FileMaker APl for PHP

A Practical Guide for Creating Database Driven Web Sites with O
FileMaker Pro 11 and FileMaker Server 11 "

Todd Duell

Table of Contents

I O UG ON ... e e
ADBOUL the AUo e

Part | — Getting Ready for Web Publishing
CrEate @ TaADIE ... ettt b bbb bbb b e
107 (T 1 (= T o] o o [PPSR
CrEALE @ LINK ..ttt e e e bbbttt b e bbb
=y P= T oY (=T o PRSPV

Designing @ Web APPIICALIONoooiiiiiiee ettt sr e e e esr e

Part Il — Web Server Installation
Y 0= Lo g T o 1K 1 ST
[IS SErVEr ON WINAOWSeiiiiiiiiitieitie ittt ettt b e et e e bt e bt et e e bt ebeesbeesb e e eneesbeesanesanas
Localhost vs. yoUr ProdUCHION SEIVEToiiiiiiiii ettt
Part Ill — FileMaker Server Installation
SINGIE SEIVEI MOTEL......coiiiiiitie ettt ettt ettt et e et et eabe ettt
TaTS] r= L oo T d o | TSP T PP RTOPRRTI
1070)0)ilo [V 1= O 11=T o £ USSP R TSR
CoNfIGUIE DAtaAD@SESoiiiiiieiee ettt b e bbb
Configure Web PUBIISNINGoo e et sr e bbb e e
Testing your PHP INSTAlAtIoNoo et e e
Uploading the “php_demo.fp7” Database Fileccoo i
PART IV — Choosing a RAD Tool vs. a Free Text Editor
DIrAMWEAVET ...ttt ettt b et e e bt e e et e s bt e e be e e e as e e e s e e e se e e as e e st e s r e e e aneeenaneenareenreeeanes
=] o SR
LIS A =TT (=] USSP PU P OP RO URRRURRTIIN

0] 0 o0 74 = SR

PART V — Introduction to PHP

ATV 1Y od a e To] FSTX o0 1 o

FileMaker Server 11 Custom Web Publishing with PHP ..o 40
FileMaker API for PHP TULOTIAL........oiiiii ettt et st e 41
FileMaker API for PHP EXGMPIES ... ottt e e e sne e e e mee e eeeeeees 43
PHP REFEIENCE GUIAE ...ttt b e bbbt b e b e a e e s et et et et et et e 44
FileMaker Site ASSISTANToouiiiiie bbbttt b e e b e 45
HOW PHP IS LIKE FIlEMEKET ... ittt st sr e sre e nes 47
RecordID VS. Serial NUMDETcoouiiiii bbbt b bbbttt sab e e b et 48
LayOuULS, NOT TabDIE ACCESS.... ..ottt et e e et e e e e et e e e e amseee e e nneeeaaanseeeanseeeeaanseeeeaanneeans 49
N E=TaaTTaTe [@ o] a1V T o (o] o - TSP 50
L=) PSPPSR 51
o[0T [OO OO T PP RTPTRT 51
1070]001011=1 01 TSP UR PSR 51
L@ U 1] (=T TSP PRSP 52
VATIADIES ...ttt ettt e ae e r et ah e n e s e n e nr e s 52
1070]Tez= =T F= 1 [o] IO PRSP PR U R PRR 53
L0 01T = 1 (o] USRS 54
== ST RO TR POPRTR 54
(o] o] o T« [F T O PP TR O PP PR PR PO 55
F = 1 T TSP U U PTPRRTRRY 56
Forms — $ _GET, $ POST. $ REQUEST ..ottt ettt et ean e te e teanseeaeanen 56

Part VI — Sample Database

TADIE STTUCTUIE ...ttt ettt et e ab e et e e bt e be et e e s b e e sbeesbeesbeesbeesbeenbeen 58
[1= (o L TP TR TP PR ORRON 59
[T=] (o B VA= 1o F= 1 To] o ISP PP PR 61
VAIUE LSS ...ttt et e et e ae e e ae e et e e et e n e e e R e e R et e en e e e ar e e s re e e r e nre e nnre s 62
ST 4] o) SRR 63
[0)0 U £ PSPPSR PP 64
(o] = L= TSR P PP PR 64
WWED VIBWET ...ttt ettt et st e et e e e s ae e e e st e e st e esee e saesan e e s ar e e e aneeeaneeenmneenareenas 65

ACCOUNTS AN PrIVIIEOES ...t ettt st et e s e e e s e e sn e e s re e s r e e e nre e e nnne s 65

1T 0] RSP P R PRR 66

ENGDIING PHP ACCESS ... ettt ettt ettt st st e e e e ae e e s e e e b e e e nsee e nareesreeeanes 67

