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Abstract

This paper describes using Forth as a metalanguage to construct a tiny, but extensible, functional
programming language S/K/ID. In this type-free language both programs and data are combinators.
A defining word DEF: is introduced to implement combinators as words in Forth. The core of
S/K/ID consists of primitive combinators S, K and ID defined directly in Forth. The rest is built up
in bootstrap fashion by a sequence of definitions. The construction of S/K/ID requires only a primitive
Forth system. No control words are used. The execution of combinator code causes silent words to
be written to the dictionary. To avoid using the STATE variable, these silent words are compiled using
LIT and , . The code presented has been tested on a Commodore 64 computer using 64FORTH by
Human Engineered Software, Inc.

Introduction

Much of the power of Forth derives from its extensibility. Starting from a small core
vocabulary, the rest of the language is built up by a sequence of definitions. Just how small can the
core vocabulary be? Perhaps the ultimate answer to this question is given by the theory of
combinators. The core vocabulary may be reduced to two primitive combinators plus a few extra
words, including an executor, a defining word and a garbage collector.

We develop such a combinator-based language using Forth as a metalanguage. Forth is used to
define the core words and for all input/output and some test procedures. Some first steps in extending
the core are taken to illustrate the general procedure.

Because the core is small, care must be taken to generate compact and efficient code. In several
cases we have adopted unconventional definitions of standard combinators in an effort to produce
simpler code. In this effort we were guided by a certain rough measure of complexity introduced
in Reducing Complexity. The code presented here has been tested on a Commodore 64 computer
using 64FORTH by Human Engineered Software.

Implementing combinators in Forth is fairly easy because Forth allows direct access to the
compiler. The execution of combinator code causes many silent words to be automatically written
to the dictionary. To avoid fussing with the STATE variable, these silent words are compiled using
the words LIT and , rather than with COMPILE and [COMPILE].

Are combinators actually useful? Combinators are currently finding some use in certain
experimental fifth-generation programming languages such as Landin’s SECD and the functional
programming languages FP and HOPE ([LAN64]; [CLAS8O0]; [BOES82]; [EIS85]). In addition some
older programming languages, especially LISP, contain features which were inspired by the lambda
calculus.

Combinators are an alternative to the lambda notation ([STE72]; [BAR84]).The relation of
combinators to lambda calculus is similar to the relation between assembly language and higher level
programming languages. An advantage of combinators over the lambda calculus is that no variables
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are needed, resulting in economy in computer code. Combinators, however, are less familiar to most
people and are perhaps less easy to use than the lambda calculus. In practice one may wish to write
programs in the higher level lambda calculus using a compiler to produce combinator code
[TUR79a, b]. A delightful account of combinators is presented in Smullyan’s fascinating book,
where all the combinators are given names of birds [SMUSS5].

Functional programming languages are not especially advantageous on today’s computers with
their von Neumann-style architecture because they often require more memory than conventional
languages. The single-assignment feature of functional languages, however, may well make them
more important in the future on machines with data flow architectures (IBAC78]; [JOUS85];
[SHAB5]). One may be able to trade spatial complexity for a gain in speed.

History of Combinators

Credit for inventing combinators goes to Moses Schoenfinkel who lectured about them before
the Goettingen Mathematical Society on 7 December 1920. His aim was to reduce the number of
primitive undefined notions needed for symbolic logic to as few as possible. Sheffer had already
shown in 1913 that a single connective suffices for the propositional calculus. Schoenfinkel also
showed that the predicate calculus could be simplified by eliminating all variables. The fundamental
idea which makes this simplification possible is the admission of functions as arguments [SCH24].

Using variables to express logical properties lacks a certain economy of thought. Indeed, a
statement in formal logic such as the tautology

AAND B = BAND A

is not really meant to be a statement about the variables A and B but is rather intended to be a
statement about a symmetry property of the word AND. Eliminating variables from symbolic logic
reduces the number of primitive notions needed for logic and thereby simplifies its foundations.

Schoenfinkel found that only the two combinators K and S are needed to eliminate variables
from all logical statements. The combinator K is used to create constant functions. The combinator
S is slightly more complicated. The name S stands for the German word Verschmelzung, which
means “smelting.” Curry suggested that S be called the distributive combinator. Other combinators
can be defined in terms of these two. In particular, Schoenfinkel showed how to express the
combinators B and C in terms of S and K.

Haskell B. Curry made the first serious attempt to base logic on combinators in his 1928 thesis.
He also proved that S could be replaced by the conceptually simpler combinators B, C and W. The
combinator B is used to form composites of functions. The combinator € is used to exchange the
arguments of a function of two variables. The combinator W is used to equate the arguments of a
function of two variables [CUR30].

Alonzo Church introduced the lambda calculus at about the same time, and it was shortly proved
that the theory of combinators is equivalent to a version of the lambda calculus. (The original version
of the lambda calculus omitted constant functions, but this is not essential.) Church showed how the
arithmetic of natural numbers 0, 1, 2, ... can be developed directly in the lambda calculus [CHU33].
To do so we must think of numbers as functions. The number 2, for example, may be identified with
the function whose value at fis the composite of two copies of f. These Church numbers, or iterators,
as well as a successor combinator can be defined in terms of the primitive combinators.

