
TDS 5.0 Functional Specification

Version 3.8

Sybase Confidential

00000-01-00000-00

Last Revised January 2006

Copyright © 1989-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect,
Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer,
DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere,
DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP,
eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise
Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise
Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, GlobalFIX, iAnywhere,
iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere,
InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mail Anywhere Studio,
MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network, M-Business Server,
MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, MySupport, Net-Gateway, Net-Library,
New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open
Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect,
Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket PowerBuilder, Power++,
power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo,
PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional,
PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare, RepConnector, Replication Agent,
Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report-Execute, Report Workbench,Resource
Manager, RFID Anywhere, RW-DisplayLib, RW-Library, S-Designor,SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL
Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message
Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist,
SybFlex, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation
Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and XP
Server are trademarks of Sybase, Inc. 11/04

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Introduction
1. Overview
The Tabular Data Stream (TDS) is an application level protocol used to send requests and
responses between clients and servers. A client’s request may contain multiple commands.
The response from the server may return one or many result sets.

TDS relies on a connection oriented transport service. Session, presentation, and applica-
tion service elements are provided by TDS. TDS does not require any specific transport
provider. It can be implemented over multiple transport protocols if they provide connec-
tion oriented service.

TDS provides support for login capability negotiation, authentication services, and support
for both database specific and generic client commands. Responses to client commands are
returned using a self-describing, table oriented protocol. Column name and data type in-
formation is returned to the client before the actual data.

For example, here is a high-level description of the TDS tokens exchanged by a client and a
server to establish a dialog and then execute a simple SQL query. The SQL statement is,
“select name from sysobjects where id < 3”. This query causes two table rows to be returned
to the client.

 The client first requests a transport connection to the server and then sends a login record
to establish a dialog. The login record contains capability and authentication information.
Sybase Confidential 3 Version 3.8

Introduction Sybase Confidential
The server responds with a acknowledgment token followed by a completion token indicating that
it has accepted the dialog request.

Now that a dialog has been established between the client and the server, the client sends the SQL
query to the server and then waits for the server to respond.

The server executes the query and returns the results to the client. First the data columns are de-
scribed by the server, followed by the actual row data. A completion token follows the row data in-
dicating that all row data associated with the query has been returned to the client.

The TDS PDUs are described in TDS 5.0 Reference Pages.

The TDS protocol is mostly a token based protocol where the contents of a Protocol Data Unit
(PDU) are tokenized. The token and its data stream describe a particular command or part of a re-
sult set returned to a client.

 For example, there is a token called TDS_LANGUAGE which is used by a client to send language,
typically SQL, commands to a server. There is also a token called TDS_ROWFMT which describes
the column name, status, and data type which is used by a server to return column format infor-
mation to a client.

2. Protocol Data Units
A TDS request or response may span multiple PDUs. The size of the PDU sent over the transport
connection is negotiated at dialog establishment time. Each PDU contains a header, which is usu-
ally followed by data.

Client Server

login packet
TDS_LOGINACK

TDS_DONE

Client Server

LANGUAGE: “select name...”

Client Server

TDS_ROWFMT row description

TDS_DONE

TDS_ROW row data
TDS_ROW row data
Version 3.8 4 TDS 5.0 Functional Specification

Sybase Confidential Introduction
2.1. Protocol Data Unit Header

 A PDU header contains information about the size and contents of the PDU as well as an indica-
tion if it is the last PDU in a request or response. The format of a TDS PDU is described in detail in
the Message Buffer Header reference page. The TDS protocol is half-duplex. A client writes a com-
plete request and then reads a complete response from the server. Requests and responses cannot
be intermixed and multiple requests cannot be outstanding.

2.2. Protocol Data Unit Data

In addition to a header, PDUs usually include some data. Control PDUs do not contain any other
data. They consist of a header only. Requests and response PDUs contain TDS tokens that describe
the request or response.

3. Client Protocol Data Units
PDUs sent from a client to a server can contain the following data:

• Dialog establishment information

• Language command

• Cursor command

• Database Remote Procedure Call

• Attentions

• Dynamic SQL command

• Message command

3.1. Dialog Establishment

To establish a dialog with a server a client must:

• Create a transport connection

• Send a login record

• Send a capability data stream

• Perform any required authentication handshaking

• Read the login acknowledgment
TDS 5.0 Functional Specification 5 Version 3.8

Introduction Sybase Confidential
A client application may have multiple dialogs established with the same or multiple servers, but
this is transparent to the TDS protocol. All of the steps above must be completed for each active di-
alog supported by a client application.

3.2. Language Commands

The TDS_LANGUAGE token is used to send language commands to a server. When a client is com-
municating with a SQL Server, this language is a SQL command. A language command may span
multiple PDUs, but its total length is limited by the length field in the TDS_LANGUAGE token. See
TDS_LANGUAGE on page 233 for details.

The character set that the language command is sent in is negotiated during dialog establishment.
The server will perform any required character set translations as required.

3.3. Cursor Commands

There are two ways to send cursor commands to a server:

• Language commands

• Cursor TDS tokens

Cursor commands can be sent to a server using the TDS_LANGUAGE token and the SQL dialect as
described above. However, this requires the server to parse the language to implement the request-
ed cursor operation.

TDS also provides native token support for all ANSI specified cursor operations. This provides a
more efficient mechanism for sending cursor commands to a server since it eliminates the parsing
step. It also allows servers built using the Open Server product to implement cursor emulation on
top foreign data sources without implementing a parser.

A complete description of the cursor tokens is in TDS_CUR* reference pages.

3.4. Database Remote Procedure Calls (RPC)

To execute a remote procedure call on the server, the client sends a TDS_RPC data stream to the
server. This is a binary stream that contains the RPC name, options, and parameters. Each RPC
must be in a separate message and not intermixed with SQL commands or other RPC commands.
For a detailed description of the RPC request data stream (page 293).

COMMENTS:Need to rewrite to reflect change in RPC protocol

3.5. Attentions

The client can cancel the current request by sending an attention to the server. Once the client
sends an attention, the client reads until it gets an attention acknowledgment. After sending an at-
Version 3.8 6 TDS 5.0 Functional Specification

Sybase Confidential Introduction
tention to a server the client will discard any data received until it receives an attention acknowl-
edgment.

TDS 5.0 attentions are sent using the non-expedited data transfer service provided by the trans-
port provider. Earlier versions of TDS sent attentions using the expedited data transfer service if it
was provided by the transport provider.

Expedited attentions will still be supported by clients and servers that implement 5.0 TDS so that
they can continue to communicate with earlier versions of TDS.

3.6. Dynamic SQL Commands

To execute dynamic sql on the server, the client sends a TDS_DYNAMIC or TDS_DYNAMIC2 data
stream to the server to prepare and/or execute the dynamic sql. TDS_DYNAMIC2 has a four (4)
byte length while TDS_DYNAMIC has a two (2) byte length field. The binary stream indicates the
type of operation (prepare, execute, dealloc, etc.), whether there are arguments to the sql, the state-
ment identification, and the sql statement. For more information, see TDS_DYNAMIC (page 205)

3.7. Message Commands

4. Server Protocol Data Units
PDUs sent from a server to a client can contain the following data:

• Dialog establishment acknowledgment

• Row results

• Return status

• Return parameters

• Response completion

• Error information

• Attention acknowledgment

• Cursor status

• Message responses
TDS 5.0 Functional Specification 7 Version 3.8

Introduction Sybase Confidential
4.1. Dialog Establishment Acknowledgment

The acknowledgment to a dialog establishment request is a token stream consisting of information
about a server’s characteristics, informational messages and a completion indication. There are op-
tionally authentication handshake messages.

The TDS_CAPABILITY, TDS_LOGINACK, and TDS_DONE tokens are used to communicate information
to the client regarding the dialog establishment request.

If there are any information messages in the dialog response, an TDS_EED data stream is returned
from the server to the client.

A TDS_DONE token is always sent to terminate the dialog establishment response.

4.2. Row Results

If a client request results in data being returned, the data will precede any other data streams re-
turned from the server. Row data is always preceded by a description of the column names and
data types. For a detailed description of the data stream see the reference pages for TDS_ROWFMT,
and TDS_ROW.

4.3. Return Status

A return status can be returned in response to a client command. A return status is returned to a
client using the TDS_RETURNSTATUS token.

4.4. Return Parameters

Return parameters can be sent to a client in response to either a language or RPC command. Re-
turn parameters are returned to a client using the TDS_PARAMFMT and TDS_PARAM tokens.

When a RPC is invoked, some or all of it’s parameters may be designated as output parameters.
This allows RPC parameters to act like variables that are passed by reference. All output parame-
ters will have values returned by the server.

Return parameters can also be returned to a client in response to a language command. This is the
normal case for stored procedures on a SQL Server. If the stored procedure is executed via a lan-
guage command, any parameters designated as output parameters are returned using the TDS
TDS_PARAMFMT and TDS_PARAM tokens.

4.5. Response Completion

The end of a server response can be determined using the TDS PDU header length field. However,
the DONE token is used to report command completion.

When executing a language command that contains a batch of SQL commands, there will be a
TDS_DONE data stream for each set of results. All but the last TDS_DONE will have the
TDS_DONE_MORE bit set in the Status field of the TDS_DONE data stream. Therefore, the client can
Version 3.8 8 TDS 5.0 Functional Specification

Sybase Confidential Introduction
always tell after reading a TDS_DONE whether or not there are more results associated with the cur-
rent command.

For stored procedures, completion of statements in the stored procedure is indicated by a
TDS_DONEINPROC data stream for each statement and a TDS_DONEPROC data stream for each com-
pleted stored procedure. For example, if a stored procedure executes two other stored procedures,
a TDS_DONEPROC data stream will signal the completion of each stored procedure.

4.6. Error Information

TDS provides support for returning error numbers, severity, and error message text to a client.
This information is returned to clients using the EED token. In previous versions of TDS the
TDS_ERROR and TDS_INFO tokens were both used. These tokens are now obsolete.

4.7. Attentions Acknowledgments

Once a client has sent an attention to a server, the client must continue to read data until the atten-
tion has been acknowledged. Attentions are acknowledged by servers using the status field of the
TDS header. Please see Cancel Protocol on page 21 for details.

4.8. Cursor Status

4.9. Message Responses

5. Protocol Data Unit Definition
TDS supports two types of PDUs; token oriented and tokenless. A token oriented PDU contains
TDS tokens in the user data portion of the PDU. Tokenless PDUs contain un-formatted binary
data in the user data portion.

5.1. Tokenless Stream

Tokenless data streams are only used for the client login record and bulk copy operations. The
PDU header is used to determine the type of data being sent in the PDU. The actual length of the
data in the PDU is determined from the length field in the header.

5.2. Token Stream

Tokens are single byte identifiers that are sent in the user data portion of a PDU. They are followed
by token specific data. Tokens are either fixed length or variable length. Variable length tokens are
followed by a length field. Fixed length tokens do not have a length field.

The size of the length field following a token is encoded in the token value. There are five possible
classes of token length fields. They are listed here along with their bit pattern encoding:
TDS 5.0 Functional Specification 9 Version 3.8

Introduction Sybase Confidential
5.2.1. Zero Length - 110xxxxx

This is a token which is not followed by a length. There is no data associated with the token.

5.2.2. Fixed Length - xx11xxxx

This is a token which is followed by a 1, 2, 4, or 8 bytes of data. No length field follows this token
since the data length is encoded in the token value. Bits 3 and 4 are always on. Bits 5 and 6 indicate
the length of the fixed length data.

• xx1100xx indicates 1 byte of data.

• xx1101xx indicates 2 bytes of data.

• xx1110xx indicates 4 bytes of data.

• xx1111xx indicates 8 bytes of data.

5.2.3. Variable Length - any other pattern

This token is followed by a length. The size of the length field, in bytes, is also encoded in the token
value.

• 1010xxxx indicates 2 bytes of length. (NOTE: KEY token in this group is a “zero-length” to-

ken, there is no length field.)

• 1110xxxx indicates 2 bytes of length. (NOTE: ROW, ALTROW, PARAM tokens are in this

group, but are “zero-length” tokens. The length field is absent.)

• 1000xxxx indicates 2 bytes of length.

• 001000xx or 011000xx indicates 4 bytes of length.

• 001001xx, 001010xx, 011001xx, or 011010xx indicates 1 byte of length.
Version 3.8 10 TDS 5.0 Functional Specification

Features for 5.0
This chapter describes the additions and changes made in TDS 5.0. The current subversion
of this spec is 3.8 The following products will implement support for 5.0 TDS:

• 10.0 DB-Library and later product versions.

• 10.0 Client-Library and later product versions.

• 10.0 Server-Library and later product versions.

• 10.0 SQL Server and later versions.

The 5.0 TDS features fall into the following general areas:

• Cursor support

• Dynamic SQL support

• Extended Error Data

• Additional data types

• Internal changes to improve layering, support, and migration to future releases.

A general description of each of these areas is at the beginning of this chapter followed by
examples on how the features are used. Details on the various new features in 5.0 TDS are
in the appropriate reference pages in this document.

6. Cursors Support
5.0 TDS provides full protocol support for all ANSI specified cursor commands. This proto-
col support allows the System 10 Client-Library to provide a call level interface to cursor
Sybase Confidential 11 Version 3.8

Features for 5.0 Sybase Confidential
functionality implemented in the System 10 SQL Server. It also allows System 10 Server-Library
applications to provide support for foreign cursors via another RDBMS or other data source.

This section includes a general discussion and outline of the TDS data stream that supports cursor
operations through both language and a non-language call-level interface. Following the outline
are some examples which illustrate the relationship of the cursor data streams and a client applica-
tion. Detailed reference pages for the new cursor tokens are in the CUR* reference pages.

6.1. SQL Server Cursor Support

The System 10 release of SQL Server supports cursors as defined in the ANSI SQL 89 specification.
Client-Library provides applications access to the SQL Server’s cursor functionality or a Server-Li-
brary application’s via a set of APIs. Client-Library applications can access the cursor functionality
in Sybase Server products either through the Client-Library cursor APIs or using SQL language
commands.

6.2. Support of Foreign Cursors (Open Server)

System 10 Open Server provides support for all TDS cursor commands. A set of APIs and a new
cursor event provide an Open Server application access to all cursor requests made by a Client-Li-
brary application via the call-level interface. This eliminates the requirement for an Open Server
application to parse T-SQL commands to implement cursor support.

6.3. Cursors and TDS

6.3.1. Client Cursor Requests

Both language and call-level interface cursor requests are supported by System 10 Client-Library.

If a Client-Library application is using language based cursor commands, the cursor command is
sent to the server using the LANGUAGE token. The disadvantage of this technique is that it requires
the server to parse the language command to implement the cursor request. It also makes it more
difficult to build an Open Server application to support foreign cursors since a parse would be re-
quired to parse the T-SQL cursor command.

If a Client-Library application uses the call-level interface the following TDS tokens are sent to the
server instead of a language string:

CURDECLARE Declare a cursor.

CUROPEN Open a cursor.

CURFETCH Fetch “fetch count” number of rows through a cursor.

CURUPDATE Update the current cursor row.
Version 3.8 12 TDS 5.0 Functional Specification

Sybase Confidential Features for 5.0
CURDELETE Delete the current cursor row.

CURCLOSE Close, and optionally deallocate, a cursor.

CURINFO Status info on this cursor.

NOTE: Some tokens appear in more then one version, e.g. the CURDECLARE token has three
versions, CURDECLARE, CURDECLARE2 and CURDECLARE3. Other tokens which have
more then one version are ROWFMT, DYNAMIC, ORDERBY,PARAMFMT and CURINFO.
Thus reading e.g. ROWFMT implies either ROWFMT or ROWFMT2.

Cursor tokens can be batched together in the same PDU with some restrictions.

The advantage of using the call-level interface, and cursor tokens, is that it eliminates the parsing
required by the server. This improves cursor performance and also makes it easier to provide sup-
port for foreign cursors in an Open Server application.

6.3.2. Cursor results

Cursor results are returned to a client using the same ROWFMT and ROW tokens used to return non-
cursor results to a client. The number of rows returned by a cursor fetch is controlled by the cur-
rent cursor fetch count.

6.3.2.1. Setting “current” cursor row

One complication with cursors is that cursor rows are not passed between the server and client a
single row-at-time if the cursor fetch count is greater than one. This means that when the client
does an update or delete based on the “current cursor row”, the client’s idea of the cursor row may
not be the same as the server’s. This is handled by the client identifying the current row to the serv-
er by sending the key for the current row to the server before performing the update or delete.

Key column information is returned to the client in the ROWFMT token.

For example, consider the following cursor:

DECLARE CURSOR csr AS

SELECT a, b FROM mytable

FOR UPDATE

In this example, the unique key for “mytable” is columns “a” and “c”. Although the column “c” is
not part of the select list, the server will send it back with the ROW token as a “hidden” field. The
ROWFMT token will identify column “a” as a “key” field and column “c” as a “key” and “hidden”
field. This tells Client-Library that column “c” is not a column as far as the client application is
TDS 5.0 Functional Specification 13 Version 3.8

Features for 5.0 Sybase Confidential
concerned, but it is part of the key for the row. Then if any updates or deletes are performed on this
cursor, Client-Library will send the key for the current row back to the server as a KEY token along
with the update or delete request.

The server does not send back a new key value if an update changes a key value. The client must
remember that this row has been updated, and if the application attempts to update this row again,
it should set the TDS_CUR_CONSEC_UPDS bit in any future update to this row.

6.3.2.2. Matching cursor results to a particular cursor.

5.0 TDS supports multiple open cursors over the same dialog. However, only one cursor can be the
current cursor at any given time. The CURINFO token is used to indicate the current cursor on a di-
alog. The CURINFO token is also used by a server to assign a cursor ID when a cursor is first
opened, and by a client to set the current cursor fetch count.

Whenever a client or server wants to change the current cursor it sends a CURINFO token with the
cursor ID set to the new current cursor. A cursor remains current until it is explicitly changed by
another CURINFO. See TDS_CURINFO on page 145 for complete details.

7. Dynamic SQL Support

8. Extended Error Data

9. Additional Data Types
TDS 5.0 provides support for NUMERIC, DECIMAL, LONGVARCHAR, and LONGVARBINARY data types.
A new TDS token was added for each of these new data types. The new data types are supported in
the ROWFMT, PARAMFMT, ALTFMT, RETURNVALUE, ROW, ALTROW, KEY, PARAMS, or RPC data streams.

Also introduced (version 3.1 of this specification) is the TDS_BLOB datatype. It is a chunked or
streaming datatype useful for moving larger data. Neither the sender nor the receiver needs to
know how large the total data will be when it begins sending it.

See TDS Datatypes on page 167 for details on the new data type tokens.

9.1. TDS Header File

All TDS tokens, defines, and typedefs are now defined in one header file, tds.h. tds.h is the sole
definition for TDS values. It should be used by all Sybase products to ensure product consistency
for all TDS values.
Version 3.8 14 TDS 5.0 Functional Specification

Sybase Confidential Features for 5.0
9.2. Options and Capabilities

TDS 5.0 adds support for tokenized option commands. The token added to support options is OP-
TIONCMD. Support is provided for setting, clearing, and inquiring about server options.

Previous versions of TDS had no support for options requiring all products that provided option
support to use hard coded T-SQL option strings, “set option”.

TDS 5.0 also adds support for clients and servers to exchange capabilities during dialog establish-
ment. Clients send a list of requested capabilities to a server for both request and response. The ca-
pability list includes both commands that a client can send and a list of data types that can be
supported. A server returns the complete list of capabilities that it is willing to support on this dia-
log. This list may by different than the original list sent by a client. If the list of capabilities is differ-
ent than the original one requested by the client it can chose to continue using the server’s
capabilities or to terminate the dialog.

The token added in 5.0 to support this feature is CAPABILITY.

Previous versions of TDS required the client and server to use the TDS version to determine the
capabilities that are supported on a dialog. This made it very difficult to migrate to future releases
of TDS. Capabilities solves this problem by providing a finer level of control over the actual func-
tions supported on a dialog.

9.3. TDS Protocol Data Unit Changes

TDS 5.0 eliminates the use of the packet header type to determine the command contained in the
PDU. In previous versions of TDS, both language and RPC commands used the packet header.
This made it impossible in previous versions of the protocol to send more than one command at a
time since only one packet header exists in a PDU. Now it is possible to mix command and re-
sponse types in the same PDU.

For example, an option command could be bundled with a language command in the same PDU.

Removing the use of the packet header to indicate the command type also more clearly defines the
layering of the TDS protocol. The packet header provides PDU delineation only. This functionality
is session level functionality in the OSI Reference Model. The command type indicated by the to-
ken is an application level function.

The new packet type added to support this is NORMAL. This will be used for all packets that contain
completely tokenized data.
TDS 5.0 Functional Specification 15 Version 3.8

Features for 5.0 Sybase Confidential
10. Wide Result support
Version 3.4 of this specification adds TDS support to remove the 255 byte limit on columns and
the 250 column limit per table. TDS_WIDETABLE Request and TDS_NOWIDETABLE Re-
sponse capability bits were added to indicate that clients can make requests using new bigger to-
kens and can handle response streams with these wider result sets.

TDS_CURDECLARE2, TDS_DYNAMIC2, TDS_ORDERBY2, TDS_ROWFMT2, and
TDS_PARAMFMT2 tokens were added to address size limitations in the existing CURDECLARE,
DYNAMIC, ORDERBY, PARAMFMT, and ROWFMT tokens respectively.

11. Scrollable Cursor support
Version 3.6 of this specification adds TDS support for scrollable cursors. CURDECLARE3 and
CURINFO2 tokens have been added to provide more status and option bits necessary for scrolla-
ble-cursor support. There are also several examples in the Examples section of this document.

New TDS Tokens

• CAPABILITY — 0xE2

Dialog capability negotiation.

• CURDECLARE — 0xA3

Declare a cursor.

• CURDECLARE2 — 0x23

Declare a cursor.

• CURDECLARE3 — 0x10

Declare a (scrollable) cursor.

• CUROPEN — 0x31

Open a cursor.

• CURFETCH — 0x2E

Fetch through a cursor.

• CURUPDATE -- 0xEA

Update through a cursor.

• CURDELETE — 0x2C

Delete through a cursor.

• CURCLOSE — 0x33

Close a cursor.
Version 3.8 16 TDS 5.0 Functional Specification

Sybase Confidential Features for 5.0
• CURINFO — 0x83

Report and set cursor characteristics.

• CURINFO2 — 0x87

Report and set cursor characteristics.

• DYNAMIC — 0xE7

Describes a statement to be “prepared” or a prepared statement to be “executed”.

• DYNAMIC2 — 0xA3

Describes a statement to be “prepared” or a prepared statement to be “executed”.

• EED -- 0xE5

 Describes Extended Error Data message(s).
• KEY — 0xCA

Cursor key data.

• MSG — 0xE5

Peer-to-peer message.

• ORDERBY2 — 0x22

Describes the sorting order of the result set to follow based on ORDER BY clauses of the select
statement.

• ROWFMT — 0xEE

Describes format of row or key columns.

• ROWFMT2 — 0x61

Describes format of row or key columns.

• LANGUAGE — 0x21

Client language command.

• LOGOUT — 0x71

Dialog termination.

• OPTIONCMD — 0xA6

Setting, clearing, and checking options.

• PARAMFMT — 0xEC

Parameter format.

• PARAMFMT2 — 0x20

Parameter format.

• PARAMS — 0xD7

Parameter data.

• RPC — 0xE0

Database Remote Procedure Call command.
TDS 5.0 Functional Specification 17 Version 3.8

Features for 5.0 Sybase Confidential
New TDS Packet Types

• normal packet type — 20

Tokenized request/response packet type.

• urgent packet type — 21

Tokenized packet type containing attention or event notification.

New TDS Datatypes

• DECN — 0x6A

The decimal data type.

• NUMN — 0x6C

The numeric data type.

• LONGBINARY — 0xE1

The long binary data type.

• LONGCHAR — 0xAF

The long character data type.

• SENSITIVITY —

The sensitivity data type for secure user authentication

• BOUNDARY —

The boundary data type for secure user authentication

New TDS Datatypes with revision 3.6

• TDS_DATE

• TDS_DATEN

• TDS_TIME

• TDS_TIMEN

• TDS_INTERVAL

Changed TDS Datastreams

• Language Requests

Now tokenized — see LANGUAGE.
Version 3.8 18 TDS 5.0 Functional Specification

Sybase Confidential Features for 5.0
• LOGINACK — 0xAD

Dropped interface argument and added status to facilitate handshake login sequence. The in-
terface information is now handled by capabilities.

• Remote Procedure Call Requests

Now tokenized — see RPC.

TDS Datastreams No Longer Supported

• ALTCONTROL — 0xAF

Was never implemented.

• COLNAME — 0xA0

Replaced by ROWFMT.

• COLFMT — 0xA1

Replaced by ROWFMT.

• PROCID — 0x7C

Dropped. Never used.

TDS 5.0 changes with revision 3.7

• Description of TDS attentions was modified to reflect implementation.

• Extended password encryption to allow passing of cipher suite information.

• Added new and renumbered/renamed some old datatypes (see below for list.)

• Login redirection added.

• Cluster failover capability.

• TDS_EED was modified to carve out TDS message space.

The following datatypes were added:

• TDS_UNITEXT — 0xae

Unicode UTF-16 Text

The following datatypes were renumbered:
TDS 5.0 Functional Specification 19 Version 3.8

Features for 5.0 Sybase Confidential
• TDS_INT8 — 0xbf

8-byte Integer — was 0x39

• TDS_SINT1 — 0xb0

Signed Integer — was 0x40

TDS 5.0 changes with revision 3.8

• TDS_CURINFO3 was added to restore the usage of TDS_CUR_ISTAT_ROWCOUNT so that old cursor
applications would continue to work correctly.

• Added capabilities to support large identifiers. Large identifiers have a maximum length of 255.

• Added TDS_XML data type (value 0xA3) and associated capabilities.

• Added request and response capabilities for server set packet size.

• Connection Migration messages and capabilities.

• Reserved TDS_OPTIONCMD2 token value and corrected the TDS Token List to reflect actual token
values (a couple of cursor tokens were either missing or incorrect.)

• New section provided to give some detail on cluster related features. This includes some addi-
tional information on High Availability (HA) features.

• Misc. spelling errors were fixed.

• Added TDS_DBRPC2 token to allow longer procedure names. Also added a request capability to
indicate that it can be used.

• Performance enhancements were added dealing with the usage of TDS_ROWFMT and
TDS_ROWFMT2. A capability was added to indicate that additional meta-data TDS_ROWFMT2 pro-
vides is not needed. Additionally, a capability was added to indicate that TDS_ROWFMT should be
sent in preference to TDS_ROWFMT2. Also, a capability bit was added that indicates that
TDS_DYNAMIC and TDS_DYNAMIC2 support the setting of TDS_DYNAMIC_SUPPRESS_FMT in the sta-
tus field.

• New message buffer header type was added to support migration.

• New TDS Options were added.

• Capability added to suppress TDS_DONEINPROC usage.

• TDS_NONINT_RETURN_VALUE capability added.
Version 3.8 20 TDS 5.0 Functional Specification

Canceling Operations
Clients require the ability to cancel an outstanding request. For example, the client may
submit a query to a server which returns several hundred rows. While the rows are being
returned to the client, the client decides that it is no longer interested and wishes to tell the
server. This is done by cancelling the request. The operation is typically used to stop the
processing of a client request to the server and is known as a cancel.

This chapter describes the 5.0 TDS behavior for handling cancels in terms of the TDS pro-
tocol. It also describes how cancels work with new 5.0 TDS features, such as cursors.

A major change to cancels in 5.0 is that cancels are sent as “normal” data instead of “expe-
dited” data. The elimination of expedited data solves a lot of race conditions caused by us-
ing expedited data. Also, not all transport protocols support expedited data. However, the
switch to using normal data delivery for cancels is not without cost. Because the cancel is
delivered in the normal data stream, cancels can come to the attention of the recipient
more slowly than expedited data. This is because any data in front of the cancel must be
read first.

12. Cancel Protocol
A cancel request is sent using a non-expedited TDS packet with the header type set to
TDS_BUF_ATTN and the packet header status bit set to TDS_BUFSTAT_ATTN. The client will
then read packets from the server until the cancel is acknowledged with a packet of header
type TDS_BUF_NORMAL and the packet header status bit set to TDS_BUFSTAT_ATTNACK. The
data, if any, in the packet with the TDS_BUFSTAT_ATTNACK bit set is discard. Once the client
receives a packet with the header status bit TDS_BUFSTAT_ATTNACK set, the dialog state is
returned to an idle state. The client may now issue another request.
Sybase Confidential 21 Version 3.8

Canceling Operations Sybase Confidential
When a TDS_BUFSTAT_ATTN is sent by a client the TDS_BUFSTAT_EOM bit must also be set in the
header status field. The TDS_BUFSTAT_ATTNACK returned by a server in response to a
TDS_BUFSTAT_ATTN must have the TDS_BUFSTAT_EOM bit set at the end of the response. However,
the TDS_BUFSTAT_ATTNACK can have a data length of 0 or greater. All data in the
TDS_BUFSTAT_ATTNACK response can be safely discard by the client.

Any dialog state information required by the sender of a TDS_BUFSTAT_ATTN is explicitly requested
by the sender after the TDS_BUFSTAT_ATTNACK has been received. The only state information cur-
rently required by a client is the state of all open cursors on the dialog. This state information is re-
quested by the client by sending a TDS_CURINFO token with a cmd argument of
TDS_CUR_CMD_INQUIRE and a cursor id of 0.

Older servers may respond differently than the protocol described above. The original attention
acknowledgement protocol used TDS_DONE with a done status of TDS_DONE_ATTN. This means
that a client application needs to examine both the TDS message header and, if the message header
does not contain TDS_BUFSTAT_ATTNACK, the data stream. Fortunately, only the last 8 bytes of the
data stream needs to be examined and can be done by finding a message header with
TDS_BUFSTAT_EOM set.

Client Server

— In-band packet of
type TDS_BUF_ATTN,
status — Stop current processing,

not necessarily on a TDS token
boundary.

— If packet not TDS_BUFSTAT_EOM,
continue reading

— Return in-band packet of
type TDS_BUF_NORMAL with
status of TDS_BUFSTAT_ATTNACK.
Set TDS_BUFSTAT_EOM bit

— Read and discard all packets
between sending of cancel
and receipt of TDS_BUFSTAT_ATTNACK
packet. At this point both
ends are re-synchronized.

— If TDS_BUFSTAT_ATTNACK not also
TDS_BUFSTAT_EOM, continue reading
packets until TDS_BUFSTAT_EOM.

— Server now in idle state.

— Dialog now in idle state.

TDS_BUFSTAT_ATTN | TDS_BUFSTAT_EOM

 until
TDS_BUFSTAT_EOM.

in last packet.
Version 3.8 22 TDS 5.0 Functional Specification

Sybase Confidential Canceling Operations
13. Cancels and Cursors
Because cursors, unlike other commands, may have a life that spans multiple requests, the rela-
tionship of cancels and cursors needs to be discussed separately. Unlike a regular request, a cursor
may, and usually does, have a life beyond a single request. Therefore a cancel does not necessarily
cause a cursor to disappear. There is also the problem of row context with cursor. Unless the cursor
row count is 1, the server’s and client’s notion of the current row is usually different. If a cancel is
received during a cursor fetch, there is really no way of re-synchronizing the server’s and client’s
row context.

Canceling a batch that includes cursor commands really means that the condition of the cursor or
cursors in the request is unknown. The cancel may cause a cursor to be closed or it may have no ef-
fect at all if the server has already completed the cursor-related commands in a request. The prob-
lem is further compounded by the fact that the server may have finished a cursor operation, e.g.,
fetch, before it received the cancel and the client doesn’t see the data because it comes between the
time the cancel was sent and the TDS_BUFSTAT_ATTNACK packet was received from the server.
There is also the problem that cursor may be either language or function based. A language-based
cursor is one that was opened and operated using T-SQL commands. These commands are sent to
the server using a TDS_LANGUAGE TDS token. A function-based cursor is one that was opened and
operated using Client-Library cursor APIs. These commands are sent to the server using TDS
TDS_CUR* tokens.

These problems are solved in the following way.

— When the client sends a cancel, the client will request the cursor state (open or closed) for
all cursors on the dialog. This information is requested using the TDS_CURINFO token.

— The client will update its notion of the cursor state, if needed, for every function-based cur-
sor referenced in the request that was canceled.

— The server will enforce the rule that cursors opened via language may be manipulated only
with language commands and cursors opened via TDS cursor functions may be manipulat-
ed only with TDS cursor tokens. In other words, a cursor may not be manipulated using
both language and cursor tokens.
TDS 5.0 Functional Specification 23 Version 3.8

Canceling Operations Sybase Confidential
Version 3.8 24 TDS 5.0 Functional Specification

Event Notifications
In pre-5.0 TDS, event notifications were sent using the TDS_EVENTNOTICE data stream in a
TDS_BUF_RESPONSE message. The only token in this response message was
TDS_EVENTNOTICE. Event notifications are always sent at the end of a complete TDS token
stream.

The old way of sending event notifications causes problems when attentions are sent as
non-expedited or normal data. A client would miss an event notification that is sent by a
server after a client has sent an attention. If event notifications were sent to 5.0 clients using
the pre-5.0 protocol, a client could not discard received message data after sending an at-
tention because it would have to parse the token stream looking for event notifications.
This defeats the purpose of attentions.

To solve this problem, event notifications in 5.0 are sent in a TDS_BUF_URGENT message
with the Status field set to TDS_BUFSTAT_EVENT. This allows 5.0 clients to discard received
data following an attention based on the message header only. The event notification pa-
rameters will also be sent using the TDS_PARAMFMT/PARAMS data stream, instead of
TDS_RETURNVALUE.

14. Event Notification Capabilities
The type of event notification protocol to use will be controlled using a new request capa-
bility value called TDS_REQ_URGEVT. If this capability is requested by a client, the new event
notification protocol will be used. If this capability is not requested, the old event notifica-
tion protocol will be used. This will allow DB-Library to only support the old event notifi-
cation protocol.
Sybase Confidential 25 Version 3.8

Event Notifications Sybase Confidential
15. Pre-5.0 Event Notification Protocol
This is a summary of the pre-5.0 event notification protocol.

