
c18 colorForth Compiler
Chuck Moore

chipchuck@colorforth.com

November 2001

Abstract

c18 is a tiny computer that can be replicated many times on a silicon die. Its architecture and instructions are optimized
for Forth. colorForth is a dialect of Forth that features preparsed source code and the use of color for punctuation.

A compiler has been written in colorForth that compiles colorForth source to c18 machine code. This code can be placed
into c18 ROM or RAM to be executed by a simulator. Or into serial EPROM/Flash to be executed by a c18, when it
exists.

Emphasis here is on how simple a colorForth cross-compiler can be. The c18 is interesting because it can run extremely
fast using little power: 2400 Mips @ 20 mW.

c18 instructions

These are the current c18 instructions that must be compiled. As the design evolves changes are obviously easy to make.

Register
T Top of stack
S 2nd number on stack
R Top of Return stack
A Address register
B Address register

Remember that fetch pushes the stack, store and binary operations pop it.

Code Op Action Code Op Action
0 ; Return 10 +* Add S to T if T0=1; shift right
1 11 2* Shift T left 1 bit
2 word Call subroutine 12 2/ Shift T right 1 bit; preserve T17
3 word ; Jump to subroutine (tail recursion) 13 - Ones-complement T
4 14 + Add S to T
5 15 or Exclusive-or S to T
6 if Jump to 'then' if T0-T17 are zero 16 and And S to T
7 -if Jump to 'then' if T17 is zero 17 drop Move S to T
8 n Fetch literal 18 dup Duplicate T
9 @+ Fetch from address in A; increment A 19 over Fetch S
a @b Fetch from address in B 1a pop Fetch R
b @ Fetch from address in A 1b a Fetch A
c !r Store into address in R; increment R 1c . Do nothing
d !+ Store into address in A; increment A 1d b! Store into B
e !b Store into address in B 1e push Store into R
f ! Store into address in A 1f a! Store into A

colorForth

A complete description is available at www.colorforth.com. The feature relevant here is that the color of a word
determines its function:

red - define new word
green - compile
yellow - execute
white - comment

To avoid color for this paper:

caps - define
normal - compile
bold - execute
italic - comment

Bold will also be used when words are referenced in text.

Compiler

The c18 has 192 words of 18-bit memory. RAM addresses are 0-7f; ROM are 80-bf. Instructions are 5 bits long. There
are 4 slots for instructions in each word. From left to right: S0, S1 and S2 are 5 bits; S3 is 3 bits and has 2 low-order zeros
appended. The most common instructions end in 00.

The Pentium compiler interprets colorForth source and packs instructions into the low-order 18 bits of its 32-bit memory.
There are several constraints:

Only ...00 instructions fit in slot 3
Jump instructions restricted to slots 0 and 1. Jump address is in slots 2 and 3
Jumps are to slot 0 of destination

c18 source is green like Pentium colorForth. But green words are redefined to be executed. Each word compiles its
instruction code into the next available slot. And green numbers are redefined to compile a c18 literal. Yellow words or
numbers are not appropriate in c18 source, since c18 words cannot be executed.

In order to define c18 words that compile a call to themselves, the colorForth construct class is used. The code indicated
by variable 'class ' is executed whenever a word is defined. For c18, this is a macro that compiles Pentium code that will
push the c18 address onto the stack and call a word that compiles a c18 call.

Of course, 'empty ' is redefined to restore the normal behavior of green words, green numbers and class.

Note that jump instructions often force a new instruction word. Sometimes rearranging the code can fill otherwise empty
slots. It's best to keep definitions small and simple and to be aware of how well instructions are packing.

Compiler code

Here is some selected code from the compiler. For those who can run colorForth, the 3 blocks of pre-parsed source is
available at www.colorforth.com

S4 n h @ ip ! 8192 * , 1 slot ! ;
S0 n 8192 *
SN n dup call? ! ip @ +! 1 slot +! ;
S1 n 256 * sn ;
S2 n 8 * sn ;
S3 n dup 3 and drop if 7 sn s4 ; then 4 / sn ;
I, n slot @ jump s0 s1 s2 s3 s4

I, jumps to the code for the current slot. Slot, h, ip and call? are variables. Ip is the current instruction address, H is the
next available address. H will be ip+1 unless a literal has been compiled. Slot 4 marks the end of the current instruction
word. Most instructions are defined using i,. For example:

@ b i, ;
2* 11 i, ;
+ 14 i, ;
. 1c i, ;

Literals require special attention. N is defined:

N defer 8 f@ execute 8 i, 3ffff and , ;

Defer returns the address of the folowing code which will be assigned to short green numbers (all 18-bit numbers are
short on a 32-bit host). Thereafter these will encounter the phrase 8 f@ execute which extracts the number from its
pre-parsed word as for a yellow short number. This returns the literal on the stack. Now the instruction code 8 is compiled
and the literal clipped and compiled into the next word. Up to 4 literals can be referenced in the same instruction word,
which is followed by the actual numbers.

Jump instructions use adr which compiles the instruction code and returns the address of the instruction. Break forces the
following instructions into a new instruction word:

BREAK 4 slot ! ;
ADR n-a slot @ -2 and drop if . adr ; then
 s3? if . adr ; then i, ip @ break ;
CALL defer a ff and 2 adr +! ;
IF -a 6 adr ;
-IF -a 7 adr ;
THEN a h @ ff and swap +! 0 call? ! break ;
UNTIL a ff and 7 adr +! ;

Adr compiles . until slot 0 or 1 is available. Until jumps back until the stack becomes negative.

; call? @ dup 4000 or drop if dup 200 or drop if
 0 and i, ; then then 2/ ip @ +! ;

; checks if the last instruction was a call. If so, it changes the call to a jump. This "tail recursion" saves a return instruction
without requiring syntax to generate a jump. call? is a variable storing the last instruction compiled. It has been shifted, so
implies the slot it occupies.

Target code

Here is an example of target code. This c18 is asked to read Flash and place it into internal RAM.

90 org
BIT --1 -1 64 begin over + until drop ;
@F --1n 36 begin bit b! + until b@ ;
WORDS na a! begin @f !+ + until drop ;
80 org 102 b! 63 0 words

This code takes advantage of the fact that until ends with -1 on the stack. Bit counts half a clock period. @f generates 18
clocks and reads the input shift register. B! in this case toggles the clock line. Words reads and stores the input words.

Some code will be standard in ROM. For example, shift and multiply routines:

*7 nn-nn *+ *+ *+ *+
 *+ *+ *+ ;
2*15 n-n 2* 2* 2*
2*12 2* 2* 2*
2*9 2* 2* 2*
2*6 2* 2* 2*
 2* 2* 2* ;
2/15 n-n 2/ 2/ 2/
2/12 2/ 2/ 2/
2/9 2/ 2/ 2/
2/6 2/ 2/ 2/
 2/ 2/ 2/ ;

Calling these predefined routines trades time for space. A call takes 3-4 slots and 3 cycles. An in-line 2*15 would save
the cycles, but take some 19 slots, since 2* can't be in slot 3. Of course, to shift left 8 places:

2* 2* 2*6
2* 2*6 2*
2*6 2* 2*

whichever packs best.