Stephen Kleene completed this picture of arithmetic in 1932 by showing how to define the
predecessor function within the lambda calculus [KLESO, p. 1]. The definition of the predecessor
function in terms of combinators can be accomplished by using a pairing function and iteration. We
shall do it a little differently to make the code more compact, but the basic idea remains the same.
Going further, Kleene and Church were able to show that the class of lambda-definable functions
of natural numbers coincides with the class of general recursive functions ([KLE36]; [PET81];
[KLES817).
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Despite these successes of the lambda calculus in providing a foundation for ordinary arithmetic,
some problems remained. Kleene and Rosser discovered a paradox in the original version of the
lambda calculus that for a time cast serious doubt on the entire enterprise [KLE35]. Cardinality
objections also were raised, based on the idea that there are more functions than arguments for any
set-theoretic universe. The cardinality objection can be avoided by Church’s proposal that a
combinator be interpreted as a function in the sense of a rule of correspondence rather than as a
function in the sense of the collection of ordered pairs making up its graph [CHU41]. In modern
times we may like to think of such a rule of correspondence as representing some computer code
or its equivalent.

The consistency and nontriviality of the modern version of the lambda calculus and the theory
of combinators has been established by the discovery by D. Scott and others of set-theoretic models
of the lambda calculus ([SCO72]; [SCO77]; [STO77]; [SCO80]). These models have certainly led
to an increased understanding of the meaning of the lambda calculus. This enterprise has recently
been extended to the typed lambda calculus, influenced in many ways by ideas from category theory
([LAMSO0]; [LAMROG]).

Basic Notation

The fundamental operation in the theory of combinators is that of applying a function to its
argument. A careful analysis of the process of application is absolutely essential for understanding
combinators.

The notation for functions in Forth differs from that used in mathematics. In mathematics the
value of a function f for an argument x is denoted f{x), but in Forth one usually writes x f, omitting
the parentheses and using reverse Polish notation. A type distinction is implicit, as the stack pictures
for x and f are not the same. Indeed, the word x puts something on the stack ( === n1), whereas
f transforms it: (n1 === n2). For example, consider the Forth expression @ 1+. The word @ puts
zero on the stack, and 1+ takes zero from the stack and replaces it by one.

Ordinarily no problem arises from this distinction between arguments and functions, but it
becomes awkward if we want a function to be an argument for another function. Combinators
provide a functional programming style in which there is no type distinction between a program and
its data. Combinators serve as both functions and arguments.

Another problem arising from the omission of parentheses in the Forth notation for application
stems from the fact that the process of applying a function to its argument is not associative. An
expression like x g f in Forth is used when we want to apply g to x and then apply f to the result.
It would be awkward, if not impossible, to deal with the situation where f is to be applied to g and
then the result applied to x. To prevent any misunderstanding on this point, we hasten to remark that
the nonassociativity of application to which we refer here has nothing at all to do with the well-
known associative law for composition. We shall have more to say about composition later.

In mathematics one usually resorts to the device of inserting parentheses to cope with the
notational problems arising from nonassociativity. We would perhaps use parentheses to distinguish
these two cases by writing (xg)f and x(gf). It is suggestive to imitate this in Forth by introducing the
parentheses as new Forth words, but, in fact, we need only introduce the right parenthesis as a word
to represent the process of application.

In S/K/ID we shall use the notation

x )

for the result of applying f to x. The two different orders of application distinguished above can
now be written as

xg) f)
and
xgf))



558 The Journal of Forth Application and Research Volume 4 Number 4

respectively. We propose to interpret the expression x ) as follows: we shall expect both x and
f to represent words which put an address on the stack ( === adr). The address put on the stack
is the code field address of combinator code. The closing parenthesis ) is simply a synonym for the
Forth word EXECUTE. When the code associated with f gets executed, x is taken from the stack
and used to compute an address y that is left on the stack. Thus, the right parenthesis ) effectively
behaves as a word with the stack picture (adr1 adr2--adr3). The value y left on the stack will
itself normally be the address of combinator code, possibly a silent word which has been written to
the dictionary by the code associated with f. We also introduce the words ) ) and ))) for multiple
execution. See screen #1 of the accompanying source code.

We introduce a defining word DEF : as a convenience for creating functions with the desired
stack behavior. A word created by DEF: does nothing but put on the stack the address of its
associated code. This code is expected to have stack action (adr1--adr2).

For example, if we create a word INC by the definition

DEF: INC1 +;

then INC by itself only puts an address on the stack, but the code @ INC ) has exactly the same
effect as @ 1+ has. The defining word DEF : thus has the effect of creating function words whose
action is deferred until ) is encountered.

A novel feature of combinators, as opposed to ordinary mathematical functions, is that they can
be applied to themselves. As a simple example, consider the identity combinator ID. (In the
literature on combinators, the usual notation is I, but in Forth the word I already has a meaning;
therefore, we use the notation ID instead.) The combinator ID has the property that it does nothing
at all: x ID ) leaves x on the stack. We informally write this as a mathematical equation:

X ID) = x.

The equals sign here is not part of the Forth code. This equation makes sense for all x and in
particular x may be replaced by ID itself:

ID ID) = ID.

Although we have discussed only functions of a single variable, the case of a function of several
variables can always be reduced to that of a function of a single variable by a process called currying
(in honor of Haskell B. Curry, who made this idea more widely known). In mathematics we write
z = fix,y) if z is the value of a function f of two arguments x and y. We write this in S/K/ID as

yxf)) =2
where
g=x*f)

is the function defined by

yg)) =z

This behavior is achieved in S/K/ID by having the code x f ) write a silent word to the dictionary,
whose address g is left on the stack.

The Primitive Combinators

Only two combinators K and S are needed to eliminate all variables from equations. The
meaning of these primitive combinators must now be explained.

The combinator K is used to create constant functions. In our notation the code y K ) leaves
an address on the stack for a silent word

: DROP LITy ;S
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representing the constant function f with value y. That is,

f=yK)
satisfies
xf)=y

for all x. Eliminating f yields the reduction rule
XyKJ)) =y

which is required to hold for all x and y. For example, the constant function
K' =1DK)

has the value
x K') = 1D

for all x.

