
Copyright © Oracle Corporation, 2002. All rights reserved.

Modeling Change

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-2

Copyright © Oracle Corporation, 2002. All rights reserved.

Overview

• Date and time
• Modeling change over time
• Prices change
• Journaling

Introduction

Every update of an attribute or transfer of a relationship means loss of information. Often
that information is no longer of use, but some systems need to keep track of some or all of
the old values of an attribute. This may lead to an explicit time dimension in the model
which is usually quite a complicated issue.

Time is often present in a business context, as many entities are in fact a representation of an
event. This lesson discusses the possibilities and difficulties that arise when you incorporate
time in your entity model.

Objectives

At the end of this lesson, you should be able to do the following:
• Make a well considered decision about using entity DATE or attribute Date
• Model life cycle attributes to all entities that need them
• List all constraints that arise from using a time dimension
• Cope with journaling

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-3

Copyright © Oracle Corporation, 2002. All rights reserved.

Change and Time

• Every update means loss of information.
• Time in your model makes the model more

complex.
• There are often complex join conditions.
• Users can work in advance.
• When do you model date/time as an entity?
• What constraints do arise?
• How do you handle journaling?

Modeling Time
In many models time plays a role. Often entities that are essentially events are part of a model, for
example, PURCHASE, ASSIGNMENT. One of the properties you record about these entities is
the date or date and time of the event. Often the date and time are part of a unique identifier.

A second time-related issue often helps to increase the usability of a system dramatically. By
adding dates like Start, Expiry, End Date, to data in the system, you allow users to work in
advance. Suppose a particular value, say the price of gas or diesel, will change as of January 1. It
is very useful to be able to tell the system the new value long before New Year’s Eve. By adding a
time dimension to the model you make the system independent of the now.
As always, there is a price for adding things such as this. Adding a time dimension to your
conceptual data model makes the model considerably more complex. In particular, the number of
constraints and business rules that must be checked will increase.
A third time-related issue in conceptual data models is connected to the concept of logging or
journaling. Suppose you allow values to be updated, but you want to keep track of some of the old
values. In other words, what do you do when you need to keep a record of the history of attribute
values, of relationships, of entire entities?
The following issues arise:

• When do you model date/time as an entity, and when as an attribute?
• How do you handle the constraints that arise in systems that deal with time-related data?
• How do you handle journaling?

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-4

Copyright © Oracle Corporation, 2002. All rights reserved.

DAY
Date
* Public Holiday Indicator

TASK ASSIGNMENT
* Duration in Hours

starts on

first day of

EMPLOYEE
Name

TASK
Id

of

for

with

in

Entity DAY

Entity DAY

It is not only systems that deal with historical information that struggle with dates.
Sometimes a system needs to know more about a day than can be derived from its date. A
planning system, for example, often needs to know if a particular day is a public holiday.
Many data warehouse systems use a calendar that is different from the normal one, for
example, where a year is divided into four-week periods or 30 day Months or Quarters
where Q1 starts in the middle of May.

Some warehouses need weather information about days in order to do statistical analysis
about the influence of the weather on, for example, their sales. In these cases a day has
attributes or relationships of its own and should be modeled as entity DAY.

The above model shows part of a planning system where tasks are assigned to employees.
Tasks may take from a few hours to, at maximum, several days.

Based on this model, table TASK_ASSIGNMENTS will contain a date column that is a
foreign key column to the DAYS table.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-5

Modeling Days Over Time

Date and Time

As stated earlier, an Oracle DATE column always contains date and time. This needs
some special attention as two DATE columns may apparently contain the same date but
they are not equal because of a difference in their time component.

While modeling, always make explicitly clear when time of the day is an issue, for
instance, by naming the attribute DateTime. As soon as hours and minutes play a role, the
concepts of “time zone” and “daylight saving time” may become important.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-6

Copyright © Oracle Corporation, 2002. All rights reserved.