16. 5.0 Event Notification Protocol
This is a summary of the 5.0 event notification protocol.

Event Notification Protocol

Message Type: TDS_BUF_RESPONSE
Message Status: Undefined

Token Stream
TDS_EVENTNOTICE
TDS_RETURNVALUE
TDS_DONE(TDS_DONE_EVENT|TDS_DONE_FINAL)

NOTE: These are the only tokens in this response message.

Dropped Procedure Protocol

Message Type: TDS_BUF_RESPONSE
Message Status: Undefined

Token Stream
TDS_ERROR (MsgNo = 16500)

TDS_DONE(TDS_DONE_EVENT|TDS_DONE_FINAL)

NOTE: These are the only tokens in this response message.

“Procedure %s no longer exists in the server”
Version 3.8 26 TDS 5.0 Functional Specification

Sybase Confidential Event Notifications
5.0 Event Notification Protocol

Message Type: TDS_BUF_URGENT
Message Status: TDS_BUFSTAT_EVENT|TDS_BUFSTAT_EOM

Token Stream
TDS_EVENTNOTICE
TDS_PARAMFMT
TDS_PARAMS

NOTE: These are the only tokens in this response message.

5.0 Dropped Procedure Protocol

Message Type: TDS_BUF_URGENT
Message Status: TDS_BUFSTAT_EVENT|TDS_BUFSTAT_EOM

Token Stream
TDS_EED (MsgNo = 16500)

TDS_DONE(TDS_DONE_EVENT|TDS_DONE_FINAL)

NOTE: These are the only tokens in this response message.

“Procedure %s no longer exists in the server”

TDS_DONE(TDS_DONE_EVENT)
TDS 5.0 Functional Specification 27 Version 3.8

Event Notifications Sybase Confidential
Version 3.8 28 TDS 5.0 Functional Specification

Sybase Confidential Examples
Examples

Command-Based Cursor Operations

Here is an example of a simple cursor client application. This program opens a connection to a
server, and obtains a command handle for that connection. The application then declares and
opens a cursor, setting cursor rows to 10. The rows of the cursor result set are then fetched one at a
time, and an update of a particular row is made. Note that this example is for a forward-only non-
scrollable cursor; scrollable cursor examples can be found later in this chapter.

The TDS tokens that are sent and received are identified in the diagrams below.

/*
** Open a connection to a server.
*/
login = dblogin();
dbproc = dbopen(login, SERVER_NAME);

/*
** Now get a command handle.
*/
cmd = dbinitcmd(dbproc);

/*
** Let’s declare the cursor.
*/
strcpy(charbuf “select * from A_Table”);
dbinitop(cmd, DB_CURSOR_DECLARE, “my_cursor”, charbuf, DBFORUPDATE);

/*

Client Server

Login
LOGINACK

DONE
SEND

SEND

CURDECLARE

Client
TDS 5.0 Functional Specification 29 Version 3.8

Examples Sybase Confidential
** Set the cursor rows to 10.
*/
dbcmdoptions(cmd, DBCURROWS, 10);

 /*
 ** Let’s open the cursor in the same operation.
 */
 dbinitop(cmd, DB_CURSOR_OPEN, NULL, NULL, FETCH_ON_OPEN);

OPTIONCMD

(CURSOR ROWS)

Client

CURDECLARE

Client

OPTIONCMD

(CURSOR ROWS)

CUROPEN

CURDECLARE

fetch_on_open
Version 3.8 30 TDS 5.0 Functional Specification

Sybase Confidential Examples
 /*
 ** Now send the open to the server.
 */
 dbcmdsend(cmd);

/*
 ** Process the results of the cursor.
 */
while ((ret = dbcmdresults(cmd)) != DBNOMORERESULTS)
{

switch (ret)
{
 case DBREGRESULT:

 /*
 ** Bind the columns here.
 */
 dbcmdbind(cmd, DBREGROW, SYBINTBIND, 1,
 4, 1, NULL, &intbuf);

Server

DONE

ROW
repeat 10
times

Client

SEND

SEND

OPTIONCMD

(CURSOR ROWS)

CUROPEN

CURDECLARE

fetch_on_open

CURINFO

for declare

DONE for open

DONE for fetch

updatable

ROWFMT

CONTROL

CURINFO
TDS 5.0 Functional Specification 31 Version 3.8

Examples Sybase Confidential
 dbcmdbind(cmd, DBREGROW, SYBNTSBIND, 1,
 255, 1, NULL, charbuf);

/*
 ** Now fetch the rows.
 */
 while (dbfetch(cmd, 1, 0, 0)

!= DBNOMOREROWS)

 {
 /*
 ** Update a particular row.
 */
 if (intbuf == 25)
 {
 /*
 ** Define the update clause.
 */
 dbinitop(cmd, DB_CURSOR_UPDATE, NULL,

“set col1 = 55”,0);

 /*
 ** Send the update command

** to the server.
 */

Client Server

DONE

repeat 10
times, or until
no more rows

The fetch will be automatically sent when 10 rows
are consumed by the client application.

SEND

ROWSEND

FETCH

for fetch

Client

CURUPDATE

KEY
key which indicates
the client’s notion
of “current cursor”
position
Version 3.8 32 TDS 5.0 Functional Specification

Sybase Confidential Examples
dbcmdsend(cmd);

/*
 ** Verify that the update

** succeeded.
 */

if (dbcmdresults(cmd) == FAIL)
{

exit(1);
}

}

/*
** Go on to the next row.
*/

}

break;

case FAIL:
default:

/*
** This is an error - Open Client has
** already called the application’s
** error handler, so just exit.
*/
exit(1);

}

/*
** Go on to the next result set.
*/

DONE

SEND

KEY new key,
if any

Client Server

SEND

CURUPDATE

KEY
key which indicates
the client’s notion
of “current cursor”

for update

ROWFMT key format
TDS 5.0 Functional Specification 33 Version 3.8

Examples Sybase Confidential
}

/*
** All done.
 */
 dbclose(dbproc);

Client Server

CURCLOSE

SEND

LOGOUT

DONE

SEND

CURINFO closed

DONE for cursor close

for logout
Version 3.8 34 TDS 5.0 Functional Specification

Sybase Confidential Examples
Example - TDS token Scrollable Cursor Operations (scrolla-

ble example 1)

The following example shows the TDS token exchange that can take place when a client opens a
read-only insensitive scrollable cursor on a query that returns 20 rows. The fetch size is initially set
to 5.

Client Server

CURDECLARE3options field is
CUR_RDONLY+
CUR_INSENSITIVE+
CUR_SCROLLABLE

CURINFO
 command is
CUR_SETCURROWS

CUROPEN

SEND
TDS 5.0 Functional Specification 35 Version 3.8

Examples Sybase Confidential

+

s

t).
s

Client Server

CURINFO2
status is
CUR_ISTAT_DECLARED
CLOSED+
RDONLY+
ROWCNT+
SCROLLABLE+

CURINFO2 status is
CUR_ISTAT_CLOSED+
RDONLY+
ROWCNT+
SCROLLABLE+
INSENSITIVE
(RowCount is 5.

ROWFMT(2)

CURINFO2 status is
CUR_ISTAT_OPEN+
RDONLY+
ROWCNT+
SCROLLABLE+
INSENSITIVE

In response to a setcurrow
command, RowNum field
contains -1 (unknown))

(RowNum is 0 (beforefirs

is 20)
RowCount is 5. TotalRow

INSENSITIVE
(RowCount is 1 because
default fetchsize is 1.
TotalRows and RowNum
are both -1 (unknown))
Version 3.8 36 TDS 5.0 Functional Specification

Sybase Confidential Examples

h
Set.

s

Client Server

DONE

SEND

CURFETCHfetch type is
CUR_NEXT

repeat token 5
times, or until
no more rows (in this

ROW

DONE

SEND

SEND

CURFETCHfetch type is
CUR_PREV

SEND

CURINFO2
Token indicates that fetc
moved cursor off Result
Status is
CUR_ISTAT_OPEN+
RDONLY+
ROWCNT+
SCROLLABLE+
INSENSITIVE
(RowNum field contain
0 -- beforefirst)

case, rows 1-5 are sent
to the client)
TDS 5.0 Functional Specification 37 Version 3.8

Examples Sybase Confidential
Client Server

DONE

SEND

CURFETCHfetch type is
CUR_ABS, rownum
is 18 (recall this

SEND

ROW

ROW

ROW

ResultSet is 20 rows)

row 18

row 19

row 20

DONE note that there is
no CURINFO2 in this
case.

SEND

CURFETCHfetch type is
CUR_NEXT

SEND

CURINFO2

status is
CUR_ISTAT_OPEN+
RDONLY+
ROWCNT+
SCROLLABLE+
INSENSITIVE
(RowNum field is
-2 to indicate afterlast)
Version 3.8 38 TDS 5.0 Functional Specification

Sybase Confidential Examples

 row
les)
Client Server

DONE

SEND

CURFETCHfetch type is
CUR_PREV

SEND

ROW

ROW

ROW

ROW

ROW

row 16 (row 16 is the first

row 17

row 18

row 19

row 20

DONE

SEND

CURINFOcommand is
SET_CURROWS.
rowcount is 18.
(This is a request to change
the fetch size to 18)

SEND

CURFETCHfetch type is
CUR_PREV. Note
that it is OK to batch
together a CURINFO2 followed
by a CURFETCH in the same request.

returned based on fetch ru
TDS 5.0 Functional Specification 39 Version 3.8

Examples Sybase Confidential

D

C

)

Client Server

CURINFO2

repeat token 18 times (rows
1-18, as per the fetch rules
in the CURFETCH token)

ROW

DONE

SEND

CURCLOSE

SEND

CURINFO2

CURINFO2

DONE

CUR_ISTAT_CLOSE

CUR_ISTAT_DALLO

CUR_DEALLOC

SEND

status is
CUR_ISTAT_OPEN+
RDONLY+
ROWCNT+
SCROLLABLE+
INSENSITIVE
(response to setcurrows;
RowCount is 18.
RowNum is -1 (unknown
Version 3.8 40 TDS 5.0 Functional Specification

Sybase Confidential Examples

)

Example - TDS token Scrollable Cursor Operations (scrolla-

ble example 2)

The following example shows the TDS token exchange that can take place when a client opens a
read-only insensitive scrollable cursor on a query that returns 20 rows. The fetch size is initially set
to 5. Note that unlike scrollable example 1, we will not include the cursor declaration or open to-
ken stream here. Assume that the cursor has already been opened.

Client Server

CURFETCHfetch type is
CUR_FIRST

repeat token 5 times (rows 1-5ROW

SEND

DONE

SEND

CURINFOcommand is
CMD_INQUIRE

SEND

CURINFO2 status is
CUR_ISTAT_OPEN+
RDONLY+
ROWCNT+
SCROLLABLE+
INSENSITIVE
RowCount is 5. RowNum
is 1. TotalRows field
contains a 20.
TDS 5.0 Functional Specification 41 Version 3.8

Examples Sybase Confidential
Client Server

DONE

SEND

CURFETCHfetch type is
CUR_LAST

SEND

repeat token 5 timesROW

DONE

SEND

CURINFOcommand is
CMD_INQUIRE

SEND

CURINFO2
status is
CUR_ISTAT_OPEN+
RDONLY+
ROWCNT+
SCROLLABLE+
INSENSITIVE
(RowCount is 5.
RowNum is 16.
TotalRows is 20)

DONE

SEND

(rows 16-20)
Version 3.8 42 TDS 5.0 Functional Specification

Sybase Confidential Examples

).
Client Server

CURFETCHfetch type is
CUR_ABS. rownum
is 20. SEND

ROW row 20

DONE

SEND

CURINFOcommand is
CMD_INQUIRE

SEND

CURINFO2
status is
CUR_ISTAT_OPEN+
RDONLY+
ROWCNT+
SCROLLABLE+
INSENSITIVE
(RowCount is 5. RowNum
is 20. TotalRows is 20).

DONE

SEND

CURINFO
command is
SETCURROWS to
3

SEND

CURINFO2

status is
CUR_ISTAT_OPEN+
RDONLY+
ROWCNT+
SCROLLABLE+
INSENSITIVE
(RowCount field is 3.
RowNum is -1 (unknown
TotalRows is 20)

DONE

SEND
etc...
TDS 5.0 Functional Specification 43 Version 3.8

Examples Sybase Confidential
Example - TDS token Scrollable Cursor Operations (scrolla-

ble example 3)

The following example shows the TDS token exchange that can take place when a client opens a
read-only insensitive scrollable cursor on a query that returns no rows (i.e. an empty ResultSet).
The fetch size is initially set to 5.

Client Server

CURDECLARE3options bits are
CUR_RDONLY+
CUR_INSENSITIVE+
CUR_SCROLLABLE

CURINFOcommand is
CUR_SETCURROWS

CUROPEN

SEND

CURINFO2 status is
CUR_ISTAT_CLOSED+
RDONLY+
ROWCNT+
SCROLLABLE+

fetch size is set to 5.

INSENSITIVE
(RowCount is 1 because
default fetchsize is 1.
TotalRows and RowNum
are -1 (unknown))
Version 3.8 44 TDS 5.0 Functional Specification

Sybase Confidential Examples
Client Server

CURINFO2
status is
CUR_ISTAT_DECLARED+
CLOSED+
RDONLY+
ROWCNT+
SCROLLABLE+
INSENSITIVE

ROWFMT(2)

CURINFO2 status is
CUR_ISTAT_OPEN+
RDONLY+
ROWCNT+
SCROLLABLE+
INSENSITIVE
(RowCount is 5. RowNum
is 0 (beforefirst). TotalRows
is 0)

DONE

SEND

(RowCount is 5. RowNum
is -1 (unknown)).
TDS 5.0 Functional Specification 45 Version 3.8

Examples Sybase Confidential
Client Server

CURFETCHfetch type is
CUR_NEXT

SEND

CURINFO2
status is
CUR_ISTAT_OPEN+
RDONLY+
ROWCNT+
INSENSITIVE+
SCROLLABLE
(RowNum is 0 (beforefirst).
Cursor remains positioned
before first row on any fetch
to an empty ResultSet)

DONE

SEND

CURINFO
command is
CMD_INQUIRE

SEND

CURINFO2
status is
CUR_ISTAT_OPEN+
RD_ONLY
ROWCNT+
INSENSITIVE+
SCROLLABLE
(RowNum is 0)

DONE

SEND

etc....
Version 3.8 46 TDS 5.0 Functional Specification

Sybase Confidential Examples
Example - TDS token Scrollable Cursor Operations (scrolla-

ble example 4)

The following example shows the TDS token exchange that can take place when a client opens a
read-only insensitive scrollable cursor on a query that returns one row. The fetch size is initially set
to 5. Like example 2, we assume the cursor has already been opened, and that we have not fetched
any rows yet.

Client Server

CURFETCHfetch type
is CUR_FIRST

SEND

ROW row 1

DONE

SEND

CURINFOcommand is
CMD_INQUIRE

SEND

CURINFO2
status is
CUR_ISTAT_OPEN+
RDONLY+
ROWCNT+
SCROLLABLE+
INSENSITIVE
(RowCount is 5. RowNum is
1. TotalRows is 1)
TDS 5.0 Functional Specification 47 Version 3.8

Examples Sybase Confidential
Client Server

DONE

SEND

CURFETCHcommand is
CUR_ABS,
rowcount is -1

SEND

ROW row 1

DONE

SEND

CURINFOcommand is
CMD_INQUIRE

SEND

CURINFO2 status is
CUR_ISTAT_OPEN+
RDONLY+
ROWCNT+
SCROLLABLE+
INSENSITIVE
(RowCount is 5. RowNum
is 1. TotalRows is 1)

DONE

SEND
etc...
Version 3.8 48 TDS 5.0 Functional Specification

Sybase Confidential Examples
Note:
The 4 scrollable cursor examples depicted above all use TDS_CURINFO2. If a client and server are
used which support TDS_CURINFO3, the following differences apply:

• If a client sends a TDS_CURINFO token to the server with command set to

TDS_CUR_CMD_INQUIRE, TDS_CUR_CMD_SETCURROWS, TDS_CUR_CMD_INFORM or

TDS_CUR_CMD_LISTALL the server will respond using TDS_CURINFO3 with the

TDS_CUR_ISTAT_ROWCNT status bit set and the RowCount field must be present and contain

the correct (pre-)fetch size.

• In all other cases, if the server responds with TDS_CURINFO3 because the client issued a

TDS_CURDECLARE3, TDS_CUROPEN, TDS_CURFETCH or TDS_CURCLOSE,

TDS_CUR_ISTAT_ROWCNT must not be set and the RowCount field must not be present in the

stream.

See the description for the TDS_CURINFO3 token and differences with respect to TDS_CURINFO2.
TDS 5.0 Functional Specification 49 Version 3.8

Examples Sybase Confidential
Example — Language-based Cursor Operations
The previous examples accessed cursor functionality in a server via the TDS cursor tokens. Clients
may also use language commands for cursor operations. In order to illustrate the ability to access
cursor functionality in SQL Server via Transact-SQL queries, we will rewrite the previous example,
sending a language command to the server containing cursor operations.

/*
** Open a connection to the server.
*/
login = dblogin();
dbproc = dbopen(login, SERVER_NAME);

/*
** Now get a command handler.
*/
cmd = dbinitcmd(dbproc);

/*
** Let’s build our command string. This command batch
** will declare and open the cursor. It will also set
** cursor rows to 1.
*/
strcpy(charbuf, “declare cursor my_cursor for “);
strcat(charbuf, “select * from A_Table for update “);
strcat(charbuf, “set cursor rows 10 for my_cursor “);
strcat(charbuf, “open my_cursor “);
strcat(charbuf, “fetch my_cursor”);

dbinitop(cmd, DB_LANG_CMD, NULL, charbuf, 0);

/*
** Send the query to the Server.
*/

Client Server

Login
LOGINACK

DONE
SEND

SEND

Client

LANGUAGE
Version 3.8 50 TDS 5.0 Functional Specification

Sybase Confidential Examples
dbcmdsend(cmd);

/*
** Process the results of the cursor.
*/
while ((ret = dbcmdresults(cmd)) != DBNOMORERESULTS)
{

switch (ret)
{

 case DBREGRESULT:

/*
** Bind the columns here.
*/
dbcmdbind(cmd, DBREGROW, SYBINTBIND, 1,

4, 1, NULL, &intbuf);
dbcmdbind(cmd, DBREGROW, SYBNTSBIND, 1,

255, 1, NULL, charbuf);

/*
** Now fetch the rows.
*/
while (dbfetch(cmd, 1, 0, 0) !=

Client Server

LANGUAGE

SEND

DONE

ROWFMT

ROW

SEND

CURINFO

for declare

DONE for open

DONE for fetch

updatable, rows = default

CURINFO updatable, rows = 1
TDS 5.0 Functional Specification 51 Version 3.8

Examples Sybase Confidential
DBNOMOREROWS)
{

/*
** Update a particular row.
*/
if (intbuf == 25)
{

/*
** Define the update clause.
** Change the first column
** the value 1.
*/
strcpy(charbuf,
“update A_Table set col1 = 1 ”);
strcat(charbuf,
“where current of my_cursor”);

dbinitop(cmd, DB_LANG_CMD,
NULL, charbuf, 0);

/*
** Send the update command
** to the server.
*/
dbcmdsend(cmd);

Client

LANGUAGE

Server

Client

LANGUAGE

DONE

SEND

KEY

for update

Server

SEND
ROWFMT key format

and key,
if any
Version 3.8 52 TDS 5.0 Functional Specification

Sybase Confidential Examples
/*
** Verify that the update
** succeeded.
*/
if (dbcmdresults(cmd) == FAIL)
{

fprintf(stderr, “ERROR - update
failed!\n”);

exit(1);
 }
 }

 /*
 ** Go on to the next row.
 */
 }

/*
** Send another fetch to see if there are more rows.
*/
strcpy(charbuf, “fetch my_cursor”);
dbinitop(cmd, DB_LANG_CMD,NULL, charbuf, 0);

dbsend(cmd);

 break;

Client

LANGUAGE

Client

LANGUAGE

Server

SEND

ROW

SEND

DONE for fetch
TDS 5.0 Functional Specification 53 Version 3.8

Examples Sybase Confidential
 case FAIL:
 default:

 /*
 ** This is an error. Open Client has

** already printed an error message,
** so just exit here.

 */
 exit(1);
 }
 }

/*
** All done.
*/
dbclose(dbproc);

Client Server

DONE

SEND

CURINFO closed

CURCLOSE

SEND

LOGOUT

DONE for cursor close

for logout
Version 3.8 54 TDS 5.0 Functional Specification

Identity Columns
Identity columns are used to uniquely identify a row in a table. They are a column of type
numeric. They must have a scale value of 0. The status field of the TDS_ROWFMT token is
used to determine if a column is an identity column. Identity columns will have a status of
TDS_ROW_IDENTITY.

17. Identity Column Options
There are two ways an identity column in a table is updated:

• Implicitly: The server generates a unique value for the identity column

• Explicitly: Client provides a value for the identity column.

These two methods of updating an identity column are controlled using options. The T-
SQL option command is:

set identity_insert <tablename> <on/off>

If identity is turned on, the client is expected to provide a value for the identity column.
This is the explicit case. If identity is turned off, the server will generate a value for the
identity column. The client does not provide a value for the identity column. This is the
implicit case.

Identity can only be turned on for one table at a time on a given dialog.

The option definitions for the TDS_OPTIONCMD token to support identity columns are
TDS_OPT_IDENTITYON and TDS_OPT_IDENTITYOFF. See TDS_OPTIONCMD on page 273 for
details on this options.
Sybase Confidential 55 Version 3.8

Identity Columns Sybase Confidential
18. Bulk Copy Support
When Bulk Copy loads or retrieves table information it must account for the identity column. In
the default case (implicit) the identity column is not returned to the user of the bcp stand-alone or
the bulk copy library API. The bulk copy library must provide/strip the identity column based on
the table description information received from the server during initialization. In the explicit case
the identity column will be provided by and returned to the user of the bcp stand-alone or bulk
copy API.

For implicit inbound, the data provided in the bcp input file or via the bulk copy API by a BCP
user would not include any information for column 2. When the BCP library is building the for-
matted row, it would insert a 0 placeholder in the row for the identity column before sending the
row to the server.

For explicit inbound, the data provided in the bcp input file or via the bulk copy API by a BCP user
would include information for column 2. If this information is not provided the bulk copy library
would report an error. The formatted row is built entirely from data provided by the user.

For implicit outbound, the bulk copy library and bcp would not return description information or
data for column 2 to the user. If a user asked for a description of column 2, they would receive the
description for column 3.

For explicit outbound, descriptions for all columns would be available to the user. Column 2
should be identified as an identity column.

To support identity columns an external configuration option must be made available for both bcp
and the bulk copy library. This configuration option is used to indicate whether implicit or explicit
identity column behavior is wanted. This configuration option should be made available via a
command line option for the bcp stand-alone, and either a new property API to the bulk library, or
a new argument to blk_init.

Table 1: Sample Table Description

Table
Description

Data Type Identity?

Column 1 Character No

Column 2 Numeric Yes

Column 3 Integer No
Version 3.8 56 TDS 5.0 Functional Specification

Sybase Confidential Identity Columns
If explicit identity column support is requested, the bulk copy library must request the current set-
ting of the TDS_OPT_IDENTITYON option. It then must send a TDS_OPT_IDENTITYON option for the
table that will be loaded. When the load is complete, the bulk library must generate a
TDS_OPT_IDENTITYOFF option for the table that was just loaded, and reset the current state of the
TDS_OPT_IDENTITYON option using the initial setting requested before the bulk copy was started.

Bulk copies on tables that contain identity columns will not be supported in TDS versions < 5.0. If
a bulk copy is attempted on a table with an identity column using TDS < 5.0, the server will gener-
ate an error and the bulk copy will be aborted.

—
TDS 5.0 Functional Specification 57 Version 3.8

Identity Columns Sybase Confidential
Version 3.8 58 TDS 5.0 Functional Specification

Security Support
TDS 5.0 added support for negotiated login and security specific data types.

19. Data Types
Two new data types were added to support the secure server. Both of these data types are 1
byte variable length data types. Their names are:

• TDS_SENSITIVITY

• TDS_BOUNDARY

Servers will perform character set translation on these data types. There are no conversions
defined for these data types. These data types are used during security handshake, during
login, and as column values in a row.

If a client uses capabilities bits to indicate that these data types are not supported, a server
automatically sends these data types as TDS_VARCHARs instead. The capability bits are:

• TDS_DATA_SENSITIVITY (TDS_CAP_REQUEST)

• TDS_DATA_BOUNDARY (TDS_CAP_REQUEST)

• TDS_DATA_NOSENSITIVITY (TDS_CAP_RESPONSE)

• TDS_DATA_NOBOUNDARY (TDS_CAP_RESPONSE)

20. Login Record Support
The lseclogin field in the login record is used to indicate that a client is willing to perform
the indicated security handshaking. The server has the final say over whether this hand-
shaking will occur.
Sybase Confidential 59 Version 3.8

Security Support Sybase Confidential
The lseclogin field can have any combination of the following bits set:

21. Security Messages
The message numbers in the table below are reserved for secure login negotiation.

Table 2: Negotiated Login Bits

Name Description

TDS_SEC_LOG_ENCRYPT Perform password encryption. No plain text pass-
words are sent in either lpw/lpwnlen or lrempw/
lrempwlen fields (lpwnlen and lrempwlen should
be set to 0). Any information in these fields is
ignored by the server.

TDS_SEC_LOG_CHALLENGE perform challenge/response login sequence.

TDS_SEC_LOG_LABELS Perform security label exchange.

TDS_SEC_LOG_APPDEFINED Perform application specific security hand-shake.

TDS_SEC_LOG_SECSESS Use external security mechanisms.

TDS_SEC_LOG_ENCRYPT2 Use extended password negotiation if available.

Table 3: Negotiated Login Messages

Name
Client/
Server

Description

TDS_MSG_SEC_ENCRYPT Server Start encrypted login protocol. This mes-
sage has one TDS_VARBINARY parameter
containing the encryption key.

TDS_MSG_SEC_LOGPWD Client Send encrypted user password to a server.
This message has one TDS_VARBINARY
parameter containing the encrypted user
password.
Version 3.8 60 TDS 5.0 Functional Specification

Sybase Confidential Security Support
TDS_MSG_SEC_REMPWD Client Send a list of remote servers and encrypted
passwords to a server. The message parame-
ters consist of pairs of TDS_VARCHAR/
TDS_VARBINARY parameters that contain the
remote server name and the encrypted pass-
word for that remote server.

TDS_MSG_SEC_CHALLENGE Server Start challenge/response protocol. This
message has one TDS_VARBINARY parameter
which contains an un-encrypted challenge
byte string. This message is only used for
the probe account and the backup server.

TDS_MSG_SEC_RESPONSE Client Return the encrypted challenge byte string
to a server. This message is only used for the
probe account and the backup server.

TDS_MSG_SEC_GETLABELS Server Start trusted user login protocol. There are
no parameters to this message.

TDS_MSG_SEC_LABELS Client Return security labels to a server. This mes-
sage has an undefined number of parame-
ters of type TDS_SENSITIVITY. These
parameters contain the security labels. The
number of security labels returned to the
server is undefined by the TDS protocol.

TDS_MSG_SEC_OPAQUE Both External security mechanism meta-data
such as data signatures and authentication
tokens.

Table 3: Negotiated Login Messages

Name
Client/
Server

Description
TDS 5.0 Functional Specification 61 Version 3.8

Security Support Sybase Confidential
Some comments on Negotiated Login Messages on page 60. The TDS_MSG_SEC_ENCRYPT/
TDS_MSG_SEC_LOGPWD/TDS_MSG_SEC_REMPWD messages all assume that the client and server
have only one agreed encryption algorithm. TDS_MSG_SEC_OPAQUE is used to send external securi-
ty mechanism information between the client and server during both login time and to implement
data packet signing. TDS_MSG_SEC_ENCRYPT2/TDS_MSG_SEC_LOGPWD2/TDS_MSG_SEC_SUP_CIPHER
cipher suite values are from RFC 2246, section A.5. Note that the cipher suite values are composed
of an asymmetric cipher, symmetric cipher, and a hash function. Currently, only the server will
send TDS_MSG_SEC_ENCRYPT2 with a public key for the asymmetric algorithm of the cipher suite.

TDS_MSG_SEC_ENCRYPT2 Server Start extended encrypted password login
protocol. This message has two parameters,
a TDS_INT4 containing the cipher suite to use
and a TDS_LONGBINARY parameter contain-
ing the encryption key corresponding to the
cipher suite selected.

TDS_MSG_SEC_LOGPWD2 Client Send encrypted passwords to a server. This
message has one TDS_LONGBINARY parame-
ter containing the encrypted user password
followed by TDS_LONGCHAR/
TDS_LONGBINARY parameter pairs repre-
senting remote server names and their
encrypted passwords.

TDS_MSG_SEC_SUP_CIPHER Client Send list of supported ciphers. At this time,
this list is sent if the server sends a
TDS_MSG_SEC_ENCRYPT2 message contain-
ing a cipher suite the client does not sup-
port. The parameters are a list of TDS_INT4
values containing supported cipher suites.

Table 3: Negotiated Login Messages

Name
Client/
Server

Description
Version 3.8 62 TDS 5.0 Functional Specification

Sybase Confidential Security Support
22. Security Protocols
The client program is responsible for requesting that a security hand-shake should occur using one
or more of the negotiated login bits in the login record. A client can abort a security handshake at
any time by closing the connection.

Security hand-shaking is done using the messages defined above. The protocol for the encrypted
password, challenge/response, and trusted user are below.

Encrypted Password

Client Server
LOGIN(TDS_SEC_LOG_ENCRYPT)

LOGINACK(TDS_LOG_NEGOTIATE)

lpwnlen = 0
lrempwlen = 0

MSG(TDS_MSG_SEC_ENCRYPT)
PARAMFMT(TDS_VARBINARY)
PARAMS(password key)
DONE(FINAL)

MSG(TDS_MSG_SEC_LOGPWD)
PARAMFMT(TDS_VARBINARY)
PARAMS(encrypted password)
MSG(TDS_MSG_SEC_REMPWD)
PARAMFMT(TDS_VARCHAR)
PARAMFMT(TDS_VARBINARY)
PARAMS(server name)
PARAMS(encrypted server password)

(repeat for each remote server
password pair)

LOGINACK(SUCCEED)
DONE(FINAL)
TDS 5.0 Functional Specification 63 Version 3.8

Security Support Sybase Confidential
Challenge/Response

Client Server
LOGIN(TDS_SEC_LOG_CHALLENGE)

LOGINACK(TDS_LOG_NEGOTIATE)
MSG(TDS_MSG_SEC_CHALLENGE)
PARAMFMT(TDS_VARBINARY)
PARAMS(challenge string)
DONE(FINAL)

MSG(TDS_MSG_SEC_RESPONSE)
PARAMFMT(TDS_VARBINARY)
PARAMS(encrypted challenge string)

LOGINACK(SUCCEED)
DONE(FINAL)

Encrypted Password and Trusted User

Client Server
LOGIN(TDS_SEC_LOG_ENCRYPT

LOGINACK(TDS_LOG_NEGOTIATE)
MSG(TDS_MSG_SEC_ENCRYPT)
PARAMFMT(TDS_VARBINARY)
PARAMS(password key)
DONE(MORE)

MSG(TDS_MSG_SEC_LOGPWD)
PARAMFMT(TDS_VARBINARY)
PARAMS(encrypted password)
MSG(TDS_MSG_SEC_REMPWD)
PARAMFMT(TDS_VARCHAR)
PARAMFMT(TDS_VARBINARY)
PARAMS(server name)
PARAMS(encrypted server password)

(repeat for each remote server
password pair)

LOGINACK(SUCCEED)
DONE(FINAL)

| TDS_SEC_LOG_LABELS)
lpwnlen =0
lrempwlen = 0

MSG(TDS_MSG_SEC_GETLABELS)
DONE(FINAL)

MSG(TDS_MSG_SEC_LABELS)
PARAMFMT(TDS_SENSITIVITY)
PARAMS(label data)

(repeated for each sensitivity
label)
Version 3.8 64 TDS 5.0 Functional Specification

Sybase Confidential Security Support
Trusted User

Client Server
LOGIN(TDS_SEC_LOG_LABELS)

LOGINACK(TDS_LOG_NEGOTIATE)
MSG(TDS_MSG_SEC_GETLABELS)
DONE(FINAL)

MSG(TDS_MSG_SEC_LABELS)
PARAMFMT(TDS_SENSITIVITY)
PARAMS(label data)

DONE(FINAL)

(repeated for each sensitivity
label)

LOGINACK(SUCCEED)

Extended Encrypted Password

Client Server
LOGIN(TDS_SEC_LOG_ENCRYPT|TDS_SEC_LOG_ENCRYPT2)

LOGINACK(TDS_LOG_NEGOTIATE)

lpwnlen = 0
lrempwlen = 0

MSG(TDS_MSG_SEC_ENCRYPT2)
PARAMFMT(TDS_INT4)

MSG(TDS_MSG_SEC_LOGPWD2)
PARAMFMT(TDS_VARBINARY)

PARAMFMT(TDS_VARBINARY)
PARAMS(encrypted password)
PARAMS(server name)
PARAMS(encrypted server password)

(repeat for each remote server
password pair)

PARAMFMT(TDS_VARBINARY)
PARAMS(cipher suite)
PARAMS(public key)
DONE(FINAL)

PARAMFMT(TDS_VARCHAR)

DONE(FINAL)

LOGINACK(SUCCEED)DONE(FINAL)
TDS 5.0 Functional Specification 65 Version 3.8

Security Support Sybase Confidential
Version 3.8 66 TDS 5.0 Functional Specification

Cluster Support
Cluster support refers to three areas of the TDS specification that were added to support
environments that require a high degree of availability. These areas are connection re-es-
tablishment in the event of a server failure (refered to here are the HA feature,) login redi-
rection (which allows a group of servers to load balance client connections among other
things,) and connection migration (which allows a server to re-connect a client from itself
to another server.)