The similarity of K and K’ is revealed by comparing the equations
Xy K')) =x

and
xyK)J)) =y.

We say that K' and K are selectors for the first and second variables, respectively, in these
formulas. It is useful to think of the combinator K as a synonym for TRUE and K' as a synonym for
FALSE. If this is done, then the expression

zZy x))
can serve as a combinatory analog of the Forth control structure
X IF Y ELSE Z ENDIF.

Note that the order of the variables is different. We do not need to introduce any combinator for the
conditional control structure at all unless we wish to introduce one solely to change the order of the
variables. (See COND in screen #10)

The reduction rule used to define the combinator § is

XyzS))=xy)xz)).

This equation is required to be valid for all x, y and z. Our definition of S in Forth is motivated
by this reduction rule. The code z § ) causes a silent word

: DEF:, DUP, LIT, ), SWAP, LIT z LIT, ), ;S, ;S

to be written to the dictionary, leaving its address on the stack. When this silent word is executed
with y on the stack, another silent word

:DUP LITy ) SWAP LIT z)) ;S

is written, representing the code y z S ) ). When this second silent word is executed with x on the
stack, finally the code x y ) x z )) is executed.

Other combinators can be defined in terms of S and K. For example, Schoenfinkel defines the
identity combinator by

ID =KKS)I).
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We prefer, however, to introduce ID as an additional primitive combinator because its direct
definition DEF: ID ; produces more efficient code.

Let us use the term combinatorial expression to mean either some fixed, definite combinator
like ID, K or S, or a variable, like x or y, or else any expression of the form a b ) where both a
and b are themselves combinatorial expressions. Any combinatorial expression involving a variable
x can be rewritten in the form x f ) where f does not involve x [LAMS0]. The simplest case is

x = x ID ).

If ¢ is an expression which does not involve x, we may write
c=xcK))=x*f)

where
f=cK).

For more complicated combinatorial expressions involving x, we may find a formula for f by using
the following inductive procedure. Given any expression of the form a b ), where both a and b
may involve x, we first write

a=xg)
and
b=xh),
and then
ab)=xg)xh))=xgh$§$))) =x1%)
where
f=gh$).

As a simple example, the combinatorial expression x x ) can be written as
Xxx)=xID)xID))=xIDIDS))) = x SELF)

where
SELF = ID ID § )).

The combinators K' and SELF can be used to give a simple example illustrating the
nonassociativity of application. Compare

x K' ) SELF ) = ID SELF) IDID) = ID

with
x K" SELF)) = x K'K' )

il

x ID ) = x.

Combinator Equations

It is natural to consider combinators to be equal if they are defined by the same or by equivalent
code even though this code may reside at different addresses in memory. Since the addresses of equal
combinators need not be the same, one cannot use the Forth word = to test for the equality of
combinators. Although we lack a convenient Forth word to test for combinator equality, the equality
of two given combinators can nevertheless often be deduced by using certain postulated properties
of equality [CURSS].

When should two combinators be considered equal? We shall certainly wish to postulate that
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ifx=yand f =g,thenx f) =yg).

We shall also demand that combinator equality be a reflexive, symmetric and transitive relation. That
is, we shall demand that f = f for every combinator f, that f = g implies g = f and that if f
= gand g = h, then f = h. Finally, we shall postulate an extensionality axiom, considering two
combinators to be equal if they produce equal values for every argument. That is,

if x f) = x g ) holds for all x, then f = g.

It is precisely this extensional property of equality which makes it possible to eliminate variables
from combinator equations. Recall that the primitive combinators S, K and ID may be used to
rewrite any expression involving a variable x in the form x f ). Therefore, any equation involving
a variable X can be written in the form x T ) = x g ) where f and g do not involve x. If this
equation should hold for all x, then we may conclude that f = g.

When several variables occur in an equation, one can eliminate them all one after another.
Consider, for example, the reduction rule

XyzBJ))) =xy)z)

used by Schoenfinkel to define the combinator B. This rule is valid for all x, y and 2. One may first
eliminate the variable x by rewriting the right-hand side as

Xy)xzKX»))=xyzK)S§)).

Hence, by the extensionality postulate,
yzB))=yzK)S).

One may use extensionality again to eliminate the variable y and write
zB)Y =2K) S).

Finally, to eliminate the variable z, one first rewrites the right-hand side as
2K)zSK))) =2KSK)S)I)

and then uses extensionality once more to obtain Schoenfinkel’s combinator equation
B=KSK)S.

Reducing Complexity

Because combinators are determined by their action on arguments, we may define them by
algorithms. The complexity of certain standard combinator definitions can be greatly reduced by
using procedures instead of equations.

We may assign a crude measure of complexity to combinator definitions as follows: we begin
by assigning the complexity 0, 1 and 2, respectively, to the primitive combinators ID, K and S. The
complexity of any combinator is defined as the sum of the complexities of the combinators that
appear in its definition. For example, by this measure, the procedural definition

DEF: BK)S) ;
for the combinator B has only half the complexity of the standard equational definition
B=KSK)S).

The combinator B is often used to form composites of functions. The composite h of the
functions f and g can be defined by

h=°fgB)).
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When h is applied to an argument X, one obtains
xh)=x1f)g),

which is the same as one obtains when first f is applied to x and then g is applied to the result. The
definition

DEF: hf)g) ;

accomplishes exactly the same thing without using B. Indeed, our definition of B itself reveals it to
be the composite of K and S.
Composition satisfies the associative law

fgB))hB))=FfghB))B))
for all f, g and h. Indeed,

xfgB)) hB))) =xfghB))B)))
=xf)g)h)

holds for all x.
It is convenient to introduce a combinator EVAL satisfying the reduction rule

fxEVAL)) =x f)

for all x and f. We may interpret the combinator x EVAL ) as the process of evaluating at x. To
arrive at a definition for EVAL, we rewrite the right-hand side as

xf)=FfxK))fIp))

=fxK)IDS))
and use extensionality to eliminate the variable f, obtaining
x EVAL) = xK) ID S)).