Part VIl — Publishing FileMaker Data with PHP

ADACCESS INCIUAE Fil@ ... ettt et et e et e s e e s n e e e ne e e sane e snesareenas 68
CoNntaiNer Bridge Fileooiiieie et sttt ettt e b e e b bbb 70
g T T (R 72
FINA Al RECOIUS ...ttt ettt st e e e et e s an e e e st e e be e e s ae e e ere e et e e e b et e snreenareenreeennes 73
Sort Records, USEr DEfINEAttt e e e e e e e e e e e e eanareeeeaeeeeeensseeeess 76
Yo Ll oo Lo Fo T o (=Y RS 79
SEArCh RECOIAS, SIMPIEooi ittt e e e et e e e e ta e e e s eabeeeeeeaaeeeeeaaseeesabaeeesanbeeeesasreeans 81
Search Records, COMPOUNGccuuiii ittt e et e e et e e e et e e e e etaeeeseabeeeeeasseeeeeassaeeeesaeeeeanbeeeesasrneans 84
SEACN-ZDEIAIL ...ttt b e bbb bbb 87
ST B =T ot] o TSP PP P RTOPRRTI 91
Insert Record With Valid@tioncooiiiiio e et 94
DEIELE-PDEEAIL ...t h bt h e h e bbbttt b e b b 99
0 e 10T = 104
Search Portal->Detail POrtal..........coooiiiiii e et 109
INSErt POral RECOIT ...t ettt st e e ae et e s r e e s enee e srneenaneenas 113
Edit POral RECOIT ... ettt sttt e e e e en et e st e sr e e e ere e e nnne s 118
Delete POrtal RECOIoooiii ettt st et e e e e st e r e sr e e e nre e e nnne s 125
Display ContainNer FIIAoiiiiiieie ettt b e b bbb sae e nneenaeas 132
DiSPlay URL IMEGE ...ttt sttt ettt e st e ae e e e et e e e e nne e e ssreesare e e nneeennnees 134
(o] (o =T I 11 SRR 136
DiSPIAY @ LISt MENUL.......eiiiiiiie e ettt e ae e e e e s e e an e e s s e e sr e e e ne e nnne s 143
Display Search RESUILSooiiii ettt e et e e e e e ae e e e aeeeeneeeaeeeameeeeeeeenneeeanneas 146
Create @ LOG IN ProCeAUIEcoui ittt st sttt e ne e 149
Alternate BaCKGIrOUNGo.ooi ittt sttt sae e e s e e e be e e st e s n e e s enee e snneesareenas 155
Run @ Script — Update RECOIAS........ooiiiiii ettt et e st e e e ee e e aeeeeneeaeeeeeaeeeenneas 158
RUN @ Script — Delete RECOIS ... ettt e e e e e e e e s e e s eeeenaeeeenneas 163

RUN @ SCriPt — SENA Mall ...ttt e e e ae e e et e e e ne e e neeameeeaeeeeeaeeeenneas 167

Display Record Paginationooeiiiiiiiiiiiie ettt et st n e re e 171

Display ReCOrd NaVIGatioNceeoiiiiiiiiiie ittt sttt e s se e e e sr e e nree e nnne s 176
Multi User Process to Edit RECOIAScocueiiiiiiiie e 181
Run @ Script — IMPOIt XLS File ...ttt e e s e e e e e see e s eeeesaeeeenneas 186
o To] (o= W O =Tt = o) PP PR 194
MUIEE VAIUE CRECK BOX. .ttt ettt et bt bt e be s b e e sbeenbeesbeesaeesees 198
MUIEE VAIUE LISt ... e ettt e e e e ae e e et e e r e e ene e e ssr e e sr e e e nneeennnees 202
Pre Validate Data Before Updateooo ittt e e e e enee s 206
Perform CompouNd SEAICH........ ..ottt e e e et e e st e e e ee e e neeaaneeeaneeeaneeannneeanneas 212
QUICK FiNd ACIOSS All FIEIAS ...ttt bbbttt et e be e 216
G00GIE TECAPT O HA .o b bt b e bt e bt e bt e sh e e e he e sae e ehe e sae e sabeeate e bt et e s 221
Display @ Random Banner Ad ...ttt 224
(T8 o] {or=1 (=N =T oo] o SRS 226
Duplicate Related RECOIAS........oo ettt e e e e et e e e e e e e e ens e e e e e neeeeeanneas 230

Part VIIl — Additional Information

Extended FileMaker vS. PHP SYNTAX.......oiiiiiiiiii e e 236
Other Methods — PHP/ODBC, ASP, JSP, IWP ...ttt see e nee e 240
L0701 1= 2 USRS 243
Performance CONSIAEIratiONS........c..eiiiiiiiiie ettt b e bt b e be e b saeesaeas 246
110 1 P PP T PR TRPP 249
o) g Lo RS 1T AV =T i o T - SO PO PPOURPR 251
LAY =TT o 4 (o] @ To =T J SO P PPROPRPR 253
FileMaker API for PHP REErENCEcoouiiiiiiiiii bbb 258

Introduction

Welcome, and thank you for acquiring FileMaker API for PHP, A Practical Guide for Creating Database Driven
Web Sites with FileMaker Pro 11 and FileMaker Server 11. If you're reading this book I'm acutely aware that you
have been challenged to publish data from your FileMaker Pro database to the web. Many of you have no web
publishing experience, have experience on other platforms and technologies, and/or are frustrated by the lack of
documentation, examples, third party products, and available rapid application development tools to publishing
data from a FileMaker database. The FileMaker API for PHP has only been available since 2007. Therefore, | will
assume that you are at least new to the FileMaker API for PHP and are seeking out resources to assist you to
publish your data to the Internet in an efficient and professional manner.

This books starts by demonstrating basic HTML that you should already be familiar with. If you are not already
familiar with HTML you should seek out a book or other on-line resource to help you understand how to work with
basic tables, forms, links, etc. When publishing data from a database you will be required to know how to create
the tags such as headers, table rows, and table data to display your data correctly. If you can master this, you can
create a dynamic web page to display your data. | don’t want to scare you right up front. It's actually quite easy.
However, like anything else, it does take practice and vision to know how you want the page to display.

Section |l of the book deals with enabling either Apache on OS X or IIS Server on Windows. Both platforms
support PHP natively. The nice part is that the FileMaker Server installation process will install PHP and turn
everything on (for the most part). Your choice is simply to decide which platform you want to use to host your web
site. The most important consideration for a server it to develop on the same platform on which your web site will
be hosted, weather that be an in-house server or a third party hosted server. Although it's not required, it does
make testing and deployment that much easier.