23. Login Record Support
The lhalogin field in the login record is used to indicate that a client is willing to perform
HA related functionality as well as login redirection. If a client is capable of any of these
services, the server is allowed to send the appropriate message to the client.

The lhasessionid field was added to support client session resumption. This field is 6-bytes
in length and will be valid only during a failover or migration. The server sends a 6-byte
value to the client during negotiated login for the client to use during session resumption
in the event of a connection failure.

The lhalogin field can have any combination of the following bits set:

Table 4: HA Login Bits

Name Description

TDS_HA_LOG_SESSION Client application wants automatic failover to
occur in the event of a connection failure.

TDS_HA_LOG_RESUME Client application is attempting to failover to
server and the lhasessionid field is valid.
Sybase Confidential 67 Version 3.8

Cluster Support Sybase Confidential
24. Migration Messages
The message numbers in the table below are used for HA and connection migration.

TDS_HA_LOG_FAILOVERSRV If set, this server is considered the secondary
server.

TDS_HA_LOG_REDIRECT Client library supports login redirection to alter-
nate server.

TDS_HA_LOG_MIGRATE Client application is being migrated to server.

Table 5: Redirection and Migration Related Messages

Name
Client/
Server

Description

TDS_MSG_HAFAILOVER Both This message has one parameter, the session
id that the client should use during a
failover or migration operation.

TDS_MSG_MIG_REQ Server Initiate a connection migration. The param-
eters to this message are interpreted as the
results of a directory service lookup of a
server. The format of the parameters is doc-
umented in the TDS_EED comments section
(page 220)

TDS_MSG_MIG_SYNC Client Client acknowledgement of the server’s
migration request. Once the client sends
this, it cannot send any further information
to the server except to signal an attention,
send a TDS_LOGOUT, or notify the server of a
migration failure via TDS_MSG_MIG_FAIL.
There are no parameters.

Table 4: HA Login Bits

Name Description
Version 3.8 68 TDS 5.0 Functional Specification

Sybase Confidential Cluster Support
The TDS_MSG_HAFAILOVER message is used during login. It is sent via the negotiated login mecha-
nisms. The server sends the session id and the client echos this back to the server during login.

TDS_MSG_MIG_xxx messages are only used in TDS_BUF_MIGRATE packets. This allows migration
messages to be interpreted outside the normal data stream.

25. Login Redirection
In the lhalogin field, a client can set the TDS_HA_LOG_REDIRECT bit to indicate that the client library
understands the login redirection protocol. If the server sees this bit set, then it may send a
TDS_EED with TDS_EED_INFO set in the status argument and a message number of TDS_REDIRECT to
the client. This message requires at least a single argument which will be used by the client to con-
nect to and restart the login process. Unless a client has set the TDS_CAP_CLUSTERFAILOVER capa-
bility, the state value should have TDS_EED_IMMEDIATE_REDIRECT set. The server can suggest to the
client that it continue to set TDS_HA_LOG_REDIRECT by also setting TDS_EED_SET_REDIRECT in the
state value field. When the client sees this message, it should close the current connection and at-
tempt to connect to the first server it can as specified via the message parameters. If the client is
HA enabled and has set the TDS_CAP_CLUSTERFAILOVER bit, then the server can send this message
with the TDS_EED_IMMEDIATE_REDIRECT clear. The client will then use the message parameters as
failover targets instead of the HAFAILOVER entry from the directory service.

TDS_MSG_MIG_CONT Server Server has received client data up to
TDS_MSG_MIG_SYNC and wants the client to
commence migration to previously sent
query entries. There are no parameters.

TDS_MSG_MIG_IGN Server Server wants the client to ignore the previ-
ous TDS_MSG_MIG_REQ token. There are no
parameters.

TDS_MSG_MIG_FAIL Client Client’s attempt to migrate to another server
failed. This message may have a parameter
which should indicate why the migration
failed. This parameter value has not been
defined.

Table 5: Redirection and Migration Related Messages

Name
Client/
Server

Description
TDS 5.0 Functional Specification 69 Version 3.8

Cluster Support Sybase Confidential
26. Migration Protocol
If a client indicates at login that it is capable of migration and the server might need to migrate the
client, the server should send TDS_MSG_HAFAILOVER with a session id to be used during mi-
gration. Note that this same session id is used for HA-Failover.The server is responsible for initiat-
ing a connection migration. The following diagrams will attempt to show possible migration
interaction scenarios. Note that all TDS_MSGs related to migration must be sent in a packet with a
buffer type of TDS_BUF_MIGRATE. Furthermore, the migration protocol should be viewed as an in-
terruption of the normal token exchange. In particular, once the client sends the
TDS_MSG_MIG_SYNC, it should not send any token other than an attention, TDS_LOGOUT, or
TDS_MSG_MIG_FAIL.

The first diagram shows a successful migration token exchange.

Note that when the client closes the connection to Server 1, it does not send a TDS_LOGOUT token.
The migration protocol is best thought of as an interruption of the current token stream. Because
of the structure of the TDS protocol, many clients will not see the migration message until they are
processing batch results. Because of this, a client will need to suspend the TDS processing state
once it receives TDS_MSG_MIG_CONT and move to a login state to connect to Server 2. Server 1 is
responsible for forwarding any relevant batch commands to Server 2 as part of the migration.
Server 1 is allowed to satisfy the current batch from the client before sending TDS_MSG_MIG_CONT.
Once Server 1 sends TDS_MSG_MIG_CONT, it should not send any further data to the Client unless
the client sends an attention or TDS_MSG_MIG_FAIL. Also note that regardless of whether Server 1

Successful Migration Exchange

Client Server 1

MSG(TDS_MSG_MIG_SYNC)

MSG(TDS_MSG_MIG_CONT)

Server 2

MSG(TDS_MSG_MIG_REQ)
PARAMFMT(VARCHAR)

LOGIN(TDS_HA_LOG_MIGRATE)

LOGINACK

Close connection to Server1

PARAM(server 2 address)

DONE(DONE_FINAL)

batch commands

Partial results (if any)

Remaining results
(if any)
Version 3.8 70 TDS 5.0 Functional Specification

Sybase Confidential Cluster Support
completely satisfies the Client’s active batch results or not, the final TDS_DONE should be sent by
Server 2 in this case.

The next diagram shows a aborted migration request. In this case, the server had sent a migration

request. By the time the server received TDS_MSG_MIG_SYNC, the server decided that the migration
was no longer needed. In this case the server sends TDS_MSG_MIG_IGN.

Under certain circumstances, the server may not be able to wait for the TDS_MSG_MIG_SYNC to be
sent by the client. In these cases, after the TDS_MSG_MIG_REQ has been sent, it can close the con-
nection. The client will be expected to check that the socket does not have any pending data before
reporting network connection failure. If the client has received a migration request from the server
and detects a socket failure, then it is expected to attempt a migration to new system. Should the
migration fail, then a network connection error should be reported back to the application. It is
the servers responsibility to ensure that all relevant client context is moved between servers. Note

Aborted Migration Exchange

Client Server 1

MSG(TDS_MSG_MIG_SYNC)

MSG(TDS_MSG_MIG_IGN)

Server 2

MSG(TDS_MSG_MIG_REQ)
PARAMFMT(VARCHAR)
PARAM(server 2 address)

Closed Migration Exchange

Client Server 1 Server 2

MSG(TDS_MSG_MIG_REQ)
PARAMFMT(VARCHAR)
PARAM(server 2 address)

LOGIN(TDS_HA_LOG_MIGRATE)

LOGINACK

Close connection to ClientAttempt to send batch to server
fails due to socket error. Client
then reads migration request from
socket buffer.

Client sends earlier batch.
TDS 5.0 Functional Specification 71 Version 3.8

Cluster Support Sybase Confidential
that the server does NOT send a TDS_DONE(FINAL) in this situation. Server 2 will send a
TDS_DONE(FINAL) in any situation where the migration interrupts returning results during a batch.

Within the context of a SQL server, the following migration types have been identified (in order of
decreasing complexity):

— In the middle of a multi-batch transaction

— In the middle of a batch (i.e., after sending some results, but before completing all requests
within the client’s batch.)

— At the end of a batch before sending TDS_DONE(TDS_DONE_FINAL) (post-batch)

— At the start of a batch after receiving client data but before sending results (pre-batch)

— Idle connection

Since a server makes the determination to migrate a client, it is free to restrict which clients can be
migrated. Also note that for many connections, the Idle connection type will devolve into the pre-
batch case. This means that a server must be prepared to save all outstanding client transmissions
up to the point it receives the TDS_MSG_MIG_SYNC. For the migration to succeed, all data the client
has transmitted is considered to be part of the client context within the server. Should the server
decide to, it can process the client’s batch and start sending results before sending the
TDS_MSG_MIG_CONT. The server may also decide to cancel the migration and then restart it to a
different target system based on the contents of the client’s batch. It is extremely important that the
migration be as transparent as possible to the client application.
Version 3.8 72 TDS 5.0 Functional Specification

TDS 5.0 Reference Pag-
es
Each TDS token has a reference page which provides a detailed description of the format of
the token’s data stream and of its usage. Each reference page contains a graphic description
of the data stream’s syntax, comments on various aspects of its usage, and a detailed de-
scription of each argument.

In most cases, the graphic syntax gives enough information to be used as a quick reference
to the datastream. This is the legend for the graphics.

 A box without any marks indicates a one byte argument.

 A box with one pair of marks indicates a two byte argument.

 A box with three pairs of marks indicates a four byte argument.

TOKEN — A bold-faced font indicates the TDS token for the data stream.

TOKEN Argument data

one byte four bytestwo bytes

LEGEND
Sybase Confidential 73 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Argument — A Helvetica font indicates that the argument is part of the data stream description
but not part of the actual data of the data stream.

data — An italic font indicates that this argument is replaced by actual data in the data stream.

All multi-byte length fields in the data streams are sent in the client’s byte order. The server receiv-
ing the token converts the length field as required.

TDS Token List

This is a complete list of all assigned TDS tokens, not including the data type tokens. See the data
type man page for a complete list of the data type tokens.

TDS_ALTCONTROL0xAF (obsolete)
TDS_ALTFMT .0xA8
TDS_ALTFMT20x?? (token not implemented yet)
TDS_ALTNAME 0xA7
TDS_ALTROW.0xD3
TDS_ALTROW2 0x?? (token not implemented yet)
TDS_CAPABILITY.0xE2
TDS_COLFMT .0xA1 (obsolete)
TDS_COLFMTOLD0x2A (obsolete)
TDS_COLINFO 0xA5
TDS_COLINFO20x20
TDS_COLNAME 0xA0 (obsolete)
TDS_CONTROL.0xAE
TDS_CURCLOSE.0x80
TDS_CURDECLARE0x86
TDS_CURDECLARE20x23
TDS_CURDECLARE30x10
TDS_CURDELETE.0x81
TDS_CURFETCH.0x82
TDS_CURINFO 0x83
TDS_CURINFO20x87
TDS_CURINFO30x88
TDS_CUROPEN.0x84
TDS_CURUPDATE0x85
TDS_DBRPC .0xE6
TDS_DBRPC2 .0xE8
TDS_DEBUGCMD.0x60 (obsolete)
TDS_DONE .0xFD
TDS_DONEINPROC0xFF
TDS_DONEPROC0xFE
Version 3.8 74 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_DYNAMIC.0xE7
TDS_DYNAMIC2 0x62
TDS_EED .0xE5
TDS_ENVCHANGE.0xE3
TDS_ERROR. .0xAA (obsolete)
TDS_EVENTNOTICE 0xA2
TDS_INFO .0xAB (obsolete)
TDS_KEY .0xCA
TDS_LANGUAGE0x21
TDS_LOGINACK0xAD
TDS_LOGOUT.0x71
TDS_MSG. .0x65
TDS_OFFSET. .0x78
TDS_OPTIONCMD.0xA6
TDS_OPTIONCMD2.0x63 (reserved)
TDS_ORDERBY.0xA9
TDS_ORDERBY2 0x22
TDS_PARAMFMT.0xEC
TDS_PARAMFMT2 0x20
TDS_PARAMS.0xD7
TDS_PROCID. .0x7C (obsolete)
TDS_RETURNSTATUS.0x79
TDS_RETURNVALUE.0xAC (obsolete)
TDS_RPC .0xE0 (obsolete)
TDS_ROW .0xD1
TDS_ROWFMT0xEE
TDS_ROWFMT20x61
TDS_TABNAME 0xA4
TDS 5.0 Functional Specification 75 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 76 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

 info
TDS_ALTFMT

Function

The data stream for describing the data type, length, and status of COMPUTE
data.

Syntax

Arguments

 This is the data stream token that indicates that this is a data
stream containing a description of compute data. This token is one byte and
has the value 0xA8.

 This length specifies the number of bytes remaining in the data
stream. It is an unsigned, two-byte integer.

This is the id which identifies the compute statement to which the
compute column formats apply. Because a Transact-SQL statement may
have more than one compute clause, the id is necessary. The id is used later
in order to correctly interpret the compute row data which comes in the
TDS_ALTROW data stream. Id is a two-byte, unsigned integer.

 This is the number of aggregate operators in the compute clause.
For example, the clause “compute count(x), min(x), max(x)” has three
aggregate operators. This field is a one-byte, unsigned integer.

TDS_ALTFMT Length

0xA8

user type DataType Length

1, 2 or 4 bytes

LocaleLen locale• • •

repeat for each operator in compute clause

#Ops

OpType

• • • # ByCols Col #

one for each column in by-list

OpCol#

Id

TDS_ALTFMT

Length

Id

Ops
TDS 5.0 Functional Specification 77 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is the type of aggregate operator. The operands for the
aggregate are described by the # ByCols and Col # fields. The possible
operators are:

 This is the column number associated with OpType. The
first column in the select list is 1. This argument is a one-byte, unsigned
integer.

 This is the user-defined datatype of the data. It is a signed,
four-byte integer.

 This is the data type of the data and is a one-byte unsigned
integer. Fixed length datatypes are represented by a single datatype byte and
have no following Length argument. Variable length datatypes are
followed by Length which gives the maximum datatype length, in bytes.

 This is the maximum length, in bytes, of DataType. The size of
Length depends on the datatype. This argument only exists for variable
length datatypes.

 This is the length of the localization information. It is a one-
byte, unsigned integer which may have a value of 0. If LocaleLen is 0, no
localization information follows.

Table 6: Aggregate Operator Types

Operator Name
Operator

Value
Description

TDS_ALT_AVG 0x4F The average value.

TDS_ALT_COUNT 0x4B The summary count value.

TDS_ALT_MAX 0x52 The maximum value.

TDS_ALT_MIN 0x51 The minimum value.

TDS_ALT_SUM 0x4D The sum value.

OpType

OpCol#

user type

DataType

Length

LocaleLen
Version 3.8 78 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
 This is the localization information for the column. It is a
character string of LocaleLen bytes. This argument only exists if the
LocaleLen argument is not equal to 0.

 This is the number of columns in the by-list of the compute
clause. For example, the compute clause “compute count(sales) by
year, month, division” has three by-columns. It is legal to have no by-
columns. In that case, # ByCols is 0. The argument is a one-byte, unsigned
integer.

 When there are by-columns in a compute (#ByCols not equal to 0),
there is one Col# argument for each select column listed in the by-columns
clause. For example, “select a, b, c order by b, a compute sum(a) by b,
a” will return # ByCols as 2 followed by Col# 2 and Col# 1. The first column
number is 1. This argument is a one-byte, unsigned integer.

Comments

This is the data stream used to describe the format of a compute clause.

• A compute clause may have multiple operators.

• A compute clause may have only one by-list.

• A Transact-SQL statement may have multiple compute clauses.

• Each compute clause is described by a separate TDS_ALTFMT data stream.

• The information in TDS_ALTFMT describes the data in the TDS_ALTROW data
stream.

Examples

See Also

TDS_ALTNAME, TDS_ALTROW

locale info

ByCols

Col #
TDS 5.0 Functional Specification 79 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 80 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_ALTFMT2

Function

The data stream for describing the data type, length, and status of COMPUTE
data.

Syntax

Arguments

 This is the data stream token that indicates that this is a
data stream containing a description of compute data. This token is one
byte and has the value 0x??.

 This length specifies the number of bytes remaining in the data
stream. It is an unsigned, four-byte integer.

This is the id which identifies the compute statement to which the
compute column formats apply. Because a Transact-SQL statement may
have more than one compute clause, the id is necessary. The id is used later
in order to correctly interpret the compute row data which comes in the
TDS_ALTROW data stream. Id is a two-byte, unsigned integer.

 This is the number of aggregate operators in the compute clause.
For example, the clause “compute count(x), min(x), max(x)” has three
aggregate operators. This field is a one-byte, unsigned integer.

TDS_ALTFMT2

user type DataType Length LocaleLen

locale info

• • •

repeat for each operator in compute clause

#Ops

OpType

• • • Col #

one for each column in by-list

Idlength

OpCol# status

1, 2 or 4 bytes

#ByCols

0x??

TDS_ALTFMT2

length

Id

Ops
TDS 5.0 Functional Specification 81 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is the type of aggregate operator. The operands for the
aggregate are described by the # ByCols and Col # fields. The possible
operators are:

 This is the column number associated with OpType. The first
column in the select list is 1. This argument is a one-byte, unsigned integer.

 This field is used to provide additional information about the
datastream, such as if the columnstatus byte is present within the corre-
sponding TDS_ALTROW datastream.

Table 7: Aggregate Operator Types

Operator Name
Operator

Value
Description

TDS_ALT_AVG 0x4F The average value.

TDS_ALT_COUNT 0x4B The summary count value.

TDS_ALT_MAX 0x52 The maximum value.

TDS_ALT_MIN 0x51 The minimum value.

TDS_ALT_SUM 0x4D The sum value.

Table 8: Valid Status Values

Name Value Description

TDS_ALTFMT_COLUMNSTATUS 0x08 Indicates whether column-
status bit is included in corre-
sponding TDS_ALTROW
datastream.

OpType

OpCol#

status
Version 3.8 82 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
 This is the user-defined datatype of the data. It is a signed,
four-byte integer.

 This is the data type of the data and is a one-byte unsigned
integer. Fixed length datatypes are represented by a single datatype byte and
have no following Length argument. Variable length datatypes are
followed by Length which gives the maximum datatype length, in bytes.

 This is the maximum length, in bytes, of DataType. The size of
Length depends on the datatype. This argument only exists for variable
length datatypes.

 This is the length of the localization information. It is a one-
byte, unsigned integer which may have a value of 0. If LocaleLen is 0, no
localization information follows.

 This is the localization information for the column. It is a
character string of LocaleLen bytes. This argument only exists if the
LocaleLen argument is not equal to 0.

 This is the number of columns in the by-list of the compute
clause. For example, the compute clause “compute count(sales) by
year, month, division” has three by-columns. It is legal to have no by-
columns. In that case, # ByCols is 0. The argument is a two-byte, unsigned
integer.

 When there are by-columns in a compute (#ByCols not equal to 0),
there is one Col# argument for each select column listed in the by-columns
clause. For example, “select a, b, c order by b, a compute sum(a) by b,
a” will return # ByCols as 2 followed by Col# 2 and Col# 1. The first column
number is 1. This argument is a one-byte, unsigned integer.

Comments

This is the data stream used to describe the format of a compute clause.

• As of TDS revision 3.5, this token was added to the spec only as a ‘place-
holder’, meaning there are no plans to implement it currently. The token does
provide a way for the widetable and columnstatus byte features to be properly
implemented, so if a business case arises for either feature, this token can be
implemented in the future.

user type

DataType

Length

LocaleLen

locale info

#ByCols

Col #
TDS 5.0 Functional Specification 83 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• A compute clause may have multiple operators.

• A compute clause may have only one by-list.

• A Transact-SQL statement may have multiple compute clauses.

• Each compute clause is described by a separate TDS_ALTFMT2 data stream.

• The information in TDS_ALTFMT2 describes the data in the TDS_ALTROW2
data stream.

Examples

See Also

TDS_ALTNAME, TDS_ALTROW, TDS_ALTROW2
Version 3.8 84 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_ALTNAME

Function

Describes the number and name of a compute clause.

Syntax

Arguments

 This token indicates that this datastream describes a
compute clause. The token’s length is one byte and it’s value is 0xA7.

 This is the total length, in bytes, of the remaining data stream. It is
a two-byte, unsigned integer.

 This is the id of the compute clause being described. It is legal for a
Transact-SQL statement to have multiple compute clauses. The id is used to
associate TDS_ALTNAME, TDS_ALTFMT, and TDS_ALTROW data streams. The
field is a two-byte unsigned integer.

 This the length, in bytes, of the name or heading for each of the
aggregate operators in the compute clause. Aggregate operators are not
required to have headings and usually don’t. In the null heading case,
NameLen will be 0 and no name field will follow. There is a NameLen for
each operator in a compute clause.

 This is the compute clause heading. This argument is NameLen
bytes long. If NameLen is 0, this argument does not exist.

Comments

• This token is used to describe the number of aggregate operators in a
compute clause. It optionally associates names with each of the aggregate
operators.

TDS_ALTNAME

0xA7

Length NameLen nameId

repeat for each

TDS_ALTNAME

Length

Id

NameLen

name
TDS 5.0 Functional Specification 85 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• There may be more than one compute statement in a Transact-SQL compute
clause. Each compute clause is assigned an Id. Id is used to associate the
TDS_ALTFMT and TDS_ALTROW data streams.

• All TDS_ALTNAME data streams are grouped together and precede any
TDS_ALTFMT data streams. If there is more than one compute statement, all
the TDS_ALTNAME data streams for the compute come first, followed by the
TDS_ALTFMT data streams.

Examples

See Also

TDS_ALTFMT, TDS_ALTROW
Version 3.8 86 TDS 5.0 Functional Specification

Sybase Confidential Introduction
TDS_ALTROW

Function

A row of data for a compute clause.

Syntax

Arguments

 This token indicates that this is a data stream containing
data for a compute clause. This is a one byte with a value of 0xD3.

 This is the id of the compute clause data. It is legal for a Transact-SQL
statement to have multiple compute clauses. The id is used to associate
TDS_ALTNAME, TDS_ALTFMT, and TDS_ALTROW data streams. The field is a
two-byte unsigned integer.

 This is the length, in bytes, of the data. This field is optional,
depending on the datatype of the following data.The details for repre-
senting TDS datatypes in a data stream are covered in the Datatypes
reference page.

 This is the actual data of the compute clause. It’s format is identical to
a TDS_ROW data stream. Each aggregate operator in the compute clause is
represented in the data stream as a column.

The data received is always in the native format of the client machine. For
example, if integers are represented differently on the server than on the
client, the server will perform any conversion before sending data.

Comments

• An TDS_ALTROW includes a complete row of compute data. It is in the format
described by the TDS_ALTFMT data stream for a particular compute clause.

TDS_ALTROW

0xD3

Id DataLen data

repeat for each compute operator

TDS_ALTROW

Id

DataLen

data
TDS 5.0 Functional Specification 87 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• An TDS_ALTROW data stream consists of DataLen and data pairs, one for
each aggregate operator in the compute clause. The DataLen argument is
only included for variable length and nullable datatypes.

• An TDS_ALTROW data stream is identical to a TDS_ROW data stream except
that it has an Id field following the TDS_ALTROW token. Because there may be
more than one compute clause in a Transact-SQL statement, each compute
clause is given a unique Id. This Id is used to associate all TDS TDS_ALT* data
streams.

Examples

See Also

TDS_ALTFMT, TDS_ALTNAME, TDS_ROW
Version 3.8 88 TDS 5.0 Functional Specification

Sybase Confidential Introduction
TDS_ALTROW2

Function

A row of data for a compute clause.

Syntax

Arguments

 This token indicates that this is a data stream containing
data for a compute clause. This is a one byte with a value of 0x??.

 This is the id of the compute clause data. It is legal for a Transact-SQL
statement to have multiple compute clauses. The id is used to associate
TDS_ALTNAME, TDS_ALTFMT2, and TDS_ALTROW2 data streams. The field is
a two-byte unsigned integer.

This is the columnstatus byte. For information on the usage and
meaning of this byte, see the TDS_Datatypes chapter.

 This is the length, in bytes, of the data. This field is optional,
depending on the datatype of the following data.The details for repre-
senting TDS datatypes in a data stream are covered in the Datatypes
reference page.

 This is the actual data of the compute clause. Its format is identical to
a TDS_ROW data stream. Each aggregate operator in the compute clause is
represented in the data stream as a column.

The data received is always in the native format of the client machine. For
example, if integers are represented differently on the server than on the
client, the server will perform any conversion before sending data.

TDS_ALTROW2

0x??

Id DataLen data

repeat for each compute operator

status

TDS_ALTROW2

Id

status

DataLen

data
TDS 5.0 Functional Specification 89 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Comments

• The TDS_ALTROW2 token is, as of the 3.5 edition of this spec, only a place-
holder. It is meant to be used in conjunction with the TDS_ALTFMT2 token. It
is exactly the same as the TDS_ALTROW token, except that it contains the
columnstatus byte. Note that this token will not contain the columnstatus
byte if the corresponding TDS_ALTFMT2 token’s status bytes do not have the
TDS_COLUMNSTATUS bit on.

• A TDS_ALTROW2 includes a complete row of compute data. It is in the format
described by the TDS_ALTFMT2 data stream for a particular compute clause.

• A TDS_ALTROW2 data stream consists of DataLen and data pairs, one for each
aggregate operator in the compute clause. The DataLen argument is only
included for variable length and nullable datatypes.

• A TDS_ALTROW2 data stream is identical to a TDS_ROW data stream except
that it has an Id field following the TDS_ALTROW2 token. Because there may
be more than one compute clause in a Transact-SQL statement, each
compute clause is given a unique Id. This Id is used to associate all TDS
TDS_ALT* data streams.

Examples

See Also

TDS_ALTFMT2, TDS_ALTFMT, TDS_ALTNAME, TDS_ROW
Version 3.8 90 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CAPABILITY

Function

Exchange client and server capabilities during dialog establishment.

Syntax

Arguments

 This token indicates that this data stream contains a list
of capabilities.

 This is the length, in bytes, of the remaining data stream for this
token. This argument is a two-byte, unsigned integer.

 This is the Type to which the following value mask refers. Capabil-
ities are grouped by Types. This argument is a one-byte, unsigned integer.
The supported capability types are:

 This is the length of ValueMask.

 ValueMask contains the bit-field encoded capabilities
being reported in the data stream. The first byte in the ValueMask contains
the high order capability bits. The last byte in the ValueMask contains the
low order capability bits.

Table 9: Capability Types

Type Value Description

TDS_CAP_REQUEST 1 Requests and data types that can be sent on this
dialog.

TDS_CAP_RESPONSE 2 Responses and data types that should not be sent
on this dialog.

TDS_CAPABILITY Length Type

0xE2 repeat for each capability type

TypeLen ValueMask

TDS_CAPABILITY

Length

Type

TypeLen

ValueMask
TDS 5.0 Functional Specification 91 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Comments

• When a client sends a login request to a server it sends a list of capabilities
that it requires on the dialog. A client does not have to send all known
capabilities to a server, only those it considers important.

• A server must respond to all capability requests from a client.

• The TDS_CAPABILITY data stream from a client is optional. It does not have to
be sent. If no capability data is sent by a client, the behavior of the server with
respect to TDS capabilities is undefined. The TDS_CAPABILITY data stream is
determined to be in a login packet using the length field in the packet header.

• The TDS_CAPABILITY data stream is sent by a client following the login record.
The server responds to the capability data stream following the
TDS_LOGINACK(SUCCEED) token.

Question: There is a problem with withholding the CAPABILITY response from
the server until after LOGINACK(SUCCEED) The client logically needs to know
some of the datatype/parameter capabilities of the server in order to send the
TDS_MSG, TDS_PARAMFMT, TDS_PARAM sequences which may required
during login negotiation. (i.e. what if a client wants to send a JAVA_OBJECT
parameter...? The server has not denied that datatype yet.) At a minimum we need
to document the range of parameter types and token types which MUST be
supported by any server before it can participate in a negotiated login sequence.

• If a negotiated login is being done on the dialog, the capability data stream

only follows the TDS_LOGINACK(SUCCEED) token, not the TDS_LOGINACK(NE-

GOTIATE). A capability response never follows a TDS_LOGINACK(NEGOTIATE)

token.

• Most capabilities are not in affect until completion of the login sequence.
However, there are some capabilities, such as TDS_RES_NOEED, which
must be considered during the login sequence (this capability bit affects
whether the server will send TDS_EED or TDS_INFO to the client -- and
since these tokens can go to the client during the login sequence, the
capability bit must be taken into account).
Version 3.8 92 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
• There are some login actions which require that TDS_EED be used; for
example, login redirection. In this case, if the client was to set
TDS_RES_NOEED, then login redirection cannot occur. If the client appli-
cation sets TDS_RES_NOEED, then it cannot request features, such as login
redirection, that depend on the TDS_EED token and the server should
disable those features that would require a TDS_EED be sent to the client.

• Capabilities are used on all client dialogs, both client to server and server to
server.

• Capabilities are only exchanged during the login sequence. Client libraries
must save a list of capabilities supported on a dialog in case the client appli-
cation requests the current capabilities following the login sequence. It is
illegal to send a TDS_CAPABILITY token following a successful login sequence

Protocol Description

Non-negotiated login protocol

Client Server
login packet (TDS_BUF_LOGIN)
TDS_CAPABILITY
msg header (TDS_BUFSTAT_EOM)

TDS_LOGINACK(SUCCEED)
TDS_CAPABILITY
TDS_DONE(FINAL)
msg header (TDS_BUFSTAT_EOM)
TDS 5.0 Functional Specification 93 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• A client uses the ValueMask in the TDS_CAPABILITY data stream a follows:

- setting a ValueMask bit to 1 for a TDS_CAP_REQUEST capability indicates
that the client is requesting the server to support this capability.

- setting a ValueMask bit to 0 for a TDS_CAP_REQUEST capability indicates
that the client does not require support for this request type on this dialog.

- setting a ValueMask bit to 1 for a TDS_CAP_RESPONSE capability indicates
that the client is requesting the server to withhold this response type on
this dialog.

- setting a ValueMask bit to 0 for a TDS_CAP_RESPONSE capability indicates
that the client is willing to receive this response type on this dialog.

• Servers use the ValueMask in the TDS_CAPABILITY data stream as follows:

- converting a client’s 1 bit in a TDS_CAP_REQUEST ValueMask to a 0
indicates that the server cannot support this request capability.

- converting a client’s 1 bit in a TDS_CAP_RESPONSE ValueMask to a 0
indicates that the server is not willing to withhold this response/data type
from a client.

Negotiated login protocol

Client Server
login packet (TDS_BUF_LOGIN)
TDS_CAPABILITY
msg header (TDS_BUFSTAT_EOM)

TDS_LOGINACK(NEGOTIATE)
TDS_MSG
TDS_DONE(FINAL)
msg header(TDS_BUFSTAT_EOM)

TDS_MSG
msg header(TDS_BUFSTAT_EOM)

TDS_LOGINACK(SUCCEED)
TDS_CAPABILITY
TDS_DONE(FINAL)
msg header (TDS_BUFSTAT_EOM)
Version 3.8 94 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
• If a server does not understand a capability Type it should set all bits to 0 in
the ValueMask. This indicates to the client that the server cannot support or
withhold any of these capabilities.

• If a server does not understand a bit in a ValueMask it should set this bit to 0
to indicate that it cannot support or withhold this capability.

Capabilities

The tables below summarize all of the supported request and response capabil-
ities supported in TDS 5.0.

Table 10: TDS_CAP_REQUEST Capabilities

Name Value Description

TDS_REQ_LANG 1 Language requests

TDS_REQ_RPC 2 RPC requests

TDS_REQ_EVT 3 Registered procedure event notification

TDS_REQ_MSTMT 4 Support multiple commands per request

TDS_REQ_BCP 5 Bulk copy requests

TDS_REQ_CURSOR 6 Cursor command requests

TDS_REQ_DYNF 7 Dynamic SQL requests

TDS_REQ_MSG 8 TDS_MSG requests

TDS_REQ_PARAM 9 RPC requests will use the TDS_DBRPC
token and TDS_PARAMFMT/TDS_PARAM to
send parameters.

TDS_DATA_INT1 10 Support 1 byte unsigned integers

TDS_DATA_INT2 11 Support 2 byte integers

TDS_DATA_INT4 12 Support 4 byte integers

TDS_DATA_BIT 13 Support bit data types

TDS_DATA_CHAR 14 Support fixed length character data types
TDS 5.0 Functional Specification 95 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_DATA_VCHAR 15 Support variable length character data
types

TDS_DATA_BIN 16 Support fixed length character data types

TDS_DATA_VBIN 17 Support variable length binary data types

TDS_DATA_MNY8 18 Support 8 byte money data types

TDS_DATA_MNY4 19 Support 4 byte money data types

TDS_DATA_DATE8 20 Support 8 byte date/time data types

TDS_DATA_DATE4 21 Support 4 byte date/time data types

TDS_DATA_FLT4 22 Support 4 byte floating point data types

TDS_DATA_FLT8 23 Support 8 byte floating point data types

TDS_DATA_NUM 24 Support numeric data types

TDS_DATA_TEXT 25 Support text data types

TDS_DATA_IMAGE 26 Support image data types

TDS_DATA_DEC 27 Support decimal data types

TDS_DATA_LCHAR 28 Support long variable length character
data types

TDS_DATA_LBIN 29 Support long variable length binary data
types.

TDS_DATA_INTN 30 Support NULL integers

TDS_DATA_DATETIMEN 31 Support NULL date/time

TDS_DATA_MONEYN 32 Support NULL money

TDS_CSR_PREV 33 Obsolete, will not be used.

TDS_CSR_FIRST 34 Obsolete, will not be used.

Table 10: TDS_CAP_REQUEST Capabilities

Name Value Description
Version 3.8 96 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CSR_LAST 35 Obsolete, will not be used.

TDS_CSR_ABS 36 Obsolete, will not be used.

TDS_CSR_REL 37 Obsolete, will not be used.

TDS_CSR_MULTI 38 This is possibly obsolete.