This result reveals the combinator EVAL to be the composite of the two combinators K and ID § ).
The combinator W introduced by Curry is used to equate the arguments of a function of two
variables. Its reduction rule

xfTWI) =xxT))
holds for all x and f. Rewriting the right-hand side as
x f) x EVAL)) = x f EVAL §)))
and eliminating both x and f using extensionality, we obtain the definition

W= EVALS).

Similar methods may be used to simplify the definition
C=KK)SBBJ) S

given by Schoenfinkel for the combinator C which exchanges the arguments of a function of two
variables. Its reduction rule

xyfC)))=yxf)
holds for all x, y and f. First eliminate the variable x to obtain
yfC)) =yK)fSN.
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Rewrite the right-hand side as
y K f 8 ) B )N
and eliminate y to obtain

fC)=KfsS)B))
=fS)B)KEVAL)).

We thus arrive at a definition of C as the composite of the three combinators S, B and
TAIL = K EVAL ).

By our measure, this procedural definition for C has complexity 9 versus 12 for Schoenfinkel’s
equational definition.

Combinatory Arithmetic

We briefly describe the combinatory interpretation of the arithmetic of the natural numbers. The
natural numbers themselves are represented as certain functions. The Church number or iterator
corresponding to the number 2 can be defined, for example, as the combinator TWICE satisfying
the equation

x fTWICED)) =x f) f)
for all x and f. We introduce a successor combinator

ENCORE =B S)

satisfying
fn ENCORE D)) =fnBS)))
=fn)fB))
for all f and n. We may then count as follows:

NEVER = ID K )

ONCE = NEVER ENCORE )
TWICE = ONCE ENCORE )
THRICE = TWICE ENCORE)

The definition of the combinator PLUS corresponding to the arithmetic operation of addition
is motivated by a familiar law of exponents as follows: if m and n are iterators, then

fmnPLUS))) =fm) fn)B))

expresses the fact that f iterated m n PLUS )) times is the composite of f iterated m times and f
jterated n times. The right-hand side here can be rewrittenas f mn B B )) §))) and the variables
f and m can be eliminated using extensionality, yielding

nPLUS) =nBB))S).

Hence, the combinator PLUS can be defined as the composite of B B ) and S.

The combinator B serves for multiplication. Thus, TWICE THRICE B )) represents two times
three. No combinator at all is needed for exponentiation. For example, TWICE THRICE )
represents two cubed.
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The definition of the predecessor combinator PRED is based on Kleene’s original idea. Imagine
starting at the origin <@, 0> of a Cartesian plane and taking a walk consisting of n steps, each step
going from a point <x, y> to the point <x+1, x>. After n steps we arrive at the point <n,n-1>.
We obtain the predecessor n=1 by projecting out the second component. We introduce the
combinator START to represent the origin, WALK to represent the steps taken, and TAIL for the
final projection. See screen #7.

A zero predicate DONE satisfying

NEVER DONE ) = TRUE
and
n ENCORE ) DONE ) = FALSE
for all n can be defined as the composite of FALSE K ) EVAL ) and TRUE EVAL ).
The word INC can be used to test all this arithmetic code. If we write,
@ INC TWICE THRICE PLUS D) )).

for example, the result 5 will be printed.

List Handling

Lists can be represented in combinatory logic by an application of duality [BAR84, p. 134]. By
the dual of x we mean x EVAL ). The formula

xToooxnf) ... ) =FfxnEVAL)) ... x1 EVAL))
suggests that the list
x=<x1, ..., Xn>

may be represented as the reversed composite of the duals of its entries. That is, the combinator
representing the list x may be defined as

DEF: x xn EVAL)) ... x1 EVAL ) ;

If lists are represented this way, then concatenation of lists is (reversed) composition. The identity
combinator ID represents the empty list, and the dual of x is the list of the single item x. The
individual items in a list can be recovered from this list by replacing f in the previous equation by
a suitable selector.

In particular, for the case n=2, if we replace f by the selectors K' and K we find

X1 =x1x2K")) =K"x)
= x K' EVAL)) = x HEAD )
and
x2 = x1 x2K)) =Kx)

i

x KEVAL)) = x TAIL).

Thus, the combinators HEAD and TAIL project out the first and second coordinates of a list of two
items. For example, the combinator START, representing the origin <@, @>, may be defined as

DEF: START NEVER EVAL )) NEVER EVAL)) ;.

We do not call it ORIGIN because this word already has a meaning in 64FORTH. The definition
in screen #7 is equivalent to this definition because HEAD = NEVER EVAL ).
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We can now explain some of the details of the definition of the predecessor combinator given
in screen #7. If p is the list <x, y> representing some point in the plane, then the point <x+1, x>
reached by walking one single step is represented by

p WALK ) = x EVAL ) x ENCORE ) EVAL) B))
x EVAL ) x NEXT ))

= x EVAL NEXT §)))

= p HEAD ) EVAL NEXT S 2))

i

where we have introduced NEXT, defined as the composite of the three combinators ENCORE, EVAL
and B. The point <n, n-1> reached from the origin after n steps is

START WALK n)) = n WALK EVAL )) START EVAL ))
and therefore

n PRED ) = n WALK EVAL >) START EVAL )) TAIL).