Part Ill discusses your FileMaker Server installation. If you were wondering, you only need FileMaker Server to
host your solution, not FileMaker Server Advanced. That saves you quite a bit of money. Unfortunately, you can'’t
use FileMaker Pro or FileMaker Advanced as a development tool when accessing the data via PHP. So you will
have to break down and purchase FileMaker Server.

In Part IV, this book covers the use of rapid application development (RAD) tools versus “free” text editors. You
have to develop your web pages in some type of text editor. The question is how much money are you willing to
spend to improve your productivity and extensibility. There are definite advantages to utilizing professional tools.

Part V is where we start to dig in. It's imperative that you learn some basic PHP. I'm not going to pretend to be an
expert PHP developer as there is just too much to learn on top of everything else. However, a little bit of
knowledge goes a long way. As in any programming language, you use maybe 80% of the available methods on
a routine basis and you look up the other 20% only when you need to use them. This book is going to make you
hand code the PHP. Yes, | can hear you grumbling. The problem is that there are no complete RAD tools to do
everything that you need for professional solutions. So it's best learn it the hard way the first time, then use the
tools that are available to supplement your work.

Part VI is an overview of the provided sample database. It does not go into excruciating detail about how to create
a FileMaker Pro database. I'm going to assume that you already know how to do that. The database is very
simple. It is used to demonstrate specific techniques for acquiring data from layouts, fields, value lists, portals,
and how to run scripts. It does cover every possible scenario that you would build in a commercial application. |
believe that it's better to focus on the PHP methods rather than throwing a curve ball at you with unnecessary,
complicated database structure or an esoteric topic. If you have a simple database to start with you can apply the
same PHP code to far more complicated systems.

If you are already comfortable with building a FileMaker Pro database and PHP you can skip right to Part VII. The
sample files start off slow specifically for beginners. They demonstrate all the basic techniques to search, display,
add, edit, and delete records. Then they graduate into more complex PHP and FileMaker methods to do things
such as display container images, sessions, login routines, email, running scripts, integrating with Google web
services, etc. The main focus of this book is to provide complete, professional, production quality examples. You
should be able to take these techniques and use them immediately in your own work. | will point out that there are
many ways to accomplish the same end result. As such the sample files will create the content using a variety of
methods so you can pick and chose the one that fits your programming style the best. The more techniques you
learn, the better the programmer you will become.

Finally the book wraps up section VIII with reference material to other web publishing technologies that you can
use with FileMaker Server and Server Advanced. Next is the cost, which is always an important consideration.
Then topics to consider for performance and security expectations. Lastly, where to find more information about
logs and the FileMaker API for PHP reference guide as a last resort when things go wrong.

There are several conventions used in this book:

Localhost

Local host refers to your development server. The URLwill typically be http://localhost/

Production Server

Production Server refers to your web server that is hosting the solution to the Internet. The URL will typically be
http://www.mycompany.com

Code Samples

PHP code will be displayed in Courier font to make separating the code from the discussion easier.
<?php echo ‘This is my PHP code’; ?>

Special Content

Special content or discussion will be called out to your attention.

§ Notes specific to the use of the FileMaker database will display the FileMaker Advanced icon.

O ' Notes specific to the use of FileMaker Server will display the FileMaker Server icon.

Notes specific to PHP methods will display the PHP icon.

.\ - | Notes not specific to anything will display the notes icon. Notes present an interesting topic that you
can research further on your own.

Specific precautions that you should pay attention to. If you don’t you are bound to run into problems.

About the Author

Todd Duell is the CIO of Formulations Pro, Inc. and has been creating powerful custom
and commercial solutions using FileMaker Pro since 1989. Todd holds an M.B.A. in
Technology Management, is a Certified FileMaker Pro Developer, and has been a
member of the FileMaker Business Alliance since 1998. Todd has published more than
300 technical articles, white papers, and open sources databases to the scientific and
Formulations Pro community of more than 3,000 worldwide subscribers. In Todd’s tenure
at Formulations Pro since 1997, he has created more than 38 commercial database and
web-based applications for numerous worldwide, multi-billion dollar companies.
Additionally, Todd is a regular contributor to Advisor Magazine, the industry-leading trade
magazine for the FileMaker Developer community, and for the FileMaker Technet
Resource Library at FileMaker Inc. Lastly, Todd frequently speaks at conferences and
seminars on topics ranging from 21 CFR 11 (electronic records and signatures) to HIPAA
compliance using FileMaker technology.

On a personal side, Todd has been an avid Triathlete for the past 20 years, competing in more than 200 races
with more than 100 top-3 age group finishes and numerous top-10 overall finishes. Todd has also finished 4
Ironman events, including the famed course at Kona, Hawaii. When he’s not training or racing, Todd can be found
playing outfield for Magic Sports — a “Majors Plus” rated men’s tournament softball team. This is the highest
worldwide ranking a team can achieve. The teams that Todd has played for have played at the State
Championships and World Series of Softball for a variety of associations every year since 2000. In 2010, Magic
Sports won both the SSUSA California State Championship and the World Series. Todd was named to the “All
Tournament Team”, batting an impressive 0.760 average.

Part | — Getting Ready for Web Publishing

Creating web pages requires that you have at least a basic working knowledge of HTML. If you are already
familiar with HTML you can skip Part |. Otherwise, I'll cover just the basic HTML elements that will be included in
all the sample files. That way you won’t encounter any surprises and will be able to refer back to this section if you
get stuck for any reason.