TDS_CON_OOB 39 Support expedited attentions

TDS_CON_INBAND 40 Support non-expedited attentions

TDS_CON_LOGICAL 41 Support logical logout (not supported in
this release)

TDS_PROTO_TEXT 42 Support tokenized text and image (not
supported in this release)

TDS_PROTO_BULK 43 Support tokenized bulk copy (not sup-
ported this release)

TDS_REQ_URGEVT 44 Use new event notification protocol

TDS_DATA_SENSITIVITY 45 Support sensitivity security data types

TDS_DATA_BOUNDARY 46 Support boundary security data types

TDS_PROTO_DYNAMIC 47 Use DESCIN/DESCOUT dynamic proto-
col

TDS_PROTO_DYNPROC 48 Pre-pend “create proc” to dynamic pre-
pare statements

TDS_DATA_FLTN 49 Support NULL floats

TDS_DATA_BITN 50 Support NULL bits

TDS_DATA_INT8 51 Support 8 byte integers

TDS_DATA_VOID 52 ?

TDS_DOL_BULK 53 ?

Table 10: TDS_CAP_REQUEST Capabilities

Name Value Description
TDS 5.0 Functional Specification 97 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_OBJECT_JAVA1 54 Support Serialized Java Objects

TDS_OBJECT_CHAR 55 Support Streaming character data

RESERVED 56 Reserved for future use

TDS_OBJECT_BINARY 57 Streaming Binary data

TDS_DATA_COLUMNSTATUS 58 Indicates that a one-byte status field can
follow any length or data (etc.) for every
column within a row using TDS_ROW
or TDS_PARAMS. Note that when this
capability is on, the ROWFMT* and
PARAMFMT* tokens indicate in their
status byte fields whether a particular col-
umn will contain the columnstatus byte.

TDS_WIDETABLE 59 The client may send requests using the
CURDECLARE2, DYNAMIC2,
PARAMFMT2 tokens.

RESERVED 60 Reserved

TDS_DATA_UINT2 61 Support for unsigned 2-byte integers

TDS_DATA_UINT4 62 Support for unsigned 4-byte integers

TDS_DATA_UINT8 63 Support for unsigned 8-byte integers

TDS_DATA_UINTN 64 Support for NULL unsigned integers

TDS_CUR_IMPLICIT 65 Support for
TDS_CUR_DOPT_IMPLICIT cursor
declare option.

TDS_DATA_NLBIN 66 Support for LONGBINARY data contain-
ing UTF-16 encoded data (usertypes 34
and 35)

Table 10: TDS_CAP_REQUEST Capabilities

Name Value Description
Version 3.8 98 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_IMAGE_NCHAR 67 Support for IMAGE data containing
UTF-16 encoded data (usertype 36).

TDS_BLOB_NCHAR_16 68 Support for BLOB subtype 0x05 (uni-
char) with serialization type 0.

TDS_BLOB_NCHAR_8 69 Support for BLOB subtype 0x05 (uni-
char) with serialization type 1.

TDS_BLOB_NCHAR_SCSU 70 Support for BLOB subtype 0x05 (uni-
char) with serialization type2.

TDS_DATA_DATE 71 Support for Date

TDS_DATA_TIME 72 Support for Time.

TDS_DATA_INTERVAL 73 Support for Interval

TDS_CSR_SCROLL 74 Support for Scrollable Cursor. This bit
must be on for the following four capabil-
ity bits to have meaning.

TDS_CSR_SENSITIVE 75 Support for Scrollable Sensitive Cursor

TDS_CSR_INSENSITIVE 76 Support for Scrollable Insensitive Cursor

TDS_CSR_SEMISENSITIVE 77 Support for Scrollable Semi-sensitive
Cursor

TDS_CSR_KEYSETDRIVEN 78 Support for Scrollable Keyset-driven
Cursor

TDS_REQ_SRVPKTSIZE 79 Support for server specified packet size

TDS_DATA_UNITEXT 80 Support for Unicode UTF-16 Text.

TDS_CAP_CLUSTERFAILOVER 81 Support Cluster Failover Extensions.

TDS_DATA_SINT1 82 Support for 1 byte signed integer

TDS_REQ_LARGEIDENT 83 Support for large identifiers

Table 10: TDS_CAP_REQUEST Capabilities

Name Value Description
TDS 5.0 Functional Specification 99 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_REQ_BLOB_NCHAR_16 84 Support for BLOB subtype 0x05 (uni-
char) with serialization type 0. Replaces
TDS_BLOB_NCHAR_16. Added to deal with
ASE coding issue in old servers.

TDS_DATA_XML 85 Support for XML datatype.

TDS_REQ_CURINFO3 86 Support for TDS_CURINFO3 token.

TDS_REQ_DBRPC2 87 Support for TDS_DBRPC2 token.

TDS_REQ_MIGRATE 89 Client can be migrated to another server

Table 11: TDS_CAP_RESPONSE capabilities

Name Value Description

TDS_RES_NOMSG 1 No support for TDS_MSG results

TDS_RES_NOEED 2 No support for TDS_EED token

TDS_RES_NOPARAM 3 No support for
TDS_PARAM/TDS_PARAMFMT for return
parameter. use TDS_RETURNVALUE to
return parameters to this client.

TDS_DATA_NOINT1 4 No support for 1 byte unsigned integers

TDS_DATA_NOINT2 5 No support for 2 byte integers

TDS_DATA_NOINT4 6 No support for 4 byte integers

TDS_DATA_NOBIT 7 No support for bit data types

TDS_DATA_NOCHAR 8 No support for fixed length character data
types

TDS_DATA_NOVCHAR 9 No support for variable length character
data types

Table 10: TDS_CAP_REQUEST Capabilities

Name Value Description
Version 3.8 100 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_DATA_NOBIN 10 No support for fixed length binary data
types

TDS_DATA_NOVBIN 11 No support for variable length binary data
types

TDS_DATA_NOMNY8 12 No support for 8 byte money data types

TDS_DATA_NOMNY4 13 No support for 4 byte money data types

TDS_DATA_NODATE8 14 No support for 8 byte date/time data types

TDS_DATA_NODATE4 15 No support for 4 byte date/time data types

TDS_DATA_NOFLT4 16 No support for 4 byte float data types

TDS_DATA_NOFLT8 17 No support for 8 byte float data types

TDS_DATA_NONUM 18 No support for numeric data types

TDS_DATA_NOTEXT 19 No support for text data types

TDS_DATA_NOIMAGE 20 No support for image data types

TDS_DATA_NODEC 21 No support for decimal data types

TDS_DATA_NOLCHAR 22 No support for long variable length char-
acter data types

TDS_DATA_NOLBIN 23 No support for long variable length binary
data types

TDS_DATA_INTN 24 No support for nullable integers

TDS_DATA_NODATETIMEN 25 No support for nullable date/time data
types

TDS_DATA_NOMONEYN 26 No support for nullable money data types

TDS_CON_NOOOB 27 No support for expedited attentions

TDS_CON_NOINBAND 28 No support for non-expedited attentions

Table 11: TDS_CAP_RESPONSE capabilities

Name Value Description
TDS 5.0 Functional Specification 101 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_PROTO_NOTEXT 29 No support for tokenized text and image.

TDS_PROTO_NOBULK 30 No support for tokenized bulk copy

TDS_DATA_NOSENSITIVITY 31 No support for the security sensitivity
data type

TDS_DATA_NOBOUNDARY 32 No support for the security boundary data
type

TDS_RES_NOTDSDEBUG 33 No support for TDS_DEBUG token. Use
image data instead.

TDS_RES_NOSTRIPBLANKS 34 Do not strip blank from fixed length char-
acter data

TDS_DATA_NOINT8 35 No support for 8 byte integers

TDS_OBJECT_NOJAVA1 36 No Support Serialized Java Objects

TDS_OBJECT_NOCHAR 37 No Support Streaming character data

TDS_DATA_NOCOLUMNSTATUS 38 No Support for the columnstatus byte

TDS_OBJECT_NOBINARY 39 No Streaming Binary data

40 Reserved for future use

TDS_DATA_NOUINT2 41 No Support for unsigned 2-byte integers

TDS_DATA_NOUINT4 42 No Support for unsigned 4-byte integers

TDS_DATA_NOUINT8 43 No Support for unsigned 8-byte integers

TDS_DATA_NOUINTN 44 No Support for NULL unsigned integers

TDS_NO_WIDETABLES 45 Client cannot process the TDS_ORDERBY2,
TDS_PARAMFMT2, and TDS_ROWFMT2
tokens required to support tables with a
LARGE number of columns. The server
should not send them.

Table 11: TDS_CAP_RESPONSE capabilities

Name Value Description
Version 3.8 102 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_DATA_NONLBIN 46 No Support for LONGBINARY data con-
taining UTF-16 encoded data (usertypes
34 and 35)

TDS_IMAGE_NONCHAR 47 No Support for IMAGE data containing
UTF-16 encoded data (usertype 36).

TDS_BLOB_NONCHAR_16 48 No Support for BLOB subtype 0x05/0.

TDS_BLOB_NONCHAR_8 49 No Support for BLOB subtype 0x05/1.

TDS_BLOB_NONCHAR_SCSU 50 No Support for BLOB subtype 0x05/2.

TDS_DATA_NODATE 51 No Support for Date

TDS_DATA_NOTIME 52 No Support for Time.

TDS_DATA_NOINTERVAL 53 No Support for Interval.

TDS_DATA_NOUNITEXT 54 No Support for Unicode UTF-16 Text.

TDS_DATA_NOSINT1 55 No Support for 1 byte signed integers.

TDS_NO_LARGEIDENT 56 No Support for Large Identifiers

TDS_NO_BLOB_NCHAR_16 57 No Support for BLOB subtype 0x05/0.
Replaces TDS_BLOB_NONCHAR_16. Added
to work around ASE coding issue.

TDS_NO_SRVPKTSIZE 58 No Support for Server specified packet
size larger than the client requested. If the
TDS_REQ_PKTSIZE capability is set, the
server may still specify the packet size as
long as it is not larger than suggested by
the client.

TDS_DATA_NOXML 59 No Support for XML datatype

TDS_NONINT_RETURN_VALUE 60 Client support for non-integer return val-
ues from TDS_RETURNVALUE

Table 11: TDS_CAP_RESPONSE capabilities

Name Value Description
TDS 5.0 Functional Specification 103 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
See Also

TDS_OPTIONCMD

TDS_RES_NOXNLDATA 61 Client does not need additional metadata
in TDS_ROWFMT2. Also, server should use
TDS_ROWFMT instead of TDS_ROWFMT2.

TDS_RES_SUPPRESS_FMT 62 Server will suppress TDS_ROWFMT (or
TDS_ROWFMT2) tokens if the appropriate
status bit is set in TDS_DYNAMIC.

TDS_RES_SUPPRESS_DONEINPROC 63 Server can suppress TDS_DONEINPROC
tokens. This allows TDS_ROW to be fol-
lowed by TDS_ROWFMT(2) instead of
TDS_DONEINPROC/TDS_ROWFMT(2). Final
done count will be provided by
TDS_DONEPROC.

TDS_RES_FORCE_ROWFMT2 64 Force usage of TDS_ROWFMT2 even if
TDS_ROWFMT could be used.

Table 11: TDS_CAP_RESPONSE capabilities

Name Value Description
Version 3.8 104 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_COLINFO

Function

The data stream used to provide column information for browse mode.

NOTE the select list for a SELECT WITH BROWSE must not contain > 255
columns.

Syntax

Arguments

 This token indicates that this is a data stream
containing information about columns involved in a select with browse
mode.

 This is the total length of the remaining TDS_COLINFO data
stream. It is a two-byte, unsigned integer.

 This is the number of the column in the select target list to
which the column information applies. The number of the first column is
1. Column# is a one-byte, unsigned integer.

 This is the number of the table from which the column comes.
The tables names are listed in the TDS_TABNAME data stream which
precedes the TDS_COLINFO data stream. The first table in the TDS_TABNAME
data stream is 1. Table# is a one-byte, unsigned integer.

TDS_COLINFO

0xA5 repeat for each column

Column#

Length

• • • Table# Status ColLength column name

if ColRename

TDS_COLINFO

Length

Column#

Table#
TDS 5.0 Functional Specification 105 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This one-byte, unsigned integer is the status of the current
column being described. Every column in the select target list is described
in the TDS_COLINFO data stream.

 This is the length of the column’s real name. Note that this field
and the following column name field will appear only if the preceding
Status field has TDS_STAT_RENAME set. This argument is a one-byte,
unsigned integer.

 This is the column’s real name. It’s length, in bytes, is given by
the ColLength argument. The columnname only exists if ColLength is
greater than 0.

Table 12: TDS_COLINFO status values

Status Name Status Value Description

TDS_STAT_EXPR 0x04 This column is the result of an SQL expression
and not an actual column in the underlying table

TDS_STAT_KEY 0x08 The column is part of the row key. It does not
have to be part of the select target list.

TDS_STAT_HIDDEN 0x10 This column was not in the select target list. It is
usually not made visible to the client application
by the client library. However, it was passed to the
client because it is part of the row key. Hidden
columns are always key columns.

TDS_STAT_RENAME 0x20 The column name returned for this column in the
select target list (described in the TDS_ROWFMT
data stream) is not the column’s name in the table.
For example, in the statement “select orderdate
= date from order”, the real column name is
“date” but the name returned in the TDS_ROWFMT
data stream was “orderdate”. If the column status
is TDS_STAT_RENAME, the real column name is in
the next two arguments of the TDS_COLINFO data
stream.

Status

ColLength

column name
Version 3.8 106 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
Comments

• When browse mode is used on a select statement, the server sends back infor-
mation about the tables and columns involved. With this information, the
client library can build a qualification clause for any subsequent update or
delete statements.

• All columns needed to make a unique key for a row are returned to the client
library. Some of the returned columns may not exist in the select statement’s
target list. Columns not in the target list are hidden columns. They are usually
not returned to the client application by the client library.

• Information for every column in the select list as well as hidden key columns
is included in the TDS_COLINFO data stream.

• The column name and column name length fields are included only if Status
is TDS_STAT_RENAME.

• This data stream is always preceded by a TDS_TABNAME data stream.

• This data stream is used only for browse mode.

• Browse mode functionality has been replaced by System 10 cursor support.
New applications are encourage to use cursors instead of browse mode
queries.

• Because the Column# field is only 1 byte wide, this token cannot correctly
describe “for browse” results with > 255 columns.

Examples

See Also

TDS_TABNAME, TDS_ROWFMT
TDS 5.0 Functional Specification 107 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 108 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_COLINFO2

Function

The data stream used to provide column information for browse mode. Note
that it is identical in purpose and most syntax to the TDS_COLINFO token,
except that the Length field is 4 bytes long, and Column# is a 2 byte value. This
token was introduced to allow for result sets with > 255 columns.

Syntax

Arguments

 This token indicates that this is a data stream
containing information about columns involved in a select with browse
mode.

 This is the total length of the remaining TDS_COLINFO2 data
stream. It is a four-byte, unsigned integer.

 This is the number of the column in the select target list to
which the column information applies. The number of the first column is
1. Column# is a two-byte, unsigned integer.

 This is the number of the table from which the column comes.
The tables names are listed in the TDS_TABNAME data stream which
precedes the TDS_COLINFO2 data stream. The first table in the
TDS_TABNAME data stream is 1. Table# is a one-byte, unsigned integer.

 This one-byte, unsigned integer is the status of the current
column being described. Every column in the select target list is described
in the TDS_COLINFO2 data stream. The meanings are the same as those for
TDS_COLINFO.

TDS_COLINFO2

0x20 repeat for each column

• • • Status ColLength column name

if ColRename

Length

Column# Table#

TDS_COLINFO

Length

Column#

Table#

Status
TDS 5.0 Functional Specification 109 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is the length of the column’s real name. Note that this field
and the following column name field will appear only if the preceding
Status field has TDS_STAT_RENAME set. This argument is a one-byte,
unsigned integer.

 This is the column’s real name. It’s length, in bytes, is given by
the ColLength argument. The columnname only exists if ColLength is
greater than 0.

Comments

• Servers should not send this token to clients unless the TDS_ORDERBY2
Response capability bit is true. This token was added in version 3.4 of this
specification to support wide (64K columns) row results. Earlier clients do
not support it.

• When browse mode is used on a select statement, the server sends back infor-
mation about the tables and columns involved. With this information, the
client library can build a qualification clause for any subsequent update or
delete statements.

• All columns needed to make a unique key for a row are returned to the client
library. Some of the returned columns may not exist in the select statement’s
target list. Columns not in the target list are hidden columns. They are usually
not returned to the client application by the client library.

• Information for every column in the select list as well as hidden key columns
is included in the TDS_COLINFO2 data stream.

• The column name and column name length fields are included only if Status
is TDS_STAT_RENAME.

• This data stream is always preceded by a TDS_TABNAME data stream.

• This data stream is used only for browse mode.

• Browse mode functionality has been replaced by System 10 cursor support.
New applications are encourage to use cursors instead of browse mode
queries.

ColLength

column name
Version 3.8 110 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
Examples

See Also

TDS_TABNAME, TDS_ROWFMT
TDS 5.0 Functional Specification 111 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 112 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CONTROL

Function

Describes the user control or format information for columns.

Syntax

Arguments

 This token indicates that this is a data stream
containing control information.

 This is the total length, in bytes, of the remaining data stream. It is
a two-byte, unsigned integer.

 This the length, in bytes, of the control information that follows.
This is an unsigned one-byte argument.

 This is the actual control information for a column. Its length is
FmtLen. If FmtLen is 0, this argument doesn’t exist in the data stream. The
fmt field is treated as a binary byte string. There is no character set
conversion performed on this argument.

Comments

• This data stream is used to tell the client about any user-defined format infor-
mation for columns. It is used to support a facility in Transact-SQL that
allows arbitrary, user-defined information to be associated with select
target-list columns and then returned to the client.

• The SQL Server option control must be on for a server to return
TDS_CONTROL data streams.

• This feature is used internally by some Sybase front-end applications.
However, it is fairly obscure and normally unused by most customer applica-
tions.

TDS_CONTROL

0xAE

Length FmtLen fmt

repeat for each column

TDS_CONTROL

Length

FmtLen

fmt
TDS 5.0 Functional Specification 113 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Examples

The client sends the following query:
select name, id, type from sysobjects
controlrow 0 “name fmt string”, “”, “type fmt string”

The data stream from the server is:

See Also

TDS_ROWFMT

TDS_CONTROL 33 15 name fmt string

TDS_ROWFMT etc.

0

15 type fmt string
Version 3.8 114 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CURCLOSE

Function

Describes the cursor close data stream.

Syntax

Arguments

 This is the token for a client request to close a cursor.

 This is the total length of the remaining TDS_CURCLOSE data
stream. It is a two-byte unsigned integer.

 Cursor id of cursor that is being closed. If CursorId is 0 the
cursor is being closed by name. This is a four-byte unsigned integer.

 This is the length of the cursor name. It is a one-byte
unsigned integer and must be > 0 and <= TDS_MAX_NAME. NameLength
and cursor name are only included if CursorId is equal to 0.

 This is the name of the cursor. The length of this field is in the
NameLength argument.

These are the options associated with this cursor close. The
value values for this argument are:

Table 13: Cursor close options

Name Value Description

TDS_CUR_COPT_UNUSED 0x00 No close options.

CursorIdTDS_CURCLOSE

0x80

Length

NameLength• • • cursor name Options

TDS_CURCLOSE

Length

CursorId

NameLength

cursor name

Options
TDS 5.0 Functional Specification 115 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Comments

• This is the data stream generated by a client when a close cursor request is
sent to a server.

• A TDS_CURCLOSE token can only be sent for a cursor following
TDS_CURDECLARE and TDS_CUROPEN tokens.

• The cursor to close is identified in the TDS_CURCLOSE token.

• Multiple TDS_CURCLOSE data streams may be sent in the same request.

• The TDS_CURCLOSE token is acknowledged with a TDS_CURINFO token.

• Two TDS_CURCLOSE tokens can only be sent for the same cursor if the first
one sent does not have the Option argument set to TDS_CUR_COPT_DEALLOC.

Examples

See Also

TDS_CUROPEN, TDS_CURDECLARE, TDS_CURDECLARE2, TDS_CURDECLARE3

TDS_CUR_COPT_DEALLOC 0x01 Close and de-allocate the cursor. The cur-
sor must be re-declared before it can be
reopened.

Table 13: Cursor close options

Name Value Description
Version 3.8 116 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CURDECLARE

Function

Describes the data stream for declaring a cursor.

Syntax

Arguments

 This token indicates that this is a data stream
containing a client cursor request to declare a cursor.

 This is the total length of the remaining TDS_CURDECLARE
data stream. It is a two-byte unsigned integer.

 This is the length of the cursor name. It may be up to 255
bytes long; however, a maximum length of TDS_MAXNAME (30) is widely
supported.

 This is the name of the cursor.

Status

StmtLength statement

repeat for each column

ColNameLength column name• • •

TDS_CURDECLARE Length

0x86

cursor nameNameLen

• • •

#Columns

Options• • •

TDS_CURDECLARE

Length

NameLength

cursor name
TDS 5.0 Functional Specification 117 Version 3.8

Sybase Confidential TDS 5.0 Reference Pages
These are the cursor declare options. This is a one-byte
unsigned integer.

This is the cursor declare status argument. It is a one-byte
unsigned integer.

Table 14: Cursor option values

Option Name Value Description

TDS_CUR_DOPT_UNUSED 0x00 No options associated with this cursor.

TDS_CUR_DOPT_RDONLY 0x01 This cursor is read only.

TDS_CUR_DOPT_UPDATABLE 0x02 Updates can be performed with this cursor.

TDS_CUR_DOPT_SENSITIVE 0x04 Reserved, valid with TDS_CURDECLARE3
token only.

TDS_CUR_DOPT_DYNAMIC 0x08 This cursor is being declared against a
dynamically prepared statement.

TDS_CUR_DOPT_IMPLICIT 0x10 This cursor is implicitly read-only, automati-
cally fetches first set of rows on the CURO-
PEN, and automatically closes after the last
row is fetched.
This option should not be specified unless
the TDS_CUR_IMPLICIT request capability
is set.

DO NOT ADD NEW OPTIONS See CURDECLARE3

Table 15: Cursor Declare Status

Name Value Description

TDS_CUR_DSTAT_UNUSED 0x00 No status associated with this cur-
sor declare.

Options

Status
TDS 5.0 Functional Specification 118 Version 3.8

Sybase Confidential TDS 5.0 Reference Pages
 This is the total length of the following SELECT statement
associated with this cursor. It is a 2-byte unsigned integer. Please note that
since the total TDS_CURDECLARE data stream Length may be no greater
than 64k-1, StmtLength can never be a full 64k-1. The maximum size of
StmtLength depends on the length of the cursor name and the number
and length of any update columns.

 This is the actual text of the cursor, without the DECLARE
CURSOR clause. For example, in the following full ANSI cursor declaration,
only the words in italics would be the statement argument.

DECLARE CURSOR csr1 FOR

SELECT a, b FROM tab1

WHERE a < 12 AND b > 15

FOR UPDATE OF a

 When a cursor is declared FOR UPDATE, the update
columns may be specified. This argument identifies the number of
columns specified for update. If this number is > 0, the column (or
columns) name length and name follow. This argument is a one-byte
unsigned integer. This argument is optional. If its value is 0 then the
following arguments are omitted. If this number is > 0, then the statement
must NOT contain a FOR UPDATE OF or FOR READ_ONLY clause.
Generally, it is expected that clients will set this to 0 unless the application
is using cursors within Open Server.

TDS_CUR_DSTAT_HASARGS 0x01 The cursor declare statement is fol-
lowed by parameters.

Table 15: Cursor Declare Status

Name Value Description

StmtLen

statement

#Columns
TDS 5.0 Functional Specification 119 Version 3.8

Sybase Confidential TDS 5.0 Reference Pages
 When a cursor is declared FOR UPDATE, the columns that
may be updated can be specified. This, and the following, argument are
repeated for each column specified for update. If the previous argument,
#Columns, is 0, this argument and the following argument will not be
included. Columns are represented by their column name length and
column name in the FOR UPDATE list. This parameter is a one-byte
unsigned integer.

 This is the name of the column optionally described in the
FOR UPDATE clause. Its length is described by the NameLength
argument.

Comments

• This is the data stream generated by a client to declare a cursor.

• If the TDS_CURDECLARE is successful, the client’s and server’s notion of the
current cursor context is changed to be the new cursor. The cursor id
assigned by the server for the new cursor will be returned to the client in the
TDS_CURINFO data stream that acknowledges the cursor declare.

• refers to the number of columns that are to be updated.
Generally, this will be 0 and the column update information will be contained
in statement. Should this number be > 0 and a FOR UPDATE clause be
contained in statement or if the server decides that the cursor can only be
opened READONLY, the server should generate an error and disallow the
cursor declaration.

• should not contain the DECLARE <cursor name> CURSOR
FOR” clause of a cursor declaration but under the following conditions the
Server will report back to the client the READONLY or UPDATABILITY
through CURINFO tokens.

- If #Columns is > 0 then the statement may contain the UPDATE [OF
<column name list>]” clause.

- If #Columns is 0 then the statement may or may not contain the UPDATE
OF <column name list>” clause. As explained above, it is the server’s
responsibility to parse the SQL Statement and determine the number of
update columns (if any), even when the #Columns field is set to 0.

NameLength

column name

#Columns

statement
TDS 5.0 Functional Specification 120 Version 3.8

Sybase Confidential TDS 5.0 Reference Pages
- If Option is not TDS_CUR_DOPT_RDONLY, then the statement may contain
the “FOR READ ONLY” clause.

• Information about the cursor is returned to the client in the TDS_CURINFO
data stream once the server has received a declare cursor token, via cursor
command.

• If the declare is successful, the TDS_ ROWFMT data stream describing the
results will be returned to the client at cursor open time. The TDS_ROWFMT
data stream for the results will not be returned at declare cursor time.

• A language cursor declare statement may be parameterized. If so, the
description of the parameters using a TDS_PARAMFMT data stream must
follow the TDS_CURDECLARE data stream. When the cursor is opened, the
parameter values must be passed to the server with a
TDS_PARAMFMT/TDS_PARAMS data stream following the TDS_CUROPEN data
stream. Parameterized declare statements are indicated by a Status of
TDS_CUR_DSTAT_HASARGS.

• The TDS_CURDECLARE token can be sent with a TDS_CUROPEN and
TDS_CURFETCH token in the same request. The server will acknowledge each
token with a TDS_CURINFO, TDS_DONE(MORE), except for the final token
(TDS_CURFETCH) which is acknowledged with a TDS_CURINFO,
TDS_DONE(FINAL).

Examples

Valid TDS token streams for TDS_CURDECLARE are as follows:

— A cursor is declared on a dynamic SQL statement, or a cursor is declared on a statement
that we know to be executing a stored procedure:

TDS_CURDECLARE

TDS_CUROPEN

TDS_PARAMFMT

TDS_PARAMS

— A cursor is declared on a language statement:

TDS_CURDECLARE

TDS_PARAMFMT

TDS_CUROPEN
TDS 5.0 Functional Specification 121 Version 3.8

Sybase Confidential TDS 5.0 Reference Pages
TDS_PARAMFMT

TDS_PARAMS

See Also

TDS_CURDECLARE2, TDS_CURDECLARE3, TDS_CUROPEN, TDS_CURINFO,
TDS_CURINFO2, TDS_CURINFO3, TDS_CURFETCH
TDS 5.0 Functional Specification 122 Version 3.8

Sybase Confidential TDS 5.0 Reference Pages
TDS_CURDECLARE2

Function

Describes the data stream for declaring a cursor. It serves an identical purpose
to TDS_CURDECLARE, but has been widened to support more columns.

Syntax

Arguments

 This token indicates that this is a data stream
containing a client cursor request to declare a cursor.

 This is the total length of the remaining TDS_CURDECLARE2
data stream. It is a four-byte unsigned integer.

 This is the length of the cursor name.It may be up to 255
bytes long; however, a maximum length of TDS_MAXNAME (30) is widely
supported.

 This is the name of the cursor.

These are the cursor declare options. This is a one-byte
unsigned integer. Option values are described in the TDS_CURDECLARE
section.

This is the cursor declare status argument. It is a one-byte
unsigned integer.

Status

statement

repeat for each column

ColNameLength column name• • •

TDS_CURDECLARE2

0x23

cursor nameNameLen

• • •

Options• • •

Length

#Columns

StmtLength

TDS_CURDECLARE2

Length

NameLength

cursor name

Options

Status
TDS 5.0 Functional Specification 123 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is the total length of the following SELECT statement
associated with this cursor. It is a 4-byte unsigned integer.

 This is the actual text of the cursor, without the DECLARE
CURSOR clause. For example, in the following full ANSI cursor declaration,
only the words in italics would be the statement argument.

DECLARE CURSOR csr1 FOR

SELECT a, b FROM tab1

WHERE a < 12 AND b > 15

FOR UPDATE OF a

 When a cursor is used FOR UPDATE, the update columns
may be specified. This argument identifies the number of columns
specified for update. If this number is > 0, the column (or columns) name
length and name follow. This argument is a two-byte unsigned integer. This
argument is optional. If its value is 0 then the following arguments are
omitted. See TDS_CURDECLARE for more information on this usage.

 When a cursor is declared FOR UPDATE, the columns that
may be updated can be specified. This, and the following, argument are
repeated for each column specified for update. If the previous argument,
#Columns, is 0, this argument and the following argument will not be
included. Columns are represented by their column name length and
column name in the FOR UPDATE list. This parameter is a one-byte
unsigned integer.

 This is the name of the column optionally described in the
FOR UPDATE clause. Its length is described by the NameLength
argument.

Comments

• Read comments in the TDS_CURDECLARE section.

• With appearance of TDS_CURDECLARE3 including all properties of this
token, TDS_CURDECLARE2 may become obsolete in the future.

• Associated TDS_ROWFMT token is TDS_ROWFMT2.

StmtLength

statement

#Columns

NameLength

column name
Version 3.8 124 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
Examples

 N/A

See Also

TDS_CURDECLARE, TDS_CURDECLARE3, TDS_CUROPEN, TDS_CURINFO,
TDS_CURINFO2, TDS_CURINFO3, TDS_CURFETCH
TDS 5.0 Functional Specification 125 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 126 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CURDECLARE3

Function

Describes the data stream for declaring a cursor. It serves an identical purpose
to TDS_CURDECLARE and TDS_CURDECLARE2, but has been added to support
scrollable cursors and other new cursor options. It encompasses all properties
of TDS_CURDECLARE(2).

Syntax

Arguments

 This token indicates that this is a data stream
containing a client cursor request to declare a cursor.

This is the total length of the remaining TDS_CURDECLARE data
stream. It is a four-byte unsigned integer.

 This is the length of the cursor name. It may be up to 255
bytes long; however, a maximum length of TDS_MAXNAME (30) is widely
supported.

 This is the name of the cursor.

Status

repeat for each column

ColNameLength column name• • •

TDS_CURDECLARE3

0x10

cursor nameNameLen

• • •

statementStmtLen

Options

Length

#Columns

TDS_CURDECLARE3

Length

NameLength

cursor name
TDS 5.0 Functional Specification 127 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
These are the cursor declare options. This is a four-byte
unsigned integer.

Table 16: Cursor option values

Option Name Value Description

TDS_CUR_DOPT_UNUSED 0x00000000 No options associated with this cursor.

TDS_CUR_DOPT_RDONLY 0x00000001 This cursor is read only.

TDS_CUR_DOPT_UPDATABLE 0x00000002 Updates can be performed with this cursor.

TDS_CUR_DOPT_SENSITIVE 0x00000004 Scrollable cursor, sensitive. Changes to the
base table will be visible.

TDS_CUR_DOPT_DYNAMIC 0x00000008 This cursor is being declared against a
dynamically prepared statement.

TDS_CUR_DOPT_IMPLICIT 0x00000010 This cursor is implicitly read-only, automati-
cally fetches first set of rows on the CURO-
PEN, and automatically closes after the last
row is fetched.
This option should not be specified unless
the TDS_CUR_IMPLICIT request capability
is set.

TDS_CUR_DOPT_INSENSITIVE 0x00000020 Insensitive cursor, may or may not be scrol-
lable. Result set will not be affected by
changes to the base table.

TDS_CUR_DOPT_SEMISENSITIVE 0x00000040 Semi-sensitive cursor, may or may not be
scrollable. Changes to base table rows not yet
fetched by the cursor will be visible.

TDS_CUR_DOPT_KEYSETDRIVEN 0x00000080 Scrollable cursor, keyset driven. Non-key
parts over which the cursor was declared are
subject to change, Keyparts are fixed with
respect to the cursor.

TDS_CUR_DOPT_SCROLLABLE 0x00000100 Cursor is scrollable. Can be used in conjunc-
tion with (IN|SEMI)SENSITIVE, KEYSET-
DRIVEN etc.

Options
Version 3.8 128 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
This is the cursor declare status argument. It is a one-byte
unsigned integer.

This is the total length of the following SELECT statement
associated with this cursor. It is a 4-byte unsigned integer. Please note that
since the total TDS_CURDECLARE3 data stream Length may be no greater
than 2^32-1, StmtLength can never be a full 2^32-1. The maximum size of
StmtLength depends on the length of the cursor name and the number
and length of any update columns.

This is the actual text of the cursor, without the DECLARE
CURSOR clause. For example, in the following full ANSI cursor declaration,
only the words in italics would be the statement argument.

DECLARE CURSOR csr1 FOR

SELECT a, b FROM tab1

WHERE a < 12 AND b > 15

FOR UPDATE OF a

 When a cursor is declared FOR UPDATE, the update
columns may be specified. This argument identifies the number of
columns specified in the update list. See TDS_CURDECLARE for more infor-
mation on the usage of this parameter.

Table 17: Cursor Declare Status

Name Value Description

TDS_CUR_DSTAT_UNUSED 0x00 No status associated with this cur-
sor declare.

TDS_CUR_DSTAT_HASARGS 0x01 The cursor declare statement is fol-
lowed by parameters.

Status

StmtLength

statement

#Columns
TDS 5.0 Functional Specification 129 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 When a cursor is declared FOR UPDATE, the columns that
may be updated can be specified. This, and the following, argument are
repeated for each column specified for update. If the previous argument,
#Columns, is 0, this argument and the following argument will not be
included. Columns are represented by their column name length and
column name in the FOR UPDATE list. This parameter is a one-byte
unsigned integer.