The Fixed Point Theorem

Because we have used many combinators to represent rather ordinary functions, it may come
as a surprise that every combinator has a fixed point. Before proving this, we introduce some
terminology borrowed from Smullyan [SMU85].

We define a combinatory forest to consist of a set F and a mapping ) from the Cartesian
product set F x F to the set F. That is, for any elements x and f of F, there is an element x f )
in F which we call the result of applying f to x.

A forest F is said to be closed under composition if for all f and g in F there exists h in F such
that

xh)=x1)g)

holds for all x in F.
An element X is said to be a fixed point for an element f if

xf)=x

Theorem. If a forest F is closed under composition and holds an element SELF satisfying
x SELF ) = x x )

for all x in F, then every element of the forest has a fixed point.

Proof. Let f be any element, and let g be the composite of SELF and f. Then

Xg)=xSELF) f)
Xxx) f)

I

holds for all x. Set x equal to g. Hence
ggl)=9gg)f)
and so g g ) is a fixed point of f. Q.E.D.

We have proved more than merely the existence of fixed points; we have explicitly constructed
a fixed point. A corollary is that there exists a combinator Y which actually produces a fixed point
for any element f of the combinatory forest.

Corollary. Any forest closed under composition and containing ID and § holds an element Y with
the property that f Y ) is a fixed point of f for every element f.
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Proof. Because
SELF =1ID IDS))

the theorem applies. The combinator

OWL = ID S)
satisfies
XyOWL)) =xyIDS)I)N
=Xy )X)
for all x and y. By the theorem the combinator OWL has a fixed point
YOWL) =Y
and hence

fYY=FYOWL)) =FfVY) f).
Thus f Y ) is a fixed point of f. Q.E.D.

The universal existence of fixed points may initially appear to be paradoxical. For example, the
combinator ENCORE we have been using for successors of natural numbers has no natural number
as a fixed point. The existence of a fixed point for ENCORE is no real paradox, however, because
ENCORE can be applied to anything, not just to numbers. Similarly, the logical combinator NOT can
have neither TRUE nor FALSE as fixed points, but there is no contradiction because we can apply
NOT to objects other than TRUE and FALSE.

Delaying Execution

It should not be surprising that it is possible to write combinatory code which causes the
computer to crash. In this respect the combinatory programming language S/K/ID is no different
from any other language in which loops can be written.

The simplest example of code that causes a crash is

SELF SELF ) = SELF ID ID S )))
= SELF ID ) SELF ID )) = SELF SELF ID))
SELF SELF) = ...

The computer goes into an endless loop, causing the dictionary to explode as more and more silent
words are compiled. A rather similar crash occurs when the code W W W )) is executed.
A more interesting crash is caused by the paradoxical combinator Y defined by

DEF: Y SELF B' ) SELF) ;.

The combinator B' here is defined by
DEF: B' K ) ENCORE) ;
and satisfies the reduction rule
xfgB')))=xg)f)
for all x, f and g. The paradoxical combinator Y as defined here will always crash because

fY)=fFSELFB')) SELF)

f SELFB' )) f SELFB' )))
f SELF B' }) SELF ) )
fy)f)
fy)f)

il

]

]

i

f)

I
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Because words in Forth are executed from left to right, in the expression x y ) z ), the code
for y must execute before the code for z can execute. It follows, for example, that in the expression
SELF SELF ) K' ) the computer will crash before the code associated with K* will get a chance
to execute. If we wish to avoid this crash, we must somehow arrange for the execution of y to be
delayed [HEN76].

One way to postpone execution is by introducing a new word for this very purpose. The delayed
execution word .) is defined so that x y .) does not cause y to be executed immediately, but
instead causes a silent word to be written to the dictionary leaving a memorandum for the execution
of y. The address of this silent word is left on the stack. The new silent word will be designed so that

Xyz.))=xyz)
holds for all x, y and z.

The expression SELF SELF .) K' ) will not cause a computer crash but will cause K' to
execute first, leaving the result ID on the stack.

The crash caused by the paradoxical combinator Y can be avoided by replacing the executor )
with the delayed executor .) in some strategic places. If Y can be redefined so that

fFY)=FfY .)f)
then we could write, for example,
K'Y)=K'Y.)K'") =1D

without a crash occurring.

The necessary delaying effect can be achieved by building an explicit delay into the first SELF
occurring in the definition of the paradoxical combinator. This can be done with the delayed executor
as shown in screen #13 of the accompanying source code.

It is not strictly necessary to introduce the delayed executor to achieve a delay effect. Without
adding any new primitives to S/K/ID, we can produce delays in execution by using double
transposition. Define a combinator DELAY as the composite of C with itself. Its reduction rule is

Xy zDELAY))) = xyz)).

The combinator DELAY behaves much like ID but with a delayed action.

Replacing the first SELF with SELF DELAY ) achieves the same effect as using a delayed
executor. Because the combinator C is fairly complicated in pure S/K/ID, a more efficient procedure
is to define the double transpose of SELF directly as shown in screen #11.

Using delayed execution, the paradoxical combinator serves a useful purpose for implementing
recursion [BUR75]. We may think of Y perhaps as a combinatory analog for the Forth control
structure BEGIN ... AGAIN.

Recursive Definition of Factorial

To test our proposals for using delays in implementing the paradoxical combinator, it may be
useful to consider a specific application to the recursive algorithm for computing the factorial
function.

Our starting point is the recursion relation which defines the factorial function FACT:

n FACT ) = n PRED ) FACT) nB)) ID nDONE))).
This says that n factorial is equal to one if n is zero and otherwise is equal to n—=1 factorial times n.
We first write

n PRED ) FACT ) = n FACT PRED B' J))
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and replace

ID n DONE )
by the equivalent code

n START ) = K'K'n))
to obtain

n FACT) = n FACTPREDB' ))) nB)) n START))
n FACT PREDB' D)) B S ))) n START))

= n FACT PRED B' )) ENCORE ) START S ))).