One of the things you’ll notice right away in the sample files is the simplicity of the code. There are no graphics or
design, very little page structure, and the only apparent use of HTML is to display the data from the database.
This is for a reason. | don’t want you to get stuck trying to weed through a complex page with images, CSS, and
other elements. | want you to be able to focus solely on the PHP code to display information from the database.
Once you learn the PHP code, the layout and design is easy. For now, the only special thing you need to know is
how to display a PHP document. The file needs to have the extension .php. That tells your web server to process
the PHP code on the page.

Create a Table

Data has to be placed into a table so it can be displayed and organized in a logical fashion. Without tables all your
data will run together and end up as a big mess. Take a look at the sample code below and how it will display in a
browser in Figure 1. You'll see that the code creates a basic table with 2 columns and 2 rows. As in all HTML and
PHP documents you have to start the document with the tags: <html>, <head>, <title>, and <body>. The <html>
tag tells the web server to process anything in the document and present it as html to the browser. The <head>
tag contains the title of the document that displays at the top of the web page. In this case | named the page
“Sample Table”. Then | closed the head section by using the tag </head>. All tags are closed by using the forward
slash “/” with the tag name. Don’t forget to close the tags in the same order in which they are created or you will
get some strange results.

<html>
<head>
<title>Sample Table</title>
</head>
<body>
<table border="1">
<tr>
<th>First Name</th>
<th>Last Name</th>
</tr>
<tr>
<td>Todd</td>
<td>Duell</td>
</tr>
</table>
</body>
</html>

®no Sample Table
[« I »] + | http://localhost/ToddDuellPHP/Table.php C] (Q' Google)
[0 &2 Apple Yahoo! MSN Google Maps YouTube Wikipedia Newsv Popularv

[First Name|[Last Name|
[Todd [Duel |

7

Figure 1-1: Sample Table

Next is the <body> tag. This is where all the content for the web page is created and displayed. It will be your job
to create the PHP code to output the correct html structure. For a simple table, which is used 99% of the time,
you'll start with the <table> tag. Notice | included the attribute border="1". | did this because | wanted to table to
draw a border with a line thickness of 1 pixel. There are a number of standard attributes that you can utilize to
format the cells, including cell padding and cell spacing.

Most of the time you’ll want to create a header row using the field names. To do this | created the first row with the
<tr> tag. Then displayed the First Name and Last Name headers using the table header <th> tags. The <th> tag
will display your headers with emphasis (i.e. bold) without actually having to use the tag. Don'’t forget to
close the first row with the </tr> tag. Then move on to the content using the same process as above. Except this
time, the content will use the table data <td> tag to display the table data (i.e. record data from the database) as
plain text. Once you're done with the table row you can close the tag as well as the tags for the table, body, and
html tags.

The lesson here isn’t how to create a table, table rows, table header, table data, etc. The lesson is to observe the
repetitive nature of displaying HTML data. To put it in perspective; each record in the database will be wrapped in
a <tr> tag. Each field will be wrapped in a <td> tag. While you are looping through records and fields your PHP
code will simply add the start and stop tags to the data from the database. That will enable a browser to correctly
display the content.

Create a Form

Forms will quickly become your best friend when working with data from a database. You will use forms to search
for records and to submit data to create, update, and delete records. Inside the form you will be able to pass
various pieces of information to the web server and database. The data can either be user entered, as in the
Search field shown in Figure 2, or it can be hidden information that you don’t want the user to be able to see.

All forms use the <form> tag. The action attribute is the path to the document that you want to process the form. It
can either be an absolute path such as http://www.mysite.com/Form.php or it can be a relative path to another
document in another folder such as ../DifferentForm.php. Sometimes the form will point to itself and sometimes it
will point to a different file. It really depends on how you want to set up your code for the user workflow. There are
distinct advantages to both methods. Pointing the action to the same document means that you’ll only have one
document to manage. However, the code on that one document may be quite long to handle a variety of
branching user interactions. Pointing the action to a second document will allow you to process the form in a more
discrete, logical fashion — similar to a sub-script in FileMaker Pro. The downfall is that you'll have two pages in
your site to manage.

<form action="Form.php" method="get">
<input name="id" type="hidden" value="<?php echo $_ GET['id']; ?>">
Search: <input name="Search" type="text">

<p>
<input name="Search" type="submit" value="Submit">
</form>

®0o Form

[4 I »] + | http://localhost/ToddDuellPHP/Form.php C] .(Q' Google \
[0 &2 Apple Yahoo! MSN Google Maps YouTube Wikipedia Newsv Popularv
Search:

“Submit |

7

Figure 1-2: Sample Form

The method attribute is of critical importance. There are two methods that you can use to pass information
between web pages — GET and POST. GET will send all the data from the form in the URL. The URL is visible to
the users. The advantage to sending the data in the URL is that the users will be able to bookmark your page.

5

The disadvantage is that the users may be able to see information you don’t want them to be able to see.
Additionally, there is a limit to how much data you can send in the URL. You can only send 2048 characters. That
may seem like a lot, but when you are creating and modifying records, 2048 characters can get used up very
quickly. Using the GET method is useful mostly for searches.

The other method is POST. POST information is sent in the header instead of the URL. That means that you can
hide information from the user and send much larger amounts of data. Just because the user can’t see the data
doesn’t mean it's secure. For real security, you still need to use an encrypted page (i.e. https). POST is useful for
creating, updating, and deleting records.