EMPLOYEE
Id

ASSIGNMENT
Start Date
o End Date

for

of in

as

COUNTRY
Name

Modeling Change

Modeling Changes Over Time

Date and Time in your models may substantially increase the complexity of your system, as
the next example shows.

The context for this example is that of an Embassy Information System, but could have been
chosen from almost any business area.

Embassy employees have an assignment for a country, but, of course, the assignments may
change over time. Therefore, the model would need an entity ASSIGNMENT with a
mandatory attribute Start Date and an optional End Date. Start Date is modeled as part of the
UID for ASSIGNMENT. This means that the model allows an employee to have two
assignments in the same country, as long as they start on different days. It also allows the
employee to have two assignments that start on the same day, as long as these are for
different countries.

Suppose we know today that Jacqueline will switch from Chili to Morocco on the first of
next month. This fact can be fed into the system immediately, by creating a new instance of
ASSIGNMENT with a Start Date that is still in the future at create time. The future users
will appreciate this kind of functionality.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-7

Modeling Changes Over Time

End Date Redundant?

You may argue that attribute End Date of ASSIGNMENT is redundant because
Jacqueline’s assignments follow each other: the End Date of Jacqueline’s assignment in
Chili matches the Start Date of the one in Morocco. This may be true, but it does not take
into consideration that embassy people may take a leave and return after a couple of
years. In other words, if you do not model attribute End Date you ignore the possibility
that the assigned periods of a person are not contiguous.

Note that the model does allow an employee to have two assignments in, for example,
Honduras, that overlap! The unique identifier does not protect the data against
overlapping periods. Adding End Date to the UID does not help.

You would need a whole series of extra constraints to cope with this.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-8

Copyright © Oracle Corporation, 2002. All rights reserved.

EMPLOYEE
Id

ASSIGNMENT
Start Date
o End Date

in

asfor

of

COUNTRY
Name
Start Date
* End Date

life cycle
attributes

Even a Country Has a Life Cycle

Modeling Changes Over Time

Countries Have a Life Cycle Too

Suppose the Embassy Information System contains data that goes back to at least the late
eighties. In those days the USSR and Zaire were still countries. Suppose there are
ASSIGNMENTS that refer to the USSR and Zaire. In the case of Zaire, you could consider
an update of the Name of the COUNTRY: Democratic Republic Congo is essentially just the
new name for Zaire. In case of the USSR this would not make sense. There is not a new
name for the old country. The old country simply ceased to exist when it broke into several
countries. Although the concept of a country seems very stable, countries may change
fundamentally during the lifetime of the information system.

This leads to the next model.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-9

Modeling Changes Over Time

Time-related Constraints

Be aware of the numerous constraints that result from the time dimension! Here is a
selection:

• An ASSIGNMENT may only refer to a COUNTRY that is valid at the Start Date of
the ASSIGNMENT.

• The obvious one: End Date must be past Start Date.
• A business rule: ASSIGNMENT periods may not overlap. The Start Date of an

ASSIGNMENT for an EMPLOYEE may not be between any Start Date and End Date
of an other ASSIGNMENT for the same EMPLOYEE.

• As for the previous constraint, but for End Date.
• You would probably not allow an ASSIGNMENT to be transferred to another

COUNTRY, unless the ASSIGNMENT has not yet started, that is, the Start Date of the
ASSIGNMENT is still in the future.

• This is an example of conditional nontransferability.

For updates of the attribute Start Date here are some possible constraints:
• A Start Date of an ASSIGNMENT may be updated to a later date, unless this date is

later then the End Date (if any) of the COUNTRY it refers to.
• A Start Date of an ASSIGNMENT may be updated to a later date, if the current Start

Date is still in the future.
• A Start Date of an ASSIGNMENT may be updated to an earlier date, unless this date

is earlier than the Start Date of the COUNTRY it refers to.
• A Start Date of an ASSIGNMENT may be updated to an earlier date, if this new date

is still in the future.
• A Start Date of a COUNTRY may be updated to a later date, if there are no

ASSIGNMENTS that would get disconnected.

Similar constraints apply to attribute End Date.