 This is the name of the column optionally described in the
FOR UPDATE clause. Its length is described by the NameLength
argument.

Comments

• An implicit cursor (using the TDS_CUR_DOPT_IMPLICIT status bit) is a unique
type and is not to be used with the scrollable, sensitive, insensitive, keyset-
driven or semi-sensitive types.

• It is legal for a client to request a non-scrollable cursor of types insensitive,
semi-sensitive, keyset driven and sensitive.

• See TDS_CURDECLARE and TDS_CURDECLARE2 for detailed comments.

Examples

 N/A

See Also

TDS_CURDECLARE, TDS_CURDECLARE2, TDS_CUROPEN, TDS_CURINFO,
TDS_CURINFO2, TDS_CURINFO3, TDS_CURFETCH

NameLength

column name
Version 3.8 130 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CURDELETE

Function

Describes the data stream for deleting a row through a cursor.

Syntax

Arguments

 This is the data stream command token for a client
request to delete through a cursor.

 This is the total length of the remaining TDS_CURDELETE data
stream. It is a two byte unsigned integer.

 This is the internal identifier for the cursor. If CursorId is 0
it means that the cursor on which to perform the delete is identified by
name using the NameLength and cursor name arguments. This argument
is a four byte, unsigned integer.

 This is the length of the cursor name. It is a one-byte
unsigned integer and must be > 0 and <= TDS_MAX_NAME(30). This part of
the data stream is only included if CursorId is equal to 0.

 This is the name of the cursor.

TDS_CURDELETE

0x81

cursor nameNameLength

Length CursorId

table nameTableLength

• • •

• • •

Status• • •

TDS_CURDELETE

Length

CursorId

Name Length

cursor name
TDS 5.0 Functional Specification 131 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
This is status information associated with the cursor delete.
This argument is a one-byte unsigned integer. It has the following values:

 This is the length of the table name which follows. It is a
one byte unsigned integer.

 This is the name of the table to which the delete applies.
It may be a compound name such as “site.db.owner.table”. It should be the
same table reference as used in the declare cursor.

Comments

• This is the data stream generated by the client when a delete cursor
command is sent to the server.

• The cursor to which the TDS_CURDELETE refers is identified in the
TDS_CURDELETE data stream.

• When a TDS_CURDELETE data stream is sent to the server, it is always followed
by a TDS_KEY data stream. The TDS_KEY data stream defines to the server
what the client’s current row is.

• A TDS_CURINFO, TDS_DONE is returned on a successful delete.

• A TDS_CURINFO, TDS_EED, TDS_DONE is returned on a version mismatch.

• A TDS_EED, TDS_DONE is returned for a key mismatch.

Examples

See Also

TDS_CURUPDATE, TDS_CURDECLARE, TDS_CURINFO, TDS_CURINFO2,
TDS_CURINFO3, TDS_CUROPEN, TDS_KEY

Table 18: Cursor Delete Status Values

Name Value Description

TDS_CUR_DELSTAT_UNUSED 0x00 No status associated with the
cursor delete.

Status

TableLength

table name
Version 3.8 132 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CURFETCH

Function

Describes the data stream for sending a fetch command to a server.

Syntax

Arguments

 This is the data stream command token that indicates
that this is a data stream containing a client cursor request for a cursor
fetch.

 This is the total length of the remaining TDS_CURFETCH data
stream. It is a two byte unsigned integer.

This is the internal cursor identifier for this cursor.
It is a four-byte unsigned integer.

 This is the length of the cursor name. It is a one byte
unsigned integer and must be > 0 and <= TDS_MAXNAME (30).
NameLength is only included if CursorId is equal to 0.

 This is the name of the cursor. Its length is NameLength

 CursorIdTDS_CURFETCH

0x82

Length

NameLength cursor name• • •

Type• • • Row#

TDS_CURFETCH

Length

 CursorId

NameLength

cursor name
TDS 5.0 Functional Specification 133 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This argument defines the fetch orientation to get the row(s) that
should be returned for this fetch. If cursor scrolling is not supported by a
server (determined using capabilities), then Type must always be
TDS_CUR_NEXT. Type is an unsigned, one byte integer, and its possible
values are:

 This is a signed, four-byte integer which indicates the row
position. This argument is optional and is only included in the data stream
as indicated in the table above.

 This is the name of the cursor.

Comments

• This is the data stream generated by a client when a fetch cursor request is
sent to a server.

• The number of rows that are returned on a fetch cursor are determined by
the cursor fetch count set using the TDS_CURINFO token.

Table 19: Cursor fetch types

Type Names Value Row# Sent? Description

TDS_CUR_NEXT 1 No Return next rowset from the result set.

TDS_CUR_PREV 2 No Return previous rowset from the result set.

TDS_CUR_FIRST 3 No Return first rowset from the result set.

TDS_CUR_LAST 4 No Return last rowset(s) from the result set.

TDS_CUR_ABS 5 Yes Return rowset at position specified in Row#.
The first row in a result set is 1. ABS(-1)
returns the rowset starting with the last row,
ABS(-2) returns the rowset starting on the
second to last row, etc.

TDS_CUR_REL 6 Yes Return rowset at current position plus Row#.
Row# can be positive or negative.
Please see cursor positioning rules below.

Type

row #

cursor name
Version 3.8 134 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
• The cursor to which the TDS_CURFETCH refers is identified in the
TDS_CURFETCH token.

• If scrolling is not supported by the server, the Type argument must be
TDS_CUR_NEXT. Version 3.6 of this spec adds scrollability. See Rules section.

• The row # argument is only in the data stream when Type is TDS_CUR_ABS or
TDS_CUR_REL.

• Row# passed in can be less then 0 in case of cursor scrolling. E.g. passing
TDS_CUR_ABS (-5) is a valid command. See Cursor Positioning Rules below
for detailed information.

• If the cursor is updatable, the cursor key is imbedded in the TDS_ROW that is
returned. Please see TDS_ROWFMT for a description of the cursor key.

• TDS_CURFETCH tokens are typically responded to with row results and a
TDS_DONE. A TDS_CURFETCH token may also result in the server sending
back a TDS_CURINFO2 token followed by a TDS_DONE token. In this latter
case, the TDS_CURINFO2 token will indicate that the fetch moved the cursor
position off of the cursor ResultSet -- either before the first row or after the
last row.

• The TDS_CURFETCH token can be sent by a client with a TDS_CURDECLARE and
TDS_CUROPEN in the same request. A server will acknowledge the
TDS_CURDECLARE and TDS_CUROPEN tokens with a TDS_CURINFO and a
TDS_DONE(MORE). The TDS_CURFETCH will be acknowledged with the row
results and a TDS_DONE(FINAL).

• The TDS_CURFETCH command may be sent in the same request with a
TDS_CURINFO* token immediately preceding it. The TDS_CURINFO* token can
be used to set or alter the fetch size just before the fetch is executed.

• Note that when a cursor Resultset is empty, any attempt to fetch rows using a
scrollable cursor will result in the server returning a TDS_CURINFO2 token
with the TDS_CUR_ISTAT_EMPTYRESULTSET and
TDS_CUR_ISTAT_ISBEFOREFIRSTROW status bits set. This means that for an
empty ResultSet, the cursor always remains positioned before the first row.
TDS 5.0 Functional Specification 135 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• When servers implement keyset-driven, sensitive and updatable scrollable
cursors, this spec will need to be amended. Certainly, keyset-driven and
updatable cursors will require the use of a hidden column or columns to
contain the keys. Additionally, we may make use of the column status byte to
communicate the update status/timestamp of a particular row value.

Cursor Positioning Rules (spec version 3.6 and later)

Definitions of fetch orientation.

• before_start. The cursor is positioned before the first row of the result set. As
described in the comments section above, when a fetch positions the cursor
at this location, the server sends a CURINFO2 token with the
TDS_CUR_ISTAT_BEFOREFIRSTROW status bit set. A TDS_DONE
token must follow.

• after_end. The cursor is positioned after the last row of the result set. As
described in the comments section above, when a fetch positions the cursor
at this location, the server sends a CURINFO2 token with the
TDS_CUR_ISTAT_AFTERLASTROW status bit set. A TDS_DONE token
must follow.

• currow_start. Defines the number of the first row in the current rowset.

• last_resrow. Defines the number of the last row in the result set.

• rowset_size. This is the number of rows to be returned by a cursor fetch.

• row_set. A collection of rows delivered to the client. It is a subset of the entire
cursor result set. rowset_size indicates number of rows in row_set.

• fetch_offset. The value of the fetch offset. This value is an unsigned integer.
Version 3.8 136 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
Rules

TDS_CUR_NEXT rule:

(a) If the rowset_size has been changed since the previous call, this is the rowset_size that was
used with the previous fetch.

Table 20: TDS_CUR_NEXT

Condition First row of new rowset

before_start 1

currow_start + rowset_size (a)
<= last_resrow

currow_start + rowset_size (a)

currow_start + rowset_size (a)
> last_resrow

after_end

after_end after_end
TDS 5.0 Functional Specification 137 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_CUR_PREV rule:

(a) ODBC drivers are responsible for generating a warning message indicating that the client at-
tempted to fetch before the result set, and that the server is returning the first rowset.

(b) If the rowset_size has been changed since the previous call to fetch rows, this is the new
rowset_size.

Table 21: TDS_CUR_PREV

Condition First row of new rowset

before_start before_start

currow_start = 1 before_start

1 < currow_start <= rowset_size (b) 1 (a)

currow_start > rowset_size (b) currow_start - rowset_size (b)

after_end && last_resrow <
rowset_size (b)

1 (a)

after_end && last_resrow >=
rowset_size (b)

lastres_row - rowset_size (b) + 1
Version 3.8 138 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CUR_ABS rule:

(a) The client is responsible for generating a warning message indicating that the client attempt-
ed to fetch before the result set, and that the server is returning the first rowset.

(b) If the rowset_size has been changed since the previous call to fetch rows, this is the new
rowset_size.

Table 22: TDS_CUR_ABS

Condition First row of new row(set)

fetch_offset <0 && |fetch_offset| <=
lastres_row

lastres_row + fetch_offset + 1

fetch_offset < 0 && |fetch_offset| >
lastres_row && |fetch_offset| >
rowset_size (b)

before_start

fetch_offset < 0 && |fetch_offset| >
lastres_row && |fetch_offset| <=
rowset_size (b)

1 (a)

fetch_offset = 0 before_start

1 <= fetch_offset <= lastres_row fetch_offset

fetch_offset > lastres_row after_end
TDS 5.0 Functional Specification 139 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_CUR_REL rule:

(a) Same as TDS_CUR_ABS. See next section.

(b) ODBC drivers are responsible for generating a warning message indicating that the client at-
tempted to fetch before the result set, and that the server is returning the first rowset.

(c) If the rowset_size has been changed since the previous call to fetch rows, this is the new
rowset_size.

Table 23: TDS_CUR_REL

Condition First row of new rowset

(before_start && fetch_offset > 0) ||
(after_end && fetch_offset < 0)

same rowset returned as if it was called
with TDS_CUR_ABS. (a)

before_start && fetch_offset < 0 before_start

currow_start = 1 && fetch_offset < 0 before_start

currow_start > 1 && (currow_start +
fetch_offset) < 1 && |fetch_offset| >
rowset_size (c)

before_start

currow_start > 1 && (currow_start +
fetch_offset) < 1 && |fetch_offset| <=
rowset_size (c)

1 (b)

1 < currow_start + fetch_offset <=
lastres_row

currow_start + fetch_offset

currow_start + fetch_offset > lastres_row after_end

after_end && fetch_offset >= 0 after_end
Version 3.8 140 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CUR_FIRST rule:

TDS_CUR_LAST rule:

(a) If the rowset_size has been changed since the previous call to fetch rows, this is the new
rowset_size.

Table 24: TDS_CUR_FIRST

Condition First row of new rowset

Any 1

Table 25: TDS_CUR_LAST

Condition First row of new rowset

rowset_size (a) <= lastres_row lastres_row - rowset_size (a) + 1

rowset_size (a) > lastres_row 1
TDS 5.0 Functional Specification 141 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Examples, Scrollable cursor

• fetch c (ABS -1) returns last row, row # 12.

• fetch c (ABS -3) returns row # 10.

• fetch c (ABS 0) returns no data, cursor is positioned before first row.

• See new cursor status flags in TDS_CURDECLARE3.

• See examples of TDS-based scrollable cursor operations in the Examples
section.

Table 26:

1 a

2 b

3 ...

4

5

6

7

8

9

10

11

12
Version 3.8 142 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

See Also

TDS_CURDECLARE, TDS_CURDECLARE2, TDS_CURDECLARE3, TDS_CUROPEN,
TDS_CURINFO, TDS_CURINFO2, TDS_CURINFO3
TDS 5.0 Functional Specification 143 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 144 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CURINFO

Function

The data stream for describing cursor characteristics and state.

Syntax

Arguments

 This is the data stream token that indicates that this is a
data stream containing a description of a cursor.

 This is the total length of the remaining TDS_CURINFO data
stream. It is a two-byte unsigned integer.

 This is the internal identifier for a cursor. The CursorId is
always set by the server that is managing the cursor. It is never assigned by
a client. This argument is a four-byte, signed integer.

 This is the length of the following cursor name. It is a one-
byte, unsigned integer. This argument only appears if CursorId is 0.

This is the cursor name for this cursor. The argument only
appears if there is a NameLength parameter in the data stream. Its length
is in NameLength.

Command RowCount

TDS_CURINFO

0x83

CursorId

cursor nameNameLen

• • •

Length

• • •

Status

TDS_CURINFO

Length

CursorId

NameLength

cursor name
TDS 5.0 Functional Specification 145 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is the command associated with the TDS_CURINFO
token.

Table 27: TDS_CURINFO Commands

Name Value Description

TDS_CUR_CMD_SETCURROWS 1 Set the fetch count.

TDS_CUR_CMD_INQUIRE 2 Ask status of a cursor.

TDS_CUR_CMD_INFORM 3 Report status of a cursor.

TDS_CUR_CMD_LISTALL 4 Report status of all open cursors.

Command
Version 3.8 146 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
 This argument describes the status of the cursor. This
argument is a two-byte, unsigned integer. The possible values are:

 This describes how many rows will be returned for a cursor
fetch. It is a four-byte signed integer.

Comments

• This data stream is used for two purposes. It is used to communicate changes
in the state of a cursor. It is also used to set the current cursor context.

Table 28: Valid Cursor Status

Option Names Values Description

TDS_CUR_ISTAT_UNUSED 0x0000 The option argument is unused.

TDS_CUR_ISTAT_DECLARED 0x0001 The specified cursor has been declared.

TDS_CUR_ISTAT_OPEN 0x0002 The specified cursor is open.

TDS_CUR_ISTAT_CLOSED 0x0004 The specified cursor is closed.

TDS_CUR_ISTAT_RDONLY 0x0008 The specified cursor is read-only. Any
update or delete statements against this
cursor are illegal.

TDS_CUR_ISTAT_UPDATABLE 0x0010 The specified cursor is updatable. Update
and delete statements may be issued
against this cursor.

TDS_CUR_ISTAT_ROWCNT 0x0020 The rowcount argument is valid. This
TDS_CURINFO command is setting the cur-
rent row fetch count.

TDS_CUR_ISTAT_DEALLOC 0x0040 The specified cursor has been deallocated.
It cannot be opened unless it is declared
again.

DO_NOT_ADD_STATUS_BITS See CURINFO2

Status

row count
TDS 5.0 Functional Specification 147 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• This data stream is used to set the “current cursor”. This is required because
there can be multiple open cursors on a single client server dialog. The
TDS_CURINFO is used to coordinate commands and responses with a
particular cursor.

• The TDS_CURINFO token is used by servers to return the assigned cursor id
after a cursor has been declared.

• This data stream is first returned to a client when the cursor is declared. It is
also returned to the client if the number of rows per fetch is changed.

• If Command is TDS_CUR_CMD_LISTALL the CursorId must be 0.

• NameLength and CursorName are optional. They are only in the data
stream if CursorId is 0.

• RowCount is optional. It is only present if the Length argument after
subtracting out the lengths of the other arguments is 4. (It was initially
specified that this field would be present if and only if the
TDS_CUR_ISTAT_ROWCNT bit was set. Open Client was not coded to this
requirement, thus we are left with this silly subtraction technique.)

• Returning a RowCount equal to 0 is illegal.

• It is illegal to set the TDS_CUR_ISTAT_ROWCNT Status with the
TDS_CUR_CMD_INQUIRE and TDS_CUR_CMD_LISTALL commands.

• Language based cursors do not cause TDS_CURINFO tokens to be sent.

• A client requests the status of a specified cursor using the
TDS_CUR_CMD_INQUIRE command with CursorId set to the identifier of the
cursor the client wants information on. The server responds with the
TDS_CUR_CMD_INFORM Command and the status bits set appropriately for
the cursor identifier identified in the CursorId argument. NOTE: This
command is not supported by all servers.

• A client can request the status of all active cursor using the
TDS_CUR_CMD_LISTALL Command. When a server receives this Command
it returns a TDS_CUR_CMD_INFORM Command for all active cursors on the
dialog.

• A server will acknowledge the TDS_CUR_CMD_SETCURROWS Command with
a TDS_CURINFO, TDS_DONE. If the requested row count is invalid the server
will respond with a TDS_CURINFO, TDS_EED, TDS_DONE.
Version 3.8 148 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
Examples

See Also

TDS_CURDECLARE, TDS_CURDECLARE2, TDS_CURDECLARE3, TDS_CUROPEN
TDS 5.0 Functional Specification 149 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 150 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CURINFO2

Function

The data stream for describing cursor characteristics and state. This token can
be used only when the TDS_CSR_SCROLL capability is on.

Syntax

Arguments

 This is the data stream token that indicates that this is a
data stream containing a description of a cursor.

This is the total length of the remaining TDS_CURINFO2 data
stream. It is a two-byte unsigned integer.

This is the internal identifier for a cursor. The CursorId is
originally generated by the server that is managing the cursor. It is never
created by a client. Once the server has assigned this ID, both client and
server can specify it in this field to exchange information about a particular
cursor. This argument is a four-byte, signed integer.

 This is the length of the following cursor name. It is a one-
byte, unsigned integer. This argument only appears if CursorId is 0.

This is the cursor name for this cursor. The argument only
appears if there is a NameLength parameter in the data stream. Its length
is in NameLength.

Command RowCount

TDS_CURINFO2

0x87

cursor nameNameLen

• • •

Length

• • •

CursorId

Status

RowNum TotalRows

TDS_CURINFO2

Length

CursorId

NameLength

cursor name
TDS 5.0 Functional Specification 151 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is the command associated with the TDS_CURINFO2
token.

Table 29: TDS_CURINFO Commands

Name Value Description

TDS_CUR_CMD_SETCURROWS 1 Set the fetch count.

TDS_CUR_CMD_INQUIRE 2 Ask status of a cursor.

TDS_CUR_CMD_INFORM 3 Report status of a cursor.

TDS_CUR_CMD_LISTALL 4 Report status of all open cursors.

Command
Version 3.8 152 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
 This argument describes the status of the cursor. This
argument is a four-byte, unsigned integer. The possible values are:

Table 30: Valid Cursor Status

Option Names Values Description

TDS_CUR_ISTAT_UNUSED 0x00000000 The option argument is unused.

TDS_CUR_ISTAT_DECLARED 0x00000001 The specified cursor has been declared.

TDS_CUR_ISTAT_OPEN 0x00000002 The specified cursor is open.

TDS_CUR_ISTAT_CLOSED 0x00000004 The specified cursor is closed.

TDS_CUR_ISTAT_RDONLY 0x00000008 The specified cursor is read-only. Any
update or delete statements against this
cursor are illegal.

TDS_CUR_ISTAT_UPDATABLE 0x00000010 The specified cursor is updatable. Update
and delete statements may be issued
against this cursor.

TDS_CUR_ISTAT_ROWCNT 0x00000020 The RowCount argument is valid and is
being used to report the current row fetch
size to the client. A server must always set
this bit when sending a CURINFO2 to a cli-
ent.

TDS_CUR_ISTAT_DEALLOC 0x00000040 The specified cursor has been deallocated.
It cannot be opened unless it is declared
again.

TDS_CUR_ISTAT_SCROLLABLE 0x00000080 Cursor is scrollable.

TDS_CUR_ISTAT_IMPLICIT 0x00000100 Cursor is an implicit cursor.

TDS_CUR_ISTAT_SENSITIVE 0x00000200 Cursor is sensitive.

TDS_CUR_ISTAT_INSENSITIVE 0x00000400 Cursor is insensitive.

TDS_CUR_ISTAT_SEMISENSITIVE 0x00000800 Cursor is semi-sensitive. Note: ASENSI-
TIVE as per ANSI.

Status
TDS 5.0 Functional Specification 153 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This field holds the current fetch size for the cursor. This field
is always present in the stream since the TDS_CUR_ISTAT_ROWCNT status bit
is always set for TDS_CURINFO2. This field is a four-byte unsigned integer.

This field holds the 1-based row number for the cursor’s
current position. RowNum is a four-byte signed integer; it may contain the
values 0 (beforefirst), -1 (unknown) and -2 (afterlast).

This field holds the total number of rows in a cursor
ResultSet. TotalRows is a four-byte signed integer; it may contain the value
-1 (unknown) and 0 (if the cursor ResultSet is empty).

Comments

• This data stream is used for two purposes. It is used to communicate changes
in the state of a cursor. It is also used to set the current cursor context.

• This data stream is used to set the “current cursor”. This is required because
there can be multiple open cursors on a single client server dialog. The
TDS_CURINFO2 token is used to coordinate commands and responses with a
particular cursor.

• The TDS_CURINFO2 token is used by servers to return the assigned cursor id
after a cursor has been declared.

• This data stream is first returned to a client when the cursor is declared. It is
also returned to the client if the number of rows per fetch is changed. It is
also returned to the client when the client performs a CURFETCH that moves
the cursor off the ResultSet (before the first row, or after the last row). Finally,
this token is returned when a client issues a TDS_CUR_CMD_INQUIRE or
TDS_CUR_CMD_LISTALL command to request state information on a cursor.

TDS_CUR_ISTAT_KEYSETDRIVEN 0x00001000 Cursor opened is keyset driven. Note:
ASENSITIVE as per ANSI.

Table 30: Valid Cursor Status

Option Names Values Description

RowCount

RowNum

TotalRows
Version 3.8 154 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
• If Command is TDS_CUR_CMD_LISTALL the CursorId must be 0.

• NameLength and CursorName are optional. They are only in the data
stream if CursorId is 0.

• Returning a RowCount equal to 0 is illegal.

• The default fetch size for any cursor is 1, so when the server responds to a
CURDECLARE* with a CURINFO2 token, the RowCount value will be 1.

• When a client issues a TDS_CMD_SETCURROWS command, the database will
respond with a CURINFO2 token to report the new fetch size in the RowCount
field. In the CURINFO2 token that is returned, the server will set the RowNum
field to a value of unknown (-1). This is to avoid possible confusion when a
client batches together a fetch size change with a cursor fetch in one request.

• The following constants will be used in the TotalRows field: (0) will indicate
that the ResultSet is empty; (-1) will indicate that the total number of rows is
unknown.

• The following constants will be used in the RowNum field: (0) will indicate
that the cursor is before the first row (beforefirst); (-1) will indicate that the
current row number is unknown (or not applicable, as in a sensitive cursor);
and (-2) will indicate that the cursor is positioned after the last row
(afterlast).

• The RowNum field value refers to the first row number of the present batch
of fetched rows. For example, a client creates a cursor with a fetch size of 5 and
performs a fetch-absolute (16) on a 50-row ResultSet. The server returns
rows 16-20, and the client then issues a TDS_CMD_CUR_INQUIRE. The server
would then report a value of 16 in the RowNum field in the CURINFO2 token
it returns.

• It is legal for a client to batch together a CURINFO* token to set the fetch size
with a CURFETCH token immediately following it in the same request.

• In an empty resultset, the cursor will always remain positioned before the
first row (i.e. the RowNum field will always contain a value of 0).
TDS 5.0 Functional Specification 155 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• When a cursor is scrollable and semi-sensitive, a server will not know the
total number of rows until the last row of the cursor ResultSet has been
fetched. Therefore, when a client issues a TDS_CUR_CMD_INQUIRE, the server
will return a value of -1 (unknown) in the RowNum field until the cursor has
passed the last row at least once. After that point, when a client issues a
TDS_CUR_CMD_INQUIRE, the server should report the known total number of
rows in the TotalRows field of any CURINFO2 token it returns.

• It is illegal for a client to set the TDS_CUR_ISTAT_ROWCNT Status with the
TDS_CUR_CMD_INQUIRE and TDS_CUR_CMD_LISTALL commands.

• If a client performs a cursor fetch that moves the cursor off the ResultSet, the
server will return a TDS_CURINFO2 token with the proper value set in the
RowNum field to indicate the cursor position. For example, if a client tries a
fetch absolute (16) in a 10-row ResultSet, the server will return a
TDS_CURINFO2 token which has a value of -2 (afterlast) in the RowNum field.

• Language-based cursors do not cause TDS_CURINFO2 tokens to be sent.

• A client requests the status of a specified cursor using the
TDS_CUR_CMD_INQUIRE command with CursorId set to the identifier of the
cursor the client wants information on. The server responds with the
TDS_CUR_CMD_INFORM command and the status bits set appropriately for the
cursor identifier identified in the CursorId argument.

• A client can request the status of all active cursor using the
TDS_CUR_CMD_LISTALL Command. When a server receives this Command
it returns a TDS_CUR_CMD_INFORM Command for all active cursors on the
dialog.

• A server will acknowledge the TDS_CUR_CMD_SETCURROWS command with
a TDS_CURINFO(2), TDS_DONE. If the requested row count is invalid, the server
will respond with a TDS_CURINFO(2), TDS_EED, TDS_DONE.

Examples

See scrollable-cursor examples earlier in this document.

See Also

TDS_CURDECLARE, TDS_CURDECLARE2, TDS_CURDECLARE3, TDS_CUROPEN,
TDS_CURINFO, TDS_CURINFO3
Version 3.8 156 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CURINFO3

Function

The data stream for describing cursor characteristics and state. This token can
be used only when the TDS_REQ_CURINFO3 capability is on. This token will be
used instead of a TDS_CURINFO2 token in this case.

Syntax

Arguments

 This is the data stream token that indicates that this is a
data stream containing a description of a cursor. See TDS_CURINFO2 for
more information on field interpretation.

 This field holds the current fetch size for the cursor. This field
is present in the stream only if the TDS_CUR_ISTAT_ROWCNT status bit is set.
This field is a four-byte unsigned integer. Note that unlike TDS_CURINFO2,
this field is not always present. Also note that RowCount follows all the
other fields.

Comments

• This token is almost identical to TDS_CURINFO2. The only difference is that
the TDS_CUR_ISTAT_ROWCNT status bit is not always set. This difference
restores TDS_CURINFO behavior and corrects existing client library usage of
this field.

Command

RowCount

TDS_CURINFO3

0x88

cursor nameNameLen

• • •

Length

• • •

CursorId

Status

RowNum TotalRows

TDS_CURINFO3

RowCount
TDS 5.0 Functional Specification 157 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Examples

See scrollable-cursor examples earlier in this document.

See Also

TDS_CURDECLARE, TDS_CURDECLARE2, TDS_CURDECLARE3, TDS_CUROPEN,
TDS_CURINFO, TDS_CURINFO2
Version 3.8 158 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CUROPEN

Function

Describes the cursor open data stream.

Syntax

Arguments

 This is the data stream token for a client request to open
a cursor.

 This is the total length of the remaining TDS_CUROPEN data
stream. It is a two byte unsigned integer.

 This is the internal identifier for the cursor. If CursorId is 0
it means that the cursor being opened is identified by name using the
NameLength and cursor name arguments. This argument is a four byte,
unsigned integer.

 This is the length of the cursor name. It is a one byte
unsigned integer and must be > 0 and <= TDS_MAXNAME. This part of the
data stream is only included if CursorId is equal to 0.

 This is the name of the cursor. It is NameLength bytes long.

CursorId

Status

TDS_CUROPEN

Name Length cursor name

Length

0x84

• • •

• • •

TDS_CUROPEN

Length

CursorId

NameLength

cursor name
TDS 5.0 Functional Specification 159 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This argument contains status associated with the cursor
open command. This argument is a one-byte, unsigned integer.

Comments

• This is the data stream generated by a client when a open cursor command
is sent to a server.

• The cursor to open is identified in the TDS_CUROPEN data stream.

• A cursor must have been declared using TDS_CURDECLARE before it can be
opened.

• The description of the cursor results, if any, are returned to the client using a
TDS_ROWFMT data stream at cursor open time.

• A TDS_CURDECLARE, TDS_CUROPEN and TDS_CURFETCH can be sent in the
same request if they all refer to the same cursor.

• A cursor declare statement may be parameterized. If it is, the description of
the parameters is passed to the server using a TDS_PARAMFMT data stream
following the TDS_CURDECLARE data stream. When the cursor is opened, the
parameter values must be passed to the server with a TDS_PARAMS data
stream following the TDS_CUROPEN data stream. The
TDS_CUR_OSTAT_HASARGS status must be set in this case.

• Both a TDS_PARAMFMT and TDS_PARAMS data streams can follow a
TDS_CUROPEN. This allows conversion to occur between the parameters
specified at declare time and the actual parameters provided at open time.

• A server responds with a TDS_CURINFO and TDS_ROWFMT on success. The
TDS_CURINFO must come before the TDS_ROWFMT.

Table 31: Cursor Open Status Values

Name Value Description

TDS_CUR_OSTAT_UNUSED 0x00 This open command has no status.

TDS_CUR_OSTAT_HASARGS 0x01 Data for arguments associated with the cursor
declare statement following the cursor open com-
mand in a TDS_PARAM data stream.

Status
Version 3.8 160 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
• A client must be able to accept a TDS_EED token at any time during the server
response to the TDS_CUROPEN.

• The TDS_CUROPEN token can be sent by a client with a TDS_CURDECLARE and
TDS_CURFETCH in the same request. A server will acknowledge the
TDS_CURDECLARE and TDS_CUROPEN tokens with a TDS_CURINFO,
TDS_DONE(MORE), and the TDS_CURFETCH with the rows and a
TDS_DONE(FINAL).

Examples

See Also

TDS_CURDECLARE, TDS_CURDECLARE2, TDS_CURDECLARE3, TDS_ROWFMT,
TDS_ROWFMT2, TDS_PARAMFMT, TDS_PARAMS, TDS_CURCLOSE, TDS_CURFETCH
TDS 5.0 Functional Specification 161 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 162 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CURUPDATE

Function

Describes the data stream for updating a row through a cursor.

Syntax

Arguments

 This is the data stream token for an update through
a cursor.

 This is the total length of the remaining TDS_CURUPDATE
data stream. It is a two byte unsigned integer.

This is the internal identifier for the cursor. If CursorId is 0 it
means that the cursor being fetched is identified by name using the
NameLength and cursor name arguments. This argument is a four byte,
unsigned integer

 This is the length of the cursor name which follows. It is a
one byte unsigned integer.

 This is the name of the cursor to which the update
applies.

TDS_CURUPDATE

0x85
Cursor NameNameLength

StmtLength statement

Length

• • •

• • •

TableLengthStatus• • • TableName

CursorId

TDS_CURUPDATE

Length

CursorId

NameLength

cursor name
TDS 5.0 Functional Specification 163 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
This is the status information associated with this cursor
update. This argument is a one-byte unsigned integer. It can have the
following values:

Length of table name that follows. If this argument is 0, no
table name follows. This argument is a one-byte unsigned integer.

 This is the name of the table to which the update applies.
It may be a compound name such as “site.db.owner.table”. It should be the
same table reference as used in the declare cursor statement.

 Used in the language option case, this is the total length of the
following set clause statement. It is a two-byte unsigned integer. This
argument is optional.

 Used in the language option case, this is the actual text of the
SET clause in the update cursor statement, without the UPDATE table or
WHERE CURRENT OF clauses. Unlike the binary option, the values in the
SET clause need not be constants.

Comments

• This is the data stream generated by the client when an update cursor
command is sent to a server.

• The cursor to which the TDS_CURUPDATE refers is the one that is current,
according to the last TDS_CURINFO or TDS_CURDECLARE data stream received
by the server.

Table 32: Cursor Update Status Values

Name Value Description

TDS_CUR_OSTAT_UNUSD 0x00 Status field is unused

TDS_CUR_OSTAT_HASARGS 0x01 Parameters follow the cursor
update token

TDS_CUR_CONSEC_UPDS 0x02 Consecutive cursor updates are
occurring on this cursor.

Status

TableLength

table name

StmtLength

statement
Version 3.8 164 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
• An update cursor data stream is optionally followed by a TDS_KEY data
stream which defines the cursor key for the client’s “current” row. No
TDS_ROWFMT data stream is sent to the server with the TDS_KEY data stream.

• If a new key is generated by an update, the new key will be returned to the
client by sending a TDS_ROWFMT and TDS_KEY data stream, describing the
new key, before the TDS_DONE data stream acknowledging the update.

• The server always returns a TDS_CURINFO, TDS_DONE on a successful update.

• The server will return a TDS_CURINFO, TDS_EED, TDS_DONE on a version
mismatch.

• The server will return TDS_EED, TDS_DONE on a key mismatch.

Examples

See Also

TDS_CURDELETE, TDS_CURDECLARE, TDS_CURDECLARE2, TDS_CURDECLARE3,
TDS_KEY, TDS_ROWFMT, TDS_ROWFMT2
TDS 5.0 Functional Specification 165 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 166 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS Datatypes

Description

This is a complete description of how all data types are represented using TDS.
The data type is defined using the TDS_ROWFMT, TDS_ROWFMT2, TDS_ALTFMT,
or TDS_PARAMFMT data streams for rows, compute rows, and parameter data
respectively. The actual data is sent using a TDS_ROW, TDS_ALTROW, or
TDS_PARAMS data stream.

Length information is sent with variable length and nullable datatypes. Fixed
length datatypes do not contain a length argument.