Both GET and POST data will be sent using Name=Value pairs. That means that you'll define the name of the
value, such as the field name. Then supply something like a text field for the user to enter the value. For example,
in Figure 2 if | typed in Todd in the Search box the Name=Value pair would be Search=Todd. To extend the topic
of Name=Value pairs, the actual URL from the example form will look like this:

http://localhost/ToddDuellPHP/Form.php?id=123&Search=Todd&Search=Submit

It starts with the domain and web folder of the specified file from the form action attribute:
http://localhost/ToddDuellPHP/Form.php. Then it adds on all the Name=Value pairs defined in the form. In the
example form there are three Name=Value pairs. The first one is a hidden value for the Record ID (id) and the
value obtained from the existing URL name of ‘id’: id=123. Then the form concatenates the next values using the
& symbol. The next Name=Value pair is Search=Todd, or whatever you typed into the Search text box. Finally,
the button that is pressed by the user will also be sent. In this case the Name=Value pair for the button is
Search=Submit. In the example files you will see how important it is to name your buttons to determine exactly
which button the user pressed. Especially when you have more than one button on your form.

Now let's back up for a moment and take a close look at what you can put inside your form. In this example I've
placed the hidden element of “id” in the form specified by type="hidden”. Hidden values allow you to pass
information to the web server and database without the user actually seeing any data on the browser screen. It's
very useful for data such as Record ID’s. In the example I'm passing some PHP code that retrieves the URL value
from ‘id’ with the $_GET superglobal method.

<input name="id" type="hidden" value="<?php echo $_ GET['id']; ?>">

The other item I'm passing in the URL is the Search content from the Search text field. I've given the search field
the name ‘Search’ and defined it as a text field that the user can enter. There are also other user enterable fields
for text area, check box, radio button, list/menu, etc. that will be demonstrated in the example files later in the
book. For now, it's only important to know that the data in the form will all be sent to the web server as a
Name=Value pair.

Search: <input name="Search" type="text">

Finally, you have to create a button to submit the form to the web server. The name in the example is Search and
the value is defined as Submit. Those values are also passed to the web server. It's very similar to a FileMaker
Pro script dialog box where you have 3 buttons to choose from. When the user clicks a button you check for the
button they pressed by using the function Get(LastMessageChoice). In the case of a form, you’ll be checking for
Search==Submit, which is probably a lot more intuitive than checking for Get(LastMessageChoice)=1, 2, or 3. |
always hate having to look at the Show Message dialog box to figure out which button is for which response,
especially when the default button is something other than “OK”.

<input name="Search" type="submit" value="Submit">
Create a Link

Links allow users to navigate from one page to another page, within the same page, or even pass information to
the web server to perform processes such as search for records. You probably recognize a link from seeing “Click
Here” on a web page. Rather than displaying the absolute or relative link to that location the web page usually
shows a text or image-based link. Links with databases are useful for a variety of items. In the example files we’ll
be creating links to navigate to detail pages based on the Record ID and links to change the sort order of the
records by changing the URL.

All links start with the anchor tag , where the value between the quotes for href is a relative or absolute
path to a document. href stands for hypertext reference. Basically, it's saying what's the path to the document you
want to link to? Next, put whatever text you want to display on the web browser (i.e. Click Here). Then close the
anchor tag . That'’s it. Links are really easy.

Click Here

Yo Xe Link
[« I »] + | http://localhost/ToddDuellPHP/Link.php C] .(Q' Google Y

[0 &2 Apple Yahoo! MSN Google Maps YouTube Wikipedia Newsv Popularv

Click Here

7

Figure 1-3: Link
Meta Refresh and Redirect

Meta refresh is also known as a redirect. It's used to refresh or reload the current page or redirect the user to a
different page after a defined amount of time. This is usually installed on a web site if pages have moved or your
PHP code has finished and you want to have the user redirected to the starting page in the workflow.

To refresh your page every 3 seconds you can use the following code. You probably don’'t want to refresh your
page very frequently because it does make a new call to the web server each time. | think you can image the load
it would put on the server if hundreds or thousands of users were refreshing their pages every few seconds.
That's where AJAX (Asynchronous Java Script) is probably more useful because it can refresh just certain
sections of your web page.

<meta http-equiv="refresh” content="3" />

If you want the redirect to happen at a certain time interval and send the user to a specific URL you can use the
following code. The URL, of course, can be either a relative or absolute path.

<meta http-equiv="refresh” content="3;URL=4 0 SearchResults.php” />

Or if you want to immediately redirect the user you only need to provide the following code without any other tags
on the page (i.e. html, head, body, etc.). Just substitute the page (location) you want to go to.

<? PHP
header ("Location:1 0 FindAllRecords.php");
?2>

Designing a Web Application

Designing a web application is unlike anything you’ve probably had to do when compared to developing a
FileMaker Pro database. FileMaker makes most of the processes so seamless that you really don’t want to know
what goes on under the hood. As a FileMaker developer you've become accustomed to making one layout that
does absolutely everything — search, create new records, modify records, delete records, etc. Well let's just say
that a web application isn’t quite as smart as FileMaker. As a stateless process, meaning there is no constant
connection to the database server, you have to tell (program) the web pages absolutely everything they need to
know. That means that you have to create all the necessary web pages for every single workflow. In many cases
the workflows really can’t be re-used. For example, to accommodate one FileMaker layout and all the things that it
can do, you'll have to make no less than four web pages! If you have portals on your layout, you’ll need to double
that number. The good news is that there are standard methods and nomenclature to describe the workflow.

Once you grasp the workflow and the nomenclature you can communicate and create any process for your users
very quickly.

Search: The Search page is designed to search and display all the records on one web page.