]

il

From this we can eliminate n to obtain
FACT = FACT PRED B' )) ENCORE ) START S )).

which says that FACT is a fixed point of the combinator ACT defined by
DEF: ACT PRED B' )) ENCORE ) START S )) ;.

That is,
FACT = FACT ACT )

and therefore FACT may be defined using the paradoxical combinator Y as
FACT = ACT Y ).

To test this, we might try
@ INC THRICE FACT ))).

which should yield 6. When we do this, however, the computer crashes because we have failed to
build in delays.

We need to build delays not only in the paradoxical combinator Y itself, as discussed in the
preceding section, but also in the combinator ACT to which it is applied. This is important because
the termination condition for the loop needs to be checked first. As shown in screen #12, this can
be accomplished simply by inserting a DELAY into the definition of ACT.

With these delays built in, the factorial combinator does work. A simple test shown in screen
#15 correctly computes (2¥3)! =720. The test also reveals that the silent words generated by this
computation occupy 17828 bytes of memory. Lack of efficient garbage collection techniques
prevents the computation of the factorial of larger numbers.

Additional Primitives

Being able to base a language for functions on only the two primitive combinators S and K is
very attractive from a theoretical point of view. From a practical standpoint, however, introducing
more primitives may significantly reduce the amount of dictionary space devoted to silent words
generated during a computation. Many people have explored the advantages of additional or
alternative primitives. Curry, for example, preferred to use 1D, K, B, C and W as primitives.
Another set of primitives is ID, K', SELF, EVAL and B.

The simplest of these combinators to implement directly in Forth as new primitives are K' and
SELF. These can be defined by

DEF: K' DROP ID ;
and
DEF: SELF DUP ) ;

respectively.
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Next in order of complexity are W and EVAL. These can be defined directly by
DEF: W DEF:, DUP, LIT, 2), ;S, ;
and
DEF: EVAL DEF:, LIT, SWAP, ), ;S,;
respectively.
Direct definitions of B and B' are given by

DEF: B DEF:, DEF:,, LIT,,?,,
LIT, LIT,, ),y i8S,y i8S,

and

DEF: B' DEF:, DEF:,, LIT, LIT,,),,
LIT, )4y iS4y iSe i
while ¢ may be directly defined by

DEF: C DEF:, DEF:,, LIT,, SHAP,,
LIT, LIT,, ), :Sss iS¢ -

If desired, even more primitives can be added.
We have already discussed the possibility of introducing a delayed action execution word. Both
) and .) have the same stack action (a1 a2--a3). Other words with this stack action can be
introduced. For example, it may be useful to introduce a composition word B)) by the definition
For example, it may be useful to introduce a composition word B)) by the definition

: B)) HERE SWAP ROT :, LIT, ), LIT, ), ;S,;

so that one can write x y B)) instead of x y B )) for the composite of x and y. The advantage
here is that only one silent word is written, instead of two. One can introduce a reversed composition
word B')) by

: B')) SWAP B)) ;.

For list processing, the word EVAL)) defined by
: EVAL)) SWAP) ;

is useful. This has the property
fx EVAL)) =x f)

making EVAL)) equivalent to EVAL )) but causing fewer silent words to be written. An obvious
application is to further simplify the definition of the predecessor combinator given in screen #7.
An even more interesting possibility is to use the word

: MYSELF LATEST PFA CFA , ; IMMEDIATE

to define primitive combinators which are fixed points of some standard combinators. The simplest
possibility here is the combinator U defined by

DEF: U DROP MYSELF ;.

This combinator has the property
xU)=U

which suggests interpreting U as “undefined.” Since
xU)=U=xUK))
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we can eliminate x, revealing
U=UK).

That is, the combinator U is a fixed point of the combinator K. Another curious example along these
lines is the mysterious combinator X defined by

DEF: X MYSELF SWAP ) ;.
This combinator is a fixed point of EVAL and has the strange property
aX)=Xa).

The practical value of such a combinator is unclear.
A more practical application of this recursive technique is the following definition of the delayed
paradoxical combinator

DEF: Y. DUP MYSELF .) SWAP) ;.

Compiling Combinator Code

Programming directly in terms of combinators may yield efficient code, but it is often more
convenient to write in a higher order language like the lambda calculus and then use a compiler to
make the necessary translations.

In a previous section we discussed how to systematically create a combinator satisfying any
given reduction rule by using Schoenfinkel’s recursive method for eliminating variables. For this
only the combinators 1D, K and S were needed. The process is tedious to do by hand, but we can,
of course, do it by computer [BUR7S, p. 42]. Any such procedure can be considered as an algorithm
for compiling combinator code.

Different algorithms for compiling combinator code are possible, and some lead to simpler code
than others ([MEI84]; [HIR85]; [NOS85]). When additional primitives are available, new
possibilities for optimization arise.

In particular, if B, C and $S are all available as primitives, then the special rules

XL)R)=xLRB)))

i

and

LxR))=xLRC)))

i

can be used in addition to the rule
XL)YXR))=xLRS))))

mentioned in Combinator Equations. The order in which these rules are applied can affect the results
obtained [CUR72, pp. 43ff].

Consider, for example, the problem of constructing compositor combinators for all the different
ways that parentheses can be inserted into an expression [SMUSS, pp. 95-98]. There are only two
ways to do this for three variables, namely,

abc)) abcID)))
ab)c) abcB)))).