Referential Logic

Note that, except for two, these constraints result from referential logic only. There may be
more additional business constraints.

Imagine the sheer number of constraints if a time-affected entity is related to several other
time-affected entities! Fortunately, these constraints all have a similar pattern; these result
from the referential, time related, logic.

Implementation

In an Oracle environment, one of these constraints can be implemented as a check
constraint, (End Date must be later than Start Date). All the others will be implemented as
database triggers.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-10

Copyright © Oracle Corporation, 2002. All rights reserved.

PRODUCT
Id
* Name

PRICE
* Price in $
Start date
o End Date

with

of
PRICE =
PRICED PRODUCT=
HISTORICAL PRICE

Products and Prices

A Time Example: Prices

Products have a price. Prices change. Old prices are probably of interest. That leads to a
model with entities PRODUCT and PRICE. The latter entity contains the prices and the time
periods they are applicable. In real-life situations you find the concept of PRICE also named
PRICED PRODUCT, HISTORICAL PRICE (and less appropriate: price list or price
history); all these names more or less describe the concept.

You may argue the need for an End Date attribute. If the various periods of a product price
are contiguous, End Date is obsolete. If, on the other hand, the products are not always
available, as in the fruit and vegetable market, the periods should have an explicit End Date.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-11

Copyright © Oracle Corporation, 2002. All rights reserved.

What Price to Pay?

PRODUCT
Id
* Name

PRICE
* Price in $
Start date
o End Date

with

of

ORDER HEADER
Id
* Order Date

ORDER ITEM
* Quantity Ordered

with

of

referring
to

referred
by

be
tw

ee
n

A Time Example: Prices

Introducing Order Header and Order Item

Here, entities ORDER HEADER and ORDER ITEM are introduced. An ORDER HEADER
holds the information that applies to all items, like the Order Date and the relationship to the
CUSTOMER that placed the order or the EMPLOYEE that handled it. (For clarity, these
relationships are not drawn here.) The ORDER ITEM holds the Quantity Ordered and refers
to the PRODUCT ordered. The price that must be paid can be found by matching the Order
Date between Start Date and End Date of PRICE. Note that you cannot model this “between
relationship”.

This model is a fairly straightforward product pricing model and is often used.

Order

Note that the concept of an order in this model is composed of ORDER HEADER and
ORDER ITEM.

To find the order total for an order, it would need a join over four tables.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-12

Copyright © Oracle Corporation, 2002. All rights reserved.

Price List Search

PRODUCT
Id
* Name

PRICED PRODUCT
* Price in $

with

of

ORDER HEADER
Id
* Order Date

with

of

with

on

PRICE LIST
Id
* Start Date
o End Date

referred
by

between

referring
to

ORDER ITEM
* Quantity

Ordered

A Time Example: Prices

Price List

A variant on the above model is often used when prices as a group are usually changed at the
same time. The period that prices are valid is the same for many prices; that would lead to
this model:

Entity PRICE LIST represents the set of prices for the various products; PRICED
PRODUCT represents the price list items. To know the price paid for an ordered item, you
take the Order Date of the ORDER HEADER, and take the PRICE LIST that is applicable at
that date. Next, you go from ORDER ITEM to the PRODUCT that is referred to and from
there to the PRICED PRODUCT of the PRICE LIST you have just found. To find the order
total for an order, it would need a join over five tables.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-13

Copyright © Oracle Corporation, 2002. All rights reserved.

Order for Priced Products

PRODUCT
Id
* Name

PRICED PRODUCT
* Price in $

with

of

with

on

PRICE LIST
Id
* Start Date
o End Date

referred by

ORDER HEADER
Id
* Order Date

with

of
ORDER ITEM
* Quantity

Orderedreferring
to

A Time Example: Prices

Buying a PRODUCT or a PRICED PRODUCT?

Another variant of a pricing model is shown here.