Search

List: The List page is designed to display a pre-defined record set on one web page.

List

Search>Results: This method is designed to search for records on the Search page. Then display the records on
the Results page.

Search o| Results

T

Search>Detail: This method is designed to search for records on the Search page and display a limited amount of
information. The user can then click a link to display additional content on the Detail page.

Search .| Detail

T

Search>Detail>Related: This method is designed to search for records on the Search page and display a limited
amount of information. The user can then click a link to display additional content on the Detail page. The Detall
page may also contain related records, which the user can click to display additional related content on the
Related page.

Search .| Detail .| Related

-

Insert, Update, Delete>Database: There are three ways to modify a record. You'll need three separate pages to
perform each task. Insert is the same a creating a new record. Update is the same as editing a record. Delete
obviously deletes a record. Unless you create very complex PHP code or run a script on FileMaker Server to
process more than one record at a time, the FileMaker API for PHP can only execute on one record at a time.

Database

T

Insert
Update
Delete

Insert, Update, Delete>Related>Database: If you have to work with related records you’ll need to start on the
parent record. Then click the related record to isolate it as a single related record before you can process the
record in the database.

Related
Database

-

y

Index
A

access log, 251

Accounts and Privileges, 65, 249

action, 57

add(), 212

addFindCriterion(), 81, 84, 87, 99. 104, 109,
113, 118, 125, 149, 171, 176, 181, 212, 216

addSortRule(), 76, 79, 212

Admin Console Start Page, 29

Adobe, 243

alt_row_color CSS, 155

alternate background color, 155

anchor tag, 7

Apache, 10, 244

array, 56, 258

ASP, 240

associative array, 56

AWStats, 251

B

backspace character \, 52
bandwidth, 244

BBEdit, 36

body tag, 4

boolean, 258

Boolean check box, 194
Boolean1, 62

C

cache flush, 247
CALS, 243

delete record, 99

delete related record, 126
delete(), 99

die, 95

display URL image, 134
display container field, 132
display image, 132

display related records, 111
display search results, 146
display_errors, 250

do while, 55

Documents folder, 186, 190
DocumentsPath, 189
DocumentsPathListing, 189
Dreamweaver, 36, 243
drop down list, 202
duplicate record, 226
duplicate related records, 230
dynamic DNS, 244

E

echo, 51

edit portal record, 119
edit record, 104

edit related record, 119
else, 54

elseif, 54

em tag, 5

email address, 150
enable PHP, 26, 67
end(), 140

error codes, 253

error log, 251

escape character\, 52
event log, 252

execute(), 73, 76, 79, 81, 84, 87, 91, 94, 99, 104, 109,
113, 118, 125, 132, 134, 136, 143, 146, 149, 155,
158, 163, 167, 171, 176, 181, 186, 194, 198, 202,
206, 212, 216, 224, 226, 230

exit, 92

explode(), 94, 140, 199, 203

carriage return, 199
check box, 62, 194, 198
checkdate(), 94

Class, 258

clients, 20

commenting code, 51
commit(), 114, 119, 126
compound search, 212
concatenation, 53
connection string, 68, 249
ContainerBridge.php, 70, 132
cost, 243

CSS, 155

custom function, 48

F

field validation, 61

fields, 59

file size validation, 139

FileMaker API for PHP Examples, 43
FileMaker API for PHP Reference, 258
FileMaker API for PHP Tutorial, 41

D FileMaker Server, 243

FileMaker Server Administrator Group, 249
FileMaker Server Advanced, 243
FileMaker Server Custom Web Publishing manual, 40
FileMaker Server installation, 14
FileMaker(), 68

FileMaker_Command, 258
FILEMAKER_FIND OR, 217
FileMaker_Layout, 258

FileMaker_Record, 258

261

database, 21, 28, 68

Date field, 217

date(), 217

dbaccess.php, 68
decrement function --, 157
default folders, 23

delete page, 8

delete portal record, 126

FileMaker_Result, 258
FILEMAKER_SORT_ASCEND, 79, 214
FILEMAKER_SORT _DESCEND, 79, 214
FileMakerPHPSyntax.php, 236
FILTER_SANITIZE_EMAIL, 94
FILTER_SANITIZE_INT, 94
FILTER _SANITIZE_STRING, 94
FILTER_SANITIZE_URL, 94
FILTER _VALIDATE_BOOLEAN, 94
FILTER _VALIDATE_EMAIL, 94
FILTER _VALIDATE_INT, 94
FILTER _VALIDATE _URL, 94
filter_var, 94

find all records, 73

findext(), 139

Fireworks, 243

folder permissions, 190

for, 55

foreach, 56, 74

foreign key, 58

form, 5

form tag, 57

G

Get, 5, 56
Get(ScriptParameter), 159
getContainerData(), 70
getErrors(), 206

getField(), 73, 76, 79, 81, 84, 87, 99, 104, 109
113, 118, 125, 132, 134, 136, 146, 155, 158,
163, 171, 176, 181, 194, 198, 202, 206, 212,

224,226, 230
getFields(), 216
getFirstRecord(), 194, 198, 202, 206, 224
getFoundSetCount(), 146, 149, 171, 176
getLastRecord(), 186
getLayout(), 143, 198, 202, 216

getMessage(), 76, 79, 81, 84, 87, 91, 94, 99,
104, 109, 113, 118, 125, 132, 134, 136, 143,
146, 155, 158, 163, 171, 176, 186, 194, 198,