The length information sent in a format data stream indicates the maximum
length of this datatype. The length information sent with the data is the actual
length of the specific datatype being sent.

If the TDS_DATA_COLUMNSTATUS request capability is enabled, then all
datatype representations begin with a status byte. Status field meanings are
defined in Table 33: Status bit meanings .

Table 33: Status bit meanings

Bit Mask Meaning

0x00 The data that follows can be 0-length non-NULL data. It will be 0-length,
non-NULL data if the length of the data is 0. Otherwise, a columstatus of 0
just means to take the data that follows as is.

0x01 No Data follows, the value is NULL

0x02 0-length non-NULL text or image data follows.

0xFC Reserved for future use.

Combined Interpretation for combinations of these 3 bits

000b Standard data, getXXX returns value that follows

001b NULL, isNull returns true

Any other Not valid, communication exception
TDS 5.0 Functional Specification 167 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Some notes on the columnstatus byte:

• If the TDS_DATA_COLUMNSTATUS capability bit is off, this status byte is
never present. And even if the TDS_DATA_COLUMNSTATUS capability
bit is on, the status byte will not be present unless the appropriate bit is set in
the status byte of the ROWFMT* or PARAMFMT* token that describes the
column or parameter.

• It will be an error for status bits 0x01 and 0x02 to be simultaneously.

• If status bit 0x01 (following data is null) is set, no length or data information
follows.

• The 0x01 (data is null) status bit can be set regardless of the datatype. For
example, even if the datatype is TDS_INT4, which is on its face a non-
nullable type, if the columnstatus byte says the data is null, then clients and
servers should interpret the data as null. This will allow us to deprecate the
INTN and UINTN datatypes when the columnstatus byte is enabled.

• The concept of “zero-length non-nullness” will be applicable to varchar, char,
univarchar, unichar, binary, varbinary, text, unitext and image data. For other
datatypes, we will continue down the old codepaths, where a 0 length can be
interpreted in various ways, including to mean NULL.

• Restating the above bulleted point, when the
TDS_DATA_COLUMNSTATUS capability bit is off, nullness can still be
indicated, just as it always was before we added the columnstatus byte. Table
34: Datatype Summary indicates which datatypes have a Length field. Those
datatypes which have a length field can convey SQL NULL by having a length
of 0.

• In a previous version of this spec, status bits were included to convey
overflow/underflow conditions, as well as truncation/rounding conditions. It
was decided to remove those bits from the spec until such time as a greater
understanding is reached about exactly how these situations would be
reported to the client. Additionally, it was decided that we should wait also
until a specific business case presented itself.

TDS presentation conversion is server makes right. This means that the server
is always responsible for performing any required conversions. Presentation
conversion is performed for the following cases:

• Character set conversions for character and text datatypes.
Version 3.8 168 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
• Numeric conversions for float, decimal, and numeric datatypes between the
client’s local representation and the server’s.

• Date and time conversions between a client’s local representation and the
server’s.

• Byte ordering conversions for length fields and integer datatypes.

Each of the datatypes has a request and a response capability associated with it.
If the request capability bit is set after login then it is OK for the client to send
parameters of that type to the server. If the response capability NOXXX is clear
then it is OK for the server to send this datatype to the client (in rows, param-
eters, etc.). If the NOXXX response capability is set, then the server may not
send this datatype. The server may convert the datatype to another which the
client does accept, or may raise an error indicating that a response could not be
returned due to client datatype restrictions. For example, if the server is
returning rows from an unsigned short column and the client doesn’t support
UINT2 or UINTN datatypes, then the server may choose to convert each row
to an INT4 or INTN(4) to preserve the value, or may raise an error.

A brief description of all datatypes supported by TDS is in the table below. The
syntax of their data streams is in the Syntax section below.

Table 34: Datatype Summary

Datatype Name Value
Fixed

Length?
Nullable?

Converted
?

Description

TDS_BINARY 0x2D Yes No No Binary

TDS_BIT 0x32 Yes No No Bit

TDS_BLOB 0x24 No Yes No Serialized Object

TDS_BOUNDARY 0x68 No Yes Yes Boundary

TDS_CHAR 0x2F Yes No Yes Character

TDS_DATE 0x31 Yes No No Date

TDS_DATEN 0x7B No Yes Yes Date

TDS_DATETIME 0x3D Yes No Yes Date/time
TDS 5.0 Functional Specification 169 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_DATETIMEN 0x6F No Yes Yes Date/time

TDS_DECN 0x6A No Yes Yes Decimal

TDS_FLT4 0x3B Yes No Yes Float

TDS_FLT8 0x3E Yes No Yes Float

TDS_FLTN 0x6D No Yes Yes Float

TDS_IMAGE 0x22 No Yes No Image

TDS_INT1 0x30 Yes No No Unsigned Integer

TDS_INT2 0x34 Yes No Yes Integer

TDS_INT4 0x38 Yes No Yes Integer

TDS_INT8 0xbf Yes No Yes Integer

TDS_INTERVAL 0x2E Yes No Yes Time Interval

TDS_INTN 0x26 No Yes Yes Integer

TDS_LONGBINARY 0xE1 No Yes No Binary

TDS_LONGCHAR 0xAF No Yes Yes Character

TDS_MONEY 0x3C Yes No Yes Money

TDS_MONEYN 0x6E No Yes Yes Money

TDS_NUMN 0x6C No Yes Yes Numeric

TDS_SENSITIVITY 0x67 No Yes Yes Sensitivity

TDS_SHORTDATE 0x3A Yes No Yes Date/time

TDS_SHORTMONEY 0x7A Yes No Yes Money

TDS_SINT1 0xb0 Yes No No Signed Integer

Table 34: Datatype Summary

Datatype Name Value
Fixed

Length?
Nullable?

Converted
?

Description
Version 3.8 170 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_TEXT 0x23 No Yes Yes Text

TDS_TIME 0x33 Yes No No Time

TDS_TIMEN 0x93 No Yes Yes Time

TDS_UINT2 0x41 Yes No Yes Unsigned Integer

TDS_UINT4 0x42 Yes No Yes Unsigned Integer

TDS_UINT8 0x43 Yes No Yes Unsigned Integer

TDS_UINTN 0x44 No Yes Yes Unsigned Integer

TDS_UNITEXT 0xae No Yes Yes Unicode UTF-16 Text

TDS_VARBINARY 0x25 No Yes No Binary

TDS_VARCHAR 0x27 No Yes Yes Character

TDS_VOID 0x1f N/A N/A N/A Void (unknown)

TDS_XML 0xA3 No Yes Yes XML

Table 34: Datatype Summary

Datatype Name Value
Fixed

Length?
Nullable?

Converted
?

Description
TDS 5.0 Functional Specification 171 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Usertypes

Some TDS datatypes are used to carry more than one SQL datatype. For
example, in SQL the BINARY(30) datatype is different from the
VARBINARY(30) in that a BINARY is always logically 30-bytes long - it is
NULL-padded to 30 bytes if < 30 bytes are contained in the corresponding
TDS_BINARY value. A VARBINARY is a varying-length datatype, it has no
implied trailing NULLs. Though the data representation for both is the same,
clients and servers at either end of TDS may need to determine what sort of
SQL type a given TDS_BINARY value corresponds to for proper semantic
processing. We use the usertype field of the format (ROWFMT, PARAMFMT,
ALTFMT) to distinguish among the SQL datatypes. Table Table 35: USERTYPE
mappings lists the mappings used.

Table 35: USERTYPE mappings

TDS Datatype SQL Datatype Usertype Comment

TDS_VARCHAR char 1 blank pad to the length in the for-
mat

TDS_VARCHAR varchar 2

TDS_VARBINARY binary 3 null pad to the length in the for-
mat

TDS_VARBINARY varbinary 4

TDS_INTN tinyint 5

TDS_INTN smallint 6

TDS_INTN int 7

TDS_FLTN float 8

TDS_NUMERIC numeric 10

TDS_MONEYN money 11

TDS_DATETIMEN datetime 12

TDS_INTN intn 13
Version 3.8 172 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_FLTN floatn 14

TDS_DATETIMN datetimn 15

TDS_BIT bit 16

TDS_MONEYN moneyn 17

TDS_VARCHAR sysname 18 Internal ASE datatype

TDS_TEXT text 19

TDS_IMAGE image 20

TDS_MONEYN smallmoney 21

TDS_DATETIMN smalldatetime 22

TDS_FLTN real 23

TDS_VARCHAR nchar 24

TDS_VARCHAR nvarchar 25

TDS_NUMERIC decimal 26 decimal and numeric datatypes
are identical on ASE, but we main-
tain the distinction on how they
were declared so that clients can
report column types in a way that
is consistent with how they were
declared.

TDS_NUMERIC decimaln 27

TDS_NUMERIC numericn 28

TDS_LONGBINARY unichar 34 fixed length UTF-16 encoded data

TDS_LONGBINARY univarchar 35 variable length UTF-16 encoded
data

TDS_IMAGE unitext 36 UTF-16 encoded data

Table 35: USERTYPE mappings

TDS Datatype SQL Datatype Usertype Comment
TDS 5.0 Functional Specification 173 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_DATE date 37

TDS_TIME time 38

TDS_INTERVAL interval 39

TDS_DATEN daten 40

TDS_TIMEN timen 41

TDS_INTN bigint 42

TDS_UINTN usmallint 43

TDS_UINTN uint 44

TDS_UINTN ubigint 45

TDS_XML xml 47 Treated like text and image.

TDS_DATETIMN date 50 The hh:mm:ss.nnnn information
should be ignored

TDS_DATETIMN time 51 The mm/dd/yyyy information
should be ignored

TDS_INTN unsigned short 52 Deprecated

TDS_INTN unsigned int 53 Deprecated

TDS_INTN unsigned long 54 Deprecated

TDS_LONGBINARY serialization 55 serialized java object or instance
(i.e. java object)

TDS_LONGBINARY serialized java
class

56 serialized java class (i.e. byte code)

TDS_LONGCHAR string 57 internally generated varchar
strings (e.g. select @@version),
not
table columns

Table 35: USERTYPE mappings

TDS Datatype SQL Datatype Usertype Comment
Version 3.8 174 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
Syntax

TDS_BINARY — 0x2D

The TDS_BINARY datatype is considered a fixed length data type.
However, its network representation can vary from 0 to 255 bytes to
eliminate sending non-significant trailing 0x00s. The length is specified by
a one-byte unsigned integer which precedes the datatype token and the
data.

TDS_INTN unknown 58 a describe input will return
TDS_INT4 (as a simple place-
holder) for all columns where it
does not know the datatype. This
usertype indicates that the actual
type is unknown.

TDS_LONGBINARY smallbinary 59 64K max length binary data (ASA)

TDS_LONGCHAR smallchar 60 64K maximum length char data
(ASA)

TDS_BINARY timestamp 80 This has nothing to do with date
or time, it is an ASE unique value
for use with optimistic concur-
rency.

Table 35: USERTYPE mappings

TDS Datatype SQL Datatype Usertype Comment

format — TDS_BINARY

0x2D

data — Length data

0 -255

0 -255

Length

Status
TDS 5.0 Functional Specification 175 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_BIT — 0x32

TDS_BIT is a fixed length datatype of one byte. The only valid values for
this datatype are 0x00 or 0x01.

TDS_CHAR — 0x2F

The TDS_CHAR datatype is considered a fixed length data type.
However, its network representation can vary from 0 to 255 bytes to
eliminate sending non-significant trailing spaces. The length is specified by
a one-byte unsigned integer which precedes the datatype token and the
data.

TDS_DATETIME — 0X3D

TDS_DATETIME is a fixed length datatype of 8 bytes.

TDS_DATE — 0X31

TDS_DATE is a fixed length datatype of 4 bytes.

format — TDS_BIT

0x32

data — data

1 byte

Status

format — TDS_CHAR

0x2F

data — data

0 - 255

Length

0 - 255

LengthStatus

format — TDS_DATETIME

0x3D

data — dataStatus

format — TDS_DATE

0x31

data — dataStatus
Version 3.8 176 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_DATEN — 0X7B

TDS_DATEN is a nullable version of the TDS_DATE datatype.

TDS_SHORTDATE — 0X3A

TDS_SHORTDATE is a fixed length datatype of4 bytes.

TDS_DATETIMN — 0X6F

TDS_DATETIMN is a nullable version of the TDS_DATETIME and
TDS_DATETIME4 datatypes. The token and its data are preceded by an
unsigned one-byte integer which has the value 0, 4, or 8. A NULL is
indicated by a length value of 0.

The data length must either be 0 or the length specified in the format length
argument.

format — TDS_DATEN

0x7B

data — data

0, or 4 bytes

Length

Length

0 or 4 bytes

Status

format — TDS_SHORTDATE

0x3A

data — dataStatus

format — TDS_DATETIMN

0x6F

data — data

0, 4, 8 bytes

Length

Length

4 or 8

Status
TDS 5.0 Functional Specification 177 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_DECN — 0x6A

The TDS_DECN is a variable length nullable datatype. The token is followed
by one byte arguments for data length, precision, and scale. The length byte
is the length of the data only. It does not include the bytes for precision and
scale. A Length of 0 in the data stream indicates a NULL datatype. The
TDS_DECN has exactly the same format as the TDS_NUMN datatype.

TDS_FLT4 — 0x3B

This is a fixed length four-byte floating point datatype. The precision of the
floating point number is platform specific.

TDS_FLT8 — 0x3E

This is fixed length eight-byte floating point datatype. The precision of the
floating point is platform specific.

format — TDS_DECN

0x6A

data —

Length Precision Scale

Length data

1 - 33 1 - 77, 255 0 - 77, 255

0 or Length
set in format

Status

format — TDS_FLT4

0x3B

data — data

4 bytes

Status

format — TDS_FLT8

0x3E

data — data

8 bytes

Status
Version 3.8 178 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_FLTN — 0x6D

This is the same as the TDS_FLT4 and TDS_FLT8 datatypes except that
NULLS are allowed. The token and its data are preceded by an unsigned
one-byte integer which has the value 0, 4, or 8. A NULL is indicated by a
Length value of 0.

The data length must either be 0 or the length specified in the format length
argument. For example, if the format length is specified as 4, the data length
can not be 8.

TDS_IMAGE — 0x22

This is a large binary datatype. TxtPtrLen gives the length in bytes of the
following txtptr argument. If TxtPtrLen is 0 then the value of the IMAGE
data item is SQL NULL and none of the other fields follow. The txtptr is a
varbinary value (of length TxtPtrLen) which the database can use to re-
locate the source of this data if the client wants to modify it.

TimeStamp is an 8-byte binary value which is automatically changed on the
database whenever an IMAGE value is changed. If the client uses a
BULK_WRITE stream to update this value it must pass this timestamp
value into the WRITETEXT clause. If the timestamp doesn’t match the
current value on the server the update will fail because there has been an
intervening modification to that IMAGE value.

DataLen is a 4 byte, unsigned value which indicates the length in bytes of
the following data . Data is the value of the IMAGE column.

format — TDS_FLTN

0x6F

data — data

0, 4, 8

Length

Length

4 or 8

Status

format —

TDS_IMAGE

0x22

data —

Length name

TimeStamp data

8 bytes

TxtPtrLen txtptr

NameLength

DataLen

Status
TDS 5.0 Functional Specification 179 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_INT1 — 0x30

This is an unsigned, one-byte integer. It may have the value of 0 through

255.

TDS_INT2 — 0x34

This is a signed, two-byte integer. It may have the value of -32,768 through
32,767.

TDS_INT4 — 0x38

This is a signed, four-byte integer. It may have the value of -2,147,483,648
through 2,147,483,647.

TDS_INT8 —0xBF

This is a signed, eight-byte integer. It may have the value of
-9,223,372,036,854,775,808 through 9,223,372,036,854,775,807.

format — TDS_INT1

0x30

data — data

1 byte

Status

format — TDS_INT2

0x34

data — data

2 bytes

Status

format — TDS_INT4

0x38

data — data

4 bytes

Status

format — TDS_INT8

data — data

8 bytes

Status
Version 3.8 180 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_INTN — 0x26

This is either an TDS_INT1, TDS_INT2, or TDS_INT4, or TDS_INT8 which
allows NULLS. The token and its data are preceded by an unsigned one-byte
integer which specifies its length. If used to represent an TDS_INT1, the
length must be either 0 or 1. If used to represent an TDS_INT2, the length
must be either 0 or 2. If used to represent an TDS_INT4, the length must be
either 0 or 4.If used to represent an TDS_INT8, the length must be either 0 or

8

The data length must either be 0 or the length specified in the format length
argument. For example, if the format length is specified as 4, the data length
can not be 1 or 2. If the TDS_DATA_INT8 request capability is clear or the
TDS_DATA_NOINT8 response capability is set, then the Length field may
not indicate 8 bytes.

Note that for historical reasons, TDS_INT1 is unsigned, and a TDS_INTN with a length of 1 must
be interpretted as an unsigned integer while the rest are signed. We have added a TDS_SINT1 to
specifically indicate a signed 1-byte integer value.

TDS_INTERVAL — 0X2E

TDS_INTERVAL is a fixed length datatype of 8 bytes.

TDS_SINT1 — 0xB0

This is a signed, one-byte integer. It may have the value of -128 through 127.

format — TDS_INTN

0x26

data — data

0, 1, 2, 4, or 8 bytes

Length

Length

1, 2, 4, or 8 bytes

Status

format — TDS_INTERVAL

0x2E

data — dataStatus

format — TDS_SINT1

0x40

data — data

1 byte

Status
TDS 5.0 Functional Specification 181 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_UINT2 — 0x41

This is an unsigned, two-byte integer. It may have the value of 0 through
65535.

TDS_UINT4 — 0x42

This is an unsigned, four-byte integer. It may have the value of -0 through
4,294,967,295.

TDS_UINT8 — 0x43

This is an unsigned, eight-byte integer. It may have the value of -0 through
18,446,744,073,709,551,613.

format — TDS_UINT2

0x41

data — data

2 bytes

Status

format — TDS_UINT4

0x42

data — data

4 bytes

Status

format — TDS_UINT8

0x43

data — data

8 bytes

Status
Version 3.8 182 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_UINTN — 0x44

This is either an TDS_INT1, TDS_UINT2, or TDS_UINT4, or TDS_UINT8 which
allows NULLS. The token and its data are preceded by an unsigned one-byte
integer which specifies its length. If used to represent an TDS_UINT1, the
length must be either 0 or 1. If used to represent an TDS_UINT2, the length
must be either 0 or 2. If used to represent an TDS_UINT4, the length must be
either 0 or 4.If used to represent an TDS_UINT8, the length must be either 0

or 8

The data length must either be 0 or the length specified in the format length
argument. For example, if the format length is specified as 4, the data length
can not be 1 or 2. If the TDS_DATA_UINT8 request capability is clear or the
TDS_DATA_NOUINT8 response capability is set, then the Length field may
not indicate 8 bytes.

TDS_LONGBINARY — 0xE1

This is a large variable length binary datatype. This datatype can support
the same length of a TDS_IMAGE datatype without the additional
complexity. This data type has a four-byte unsigned integer length field.

format — TDS_UINTN

0x44

data — data

0, 1, 2, 4, or 8 bytes

Length

Length

1, 2, 4, or 8 bytes

Status

format — TDS_LONGBINARY

0xE1

data — data

0 - 2^32-1

LengthStatus

1 - 2^32-1

Length
TDS 5.0 Functional Specification 183 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_LONGCHAR — 0xAF

This is a large variable length character datatype. This datatype can support
the same length of a TDS_TEXT datatype without the additional
complexity.The maximum number of characters may be different than the
number of bytes if the character set being used requires one, two, or four
bytes to represent a character. This data type has a four byte unsigned

integer length field.

TDS_MONEY — 0x3C

This is a fixed length datatype of 8 bytes.

TDS_SHORTMONEY — 0x7A

This is a fixed length data type of 4 bytes.

format — TDS_LONGCHAR

0xAF

data — data

1 - 2^32-1

Length

0 - 2^32-1

LengthStatus

format — TDS_MONEY

0x3C

data — data

8 bytes

Status

format — TDS_SHORTMONEY

0x7A

data — data

4 bytes

Status
Version 3.8 184 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_MONEYN — 0x6E

This is the same as the TDS_ MONEY and TDS_MONEY4 datatypes except
that NULLS are allowed. The token and its data are preceded by an
unsigned one-byte integer which has the value 0, 4 or 8. A NULL is
indicated by a length value of 0.

The data length must either be 0 or the length specified in the format length
argument. For example, if the format length is specified as 4, the data length
can not be 8.

TDS_NUMN — 0x6C

This is the numeric datatype. The token is followed by bytes for data length,
precision, and scale. The length byte describes the length of the data only
and does not include the precision and scale bytes. Numeric has exactly the
same format as the decimal datatype.

format — TDS_MONEY

0x6F

data — data

0, 4, 8

Length

Length

4 or 8

Status

format — TDS_NUMN

0x6C

data —

Length Precision Scale

Length data

1 - 33 1 - 77, 255 0 - 77, 255

0 or Length
set in format

Status
TDS 5.0 Functional Specification 185 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_SENSITIVITY — 0x67

This datatype is used by secure versions of the SQL Server. It is exactly like
the TDS_VARCHAR datatype. A NULL value has a length of 0. This datatype
may be from 0 to 255 bytes. The token and its data are preceded by an
unsigned one-byte integer which specifies its length. This data type is used

for security handshake during login processing. They may also exist as
columns in a row. If a client uses capability bits to indicate that this data type
is not supported, a server automatically converts this data type to a
TDS_VARCHAR.

TDS_TIME — 0x33

TDS_TIME is a fixed length datatype of 4 bytes.

TDS_TIMEN — 0x93

TDS_TIMEN is a nullable version of the TDS_TIME datatype.

0x67

Length

data — Length data

TDS_SENSITIVITYformat —

0-255

Status

format — TDS_TIME

0x33

data — dataStatus

format — TDS_TIME

0x3D

data — data

0 or 4 bytes

Length

Length

0 or 4 bytes

Status
Version 3.8 186 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_TEXT — 0x23

This is a character datatype.This is a large binary datatype. TxtPtrLen gives
the length in bytes of the following txtptr argument. If TxtPtrLen is 0 then
the value of the TEXT data item is SQL NULL and none of the other fields
follow. The txtptr is a varbinary value (of length TxtPtrLen) which the
database can use to re-locate the source of this data if the client wants to
modify it.

TimeStamp is an 8-byte binary value which is automatically changed on the
database whenever a TEXT value is changed. If the client uses a
BULK_WRITE stream to update this value it must pass this timestamp
value into the WRITETEXT clause. If the timestamp doesn’t match the
current value on the server the update will fail because there has been an
intervening modification to that TEXT value.

DataLen is a 4 byte, unsigned value which indicates the length in bytes of the
following data . Data is the value of the TEXT column.

TDS_UNITEXT — 0xAE

This is a large Unicode character datatype. TxtPtrLen gives the length in
bytes of the following txtptr argument. If TxtPtrLen is 0 then the value of
the UNITEXT data item is SQL NULL and none of the other fields follow.
The txtptr is a varbinary value (of length TxtPtrLen) which the database
can use to re-locate the source of this data if the client wants to modify it.

TimeStamp is an 8-byte binary value which is automatically changed on the
database whenever a UNITEXT value is changed. If the client uses a
BULK_WRITE stream to update this value it must pass this timestamp
value into the WRITETEXT clause. If the timestamp doesn’t match the
current value on the server the update will fail because there has been an
intervening modification to that UNITEXT value.

format —

TDS_TEXT

0x23

data —

Length name

TimeStamp data

8 bytes

TxtPtrLen txtptr

Name Length

DataLen

Status
TDS 5.0 Functional Specification 187 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
DataLen is a 4 byte, unsigned value which indicates the length in bytes of the
following data . Data is the value of the UNITEXT column.

TDS_VARBINARY — 0x25

This is variable length nullable binary datatype. Its length may vary
from 1 to 255 bytes. The length is specified by a one-byte unsigned integer
which precedes the datatype token and the data. A NULL value has a length
of 0. There is no way to represent a non-NULL empty string of length 0.

TDS_VARCHAR — 0x27

This is a variable length nullable character datatype. A NULL value has a
length of 0. There is no way to represent a non-NULL empty string of length
0. This datatype may be from 0 to 255 bytes. The token and its data are
preceded by an unsigned one-byte integer which specifies its length.

TDS_XML — 0xA3

This is an XML document datatype. TxtPtrLen gives the length in bytes of
the following txtptr argument. If TxtPtrLen is 0 then the value of the TEXT
data item is SQL NULL and none of the other fields follow. The txtptr is a
varbinary value (of length TxtPtrLen) which the database can use to re-
locate the source of this data if the client wants to modify it.

format —

TDS_UNITEXT

0xae

data —

Length name

TimeStamp data

8 bytes

TxtPtrLen txtptr

Name Length

DataLen

Status

format —

0x25

Length

data — Length data

0 -255

0 -255

TDS_VARBINARY

Status

format —

0x27

Length

data — Length data

0 -255

0 -255

TDS_VARCHAR

Status
Version 3.8 188 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TimeStamp is an 8-byte binary value which is automatically changed on the
database whenever a XML value is changed. If the client uses a
BULK_WRITE stream to update this value it must pass this timestamp
value into the WRITETEXT clause. If the timestamp doesn’t match the
current value on the server the update will fail because there has been an
intervening modification to that XML value.

DataLen is a 4 byte, unsigned value which indicates the length in bytes of the
following data . Data is the value of the XML column.

TDS_BOUNDARY — 0x68

This is a variable length nullable character datatype. A NULL value has a
length of 0. There is no way to represent a non-NULL empty string of length
0. This datatype may be from 0 to 255 bytes. The token and its data are
preceded by an unsigned one-byte integer which specifies its length.This

data type is used for security handshake during login processing. They may
also exist as columns in a row. If a client uses capability bits to indicate that
this data type is not supported, a server automatically converts this data
type to a TDS_VARCHAR.

format —

TDS_XML

0x63

data —

Length name

TimeStamp data

8 bytes

TxtPtrLen txtptr

Name Length

DataLen

Status

format —

0x68

Length

data — Length data

0 -255

0 -255

TDS_BOUNDARY

Status
TDS 5.0 Functional Specification 189 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_BLOB — 0x24

This is a streaming/chunked datatype. It may represent a serialized object,

or a long binary or character datatype.

The BlobType - indicates what type of serialized data this is. Valid BlobType
values are listed in Table 36: .

The ClassIDLength field indicates how long the next ClassID byte array is. If this
value is 0, then the ClassID field will be absent.

The ClassID byte array identifies the type of Object which the column was
declared to contain. All rows in that column are subclasses of this Class.
How this ClassID should be interpreted depends on the BlobType value. In
the case of Java Objects using Native serialization, ClassID may be missing
since the serialization internally contains the name of the Class which each
object is an instance of.

ClassID Length ClassID

format —

TDS_BLOB

0x24

data —

dataDataLen

SerializationType

ClassID Length ClassID

BlobType

{ }...
Status
Version 3.8 190 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
The SerializationType - indicates how the members of the object are actually

represented in the following data field SerializationType meanings depend
on the BlobType and are summarized in Table 37: .

Table 36:

BlobType ClassID meaning

0x01 The fully qualified name of the class (“com.foo.Bar”). This is a Character
String in the negotiated TDS character set currently in use on this connection.

0x02 4-byte integer (database ID) 4-byte integer(sysextypes number of this class
definition in this database). Both integers are in the byte-ordering negotiated

for this connection.

0x03 This is long character data and has no ClassID associated with it.

0x04 This is long binary data and has no ClassID associated with it.

0x05 This is unichar data with no ClassID associated with it. It is

Table 37:

BlobType Serialization Meaning

0x01,
0x02

0x01 Native Java Serialization

0x03 0x00 Characters are in their native format, the character set of the
data is the same as that of all other character data as negoti-
ated on the connection during login.

0x04 0x00 Binary data in its normal form

0x05 0x00 This is unichar data with normal UTF-16 encoding with
byte-order identical to that of the client.

0x05 0x01 This is unichar data in its UTF-8 encoding.

0x05 0x02 This is unichar data in SCSU (compressed) encoding.
TDS 5.0 Functional Specification 191 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
ClassID Length gives the length of the following ClassID character string. If
ClassID Length is 0, then this object is exactly an instance of the column
type class (from the FORMAT) stream, and the following ClassID token will
be missing.

ClassID Has the same meaning as ClassID from the Format token, but indicates
the specific sub-class that this Object is of the declared class for the column.

DataLen is a 4-byte field The high-order bit indicates whether this is the last (0)
DataLen/Data pairs, or if there is another DataLen value after the Data array
(1). The low-order 31 bytes is an unsigned length of the following Data
array.

Data is a byte array which contains the serialized value of the object.

- The DataLen/Data pairs continue until a DataLen with a clear high-bit is
seen. If that final DataLen has a value of 0 then no additional Data array
follows it (This is sort of a NULL terminated data stream). This allows us
to pass Objects of arbitrary size with out having to first know how large
these objects are).

- A value of 0x80000000 is legal, and means simply that the length of the
following Data stream is 0, and thus the next item will be another 4-byte
DataLen.

- There is no requirement that the lengths of the stream of Data chunks be
the same.

See Also

TDS_ROWFMT,TDS_ PARAMFMT, TDS_ROW, TDS_PARAMS, TDS_ALTFMT,
TDS_RPC
Version 3.8 192 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_DBRPC

Function

Describes the data stream which contains a data base remote procedure call
request.

Syntax

Arguments

 This is the command token to send an data base RPC
request.

 This is the length, in bytes, of the remaining TDS_DBRPC data
stream. It is a two-byte, unsigned integer.

 This is length, in bytes, of the RPC name. It is a one-byte,
unsigned integer.

 This is the name of the RPC. Its length, in bytes, is given by the
preceding argument.

 This is a bit mask which contains options related to the RPC. The
mask is a two-byte, unsigned integer. The defined options are:

Table 38: RPC Option Values

Name Value Description

TDS_RPC_UNUSED 0x000 Options field is unused.

TDS_RPC_RECOMPILE 0x0001 Recompile the RPC before execution.

TDS_RPC_PARAMS 0x0002 There are parameters associated with this
RPC.

TDS_DBRPC

0xE6

Length NameLen rpc name Options

TDS_DBRPC

Length

NameLen

rpc name

Options
TDS 5.0 Functional Specification 193 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Comments

• This token is used by a client to make an RPC request to a server.

• Only one TDS_DBRPC token per request is allowed.

• Parameter data is sent using the TDS_PARAMFMT/PARAMS data stream
tokens.

• There are two protocols supported for RPCs and return parameters in TDS
5.0. This is because the original 10.0 release was shipped using the TDS_RPC
and TDS_RETURNVALUE tokens to send RPCs and return parameters.
However, the TDS_RPC token had a 64K-1 byte limit that was unacceptable.
This was resolved by using the TDS_DBRPC and TDS_PARAMFMT/PARAMS
tokens for RPCs and return parameters.

• The TDS_DBRPC token will be used by clients if the TDS_REQ_PARAM
capability bit is true.

• Return parameters will be returned to a client using the
TDS_PARAMFMT/PARAMS tokens if the TDS_RES_NOPARAM capability bit is
false.

Examples

See Also

TDS_PARAMFMT, TDS_PARAMS, TDS_RPC, TDS_RETURNVALUE
Version 3.8 194 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_DBRPC2

Function

Describes the data stream which contains a data base remote procedure call
request.

Syntax

Arguments

 This is the command token to send an data base RPC
request.

 This is the length, in bytes, of the remaining TDS_DBRPC2 data
stream. It is a two-byte, unsigned integer.

 This is length, in bytes, of the RPC name. It is a two-byte,
unsigned integer.

 This is the name of the RPC. Its length, in bytes, is given by the
preceding argument.

 This is a bit mask which contains options related to the RPC. The
mask is a two-byte, unsigned integer. The defined options are:

Table 39: RPC Option Values

Name Value Description

TDS_RPC_UNUSED 0x000 Options field is unused.

TDS_RPC_RECOMPILE 0x0001 Recompile the RPC before execution.

TDS_RPC_PARAMS 0x0002 There are parameters associated with this
RPC.

TDS_DBRPC2

0xE8

Length rpc name OptionsNameLen

TDS_DBRPC2

Length

NameLen

rpc name

Options
TDS 5.0 Functional Specification 195 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Comments

• This token is used by a client to make an RPC request to a server.

• The only difference between TDS_DBRPC and TDS_DBRPC2 is the size of the
rpc name field.

• Only one TDS_DBRPC or TDS_DBRPC2 token per request is allowed.

• Parameter data is sent using the TDS_PARAMFMT/PARAMS data stream
tokens. The use of TDS_PARAMFMT2 is also allowed.

• There are two protocols supported for RPCs and return parameters in TDS
5.0. This is because the original 10.0 release was shipped using the TDS_RPC
and TDS_RETURNVALUE tokens to send RPCs and return parameters.
However, the TDS_RPC token had a 64K-1 byte limit that was unacceptable.
This was resolved by using the TDS_DBRPC and TDS_PARAMFMT/PARAMS
tokens for RPCs and return parameters.

• The TDS_DBRPC2 token will be used by clients only if the TDS_REQ_DBRPC2
capability bit is true. A client can use TDS_DBRPC in lieu of TDS_DBRPC2 if it
does not need the extra byte for NameLen.

• Note that gateway servers do not always mask capability bits to disable
features not supported by the gateway. This is a long standing issue that we
recently discovered. Attempts to send TDS_DBRPC2 through these servers
may fail if the server is not in full passthrough mode. It is suggested that
clients only send TDS_DBRPC2 if the extra length is needed.

• Return parameters will be returned to a client using the
TDS_PARAMFMT/PARAMS tokens if the TDS_RES_NOPARAM capability bit is
false.

Examples

See Also

TDS_DBRPC, TDS_PARAMFMT, TDS_PARAMS, TDS_RPC, TDS_RETURNVALUE
Version 3.8 196 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_DONE

Function

Indicates completion status of a command.

Syntax

Arguments

 This token is used to indicate command completion status.

 This field is a two-byte, unsigned integer and is a bit field
indicating the completion status. The possible bits are:

TDS_DONE_FINAL - 0x0000

This is the final result for the last command. It indicates that
the command has completed successfully.