I

]

For four variables, there are five ways to insert parentheses, corresponding to five compositor
combinators:

abcd))) =abcdlID )Y )
abec)d)) abcdB )DIDD)

]
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ab)cd)) =abcdBB) ) ))
abc))d) abcdBBB)) 3) )
ab)c)d) =abcdBBB)B)) IDIDD

i

We can generalize these results to any number of variables, and it turns out that all we ever need
to construct these compositor combinators are 1D and B. It is not even hard to write a formal
algorithm which constructs all such combinators.

In the first four cases, the method of eliminating variables immediately yields the results given
above. But consider what happens if we blindly follow the elimination method for the fifth case.
Following Smullyan, we call the required combinator BECARD:

abcdBECARD)Y) )Y =ab)c)d).

By a direct application of the above rules, eliminating each of the variables a, b, ¢ and d in turn,
without any further simplifications, yields successively

b ¢ d BECARD })) bcBI))dB))
¢ d BECARD J) cB)YdB)B))
d BECARD ) BdB)B)B))
BECARD BBBB))BB)I)C)I.

]

i

This final result is correct albeit rather complicated. The algorithm works, but we can do better. To
obtain a simpler result, we first use the definition of B to rewrite our original expression as follows:

ab)l)c)d) =ab)cdB))))
=abcdB))B))).

We now eliminate a and b and again rewrite the resulting expression

¢ d BECARD )) =cdB))B)
=cdB)BB).
Eliminate ¢ next and rewrite once more to obtain
d BECARD ) =dB)BB))
=dBBB)B)).

Finally, we eliminate d and find the simple result
BECARD = BBB) B)).

The same rules were applied, with the only difference being the order in which they were applied.

Outlook

We have presented a tiny language S/K/ID to show how a combinator-based functional
programming language can be written in Forth. Some ways to simplify this language and make it
more practical were suggested.

Using FORGET to collect garbage only at the end of computations will not suffice for more
complex programs. One can reduce the number of silent words produced by shifting work to the data
stack from the dictionary as explained in Additional Primitives. Nevertheless, better methods of
garbage collection should be explored ([SCH67]; [WIL84]; [CHR84]; [LI86]; [GLAR7]). Because
delays generate extra code, they should be avoided unless they are essential. Careful analysis is
required to determine precisely where to use delays to prevent crashes ([HEN76]; [TURS8S];
[CLAS5)).
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Finally, it may be interesting to explore whether any techniques suggested here can find use in
existing implementations of functional programming languages in Forth which do not use
combinators at all [DIX84].
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SCR # 1
D ( FILE: S/K/ID.REVISED 1987 MAR. 24)
( SCREEN 1 OF 15 )

( COMPILE DOCOLON CODE ADDRESS)
HE LIT [COMPILE]l : & , ;

( DEFINOR FOR DEFERRED-ACTION WORDS)
: DEF: [COMPILE] : 2 ALLOT :, DOES> ;

9 ( EXECUTOR)
1@ : ) EXECUTE ;

12 ( MULTIPLE EXECUTION)
13 ) )
16 23 ) ) ),

1@ : bUP, LIT DUP
11 : SWAP, LIT SWAP

15

SCR # 2

@ ( FILE: S/K/ID.REVISED 1987 MAR. 24)
1 ( SCREEN 2 OF 15 )
2

3 ( SOME COMPILING WORDS)

4

5 : DEF:, HERE SWAP :, ;

6 : LIT, LIT LIT , ;

7 ), LIT ) ;

8 :+)), LIT )) ;

9 : DROP, LIT DROP H

H

E R O . T T

12 & ;8, LIT ;S
13
14
15
SCR # 3
@ ( FILE: S/K/ID.REVISED 1987 MAR. 24)
1« SCREEN 3 OF 15 )
2
3 ( HIGHER ORDER COMPILING WORDS)
A
5 : DEF:,, LIT DEF:, , ;
6 : LIT,, LIT LIT, .,
7 :,, LIT ), -
8 :)),, LIT ), . 3
9 : DUP,, LIT DUP, , ;
10 : SWAP,, LIT SWAP, , ;
’ r

—_—
N -
se

:S,, LIT ;S,

JECEEY
U N
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SCR # &

@ ( FILE: S/K/ID.REVISED 1987 MAR. 24)
1« SCREEN 4 OF 15 )
2

3 ( IDENTITY COMBINATOR)

4 DEF: ID ;

5

6 ( SCHOENFINKEL'S CONSTANT COMBINATOR K)
7 DEF: K DEF:, DROP, LIT, ;S, ;

8

9 DEF: K' ID K D)) ;

10
11 ( SCHOENFINKEL'S SMELTOR COMBINATOR §)
12 DEF: S DEF:, DEF:,, DUP,, LIT,, ),,

13 SWAP,, LIT, LIT,, 2,

14 ;Sll ;SI ;

15

SCR # 5

@ ( FILE: S/K/ID.REVISED 1987 MAR. 24)

1 < SCREEN 5 OF 15 )
2 ( SMULLYAN'S OWL)

3 DEF: OWL DS ) ;

4

5 ( SELF-APPLICATOR)

6 DEF: SELF  ID OWL )) ;

7

8 ( COMPOSITION COMBINATOR)

9 DEF: B K)S) ;

10

11 ( EVALUATION COMBINATOR)
12 DEF: EVAL K ) OWL ) ;

13
14 ( IDENTIFY ARGUMENTS)
15 DEF: W EVAL S )) ;
SCR # 6
@ ( FILE: S/K/ID.REVISED 1987 MAR. 24)
1 ( SCREEN 6 OF 15 )
2
3 ( SOME LOGICAL COMBINATORS)
4
5 DEF: TRUE K ) ;
6 DEF: FALSE K' ) ;
7
8 DEF: TAIL TRUE EVAL ) ;
9 DEF: HEAD FALSE EVAL )) ;
10
11 ( INCLUSIVE-OR COMBINATOR)
12 DEF: V SELF ) ;
13 DEF: & K S8 $)))
14 DEF: NOT HEAD ) TAIL ) ;