202, 206, 212, 216, 226, 230
getName(), 216

getRecordBylID(), 87, 99, 104, 109, 113, 118,
125, 136, 181, 194, 198, 202, 206, 226, 230
getRecordID(), 87, 99, 104, 109, 113, 118, 125
136, 181, 186, 194, 198, 202, 206, 224, 226,

230

getRecords(), 73, 76, 79, 81, 84, 87, 99, 104,
109, 113, 118, 125, 132, 134, 136, 146, 155,
158, 163, 171, 176, 181, 212, 216, 226, 230

getRelatedSet(), 109, 113, 118, 125
getResult(), 216
getTableRecordCount(), 146, 171, 176
getValuelList(), 143, 198, 202

go to first record, 176, 178

go to last record, 176, 179

go to next record, 176, 178

go to previous record, 176, 178
Google Analytics, 251

Google reCAPTCHA, 221
H

head tag, 4

header(), 70, 151
hidden element, 6
hidden value, 57
hosting provider, 244
hostspec, 13, 68
html tag, 4

idle users, 247

if, 54

IIS Server, 11, 244
implode(), 200, 204
Import php table, 187
import records, 186
import table, 58

include, 51, 68

increment function ++, 156
ini_set(), 250

insert page, 8

insert portal records, 114
insert record, 91, 94
insert related records, 114
integer, 258

Internet connection, 244
intval(), 218

isset, 76

IWP, 242

J

JSP, 241

K

KompoZer, 37
L

layouts, 49, 64
line break, 200
link, 6

list menu, 143
list page, 8
localhost, 2, 13
log in, 149
logging, 24
logs, 247
looping, 55

M

Mailhide, 221
math functions, 236
max, 172-173, 176-177

262

md5(), 150, 169

meta refresh, 7
ModificationID, 183
modulo, 155, 174
move_uploaded_file(), 140
multi user, 181

multi value check box, 198
multi value list, 202
multidimensional array, 56
multipart/form-data, 141
MultiValuelList, 62

N

name=value pair, 6, 57

naming conventions, 50
newAddCommand(), 91, 94, 143, 186
newCompoundFindCommand(), 212
newDuplicateCommand(), 226, 230

newEditCommand(), 104, 118, 125, 136, 181,

186, 194, 198, 202, 206
newFindAddCommand(), 132, 134

newFindAllCommand(), 73, 76, 79, 81, 84, 87,
99, 104, 109, 113, 118, 125, 136, 146, 149,
155, 158, 163, 171, 176, 181, 186, 194, 198,

202, 206, 212, 216, 226, 230
newFindAnyCommand(), 224

newFindCommand(), 81, 84, 87, 99, 104, 109,

113, 118, 125, 149, 181, 216
newFindRequest(), 212

newPerformScriptCommand(), 158, 163, 167,

186
newRelatedRecord(), 113, 118, 125
non breaking space, 117
Number field, 218
number range, 96
numeric array, 56
Nvu, 37

(0]

ODBC, 240

omit, 214
operators, 54, 213
OS X Server, 243

P

password, 68

pe_application_log, 252
pe_internal_access_log, 252
performance considerations, 246
PHP Delete Blank Records Script, 165
PHP Duplicate Record script, 234
PHP Import Records script, 189
PHP installation, 18

PHP Lost Password Script, 168
PHP Modify Number Script, 161
PHP reference guide, 44

php.ini, 56, 136, 250

php.net, 39

PHP/ODBC, 240
php_demo table, 58
PHP_Info.php, 72
phpinfo(), 72

pipg, 138

portals, 64

post, 5, 6, 56
post_max_size, 56
precedence order, 79
prevalidate data, 27, 206
primary key, 59
production server, 2
publishing engine, 251
publishing engine access, 251

Q

quick find, 216
Quick Find layout, 64, 217
quotes, 52

R

random, 224

random banner ad, 224
reCAPTCHA, 221

record count, 146

record locking, 181

record navigation, 176
record pagination, 171
record|D, 48

RecordID field, 59

redirect, 7

Related Data php layout, 122
related_data table, 58
require, 51

result layout, 218

return, 140

root directory, 249

run script Delete Records, 163
run script Import XLS, 186
run script Send Mail, 167

run script Update Records, 158
running scripts, 161

S

sample database, 58
SampleValuelist, 62
sanitize data, 249

script function, 48

script parameter, 167
scripts, 63, 161

search, 87

search "and", 212

search page, 8

search portal records, 109
search records, 81, 84
search related records, 109
search results, 146
search->detail page, 8

263

search->detail->related page, 8
search->results page, 8
security, 22, 66, 249
semicolon ;, 51

serial number, 48
server access, 251
server events, 251
server log, 247, 251
server models, 248
session, 149
session_destroy(), 153
session_start(), 149

setField(), 91, 94, 99, 99, 104, 113, 118, 125,

136, 143, 181, 186, 194, 198, 202, 206
setLogicalOperator(), 216
setModificationID(), 181
setOmit(true), 212
setProperty(), 68
setRange(), 171, 176
setRelatedSetsFilters (), 246
setResultLayout(), 216
Site Assistant, 45
skip, 171-173, 176-177
sort order, 214
sort records, 76, 79
source attribute, 133
statistics log, 252
str_replace(), 214
strcmp, 195
string, 258
string functions, 236
strip_tags(), 94
strlen(), 94
strtolower(), 140
substr, 70
superglobal, 56
syntax, 51

T

table structure, 58
table tag, 4
temporary file, 139
temporary folder, 139
test PHP installation, 28
text editor, 36