TDS_DONE_MORE - 0x0001

This Status indicates that there are more results to follow
for the current command.

TDS_DONE_ERROR - 0x0002

This indicates that an error occurred on the current
command.

TDS_DONE_INXACT - 0x0004

There is a transaction in progress for the current request.

TDS_DONE_PROC - 0x0008

This TDS_DONE is from the results of a stored procedure.

TDS_DONE_COUNT - 0x0010

This Status indicates that the count argument is valid. This
bit is used to distinguish between an empty count field and
a count field with a value of 0.

TDS_DONE

0xFD

Status TranState count

TDS_DONE

Status
TDS 5.0 Functional Specification 197 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_DONE_ATTN - 0x0020

This TDS_DONE is acknowledging an attention command.

TDS_DONE_EVENT - 0x0040

This TDS_DONE was generated as part of an event notifi-
cation.

 This is a two-byte, unsigned integer field. It indicates the
current state of the transaction on this connection.

 This is a four-byte integer. If TDS_DONE_COUNT is set in the Status
argument, count contains the number of rows affected by the current
command.

Comments

• TDS_DONE is used to indicate the completion status of a command. Multiple
commands may be sent in one request. The result sets for each command are
terminated by a TDS_DONE. When multiple result sets are returned, all but the
final TDS_DONE will have the TDS_DONE_MORE bit set in the Status field.

• The server returns the current transaction state to the client in the TranState.

• The TranState field was redefined from an Info field in TDS 5.0.

Table 40: Transaction State Values

Name Value Description

TDS_NOT_IN_TRAN 0 Not currently in a transaction

TDS_TRAN_SUCCEED 1 Request caused transaction to complete
successfully.

TDS_TRAN_PROGRESS 2 A transaction is still in progress on this dia-
log.

TDS_STMT_ABORT 3 Request caused a statement abort to occur.

TDS_TRAN_ABORT 4 Request caused transaction to abort.

TranState

count
Version 3.8 198 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
• Stored procedures return TDS_DONEINPROC and TDS_DONEPROC tokens
instead of TDS_DONEs.

Examples

See Also

TDS_DONEPROC, TDS_DONEINPROC
TDS 5.0 Functional Specification 199 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 200 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_DONEPROC, TDS_DONEINPROC

Function

Indicates completion status of stored procedure commands.

Syntax

Arguments

 These tokens are used to
indicate completion status from stored procedure commands.

 This field is a two-byte, unsigned integer and is a bit field
indicating the completion status. The possible bits are:

TDS_DONE_FINAL - 0x0000

This is the final result for the last command. It indicates that
the command has completed successfully.

TDS_DONE_MORE - 0x0001

This Status indicates that there are more results to follow
for the current command.

TDS_DONE_ERROR - 0x0002

This indicates that an error occurred on the current
command.

TDS_DONE_INXACT - 0x0004

There is a transaction in progress for the current request.

TDS_DONE_COUNT - 0x0010

This Status indicates that the count argument is valid. This
bit is used to distinguish between an empty count field and
a count field with a value of 0.

TDS_DONEPROC

0xFE

Status TranState count

TDS_DONEINPROC

0xFF

Status TranState count

TDS_DONEPROC TDS_DONEINPROC

Status
TDS 5.0 Functional Specification 201 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_DONE_ATTN - 0x0020

This TDS_DONE is acknowledging an attention command.

 This is a two-byte, unsigned integer field. It indicates the
current state of the transaction on this connection.

 This is a four-byte integer. If the TDS_DONE_COUNT bit in the
Status field is set, then the count is meaningful and it gives the number of
rows that were affected by the current command.

Comments

• If all the statements in a stored procedure have been executed a
TDS_DONEPROC is returned. However, a TDS_DONEPROC may have the
TDS_DONE_MORE bit set in the Status field if there are more statements to be
executed. This can happen if a stored procedure has called another stored
procedure. There will a separate TDS_DONEPROC for each stored procedure
that gets called.

Table 41: Transaction State Values

Name Value Description

TDS_NOT_IN_TRAN 0 Not currently in a transaction

TDS_TRAN_SUCCEED 1 Request caused transaction to complete
successfully.

TDS_TRAN_PROGRESS 2 A transaction is still in progress on this dia-
log.

TDS_STMT_ABORT 3 Request caused a statement abort to occur.

TDS_TRAN_ABORT 4 Request caused transaction to abort.

TranState

count
Version 3.8 202 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
• Each statement in a stored procedure that executes will return a
TDS_DONEINPROC. All statements in Transact-SQL are considered statements
except variable declarations. For example, assignment of a variable is
considered a separate statement and a TDS_DONEINPROC will be generated.
The stored procedure itself is considered a statement so a stored procedure
consisting of a single select will generate a TDS_DONEINPROC for the select
followed by a TDS_DONEPROC for the completion of the stored procedure.

• A TDS_DONEINPROC is guaranteed to be followed by another
TDS_DONEINPROC or TDS_DONEPROC. A TDS_DONEPROC will be followed by
another TDS_DONEINPROC or TDS_DONEPROC only if the TDS_DONE_MORE
bit is set in the Status field.

• For execution of stored procedures TDS_DONEINPROC and TDS_DONEPROC
tokens are returned instead of TDS_DONEs.

• The server returns the current transaction state to the client in the TranState.

• The TranState field was redefined from an Info field in TDS 5.0.
TDS 5.0 Functional Specification 203 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Examples

In this example we’ll execute a stored procedure which does a select, calls
another stored procedure and then does another select. The procedure proc1
looks like:

select 1

execute procedure proc2

select 3

Proc2 looks like:

select 2

When we execute proc1 the datastream from the server looks like:

See Also

TDS_DONE

row info and data for first select

DONEPROC

DONEINPROC etc. (from select 1)

row info and data for second select

DONEINPROC etc. (from select 2)

etc. (with More bit set in Status)

row info and data for third select

DONEINPROC etc. (from select 3)

DONEPROC etc.
Version 3.8 204 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_DYNAMIC

Function

A request to prepare or execute a dynamic SQL statement.

Syntax

Arguments

 This is token indicates that this is a dynamic SQL
command.

 This is the total length, in bytes, of the remaining datastream. It is
a two-byte, unsigned integer.

 This indicates the type of dynamic operation. Type is a one-byte
integer. Its values are:

Table 42: Dynamic Operation Types

Name Value Description

TDS_DYN_PREPARE 0x01 This is a request to prepare stmt.

TDS_DYN_EXEC 0x02 This is a request to execute a prepared
statement.

TDS_DYN_DEALLOC 0x04 Request to deallocate a prepared state-
ment.

TDS_DYN_EXEC_IMMED 0x08 This a request to prepare and execute
stmt immediately.

TDS_DYNAMIC

0xE7

Length

IdLen id

stmtStmt Len

Type

• • •

• • •

Status

TDS_DYNAMIC

Length

Type
TDS 5.0 Functional Specification 205 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
This is the status associated with this dynamic command. Status is a
one-byte unsigned integer argument. It has the following valid values:

 This the length, in bytes, of the statement id which follows. The
statement id may be up to 255 bytes long. It must be at least one byte long.
IdLen is a one-byte, unsigned integer.

 This is the statement id. It may be up to 255 bytes long. In practice, a
maximum length of 30 is widely supported. The id is a character string and
must be at least one byte long.

 This is the length of the statement. See the comments section
below for information on how this argument is used.

TDS_DYN_PROCNAME 0x10 Is this used? If so what for?

TDS_DYN_ACK 0x20 Acknowledge a dynamic command.

TDS_DYN_DESCIN 0x40 Send input format description.

TDS_DYN_DESCOUT 0x80 Send output format description.

Table 43: Dynamic Status Values

Name Value Description

TDS_DYNAMIC_UNUSED 0x00 No status associated with this dynamic
command.

TDS_DYNAMIC_HASARGS 0x01 Parameter data stream follows the dynamic
command.

TDS_DYNAMIC_SUPPRESS_FMT 0x02 If this statement, as identified by id, has pre-
viously sent TDS_ROWFMT information and
this information has not changed, do not
resend TDS_ROWFMT.

Table 42: Dynamic Operation Types

Name Value Description

Status

IdLen

id

Stmt Len
Version 3.8 206 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
 This is the statement that is to be either prepared or executed. It is a
character string whose length is given, in bytes, by the previous argument.
The maximum length of the statement is 32767 - 2 - the length of the
statement id. This argument is only in the data stream if StmtLen is non-0.

Comments

• In SQL pre-compilers that support dynamic SQL, the prepared statement is
common. It allows the client to send a SQL statement to the server to be
“prepared” and then later executed, perhaps repeatedly. It is similar to a
Sybase stored procedure except that it’s life is limited to the client session.

• When a statement is prepared, the server will return a description of the
output, if any, using the TDS_ROWFMT data stream. If there are any input
parameters, they will be described at the same time using the
TDS_PARAMFMT data stream.

• Each TDS_DYNAMIC data stream is acknowledged with a TDS_DONE data
stream.

• The following TDS_CAP_REQUEST capability bits are defined for the dynamic
protocol:

Table 44: Dynamic Protocol Capabilities

Capability Description

TDS_PROTO_DYNAMIC If this capability is enabled (1) the
TDS_DYN_DESCOUT/DESCIN protocol is used to
send input and output formats to a client. If
this capability is disabled (0), the format infor-
mation is sent back automatically by the server
at TDS_DYN_PREPARE time.

TDS_PROTO_DYNPROC If this capability is enabled (1) a client library
will prepend “create proc” in the Stmt field of
the TDS_DYN_PREPARE data stream. If this
capability is disabled (0) a client library will
just send the Stmt information un-modified.

stmt
TDS 5.0 Functional Specification 207 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• The TDS_CURDECLARE token is used to declare a cursor on a prepared
statement. it is the client library’s responsibility to associate the prepared
statement name with the TDS_CURDECLARE token. The prepared statement
name must be in the Statement argument of the TDS_CURDECLARE data
stream and the TDS_CUR_DOPT_DYNAMIC bit must be set in the Option
argument.

• Only one TDS_DYNAMIC token can be sent in a request.

• The Stmt argument is only used in the TDS_DYN_PREPARE and
TDS_DYN_EXEC_IMMED data streams. StmtLen must be set to 0 in all other
dynamic data streams.

• Parameters are not supported in the TDS_DYN_EXEC_IMMED data stream.

• The IdLen argument must be 0 for a TDS_DYN_EXEC_IMMED data stream.

• No results can be returned by a server in response to a
TDS_DYN_EXEC_IMMED command. The only valid response is a TDS_DONE.

• Only one TDS_PARAMFMT/TDS_ROWFMT is legal when responding to a
TDS_DYN_PREPARE/TDS_DYN_DESCIN/TDS_DYN_DESCOUT command.

• Compute rows are illegal in the dynamic protocol.

• Parameter names are not supported in the TDS_PARAMFMT associated with
the TDS_DYN_EXEC.

• The TDS_DYNAMIC_SUPPRESS_FMT status bit is valid only if
TDS_RES_SUPPRESS_ROWFMT is set. In this case, subsequent executions of the
prepared statement does not need to generate TDS_ROWFMT information.
Note that the server may still do so. It is suggested that client libraries make
the decision to suppress format information configurable since the use of
stored procedures can result in different format information being returned
on each execution.
Version 3.8 208 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
Protocol Examples

Prepare - Success (TDS_PROTO_DYNAMIC == 0)

Client Server
TDS_DYN_PREPARE

TDS_DYN_ACK
TDS_ROWFMT
TDS_PARAMFMT
TDS_DONE(FINAL)

Prepare - Failure (TDS_PROTO_DYNAMIC == 0)

Client Server
TDS_DYN_PREPARE

TDS_DYN_ACK
TDS_ROWFMT
TDS_PARAMFMT
TDS_EED
TDS_DONE(FINAL|ERROR)

NOTE: The TDS_EED token could occur any where in the server
response data stream. Also, the TDS_ROWFMT/PARAMFMT may not
be returned from the server. It is possible to receive just a TDS_ROWFMT,
a TDS_ROWFMT/PARAMFMT, or no format information.

Prepare - Success (TDS_PROTO_DYNAMIC == 1)

Client Server
TDS_DYN_PREPARE

TDS_DYN_ACK
TDS_DONE(FINAL)

Prepare - Failure (TDS_PROTO_DYNAMIC == 1)

Client Server
TDS_DYN_PREPARE

TDS_DYN_ACK
TDS_EED
TDS_DONE(FINAL|ERROR)
TDS 5.0 Functional Specification 209 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Describe Input Paramters(TDS_PROTO_DYNAMIC == 1)

Client Server
TDS_DYN_DESCIN

TDS_DYN_ACK
TDS_PARAMFMT
TDS_DONE(FINAL)

Describe Output Rows (TDS_PROTO_DYNAMIC == 1)

Client Server
TDS_DYN_DESCOUT

TDS_DYN_ACK
TDS_ROWFMT
TDS_DONE(FINAL)

Describe Input Parameters - failure(TDS_PROTO_DYNAMIC == 1)

Client Server
TDS_DYN_DESCIN

TDS_DYN_ACK
TDS_PARAMFMT
TDS_EED
TDS_DONE(FINAL|ERROR)

NOTE: The TDS_PARAMFMT may not be returned if an error is detected.
Version 3.8 210 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
Describe Output Rows - failure(TDS_PROTO_DYNAMIC == 1)

Client Server
TDS_DYN_DESCOUT

TDS_DYN_ACK
TDS_ROWFMT
TDS_EED
TDS_DONE(FINAL|ERROR)

NOTE: The TDS_ROWFMT may not be returned if an error is detected.

Execute

Client Server
TDS_DYN_EXEC

TDS_DYN_ACK
TDS_ROWFMT
TDS_ROW

TDS_PARAMFMT
TDS_PARAM

•
•

•

TDS_DONE(FINAL)

Execute - failure

Client Server
TDS_DYN_EXEC

TDS_DYN_ACK
TDS_ROWFMT
TDS_ROW

TDS_PARAMFMT
TDS_PARAM

•
•

•

TDS_EED
TDS_DONE(FINAL|ERROR)

NOTE: The TDS_ROWFMT and TDS_ROW(s) may not be received if an
error is detected.
TDS 5.0 Functional Specification 211 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
See Also

TDS_EED TDS_ROW, TDS_PARAMFMT, TDS_ROWFMT

Execute Immediate

Client Server
TDS_DYN_EXEC_IMMED

TDS_DYN_ACK
TDS_DONE(FINAL)

Execute Immediate - Failure

Client Server
TDS_DYN_EXEC_IMMED

TDS_DYN_ACK
TDS_EED
TDS_DONE(FINAL|ERROR)

Deallocation

Client Server
TDS_DYN_DEALLOC

TDS_DYN_ACK
TDS_DONE(FINAL)
Version 3.8 212 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_DYNAMIC2

Function

A request to prepare or execute a dynamic SQL statement. This token is
identical to the TDS_DYNAMIC token, except it has a 4-byte length and
StmtLen is expanded to 4 bytes to accommodate longer statements.

Syntax

Arguments

 This is token indicates that this is a dynamic SQL
command.

 This is the total length, in bytes, of the remaining datastream. It
is a four-byte, unsigned integer.

 This indicates the type of dynamic operation. Type is a one-byte
integer. See TDS_DYNAMIC for a description of its values.

This is the status associated with this dynamic command. Status is a
one-byte unsigned integer argument. See TDS_DYNAMIC for its valid
values:

 This the length, in bytes, of the statement id which follows. The
statement id may be up to 255 bytes long. It must be at least one byte long.
IdLen is a one-byte, unsigned integer.

 This is the statement id. It may be up to 255 bytes long. In practice, a
maximum length of 30 is widely supported. The id is a character string and
must be at least one byte long.

TDS_DYNAMIC

0x62

IdLen id

stmt

Type

• • •

• • •

StatusLength

StmtLen

TDS_DYNAMIC

Length

Type

Status

IdLen

id
TDS 5.0 Functional Specification 213 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is the length of the statement. See the comments section
below for information on how this argument is used.

 This is the statement that is to be either prepared or executed. It is a
character string whose length is given, in bytes, by the previous argument.

Comments

• See TDS_DYNAMIC for comments.

StmtLen

stmt
Version 3.8 214 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

e

TDS_EED

Function

Return a text message to a client.

Syntax

Arguments

 This is the data stream command token that indicates that
this is a data stream containing a text message.

 This is the length, in bytes, of the remaining data stream. It is a
two-byte unsigned integer.

 This is the message number for the message. MsgNumber is
a four-byte, unsigned integer.

 This is the message state. It is used as a modifier to the
MsgNumber. It is a one-byte, unsigned integer.

 This is the class or severity of the message. It is a one-byte
unsigned integer.

This the length of the SQL state argument that follows.

This is the SQL state value associated with this message. Its
length is in SQLStateLen. This argument is treated as binary data. No
character set conversion will occur.

TDS_EED

0xE5

Length MsgNumber State Class

MsgLength msg ServerLength server nam

ProcLen proc. name

• • •

• • • LineNum

TranState

SQL State• • •

Status

SQLStateLen

• • •

TDS_EED

Length

MsgNumber

State

Class

SqlStateLen

SQL State
TDS 5.0 Functional Specification 215 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
This is the status associated with this extended message. this
argument is a one-byte unsigned integer. It has the following valid values:

This is the current state of any transactions that are active on
this dialog. See the TDS_DONE man page for valid values for this argument.
This argument is a two-byte unsigned integer.

 This is the length of the msg text that follows. It a two-byte,
unsigned integer. Note that the total length of the TDS_EED data stream
must be no longer than 64k-1. Since the data stream includes other infor-
mation in addition to the msg, the actual length that msg can be is less than
64k-1. How much less depends on the length of the other fields in the
TDS_EED data stream.

 This is the actual text of the message. Its length, in bytes, is in
MsgLength.

 This is the length of the server name argument which
follows. It may be 0. It is a one-byte, unsigned integer.

 This is the name of the server that is sending the message. It will
be omitted if ServerLength is 0.

 This is the length of the proc. name argument which
follows. It may be 0. It is a one-byte, unsigned integer.

Table 45: Valid Status Values

Name Value Description

TDS_NO_EED 0x00 No extended error data follows.

TDS_EED_FOLLOWS 0x01 Extended error data follows this token.
Extended error data is sent using
TDS_PARAMFMT/PARAM

TDS_EED_INFO 0x02 Extended, library private data follows.
The error is not to be delivered to the
application.

Status

TranState

MsgLength

msg

ServerLength

server name

ProcLength
Version 3.8 216 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
 This is the name of the stored procedure or RPC in which the
message occurred. It will be omitted if ProcLength is 0.

 This is the line number in the command batch or stored
procedure that has the error, if applicable. Line numbers start at 1 so if
LineNum isn’t applicable to the message, it will be 0. It is a two-byte,
unsigned integer.

Comments

• This is the data stream that is sent from the server to return a text message to
a client. These messages are usually sent because an error was detected.

• A server may send multiple TDS_EED tokens in one response.

• The TDS_EED token is sent in place of the TDS_ERROR/INFO tokens when the
TDS_RES_NOEED capability is not enabled (0).

• The Status field must be set to TDS_EED_FOLLOWS if extended error data
follows. Any number of parameters may be sent following a TDS_EED token.

• A TDS_EED token cannot come between regular results. It either has to come
before any results, or after all of the results.

• Multiple TDS_EED tokens can follow regular results. The multiple TDS_EEDs
are differentiated using a TDS_DONE(MORE).

• Any results values that follow a TDS_EED for another command batch must be
preceded by a TDS_DONE(MORE).

• Errors generating the TDS_EED data stream are reported by a server by setting
the ERROR bit in the TDS_DONE(MORE) token associated with the TDS_EED.
The ERROR bit is the only valid status bit in the TDS_DONE data stream other
than MORE for TDS_EED data streams.

• The TDS_EED token replaces both the TDS_ERROR and TDS_INFO tokens in
earlier versions of TDS.

• If TDS_EED_INFO is set in the status field, the information that follows is
intended to be interpreted only by the client library. The message number is
independent of the server’s message space and is defined in Table 46:
TDS_EED_INFO Message Numbers .

proc. name

LineNum
TDS 5.0 Functional Specification 217 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Protocol Examples

Sending an Extended Error Data Stream

TDS_ROWFMT+
TDS_ROW+

•
•
•

TDS_EED(TDS_EED_FOLLOWS)
TDS_PARAMFMT*
TDS_PARAM*

•
•
•

TDS_DONE(FINAL)**

+ Regular Results
* Extended error data
** This TDS_DONE delineates both result set and the
TDS_EED data stream.

Sending an Extended Error Data Stream

TDS_ROWFMT+
TDS_ROW+

•
•
•

TDS_EED(TDS_EED_FOLLOWS)
TDS_PARAMFMT*
TDS_PARAM*

•
•
•

TDS_DONE(MORE)**

+First Result Set
* Extended error data
** This TDS_DONE(MORE) delineates the
TDS_EED data stream.

with multiple result sets

TDS_DONE(MORE)***
TDS_ROWFMT++
TDS_ROW++

•
•
•

TDS_DONE(FINAL)

*** This TDS_DONE(MORE) delineates the first result set
++ Second result set
Version 3.8 218 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
q The TDS_REDIRECT message will only be generated if the client application sets the
TDS_HA_LOG_REDIRECT bit in the TDS Login packet or the TDS_CAP_CLUSTERFAILOVER request
bit in the capability mask. TDS_HA_LOG_REDIRECT modifies the login sequence.
TDS_CAP_CLUSTERFAILOVER is used to either force a failover of an existing connection to a new
server or to update a client’s list of failover targets.

• When TDS_HA_LOG_REDIRECT is set, the server can send a TDS_REDIRECT message prior to

sending the TDS_LOGINACK message. Clients that do not set TDS_HA_LOG_SESSION will ignore

Table 46: TDS_EED_INFO Message Numbers

Message State Value Description

TDS_REDIRECT 1 TDS_EED_IMMEDIATE_REDIRECT 0x01
TDS_EED_SET_REDIRECT 0x02

This message is only sent to a
client that has set
TDS_HA_LOG_REDIRECT or
TDS_CAP_CLUSTERFAILOVER. See
notes following table.

Reporting an Error while generating a

TDS_ROWFMT+
TDS_ROW+

•
•
•

TDS_EED(TDS_EED_FOLLOWS)

TDS_DONE(MORE|ERROR)*

+First Result Set
* This TDS_DONE(MORE|ERROR) indicates that an error

TDS_EED stream

TDS_DONE(MORE)**
TDS_ROWFMT++
TDS_ROW++

•
•
•

TDS_DONE(FINAL)

occurred while generating the TDS_EED token. NOTE:
No parameters were sent in this example. It is undefined
whether parameters are sent when an error occurs.
** This TDS_DONE(MORE) delineates the first result set.
++ Second result set.
TDS 5.0 Functional Specification 219 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
this message if TDS_EED_IMMEDIATE_REDIRECT is not set. When

TDS_EED_IMMEDIATE_REDIRECT is set, the server will follow with

TDS_LOGINACK(TDS_LOG_FAIL) and the client is expected to attempt a connection to the sys-

tems in the parameter list that follows. If TDS_EED_SET_REDIRECT is set, the client application

will continue to leave the TDS_HA_LOG_REDIRECT bit set in the subsequent connection at-

tempts.

• When TDS_CAP_CLUSTERFAILOVER is set, the server can send a TDS_REDIRECT to cause a client

to failover to a different server to execute subsequent commands. Should

TDS_EED_IMMEDIATE_REDIRECT not be set, the connection information passed via the param-

eters will replace previously saved HAFAILOVER information.

• Each of the EED parameters for TDS_REDIRECT will describe connection information. This

information will be character data (ie. TDS_VARCHAR or TDS_LONGCHAR.) The structure of

each line will be “protocol connection information.” The syntax is based off the information

from http://www-jdbc/xDocumentation/OIDMapping.html site internal to Sybase. Valid proto-

cols are tcp, decnet, spx, msnmp. If a client does not understand or support the communica-

tions implied by a particular parameter, it should ignore it and proceed to the next entry. If

this means there are no valid parameters for the client, or if all connection attempts fail, the

client will return a connection failure. The connection information will look like the follow-

ing (note that the tcp syntax drops the placeholder between the ‘tcp’ keyword and the host-

name):

• tcp (hostname|address) port [filters]

• decnet (hostname|address) (object name|object number)[filters]

• spx netnumber nodenumber socketnumber [filters]

• spx sapname [filters]

• msnmp pipename [filters]

• The [filters] information is the same as the filter information stored in an interface file or

LDAP directory server and may not be present. Currently, the only available filter is ssl. The

syntax is as follows:

• filters = filter [‘’ filters]
Version 3.8 220 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
• filter = filterName[=’”’DN’”’]

• The following are examples of connection information:

• tcp dreamsystem 4500

• tcp 10.10.10.10 4500 ssl

See Also

TDS_DONE, TDS_INFO, TDS_ERROR
TDS 5.0 Functional Specification 221 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 222 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_ENVCHANGE

Function

Notify receiver of a change in the supported environmental variables.

Syntax

Arguments

 This token indicates that this is a datastream
containing environment change information.

 This is the total length of the remaining environmental change
data stream.

 This one-byte, unsigned argument defines the variable affected by this
command. The defined types are:

TDS_ENV_DB - 1

The current database.

TDS_ENV_LANG - 2

The current national language.

TDS_ENV_CHARSET - 3

The current character set.

TDS_ENV_PACKSIZE - 4

The current packet size, in bytes.

 This gives the length, in bytes, of the new value for the
variable. The length may be 0.

TDS_ENVCHANGE Length

Type

0xE3

repeat for each variable

NewVal Len new value OldVal Len old value• • •

TDS_ENVCHANGE

Length

Type

NewValLen
TDS 5.0 Functional Specification 223 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is the new value of the environment variable. Its length is
given by the preceding argument. If length is 0, it will be omitted from the
datastream.

 This gives the length, in bytes, of the old value for the
variable. The length may be 0.

 This is the old value of the environment variable. Its length is
given by the preceding argument. If length is 0, it will be omitted from the
datastream.

Comments

• This datastream is used to inform the receiver of any changes in any of the
environment variables.

• More than one variable change can be described in a single datastream.

Examples

See Also

new value

OldValLen

old value
Version 3.8 224 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

me
TDS_ERROR

Function

Describes the datastream which contains an error message.

Syntax

Arguments

 This is the datastream command token that indicates that
this is a datastream containing an error message.

 This is the length, in bytes, of the remaining error message. It is a
two-byte unsigned integer.

 This the server-generated error number for the message.
Error numbers below 20001 are reserved by the SQL Server. The number is
a four-byte, signed integer.

 This is the error state. It is used as a modifier to the error number.
It is a one-byte, unsigned integer.

 This is the class or severity of the error. In the SQL Server, a class
of 10 or less indicates an information message. It is a one-byte unsigned
integer.

 This is the length of the msg text that follows. It a two-byte,
unsigned integer. Note that the total length of the TDS_ERROR datastream
must be no longer than 64k-1. Since the datastream includes other infor-
mation in addition to the error msg, the actual length that error msg can be
is less than 64k-1. How much less depends on the length of the other fields
in the TDS_ERROR datastream.

TDS_ERROR

0xAA

Length ErrorNumber State Class

MsgLength error msg ServerLength server na

ProcLength proc. name

• • •

• • • line #

TDS_ERROR

Length

error number

state

class

MsgLength
TDS 5.0 Functional Specification 225 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is the actual text of the error message. Its length, in bytes,
is described in the preceding parameter.

 This is the length of the server name parameter which
follows. It may be 0. It is a one-byte, unsigned integer.

 This is the name of the server that is sending the message. It will
be omitted if ServerLength is 0.

 This is the length of the proc. name parameter which
follows. It may be 0. It is a one-byte, unsigned integer.

 This is the name of the stored procedure or rpc in which the
error occurred It will be omitted if ProcLength is 0.

 This is the line number in the command batch of stored
procedure that has the error, if applicable. Line numbers start at 1 so if line#
isn’t applicable to the message, it will be 0. It is a two-byte, unsigned integer.

Comments

• This is the datastream that is sent from the server when an error occurs.

• A server may send multiple TDS_ERROR statements.

• The TDS_ERROR datastream is exactly the same as theTDS_ INFO datastream
except for the token value.

• This token is obsolete and has been replaced by the TDS_EED token.

Examples

See Also

TDS_INFO, TDS_EED

error msg

Server Length

server name

ProcLength

proc. name

line #
Version 3.8 226 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_EVENTNOTICE

Function

The data stream for sending a notice that an event has been raised.

Syntax

Arguments

 This is the data stream command token that
indicates that this is a data stream containing an event notification.

 This is the total length of the remaining data stream. It is a two-
byte, unsigned integer.

 This is the length, in bytes, of the name of the event which
has been raised.

 This is the event name of the event that has been raised. It’s
length is given by the preceding argument.

Comments

• This is the data stream sent by the server to the client when an event is raised.
The client must have previously asked the server to send notification for a
particular event.

• See the Event Notification chapter in this document for a complete
description of the event notification protocol.

Examples

See Also

TDS_EVENTNOTICE Length event nameNameLength

0xA2

TDS_EVENTNOTICE

Length

NameLength

event name
TDS 5.0 Functional Specification 227 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 228 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_INFO

Function

Describes the datastream which contains an information message.

Syntax

Arguments

 This is the datastream command token that indicates that
this is a datastream containing an information message.

 This is the length, in bytes, of the remaining information datas-
tream. It is a two-byte unsigned integer.

 This the server-generated information number for the
message. Information numbers below 20001 are reserved by the SQL
Server. The number is a four-byte, signed integer.

 This is the information state. It is used as a modifier to the info
number. It is a one-byte, unsigned integer.

 This is the class of the information message. In the SQL Server, a
class of 10 or less indicates an information message. It is a one-byte
unsigned integer.

 This is the length of the msg text that follows. It a two-byte,
unsigned integer. Note that the total length of the TDS_INFO datastream
must be no longer than 64k-1. Since the datastream includes other infor-
mation in addition to the info msg, the actual length that info msg can be is
less than 64k-1. How much less depends on the length of the other fields in
the TDS_INFO datastream.

TDS_INFO

0xAB

Length info number state class

MsgLength info msg ServerLength server name

ProcLength proc. name

• • •

• • • line #

TDS_INFO

Length

info number

state

class

MsgLength
TDS 5.0 Functional Specification 229 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is the actual text of the information message. Its length, in
bytes, is described in the preceding parameter.

 This is the length of the server name parameter which
follows. It may be 0. It is a one-byte, unsigned integer.

 This is the name of the server that is sending the message. It will
be omitted if ServerLength is 0.

 This is the length of the proc. name parameter which
follows. It may be 0. It is a one-byte, unsigned integer.

 This is the name of the stored procedure or rpc in which the
message occurred It will be omitted if ProcLength is 0.

 This is the line number in the command batch of stored
procedure that has the message, if applicable. Line numbers start at 1 so if
line# isn’t applicable to the message, it will be 0. It is a two-byte, unsigned
integer.

Comments

• This is the datastream that is sent from the server when an informational
message occurs.

• A server may send multiple TDS_INFO statements.

• The TDS_INFO datastream is exactly the same as the TDS_ERROR datastream
except for the token value.

• This token is obsolete and has been replaced with the TDS_EED token.

Examples

See Also

TDS_ERROR, TDS_EED

info msg

ServerLength

server name

ProcLength

proc. name

line #
Version 3.8 230 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_KEY

Function

The datastream for key data.

Syntax

Arguments

 This is the token that indicates that this is a data stream
containing key data.

 This is the actual, as opposed to maximum, data length, in
bytes, of the following data. It is one-byte unsigned integer. If the following
data is a fixed length datatype of standard length, e.g., ints, floats, datetimes,
then there is no Length argument.

 This is the actual data for the key column. Its length, if variable, is
indicated by the preceding Length argument. It is in the format requested
in the login request from the client.

Comments

• This is the data stream that contains all the key for a particular row. The key
data is returned to the server along with a cursor update command to tell the
server the client’s current row. The server will also return the new key to the
client when the key is changed on a cursor update or cursor delete.

• The key data is described in the TDS_ROWFMT for the row with the key. The
“key” column status tells the client that a particular column in a row is part of
the key for that row. The key is “embedded” in the regular row. If the key
column was not specifically requested by the client request, the key column is
also a “hidden” column.

TDS_KEY

0xCA

Length data

repeat for each

1 or 4 bytes

TDS_KEY

Length

data
TDS 5.0 Functional Specification 231 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• No format information is passed back to the server with the TDS_KEY since
the server already has that information. The TDS_KEY data stream which
identifies the client’s current row follows the TDS_CURUPDATE or
TDS_CURDELETE data streams.

• If the key changes as a result of the TDS_CURUPDATE, the server will return the
new key data in a TDS_KEY data stream, preceded by a TDS_ROWFMT data
stream.

• When a client sends a TDS_KEY to the server, no TDS_ROWFMT data stream is
sent. However, when a server sends a TDS_KEY data stream to a client, a TDS_
ROWFMT data stream describing the key data precedes the TDS_KEY data
stream.

• A TDS_KEY data stream consists of Length and parameter pairs, one for each
parameter described by the associated TDS_ROWFMT data stream. The
Length component doesn’t appear if the data is a fixed datatype of standard
length, e.g., TDS_INT2, TDS_MONEY, TDS_DATETIME, etc. If the datatype allows
nulls then the data will always be preceded by a Length argument. Fixed
length datatypes that are not of a standard length, e.g., TDS_CHAR and
TDS_BINARY are also preceded by a Length.

• The TDS_PARAMS data stream has exactly the same format as the TDS_ROW
and TDS_KEY data streams. Three tokens are used for the same data stream in
order to provide data stream state information. The formats will remain the
same so that client and server code used to encode and decode the data
streams can be the same.

• Note that if the cursor update request is made via a language request and not
a TDS_CURUPDATE data stream, a TDS_KEY will not be passed to the server
with the request.

Question: Verify when KEY data streams are returned to client.

Examples

See Also

TDS_ROWFMT, TDS_ROW
Version 3.8 232 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_LANGUAGE

Function

The token used to send a language command.

Syntax

Arguments

 This is the token that indicates that this is a language
command.

 This is the length, in bytes, of the rest of the token. It includes the
status byte and the length of the language command. It is a four-byte,
unsigned integer.