Here an ORDER ITEM refers directly to a PRICED PRODUCT. At create time of the
ORDER ITEM the constraint is applied that the Order Date must mach the correct PRICE
LIST period. To find the order total for an order now only requires three tables.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-14

Copyright © Oracle Corporation, 2002. All rights reserved.

Negotiated Prices

ORDER HEADER
Id
* Order Date

with

of

referring
to

PRICED PRODUCT
* Price in $

with

of

with

on

PRICE LIST
Id
* Start Date
o End Date

PRODUCT
Id
* Name

ORDER ITEM
* Quantity Ordered
* Negotiated Price

referred by

A Time Example: Prices

Negotiated Prices

When prices are subject to negotiation, the model becomes simpler. Negotiated Price is now
an attribute of entity ORDER ITEM; ORDER ITEM refers to PRODUCT. Every referential
constraint can be modeled.

This model may seem to hold derivable information, but this is not true. Even in the case
that almost all Negotiated Prices are equal to the current product price, you have to model
Negotiated Price at ORDER ITEM level, just because of the small chance of an exception.
To find the order total you require only two tables. You can imagine that many analysts
choose this variant of the model as a safeguard, even if there is nothing to negotiate at
present.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-15

A Time Example: Prices

Which Variant to Use and When?

Typically, the model with the negotiated prices will occur where the number of ORDER
ITEMS per ORDER HEADER is low, often just a single one, and where the value is high,
as, for example, in the context of a used car business.

You see ORDER ITEM referring to a PRODUCT most often in the situation where prices
do not change frequently. The number of items per ORDER HEADER is often well over
one, and the overall value limited. Typical examples are the fashion industry and grocery
stores.

The model with ORDER ITEM referring to PRICED PRODUCT is often used in
businesses where prices often change, as in the fresh fruit and vegetable markets. Prices
there may even change during the day.

The model with attribute Current Price for a PRODUCT is typically the model for the
supermarket environment where instant availability of prices at the checkouts is vital.

As stated earlier, the best model for a particular context depends on functional needs. See
more on this in the chapters on Denormalized Data and Design Considerations.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-16

Copyright © Oracle Corporation, 2002. All rights reserved.

Current Prices

of

PRODUCT
Id
* Name
* Current Price

with
old

PRICE
* Price in $
Start Date
* End Date

PRODUCT
Id
* Name
* Current Price

of

with

PRICE
* Price in $
Start Date
o End Date

PRICE
* Price in $
Start date
o End Date
o Current Indicator

of

PRODUCT
Id
* Name

with

Current Price

These models are variants on the PRODUCT-PRICE model you have seen before.

In the left-hand model the 1:m relationship between PRODUCT and PRICE shows the real
historical prices only. You can guess that only historical prices are kept because attribute
End Date is mandatory; an additional constraint is that this value should always be in the
past. The Current Price of a PRODUCT is represented as an attribute. This model does not
have any redundancies.

In many situations it would be a good design decision to keep the current product prices as
well as the old prices in one table based on entity PRICE. The middle model is an ER
representation of that situation. Note that End Date is now optional.

The right-hand model is another model that contains a subtle redundancy. See more on this
type of redundancy in the lesson on Denormalized Data.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-17

Copyright © Oracle Corporation, 2002. All rights reserved.

to

by

AMOUNT
MODIFICATION
* Old Amount in $
* Modified by
* Date Modification

PAYMENT
o Date Paid
* Amount in $

with

of

to

by

PAYMENT
*Date Paid
*Amount in $

Journaling

Journaling

When a system allows a user to modify or remove particular information, the question
should arise if the old values must be kept on record. This is called logging or journaling.
You will often encounter this when the information is of a financial nature.

Consequences for the Model

A journal usually consists of both the modified value and the information about who did the
modification and when it was done. This extra information can, of course, be expanded if
you wish. Apart from the consequences for the conceptual data model, the system needs
special journaling functionality: any business function that allows an update of Amount In
should result in the requested update, plus the creation of an entity instance AMOUNT
MODIFICATION with the proper values. Of course, the system would need special
functions as well in order to do something with the logged data.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-18

Journaling

No Journal Entity

When several, or all, attributes of an entity need to be journalled, it is often implemented by
maintaining a full shadow table that has the same columns as the original plus some extra to
store information about the who, when, and what of the change. This table does not result
from a separate entity; it is just a second, special, implementation of one and the same
entity.