Text field, 218
TextWrangler, 37

th tag, 5

Time field, 217
Timestamp field, 218
title tag, 4

trtag, 5

trap for errors, 73
Troi file plugin, 186

u

update page, 8
upload, 65

upload database, 31
upload file, 136, 186
url, 2,5

URL encoded, 150
urldecode(), 150, 167
urlencode, 133
username, 68

Vv

validate by calculation, 61
validate date, 96

validate email address, 96
validate(), 206, 209
validation, 94, 206
validation errors, 210
value list, 62

variable, 47, 52

void, 258

w

w3schools, 38

web publishing, 25

web publishing core, 251
web publishing log, 252
web server installation, 10
web server log, 251

web server module log, 252
web viewer, 65
web_server_module_log, 252
while, 55

Windows Server, 243
wpc_access_log, 252

V4
Zend Studio, 37
Misc

$ FILES, 138

$ GET, 56

$ POST, 56

$ REQUEST, 56
$ SERVER, 171
$ SESSION, 149, 152
$fm object, 68, 89
$int_options, 96
$message, 91-92
 , 116

\n, 199, 203

\r, 200, 204

<php 7>, 51

Files
1_0_FindAllRecords.php, 73

10_0_SearchResultsPortal.php, 119
10_1_SearchResultsDetailPortal.php, 119

264

10_2_EditRecordDetailPortal.php, 119

11_0_SearchResultsPortal.php, 126

11_1_SearchResultsDetailPortal.php, 126

11_2_DeleteRecordDetailPortal.php, 126

12_0_DisplayContainerField.php, 132

12_1_DisplayURLField.php, 134

12_2_ DisplayUpload.php, 136

12_3 Upload.php, 136

13_0_ListMenu.php, 143

14_0_SearchResultsLabel.php, 146

15_0_Login.php, 149

15_1_LoginSuccess.php, 149

15_2_ Logout.php, 149

16_0_AlternateBackground.php, 155

17_0_RunScriptUpdate.php, 158

17_1_RunScriptDelete.php, 163

17_2_RunScriptSendMail.php, 167

18_0_Pagination.php, 171

19_0_Naviation.php, 176

2_0_SortRecordsUser.php, 76

2_1_SortRecordsFixed.php, 79

20_0_MultiUserEditRecord.php, 181

20_1_MultiUserEditRecordDetail.php, 181

21_0_Import.php, 186

22 _0_BooleanCheckBox.php, 194

22 _1_Update BooleanCheckBox.php, 194

23_0_CheckBox.php, 198

23 1_Update CheckBox.php, 198

24 0_MulitValuelList.php, 202

24 1_UpdateMulitValueList.php, 202

25_0_PreValidate.php, 206

25 _1_UpdatePreValidate.php, 206

26_0_CompoundSearch.php, 212

27_0_QuickFind.php, 216

28 _0_captcha.php, 221

28 _1_verify.php, 221

28_2_recaptchalib.php, 221

29 0_RandomBanner.php, 224

3_0_SearchRecordsSimple.php, 81

3_1_SearchRecordsCompound.php, 84

30_0_DuplicateList.php, 226

30_1_DuplicateDetail.php, 226

31_0_DuplicateRelatedList.php, 230

31_1_DuplicateRelatedDetail.php, 230

4 0_SearchResults.php, 87

4 1_SearchResultsDetail.php, 87

5 0_InsertRecordSimple.php, 91

5 1_InsertRecordValidation.php, 94

6_0 DeleteRecord.php, 99

6_1 DeleteRecordDetail.php, 99

7_0_EditRecord.php, 104

7_1_EditRecordDetail.php, 104

8 0_SearchResultsPortal.php, 109

8 1 _SearchResultsDetailPortal.php, 109

9 0_SearchResultsPortal.php, 114

9 1 _SearchResultsDetailNewPortalRecord.php,
114

265

FileMaker API for PHP

A Practical Guide for Creating Database Driven Web Sites with
FileMaker Pro 11 and FileMaker Server 11

The only complete reference book for the FileMaker API for PHP using FileMaker Pro 11 and FileMaker Server 11.
Whether you are a beginner or a professional developer you will find the information in this book to be invaluable. Part |
starts by getting you ready to publish data to the web with a primer about the basic HTML you will need to know to work
with the examples in this book. Part Il shows you how to install and configure either Apache or IIS as your web server.
Part 11l shows you how to install and configure FileMaker Server. Part IV provides information about free and professional
text editing tools to build your web sites. Part V teaches you the basics about PHP syntax to work with the examples in
this book. Part VI explains the sample database fields, layouts, and scripts that are used for all the examples in the book.
Part VII contains more than 40 complete PHP examples that will teach you techniques to build professional web sites.
Part VIII wraps up the book reference information with extended FileMaker vs. PHP syntax, other web publishing
technologies available to FileMaker, expected costs, performance and security considerations, understanding server logs
and error codes, and a FileMaker API for PHP quick reference guide.

Examples Files Include:

How to connect to the database

How to display images from a container field
Find records

Perform compound searches

Sort records

Insert records

Duplicate records

Delete records

Validate the data before inserting or updating records
Working with related records in portals
Uploading files to the server

Creating list menus

Displaying search results

Create a login routine to secure your web pages
Running scripts using PHP code

Importing records after uploading an Excel file
Display record pagination and record navigation links
Working with multi-user web pages

Display Boolean and multi value check boxes
Display multi value list

Quick find method

Google reCAPTCHA

Display random banner ads

Bonus files with sample code

For more information visit us at: Contact the author Todd Duell at:

www.formulationspro.com tduell@formulationspro.com

ISBN-13: 978-0-61543-681-1
ISBN-10: 0-61543-681-1

| 5499
9 "780615"434681 |

9| |5