15
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SCR # 7
( FILE: S/K/ID.REVISED 1987 MAR. 24)
( SCREEN 7 OF 15 )

( SUCCESSOR COMBINATOR)
DEF: ENCORE B S) ;

( COMBINATORY ADDITION)
DEF: PLUS BB S);

DEF: START HEAD ) HEAD ) ;
DEF: NEXT ENCORE > EVAL ) B ) ;
DEF: WALK HEAD ) EVAL NEXT S ))) ;

—_
Vo NOUVMPATHNN S

—
-

( PREDECESSOR COMBINATOR)
DEF: PRED WALK EVAL ))
START EVAL J) TAIL ) ;

[ N Y
L I S R VAN )

SCR # 8
@ ( FILE: S/K/ID.REVISED 1987 MAR. 24)
1< SCREEN 8 OF 15 )

( ZERO PREDICATE)

DEF: DONE FALSE K ) EVAL J) TAIL ) ;
( CHURCH NUMBERS OR ITERATORS)

DEF: NEVER K' ) ;

O 0O N oMU s

DEF: ONCE ID ) ;

10

11 DEF: TWICE ONCE ENCORE )) ;
12

13 DEF: THRICE TWICE ENCORE )) ;
14

15

SCR # 9

( FILE: S/K/ID.REVISED 1987 MAR. 24)
( SCREEN 9 OF 15 )
( REVERSED COMPOSITION)

DEF: B' K ) ENCORE ) H

( ROTATION)
DEF: RHO EVAL ) B ) ;

DEF: PHI B ) S B)) ;

VOO NO M~ WNY -

10 ¢ SWAP ARGUMENTS)

11 DEF: ¢ S) B ) TAIL ) ;
12

13 ( SCOTT'S PAIRING)

14 DEF: DYAD EVAL ) C ) ;
15
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SCR # 10

@ ( FILE: S/K/ID.REVISED 1987 MAR. 24)
1« SCREEN 18 OF 15 )
2

3 ( IMPLICATION)

4 DEF: IMP HEAD ) NOT ) ;

5

6 ( CHURCH PAIRING)

7 DEF: PAIR K ) DYAD ) ;

8

9 ( CONDITIONAL)

1@ DEF: COND RHO ) C ) ;

11

12 DEF: PSI BB ) B)RHOS ) ;

13

14

15

SCR # 11

( FILE: S/K/ID.REVISED 1987 MAR. 24)
( SCREEN 11 OF 15 )

DEF: DELAY c)Ych;

( TRANSPOSED SELF)
DEF: SELF' K ) SELF S )) ;

@
1
2
3
4
5
6
7
8 ( DOUBLE TRANSPOSED SELF)
9 DEF: SELF'' K ) SELF' $)) ;
10
11
12
13
14
15

( DELAYED PARADOXICAL COMBINATOR)
DEF: Y"' SELF'' B' )) SELF ) ;

SCR # 12

@ ( FILE: S/K/ID.REVISED 1987 MAR. 24)
1 ¢ SCREEN 12 OF 15 )
2

3 ( EXAMPLE USING PARADOXICAL COMBINATOR)
4

5 DEF: ACT PRED B' )) ENCORE D

6 DELAY ) START S )) ;

7

8 ( FACTORIAL)

9 DEF: FACT'' ACT Y'' )) ;

10

11

12

13

14

15
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SCR # 13
( FILE: S/K/ID.REVISED 1987 MAR. 24)
( SCREEN 13 OF 15 )

0
1
2
3 ( DELAYED EXECUTOR)

4 1)) HERE SWAP ROT

5 s, LIT, LIT, ), ;S, ;
6

7

8

9

( DELAYED SELF)
DEF: SELF. SELF .) ;

10 ( DELAYED PARADOXICAL COMBINATOR)
11 DEF: Y. SELF. B' )) SELF ) ;
12

13 ( FACTORIAL)

14 DEF: FACT. ACT Y. )) ;

15
SCR # 14

@ ( FILE: S/K/ID.REVISED 1987 MAR. 24)
1« SCREEN 14 OF 15 )

2 DEF: INC 1+ ;

: ARITHMETIC ; CR HERE H. CR DECIMAL
CR SP! @ INC NEVER ))
CR SP! INC ONCE )
CR SP! INC TWICE )
CR SP! INC THRICE )) .§

CR SP! INC TWICE THRICE PLUS )) )) .S

H
.S
] .S
] S

U]
]
10 CR SP! @ INC TWICE THRICE B 3 ) .S
]
]
]
H

O 00 ~N OV W

11 CR SP! INC TWICE THRICE ))) .S
12 CR SP! INC THRICE TWICE ))) .S
13 CR SP! INC THRICE PRED 1)) .S
14 CR SP! HERE H. CR FORGET ARITHMETIC
15

SCR # 15
( FILE: S/K/ID.REVISED 1987 MAR. 24)
( SCREEN 15 OF 15 )

: ARITHMETIC ; CR HERE H. CR DECIMAL
DEF: &X TWICE TWICE )) ;

DEF: 16X TWICE 4X )) H

DEF: 256X &4X &4X ))

SPI @ INC 256X ) 16X ) TWICE ))

CR SP! HERE H. CR FORGET ARITHMETIC

VOO ~NON VT PSWENN R

—
(=8

! ARITHMETIC ; CR HERE H. CR DECIMAL
SPi B INC TWICE THRICE B )) FACT'' )))
CR SP! HERE H. CR FORGET ARITHMETIC
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