Journaling Registers Only

Note that logging does not prevent a user from making updates. Preventing updates entirely
is a functional issue and is invisible in the conceptual data model. Be aware that preventing
updates altogether would also block the possibility to change typos or other mistakes.

At this stage, decisions must be made about the behavior of the system with respect to
updates; sometimes this leads to modifications in the conceptual data model.

For example, suppose that in a particular business context a certain group of users is allowed
to create instances of PAYMENT but is not allowed to change them. Changes can only be
made by, say, a financial manager. Suppose you just created a PAYMENT instance and you
discover you made a mistake. For those cases the business would need some mechanism to
stop the erroneous instance. One mechanism would be to ask one of the financial managers
to make the change. A far better mechanism would be to add functionality so that a payment
can be neutralized. This may be represented in the model as an attribute Neutralized
Indicator that users can set to Yes.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-19

Copyright © Oracle Corporation, 2002. All rights reserved.

Summary

• Consider the need for keeping old values
• Time in your model is complicated:

– Implicit versions
– References

• Journaling

Summary

Every update in a system means loss of information. To avoid that you can create your
model to keep a history of the old situations. Sometimes relationships refer to a time-
dependent state of an entity. In other words, the updated entity is in fact a new instance of
the entity and not an updated existing instance. If this is the case, the time- dependent
referential constraints cannot be modeled by a relationship only.

Time in your model is a complicated issue. Many models have some time-related entities.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-20

Copyright © Oracle Corporation, 2002. All rights reserved.

Practices

• Shift
• Strawberry Wafer
• Bundles
• Product Structure

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-21

Copyright © Oracle Corporation, 2002. All rights reserved.

Museumplein, Amsterdam, March 21

Shift 1 2 3 4 5

6:30 11:30 16:00 20:30 -
11:30 16:00 20:30 23:00

7:00 11:30 16:00 20:30 -
11:30 16:00 20:30 23:00

7:00 11:30 16:00 20:30 -
11:30 16:00 20:30 23:00

7:00 11:30 16:00 20:30 -
11:30 16:00 20:30 23:00

7:00 11:30 16:00 20:30 -
11:30 16:00 20:30 24:00

8:00 11:30 15:00 18:00 21:00
11:30 15:00 18:00 21:00 24:00

Mon

Tue

Wed

Thu

Fri

Sat/Sun

Practice: Shift

Practice 5-1: Shift

Goal

The purpose of this practice is to model various aspects of time.

Scenario

Some shops are open 24 hours a day, seven days a week. Others close at night. Employees
work in shifts. Shifts are subject to local legislation. Below you see the shifts that are
defined in one of the shops in Amsterdam.

Your Assignment

List the various date/time elements you find in this Shift scheme and make a conceptual data
model.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-22

Copyright © Oracle Corporation, 2002. All rights reserved.

Practice: Strawberry Wafer

• Prices are at the same level within a country;
prices are determined by the Global Pricing
Department. Usually the prices for regular, global
products are re-established once a year.

• Prices and availability for local specialties are
determined by the individual shops. For example,
the famous Norwegian Vafler med Jordbær (a
delicious wafer with fresh strawberries) is only
available in summer. Its price depends on the
current local market price of fresh strawberries.

Practice 5-2: Strawberry Wafer

Scenario

You have modeled a price list in an earlier lesson. Now some new information is available.

