bounding box > 10 pixels

9) 0.1 < Connected component filled area over (width
height of the bounding box) < 0.95

After the first round filtering, it is expected that most
of the non-letter components would be removed. So the

majority of the remaining candidates should be letters
with the same font and size. Based on this condition,
we calculate the mean height h,, of the bounding box
of the remaining components, and remove any connected
component with its height smaller than 0.6h,, or greater
than 1.8A,,.

C. Step 3 - Text Region Binarization

Each remaining bounding box is used as a mask to
the original gray-scale image. Otsu’s method [2] is used
to obtain the threshold of the masked gray-scale image
for binarization. Since each bounding box is relatively
small compared to the size of the entire image, no
further adaptive thresholding method is implemented.
Theoretically after this step, only stroked letters are left
as the foreground, 1, and the rest of the image would go
to background, 0.

D. Step 4-6 - Text Recognition, Correction, and Trans-
lation

Since the project is focused on implementing text
extraction on a mobile phone, we implemented the
following three steps - text recognition, correction and
translation on a server with open source software for
simplicity’s sake. Google’s open source OCR - Tesseract
[3] is used as the optical text recognition engine. Peter
Norvig’s algorithm [4] is added to the routine to perform
text correction. Then Google translator [5] is used to
translate the text into Chinese.

E. Step 7- Display of the Translation

The translated text string from Step 6 is sent back to
the mobile device (Andriod phone) from the server, and
then displayed at the top center region of the screen. A
sample text extraction process flow is shown in Figure 3
below. The final result frame display after step Figure
4-7 is shown in Figure 2.

III. TEST AND RESULTS

The performance of our system is evaluated by the rate
of successful recognition. We decide to use recognition
rate rather than successful translation rate as the crite-
rion of performance, because the recognition rate more
directly measures the successfulness of the text identi-
fication algorithm, whereas the measure of translation
rate can be influenced by the Google translation engine,
over which we have no control. The recognition rate is
defined as,

« the ratio between the number of successfully rec-

ognized letters and the total number of letters in a
test image.

C—— |

tnitial

(@ (b)

(c) (@

Fig. 1: : (a) Original captured image frame; (b) Edge
detection (after Step 1); (c) Text region filtering (after
Step 2); (d) Edge image binarization (after Step 3).

Fig. 2: Final result display

o the ratio between the number of successfully rec-
ognized words and the total number of words in a
test image.

We conducted experiments to evaluate the perfor-
mance of our system under different scenarios. The font
size, font and means of display are varied in order to
test their effect on the performance of the system. Two
phrases, “Digital Image Processing” and ~Visual Infor-
mation Plays An Important Role” are used for the test.
The two phrases contain 44 and 72 letters respectively.
We counted the number of letters recognized from the

output of the OCR engine and calculated the recognition
rate.

A. Font

The test phrases were displayed in Arial, BlairMdITC
TT, Times New Roman and Arial Bold, and their
recognition rates were measured. We did not observe
significant difference of the recognition rate among the
four fonts.

B. Font Size

We used large, medium and small sizes of letters for
testing. The font size of large letters was 40, the size
of medium letters was between 20 and 25, and the size
of small letters was between 10 and 15. We fixed the
camera lens approximately 30cm away from the letters,
so that small letters would appear small in the camera
frame. We found significant effect of the font size on the
recognition rate. As shown in the table above, large text

TABLE I: The Recognition Rate for Text with Large,
Medium and Small Font Sizes

Font Size Large Medium Small
Recg. Rate (letter) | 0.94 0.83 0.88
Recg. Rate (word) | 0.83 0.71 0.70

achieve much higher recognition rate than medium and
small size texts do.

C. Means of Display

The text was displayed on a computer screen and on
a piece of paper. We tested the recognition performance
with both display methods. As we had expected, the
recognition rate of the text displayed on a computer
screen was slightly higher than the result of the text
printed on a piece of paper. This is because computer
screen has higher contrast than paper.

TABLE II: The Recognition Rate for Text on a Computer
Screen and on Paper

Display Computer Paper
Screen
Recg. Rate (letter) | 0.90 0.87
Recg. Rate (word) | 0.82 0.74

We repeated the above experiment after text correction
is applied. The text correction improves the performance
by 5% if we measure how many words are successfully
recognized. We summarized our experimental results in
Figure 3.

1
o —
og — 4 T

i Large Texts
07 +— l — | o 000 | with Strong
06 — — | - Contrast
05 1 —1 — I — -
0.4 — e —— m small Texts
03 with Strong

0z Contrast
01

Correct Correct Correct Correct
Letters After Letters After WordsAfter WordsAfter
OCR Text OCR Text

Correction Correction

Fig. 3: Bar Plot of Test Results

D. Additional Tests

By placing an object in front of the camera and time
how long it will appear in the view finder, we measured
the system lag to be 2 second. The server lag largely
depends on the strength of the wireless connection.
With good wireless connection, the server delay is
approximately 1 second.

IV. CONCLUSION

We have achieved an Android based application for
real-time text extraction, recognition and translation. The
average correct character-recognition rate is above 85%.
From the performance evaluation of our system, we
concluded that our application is very robust for large
text such as road signs, etc. Following work needs to be
done in order to drive our application into a commercial
product:

o Further optimize text extraction algorithm to in-
crease the processing speed to real-time (multi-
thread processing structure in Android Java code);

o Adapt text extraction algorithm to smaller and
denser text;

e Local Otsu’s method to adapt non-uniform back-
ground of the scene;

o Localize the OCR, text correction and text transla-
tion algorithms onto the mobile device;

« More language translation selections for the user;

ACKNOWLEDGMENT

We would like to thank Prof. Bernd Girod for giving
so wonderful lecture and teaching us many advanced
digital image processing methods. We also would like
to thank David Chen and Derek Pang, and our mentors
Sam Tsai and Frank Chen for their patience and help.

(1]

(2]
(3]
(4]
[5]
(6]

(71

(8]

(9]

REFERENCES

Yassin M.Y.Hasan and Lina J.Karam, Morphological Text Extrac-
tion from Images. 1EEE Transaction on Image Processing Vol.9
No.11, Nov 2000

Nobuyuki Otsu, A threshold selection method from gray-level
histograms. 1EEE Trans.Sys.,Man., Cyber 9(1):62-66
http://code.google.com/p/tesseract-ocr/
http://morvig.com/spell-correct.html
http://austingulati.com/2009/07/google-translate-php-api/

Farshad Ghazizadeh, Optical Character Recognition. US Patent:
5,007,809.

Huiping Li, David Doermann and Omid Kia, Automatic Text
Detection and Tracking in Digital Video. 1EEE Transaction on
Image Processing Vol. 9 No. 1, Jan 2000

Celine Mancas-Thillou, Bernard Gosselin, Color text extraction
with selective metric based clustering. ~ Computer Vision and
Image Understanding 2007

B. Epshtein, Detecting Text in Natural Scenes with Stroke Width
Transform. Image Rochester NY, pp. 1-8.

APPENDEX — Individual Work Breakdown

Derek Ma:
Implemented the text detection algorithm and the augmented reality of the Ul on Android.

Qiuhua Lin:
Wrote the PHP code for the server and the http upload class in Android

Tong Zhang:
Developed the text detection algorithm in MATLAB, implemented spell correction algorithm in
Python, and tested the performance of the system

	ee368report
	APPENDEX