Your Assignment

Revisit your model and make changes, if necessary, given this extra information.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-23

Copyright © Oracle Corporation, 2002. All rights reserved.

klein middel groot
gewone koffie 60 90 120
cappuccino 90 110 140
koffie verkeerd 75 100 130
speciale koffies 99 125 150
espresso 60 95 110
koffie van de dag 45 75 100
caffeine vrij 5 10 15 toeslag
zwarte thees 60 100 120
vruchten thees 75 110 130
kruiden thees 80 120 140
dag thee 50 85 100
caffeine vrij 5 10 15 toeslag
frisdranken 60 100 130
diverse sodas 60 100 130
mineraal water 75 120 140
appel taart 180
brusselse wafel 150
portie chocolade bonbons 150
koekje van eigen deeg 120
portie slagroom 30

prijslijst de Keyzer, Keyzerlei 15, Antwerpen
bezoekt ons op ‘t Web: www.moonlight.com

in
cl

us
ie

f B
T

W
16

 S
ep

te
m

be
r

Pr
ac

tic
e:

 P
ric

e
lis

t

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-24

Copyright © Oracle Corporation, 2002. All rights reserved.

Practice: Bundles(1)

A SweetTreat(tm) consists of a large soft drink plus
cake of the day.
A BigBox(tm) consist of a large coffee of the day plus
two cakes of the day.
A SuperSweetTreat(tm) consists of a SweetTreat(tm)
plus whipped cream (on the cake).
A FamilyFeast(tm) consists of two BigBoxes(tm) plus
two SweetTreats™ plus a small surprise.

A DecafPunch(tm) consists of a regular decaffeinated
coffee or a regular decaffeinated tea, plus a blackberry
muffin.

Practice 5-3: Bundles

Goal

The purpose of this practice is to expand the concept of an old entity.

Scenario

As a test, Moonlight sells bundled products in some shops, for a special price. Here are some
examples.

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-25

Copyright © Oracle Corporation, 2002. All rights reserved.

PRODUCT
Id
* Name

classified
as

classification
for

PRODUCT GROUP
Name

Practice: Bundles(2)

Practice 5-3: Bundles

Bundles sell very well; all kinds of new bundles are expected to come.

The system should know how all these products are composed, in order to complete various
calculations.

Your Assignment
1. Modify the product part of the model in such a way that the desired calculations can be

completed.
2. Change the model in such a way that it allows for:

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

Data Modeling and Relational Database Design 5-26

Copyright © Oracle Corporation, 2002. All rights reserved.

+ Drinks
+ Coffees

Regular
Cappuccino
Café Latte
+ Special Coffee

Teas
+ Black

Chinese
Indian
English

+ Infusions
+ Herbal

Soft drinks
Juices

Orange
Grape

+ Waters
+ Sodas

+ Dairy Products
+Foods

+ Pastry
+ Candy Bars
+ Local Specialties

+Non Foods
Merchandise

CDs
+ Stationary

Other
+ Tickets
+ Art

+ Products

Practice: Product Structure

Practice 5-4: Product Structure
Goal
The purpose of this practice is to model a hierarchical structure.
Scenario
Moonlight needs to make sales information available as a tool to optimize its business. A
hierarchical product structure is being developed to be able to report on different summary
levels. This hierarchical structure should replace the single level product group
classification. Below you see the current idea about a product structure. This structure is far
from complete, but it should give you an idea of the shape the structure will take. The +
signs mean that the structure will be expanded at that point.
Your Assignment

1. Create a model for a product classification structure.
2. (Optional) How would you treat the bundled products?

JEAN OCULAM (cute_dreamangel89@yahooฺcom) has a

non-transferable license to use this Student Guideฺ

Unauthorized reproduction or distribution prohibited. Copyright© 2009, Oracle and/or its affiliates.

Informatics Holdings Philippines, Inc.

	Lesson 5: Modeling Change
	Overview
	Change and Time
	Entity DAY
	Modeling Change
	Even a Country Has a Life Cycle
	Products and Prices
	What Price to Pay?
	Price List Search
	Order for Priced Products
	Negotiated Prices
	Current Prices
	Journaling
	Summary
	Practices
	Practice: Shift
	Practice: Strawberry Wafer
	Practice: Bundles(1)
	Practice: Bundles(2)
	Practice: Product Structure