 This status byte is a bit-mask. The only currently defined bit is
0x01 which indicates that the command is parameterized and that
PARAMFMT/PARAM tokens follow

 This the text of the language command. Presentation
conversion is performed by the server if required.

Comments

• This is the token that is used by a client to send a language command to a
server.

• Language commands may be parameterized. In that case, the Status 0x01 bit
is set and the character and content of the parameters are described following
the TDS_LANGUAGE data stream using the TDS_PARAMFMT and TDS_PARAMS
data streams.

• Currently, only one TDS_LANGUAGE command is supported per client
request.

TDS_LANGUAGE

0x21

StatusLength language text

TDS_LANGUAGE

Length

Status

language text
TDS 5.0 Functional Specification 233 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Examples

See Also

TDS_RPC, TDS_CURDECLARE, TDS_PARAMFMT, TDS_PARAMS
Version 3.8 234 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
Login Record

Description

This is the record that is sent to request that a dialog be established between a
client and a server.

Syntax

typedef struct loginrec
{

TDS_BYTE lhostname[TDS_MAXNAME];
TDS_BYTE lhostnlen;
TDS_BYTE lusername[TDS_MAXNAME];
TDS_BYTE lusernlen;
TDS_BYTE lpw[TDS_MAXNAME];
TDS_BYTE lpwnlen;
TDS_BYTE lhostproc[TDS_MAXNAME];
TDS_BYTE lhplen;
TDS_BYTE lint2;
TDS_BYTE lint4;
TDS_BYTE lchar;
TDS_BYTE lflt;
TDS_BYTE ldate;
TDS_BYTE lusedb;
TDS_BYTE ldmpld;
TDS_BYTE linterfacespare;
TDS_BYTE ltype;
TDS_BYTE lbufsize[TDS_NETBUF];
TDS_BYTE lspare[3];
TDS_BYTE lappname[TDS_MAXNAME];
TDS_BYTE lappnlen;
TDS_BYTE lservname[TDS_MAXNAME];
TDS_BYTE lservnlen;
TDS_BYTE lrempw[TDS_RPLEN];
TDS_BYTE lrempwlen;
TDS_BYTE ltds[TDS_VERSIZE];
TDS_BYTE lprogname[TDS_PROGNLEN];
TDS 5.0 Functional Specification 235 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_BYTE lprognlen;
TDS_BYTE lprogvers[TDS_VERSIZE];
TDS_BYTE lnoshort;
TDS_BYTE lflt4;
TDS_BYTE ldate4;
TDS_BYTE llanguage[TDS_MAXNAME];
TDS_BYTE llanglen;
TDS_BYTE lsetlang;

/*
** The following 13 bytes were used by 1.0 secure servers. Actually 2 bytes in
** the middle are unused. Since we do not support logins to 1.0 secure servers,
** we can re-use these 13 bytes.
** However, non-secure servers, check if the first 2 bytes are non-zero. If they
** are non-zero, they assume that the user want's to login a secure server and
** reject the login.
*/

TDS_BYTE loldsecure[TDS_OLDSECURE];
TDS_BYTE lseclogin;
TDS_BYTE lsecbulk;

/*
** The following 2 fields were added in specification revision 3.2 to support High
** Availability failover. The lhalogin byte and the 6 lhasessionid bytes were taken from
** the lsecspare bytes, The TDS_SECURE value was reduced from 9 to 2 accordingly.
*/

TDS_BYTE lhalogin;
TDS_BYTE lhasessionid[TDS_HA];
TDS_BYTE lsecspare[TDS_SECURE];
TDS_BYTE lcharset[TDS_MAXNAME];
TDS_BYTE lcharsetlen;
TDS_BYTE lsetcharset;
TDS_BYTE lpacketsize[TDS_PKTLEN];
TDS_BYTE lpacketsizelen;
TDS_BYTE ldummy[4];

} LOGINREC;
Version 3.8 236 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
Comments

• When a client wants to establish a dialog with a server, a TDS packet is sent
that contains a login record. This packet is denoted by a packet header type of
TDS_BUF_LOGIN. Clients may have more than one dialog to a server but each
one is established separately in the same way. The dialogs may be established
on different transport connections or over the same one (server-to-server).

• When a client sends a login record to a server, the server will respond with a
TDS_LOGINACK data stream. The status argument in the TDS_LOGINACK data
stream will indicate success or failure of the login attempt.

• The size of the login record will not be changed in future releases of TDS. Any
additional functionality will be implemented using separate token data
streams.
TDS 5.0 Functional Specification 237 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential

F

lhos

lhos

luse

luse

lpw

lpw ld.

lhos

lhpl

lint2
ast

nd

lint4 r

te

Fields

Table 47: Login Record Fields

ield Name Possible Values Description

tname Contains the client’s host name.

tlen Length, in bytes, of the client’s host name in
lhostname.

rname Client’s user name. This field can be used for
authentication.

rnlen Length, in bytes, of user name in lusername
field.

Client’s password. This field can be used for
authentication. However, this field is sent as
clear text.

nlen Length, in bytes of the password in the lpw fie

tproc Process identifier associated with client pro-
gram. The process identifier is specified as a
string of ASCII characters.

en Length, in bytes, of the process identifier in
lhostproc.

TDS_INT2_LSB_HI (2)
TDS_INT2_LSB_LO(3)

Specifies the client byte ordering for two byte
integers. TDS_INT2_LSB_HI specifies that the le
significant byte is in the high byte (68000 byte
ordering). TDS_INT2_LSB_LO specifies that the
least significant byte is in the low byte (VAX a
80x86 byte ordering).

TDS_INT4_LSB_HI (0)
TDS_INT4_LSB_LO(1)

This field identifies the client byte-ordering fo
four-byte integers. TDS_INT4_LSB_HI indicates
that the least significant byte is in the high by
(68000 byte ordering). TDS_INT4_LSB_LO indi-
cates that the least significant byte is in the low
byte (VAX and 80x86 byte ordering).
Version 3.8 238 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

lcha e-

r-

lflt

‘D’

00

ldat e

r-
at
.
g-

F

r TDS_CHAR_ASCII (6)
TDS_CHAR_EBCDIC (7)

This field identifies the type of character repr
sentation being used by the client.
TDS_CHAR_ASCII indicates that the EBCDIC cha
acter set is not being used by the client. The
actual character set being used by the client is
specified in the lcharset field below.
TDS_CHAR_EBCDIC indicates that the EBCDIC
character set is being used by the client.

TDS_FLT_IEEE_HI(4)
TDS_FLT_VAXD(5)
TDS_FLT_IEEE_LO(10)
TDS_FLT_ND5000(11)

This field identifies the type of floating point
representation used by the client.
TDS_FLT_IEEE_HI indicates IEEE 754 float type
with the least significant byte in the high byte
(e.g. Sun). TDS_FLT_VAXD indicates that VAX
floating point format is being used.
TDS_FLT_IEEE_LO indicates IEEE 754 float type
with the least significant byte in the low byte
(e.g. 80x86). TDS_FLT_ND5000 indicates a ND50

float byte with the least significant byte in the
high byte.

e TDS_TWO_I4_LSB_HI(8)
TDS_TWO_I4_LSB_LO(9)

This field identifies the type of 8-byte datetim
representation used by the client. The 8-byte
datetime data type is implemented as two fou
byte integers. TDS_TWO_I4_LSB_HI indicates th
the least significant integer is the high integer
TDS_TWO_I4_LSB_LO indicates that the least si
nificant integer is the low integer.

Table 47: Login Record Fields

ield Name Possible Values Description
TDS 5.0 Functional Specification 239 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential

linte -
m

nt

the
me
87

ltyp
 a

ia-
-
. If
e,
e
s
ER
h

C

lbuf

l

F

rfacespare

TDS_LDEFSQL(0)
TDS_LXSQL(1)
TDS_LSQL(2)
TDS_LSQL2_1(3)
TDS_LSQL2_2(4)
TDS_LOG_SUCCEED(5)
TDS_LOG_FAIL(6)
TDS_LOG_NEG(7)
TDS_LOG_SECSESS_ACK(0x08)

This field is only used in server-server negotia
tions. Values and meanings here are pulled fro
SQLServer’s version of login header files:

server's default SQL will be se
TRANSACT-SQL will be sent
ANSI SQL, version 1
ANSI SQL, version 2, level 1
ANSI SQL, version 2, level 2
Log in succeeded
Log in failed
Negotiate further
LOGINACK status bit.

Note that this bit can be set and one of
above status values may be returned in the sa
byte. i.e. 0x05, 0x06, 0x07, 0x85, 0x86, and 0x
are the possible values for the status.

e TDS_LSERVER(0x01)
TDS_LREMUSER(0x02)
TDS_LINTERNAL_RPC(0x04)

This field specifies the type of dialog. Dialog
requests come from two sources; directly from
server, or server-to-server. Server-to-server d
logs are differentiated from normal client con
nections by the ltype field in the login record
the dialog is specified as a server-to-server typ
the lrempw field contains the actual user nam
and password. TDS_LSERVER indicates that thi
dialog is a server-to-server type, TDS_LREMUS
indicates that this dialog is a user login throug
another server
TDS_LINTERNAL_RPC indicates allow an internal RP

to be executed in the connection

size This field is not currently specified by TDS.
However, it was used in the past by certain
Sybase products. Because of this, this field wil
never be specified by TDS.

Table 47: Login Record Fields

ield Name Possible Values Description
Version 3.8 240 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

lspa

l

lapp
s

lapp

F

re This field is not currently specified by TDS.
However, it was used in the past by certain
Sybase products. Because of this, this field wil
never be specified by TDS.

name The client application name. The application
name defined by the application program. It i
different from the program name which is the
name of the library that the client is using to
manage the communication with the server.

nlen Length, in bytes, of the lappname field.

Table 47: Login Record Fields

ield Name Possible Values Description
TDS 5.0 Functional Specification 241 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential

lser
lib

ia
eld
f

s

2)
ck-

t
e

n

his

lser

lrem ds.
ee

lrem

F

vname The name of the server to which the client is
attempting to establish a dialog. CTlib and DB
set this field to the interfaces file entry which
was specified by the application explicitly or v
the $DSQUERY environment variable. This fi
should correspond with the @@servername o
the server for best results.
In server-server rpc’s this servname field is
passed on to the remote server. If that remote
server needs to open a connection back to thi
server for some reason, it will often use this
value to access its local interfaces file.
With some gateways (DirectConnnect for DB
this field indicates the name of the desired ba
end subsystem.
For Adaptive Server Anywhere this field indi-
cates the name of the database which the con-
nection should be made to (the database mus
already be loaded). For older ASAs, if the nam
in this field didn’t match any currently loaded
databases, the connection silently wound up i
the “default” database. However, with ASA 7.x
and higher, the connection is now refused in t
case.

vnlen Length, in bytes, of the lservname field.

pw Pairs of remote server name and password fiel
This field is used on server-to-server dialogs.S
below for a description of the format of this
field.

pwlen Length, in bytes, of the lrempw array.

Table 47: Login Record Fields

ield Name Possible Values Description
Version 3.8 242 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

ltds is

S
n-

lpro ed

lpro

lpro
m-

lnos
e

lflt4 -

.
s

int
4

F

TDS_5_0_V1(5)
TDS_5_0_V2(0)
TDS_5_0_V3(0)
TDS_5_0_V4(0)

The TDS version requested by the client. This
a four-byte array where each byte specifies a
number in the TDS version. The requested TD
version is specified with the major version ide
tifier in the high order byte.

gname The name of the client library that is being us
to establish the dialog.

gnlen Length, in bytes, of the lprogname.

gvers TDS_CT_5_0_V1(5)
TDS_CT_5_0_V2(0)
TDS_CT_5_0_V3(0)
TDS_CT_5_0_V4(0)
TDS_DB_5_0_V1(5)
TDS_DB_5_0_V2(0)
TDS_DB_5_0_V3(0)
TDS_DB_5_0_V4(0)

The version of the client library. This field is a
four byte array where each byte specifies a nu
ber in the client library version.

hort TDS_CVT_SHORT(1)
TDS_NOCVT_SHORT(0)

This flag indicates whether 4 byte datetime,
money, and floating point data types should b
automatically converted to 8 byte equivalents.
TDS_CVT_SHORT indicates that the short data
types should be converted. TDS_NOCVT_SHORT
indicates that they should not be converted.

TDS_FLT4_IEEE_HI(12)
TDS_FLT4_IEEE_LO(13)
TDS_FLT4_VAXF(14)
TDS_FLT4_ND50004(15)

This is the format of 4 byte floating point num
bers that will be used by the client.
TDS_FLT4_IEEE_HI IEEE floating point numbers
with the least significant byte in the high byte
TDS_FLT4_IEEE_LO IEEE floating point number
with the least significant byte in the low byte.
TDS_FLT4_VAXF indicate a VAX ‘F’ floating po
number. TDS_FLT4_ND50004 indicates ND5000
byte floating point format.

Table 47: Login Record Fields

ield Name Possible Values Description
TDS 5.0 Functional Specification 243 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential

ldat ed

-

-

llan
-
is

t.

llan
ge

lset o

ot

lold er.
.

lsec
al-

lsec

F

e4 TDS_TWO_I2_LSB_HI(16)
TDS_TWO_I2_LSB_LO(17)

The type of 4 byte datetime representation us
by the client. Four byte date time numbers are
implemented as two unsigned shorts.
TDS_LOW_I2_LSB_HI indicates that the least sig
nificant short is in the high byte.
TDS_LOW_I2_LSB_LO indicates that the least sig
nificant short is in the low byte.

guage The client’s requested national language. The
default is “us_english”. This is the national lan
guage that will be used for error messages. Th
national language should map to a valid lan-
guage in locales.dat and is platform dependan

glen The length, in bytes, of the llanguage field
value. If this field is 0 the default server langua
will be used.

lang TDS_NOTIFY(1)
TDS_NO_NOTIFY(0)

This field indicates whether the client wants t
be notified of language changes. TDS_NOTIFY
indicates that the client wants to be notified,
TDS_NO_NOTIFY indicates that the client does n
want to be notified.

secure This field was used by the original secure serv
It is not documented by the TDS specification

login TDS_SEC_LOG_ENCRYPT (0x01)
TDS_SEC_LOG_CHALLENGE (0x02)
TDS_SEC_LOG_LABELS (0x04)
TDS_SEC_LOG_APPDEFINED (0x08)
TDS_SEC_LOG_SECSESS (0x10)
TDS_SEC_LOG_ENCRYPT2 (0x20)

Negotiated login bit mask. See section 20. on
page 59 for more information on how these v
ues are used.

bulk TDS_SEC_BULK_LABELED (0x01) Bulk copy security bit mask.

Table 47: Login Record Fields

ield Name Possible Values Description
Version 3.8 244 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

lhal a
an

l

es-

V
y”

ell-

A

its
-

rt
he
e-

A

1.

F

ogin TDS_HA_LOG_SESSION(0x01)
TDS_HA_LOG_RESUME(0x02)
TDS_HA_LOG_FAILOVERSRV(0x04)
TDS_HA_LOG_REDIRECT(0x08)
TDS_HA_LOG_MIGRATE(0x10)

If the session bit is set, the client is requesting
High-Availability login session. If the server c
provide this level of service, it responds with a
negotiated login sequence. If login is successfu
the lhasessionid will be returned to the client.
If the HARESUME bit is set then the client is
resuming an existing HA session and the lhas
sionid has been set.
If the HARESUME bit is set, the FAILOVERSR
bit indicates whether this server is the “primar
(FAILOVERSRV is clear) or a “secondary”
server (FAILOVERSRV is set) in the cluster.
If the failover bit is set, the client is explicitly t
ing the server that it has already attempted an
initial login to the “primary” server for this H
cluster, and is failing over to this, the “second-
ary”
If the redirect bit is set, the client can replace
current server failover information with infor
mation provided by the server via a TDS_EED
message. The client will also, if requested, abo
the current login and connect to a server on t
failover list. Note that the redirect bit is set ind
pendently of the session bit.
If the migrate bit is set, the lhasessionid field
contains the migration identifier instead of a H
session id. It is considered a fatal error if both
TDS_HA_LOG_MIGRATE and
TDS_HA_LOG_RESUME are set.

See the HA negotiated login sequence on page 25

Table 47: Login Record Fields

ield Name Possible Values Description
TDS 5.0 Functional Specification 245 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential

lhas
ME

t-
id.

lsec

lcha e

lcha ld
d.

lset o
FY

ot

lpac i-
it
n
56

lpac s
s

ldum

F

essionid This field is only meaningful if the
TDS_HA_LOG_SESSION and TDS_HA_LOG_RESU
bits, or TDS_HA_LOG_MIGRATE bit are set.
The server will attempt to re-establish an exis
ing session which corresponds to this session

spare Spare fields. Not currently used. Reserved for
secure server.

rset The name of the character set requested by th
client.

rsetlen Length, in bytes, of the lcharset field. If this fie
is 0 the default server character set will be use

charset TDS_NOTIFY(1)
TDS_NO_NOTIFY(0)

This field indicates whether the client wants t
be notified of character set changes. TDS_NOTI
indicates that the client wants to be notified,
TDS_NO_NOTIFY indicates that the client does n
want to be notified.

ketsize This field contains a character array that spec
fies the client’s requested packet size. Each dig
of the requested packet size is represented as a
ASCII character. The minimum packet size is 2
bytes and the maximum is 9999 bytes.

ketsizelen Length, in bytes, of the lpacketsize field. If thi
field is 0, the default packet size of 512 bytes i
used.

my pad the login record structure to a longword

Table 47: Login Record Fields

ield Name Possible Values Description
Version 3.8 246 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
Remote Password Array Format

The lrempw field contains an array of remote server name and user password
pairs. The length of this array is in the lrempwlen field. This field is used when
a server-to-server dialog is established. It is possible for the original client appli-
cation to pass different passwords to different remote servers.

The format of the lrempw array is:

This pattern is repeated once for each remote server/password pair. If the
SrvnameLength is 0, the password which follows is a “universal password” and
will be used for any remote server. If the PasswordLength is 0, it means that the
password is NULL. The total length of the lrempw array is 255 bytes. This limits
the total possible number of server name and password pairs to this length.

See Also

TDS_LOGINACK, TDS_ENVCHANGE

passwordPasswordLength

server nameSrvnameLength
TDS 5.0 Functional Specification 247 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 248 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_LOGINACK

Function

The response to token to a login request.

Syntax

Arguments

 This is the token used to acknowledge a client login
request.

 This is the length, in bytes, of the remaining data stream. It is a
two-byte, unsigned integer.

 The status of the login request. It is a one-byte, unsigned integer.
These are the possible status values.

TDS_LOG_SUCCEED - 5

The login request completed successfully.

TDS_LOG_FAIL - 6

The login request failed. The client must terminate the
dialog and restart to attempt another login request.

TDS_LOG_NEGOTIATE - 7

The server is requesting that the client complete a negoti-
ation before completing the login request. The login
negotiation is done using the TDS_MSG token.

TDS_LOGINACK Length

0xAD

tds version

NameLength program name program version

Status

• • •

TDS_LOGINACK

Length

Status
TDS 5.0 Functional Specification 249 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
For example, if a server uses a double-authentication key
to verify logins the sequence of events would be:

COMMENTS:Note that each TDS_MSG must be followed by a TDS_PARAMFMT/TDS_PARAM se-
quence, even though there are no parameters (paramfmt.#params = 0). This is just how the
CTLib state machine is defined.

 This is the version of TDS that the server is going to use. This
argument is an array of four unsigned, one-byte integers. For example, TDS
version 5.0.0.0 is 0x05000000.

 This is the length of the program name argument. It is a
one-byte, unsigned integer.

 This is the name of the server program. It’s length is in the
NameLength argument.

 This is the version of the server program. This
argument is an array of four unsigned, one-byte integers. For example, SQL
Server version 4.0.2 is 0x04000200.

Comments

• A TDS_LOGINACK token is always returned to the client whether or not the
login attempt has been successful, failed, or is on-going.

• If the login has a status of TDS_LOG_NEGOTIATE, the client and server will
continue to exchange TDS_MSG tokens until the login either succeeds or fails.

Client Server

login packet
TDS_LOGINACK (TDS_LOG_NEGOTIATE)
TDS_MSG (first key)

TDS_MSG (first key)

TDS_LOGINACK (TDS_LOG_NEGOTIATE)
TDS_MSG (second key)

TDS_MSG (second key)

TDS_LOGINACK (TDS_LOG_SUCCEED)

TDS_DONE

TDS_DONE

TDS_DONE

tds version

NameLength

program name

program version
Version 3.8 250 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
• Note that the Interface argument in the data stream has been dropped in
TDS 5.0. It has been replaced by the Status argument.

• With the TDS 5.0 Specification revision, the HA Failover login negotiation
sequence was added. If the HA_SESSION bit is set and the HA_RESUME bit
is clear, then the client is requesting a new HA session. The login negotiation
proceeds as:

• If the HA_SESSION and HA_RESUME bits are both set then the lhases-
sionid field in the login request contains the sessionID of the existing session.

Client Server

TDS_LOGIN(TDS_HA_LOG_SESSION)

TDS_LOGINACK (TDS_LOG_NEGOTIATE)
TDS_MSG (TDS_MSG_HAFAILOVER)

TDS_MSG(TDS_MSG_EMPTY)

TDS_LOGINACK (TDS_LOG_SUCCEED)

TDS_PARAMFMT

TDS_CAPABILITY

TDS_PARAM (TDS_BINARY(6) Session ID)

TDS_DONE

TDS_CAPABILITY

TDS_DONE(FINAL)

The sessionID indicates “this” server if the FAILOVER bit is clear, and indicates the

companion server which this server is an HA secondary server to if it is set.

TDS_PARAMFMT(#Params=0)
TDS_PARAM

Client Server

TDS_LOGIN(TDS_HA_LOG_SESSION|

TDS_LOGINACK (TDS_LOG_SUCCEED)
TDS_CAPABILITY

TDS_CAPABILITY

TDS_DONE(FINAL)

TDS_HA_LOG_RESUME)

Server checks the sessionID with existing HA sessions, and if it is val-
id...
TDS 5.0 Functional Specification 251 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• With revision 3.7 of the TDS 5.0 spec, modifications were made to allow login
redirection. This also modified the behavior of HA logins in that an appli-
cation that set both TDS_HA_LOG_SESSION and TDS_HA_LOG_REDIRECT can
receive, via a TDS_EED token sequence, a list of connection information that
will be used during a failover situation. The possible combinations are
explained in the following examples.

Examples

• In this example the client sets TDS_HA_LOG_REDIRECT, but none of the other TDS_HA_LOG bits.
The server decides to have the client connect to a different host, so it sends TDS_EED with status =
TDS_EED_INFO, the message number set to 1 and TDS_EED_IMMEDIATE_REDIRECT set in the state
field.

• In this example, the client sets TDS_HA_LOG_REDIRECT. The server does not send the redirect mes-
sage and completes the login sequence.

• In this example, the client set TDS_HA_LOG_REDIRECT and TDS_HA_LOG_SESSION. Additionally,

Client Server

TDS_LOGIN(TDS_HA_LOG_REDIRECT)

TDS_EED(REDIRECT|IMMEDIATE_REDIRECT)

TDS_LOGINACK(TDS_LOG_FAIL)

TDS_CAPABILITY

Server checks login information against redirection rules and decides
to force the client to use a different machine.

TDS_PARMFMT(TDS_VARCHAR)
TDS_PARAM(connection information)

Client Server

TDS_LOGIN(TDS_HA_LOG_REDIRECT)

TDS_LOGINACK(TDS_LOG_SUCCEED)

TDS_CAPABILITY

Server checks login information against redirection rules and decides
to continue the login sequence.
Version 3.8 252 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_CAP_CLUSTERFAILOVER is set in the capabilities mask. The server sends TDS_EED with message
set to TDS_REDIRECT, but does not set TDS_EED_IMMEDIATE_REDIRECT. The login continues normal-
ly. Note that if TDS_CAP_CLUSTERFAILOVER had not been set, the server would not have sent the

TDS_EED(REDIRECT) to the client.

See Also

TDS_MSG, login request

Client Server

TDS_LOGINACK(TDS_LOG_SUCCEED)

TDS_CAPABILITY(

Server checks login information against redirection rules and decides
to continue the login sequence after sending current failover information

TDS_LOGIN(TDS_HA_LOG_SESSION|
TDS_LOG_REDIRECT)

TDS_EED(REDIRECT)
TDS_PARMFMT(TDS_VARCHAR)
TDS_PARAM(connection information)

TDS_CAP_CLUSTERFAILOVER)
TDS 5.0 Functional Specification 253 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 254 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_LOGOUT

Function

Client logout request.

Syntax

Arguments

 This token is a client logout request.

 Options is a one-byte, unsigned integer. There are currently no
options defined. This argument must be 0x00.

Comments

• This token is used by a client to logout from the server.

• A TDS_LOGOUT is acknowledged by the server with a TDS_DONE.

Examples

See Also

TDS_LOGOUT

0x71

Options

TDS_LOGOUT

Options
TDS 5.0 Functional Specification 255 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 256 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_MSG

Function

Token to send generic messages between clients and servers.

Syntax

Arguments

 This is token used to send a message to either a client or a
server.

 This is the total length, in bytes, of the remaining data stream. It is
a one-byte, unsigned integer.

 This indicates whether or not the TDS_MSG has TDS_PARAMFMT and
TDS_PARAMS following to describe message arguments. If there are no
arguments then Status is 0x00. If the MSG has arguments then Status
must be TDS_MSG_HASARGS (0x01). Status is a one-byte, unsigned integer.

 This is the id of the message. Ids are two-byte, unsigned integers. Ids
0 through 32,767 are reserved for the CS/I implementation of TDS. The
following ids are reserved:

Table 48: Reserved Message Identifiers

Define Value
Client
Visible

Description

TDS_MSG_SEC_ENCRYPT 1 No Start encrypted login protocol.

TDS_MSG_SEC_LOGPWD 2 No Sending encrypted user password.

TDS_MSG

TDS_PARAMFMT

0xEC

• • • TDS_PARAMS

0xD7

• • •

MsgIdStatus

• • •

If Status = HasArgs

Length

0x65

TDS_MSG

Length

Status

MsgId
TDS 5.0 Functional Specification 257 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_MSG_SEC_REMPWD 3 No Sending remote server passwords.

TDS_MSG_SEC_CHALLENGE 4 No Start challenge/response protocol.

TDS_MSG_SEC_RESPONSE 5 No Returned encrypted challenge.

TDS_MSG_SEC_GETLABEL 6 No Start trusted user login protocol.

TDS_MSG_SEC_LABEL 7 No Return security labels.

TDS_MSG_SQL_TBLNAME 8 Yes CS_MSG_TABLENAME

TDS_MSG_GW_RESERVED 9 No Used by interoperability group.

TDS_MSG_OMNI_CAPABILITIES 10 No Used by OMNI SQL Server.

TDS_MSG_SEC_OPAQUE 11 No Send opaque security token.

TDS_MSG_HAFAILOVER 12 No Used during login to obtain the HA
Session ID

TDS_MSG_EMPTY 13 No Sometimes a MSG response stream
is required by TDS syntax, but the
sender has no real information to
pass. This message type indicates
that the following paramfmt/param
streams are meaningless

TDS_MSG_SEC_ENCRYPT2 14 No Start alternate encrypted password
protocol.

TDS_MSG_SEC_LOGPWD2 15 No Return alternate encrypted pass-
words.

TDS_MSG_SEC_SUP_CIPHER 16 No Returns list of supported ciphers.

TDS_MSG_MIG_REQ 17 Yes Initiate client connection migration
to alternative server via address pro-
vided as message parameter.

Table 48: Reserved Message Identifiers

Define Value
Client
Visible

Description
Version 3.8 258 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
Comments

• The TDS_MSG token is used whenever the client and/or server wish to pass
unstructured messages.

• The TDS_MSG token is used by both the server and client to implement a
negotiated login sequence.

• The TDS_MSG token can be interleaved with other TDS tokens. A TDS_DONE
is not required specifically for the TDS_MSG token. If the TDS_MSG token is
the only token being sent, a TDS_DONE(FINAL) is required.

• Message Ids greater than 32k are reserved by TDS for user applications.

• A TDS_MSG token from a client is acknowledged by the server with a
TDS_DONE token.

• For message token values prior to 14, the CTlib state machine requires that a
TDS_MSG always be followed by a TDS_PARAMFMT, TDS_PARAMS sequence
even if the paramfmt.#params = 0. Note that TDS_PARAMFMT2 cannot be
used instead of TDS_PARAMFMT. This restriction has been removed for newer
versions of CTlib, so when messages with value > 13 are used,
TDS_PARAMFMT should only be sent if TDS_MSG_HASARGS is set.

TDS_MSG_MIG_SYNC 18 No Client sends to acknowledge receipt
of TDS_MSG_MIG_REQ.

TDS_MSG_MIG_CONT 19 Yes Server sends to start actual client
migration to alternate server.

TDS_MSG_MIG_IGN 20 Yes Server sends to abort previous
TDS_MSG_MIG_REQ.

TDS_MSG_MIG_FAIL 21 No Client sends to original server to
indicate that the migration attempt
failed. Optional parameter indicates
failure reason.

Table 48: Reserved Message Identifiers

Define Value
Client
Visible

Description
TDS 5.0 Functional Specification 259 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• Table 49: Opaque Message Types contains the four types of
TDS_MSG_SEC_OPAQUE messages.

• TDS_SEC_SECSESS has five (5) parameters. Parameter 1 is the TDS security
version of type TDS_INTN and has the value 50. Parameter 2 is the security
message type of TDS type TDS_INTN and has the value
TDS_SEC_SECSESS. Parameter 3 is the OID of the security mechanism
being used and is of TDS type TDS_VARBINARY. Parameter 4 is an opaque
security token of type TDS_LONGBINARY. Parameter 5 is the security
services requested and is of type TDS_INTN. These services are a bit mask
with the values in the table Security Services.

Table 49: Opaque Message Types

Define Value Description

TDS_SEC_SECSESS 1 Security session token

TDS_SEC_FORWARD 2 Credential forwarding

TDS_SEC_SIGN 3 Data signature packet

TDS_SEC_OTHER 4 Other security message

Table 50: Security Services

Service Name Value Description Login
Per-

Packet

Network Authentication 0x0001 Client must provide proof of its identity. Yes No

Mutual Authentication 0x0002 Require server to provide proof of its
identity to client in addition to client

providing proof of its identity to server.

Yes No

Delegation 0x0004 Allow server to connect to remote server
using delegated credentials.

Yes No

Integrity 0x0008 Requires Network Authentication. All
data packets to be sent over the network

will generate a signature packet.

No Yes
Version 3.8 260 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
• TDS_SEC_FORWARD has five (5) parameters. Parameter 1 is the TDS security
version of type TDS_INTN and a value of 50. Parameter 2 is the security
message type of type TDS_INTN and a value of TDS_SEC_FORWARD. Parameter
3 is the server name and is type TDS_VARBINARY. Parameter 4 is the channel
bind acceptor address family type and is of type TDS_INTN. Parameter 5 is the
channel bind acceptor bind object and is of type TDS_VARBINARY.

• TDS_SEC_SIGN has four (4) parameters. Parameter 1 is the TDS security
version and is of type TDS_INTN and should have a value of 50. Parameter 2 is
the TDS security message id and is of type TDS_INTN and value
TDS_SEC_SIGN. Parameter 3 is the TDS security mechanism OID and is of
type TDS_VARBINARY. Parameter 4 is the signature as returned by the
security mechanism and if of type TDS_LONGBINARY.

Confidentiality 0x0010 TDS data stream is encrypted. No Yes

Detect Replay 0x0020 Attempts to capture and replay data
packets are detected. This service will

generate a signature packet.

No Yes

Detect Sequence 0x0040 Detect out of order data packets. This
service will generate a signature packet.

No Yes

Data Origin 0x0080 Perform data origin stamping for each
data packet. This service will generate a

signature packet.

No Yes

Channel Binding 0x0100 Both client and server provide a network
channel identifier consisting of the net-
work addresses of both the client and

server to the security mechanism.

Yes No

Reserved 0x0200

Reserved 0x0400

Table 50: Security Services

Service Name Value Description Login
Per-

Packet
TDS 5.0 Functional Specification 261 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• TDS_MSG_SEC_ENCRYPT2 is followed by two parameters, a TDS_INT4 and a
TDS_VARBINARY. The TDS_VARBINARY is the server key to use to encrypt the
client password. The TDS_INT4 indicates which cipher suite to use to do the
encryption. The valid values are from the TLS Protocol specification, with
the provision that the only cipher that part that is important is the processing
of the asymmetric cipher. Should dynamic session encryption be added in
the future, the information would also be passed via this token.

• TDS_MSG_SEC_LOGPWD2 is followed by one or more encrypted passwords.
The first parameter is a TDS_VARBINARY containing the encrypted user
password. The subsequent parameters are pairs of
TDS_VARCHAR/TDS_VARBINARY representing remote servers and encrytped
passwords.

• TDS_MSG_SEC_SUP_CIPHER is followed by on or more TDS_INT4 parameters
indicating what cipher suites the client supports. The values are from the TLS
v1 specification. This message is usually sent in response to a
TDS_MSG_SEC_ENCRYPT2 message that uses a cipher suite that the client does
not support.

• Connection migration is viewed as an interruption in the normal TDS
processing stream. A server can initiate migration at any time. A more
detailed explanation of the migration process is contained in the intro-
ductory material for TDS.

• TDS_MSG_MIG_xxx tokens can only be sent in a TDS buffer type of
TDS_BUF_MIGRATE.

• TDS_MSG_MIG_REQ is used by a server to initiate a client migration request.
This request will have a parameter list of addresses formatted as login
redirection address are. This list is a server ordered list. See TDS_EED
comments on page 220 for more information on how individual parameters
look. Note that the server is allowed to send the TDS_MSG_MIG_REQ to a client
and then close down the connection. It is expected that the server will
generally implement a timer to wait for the client to send a
TDS_MSG_MIG_SYNC before doing so, but this is not required (e.g., powerfail
signal received and the operating system is shutting down.) In this case, the
client is expected to detect the connection close error, read the buffered
migration information, and attempt to connect to the first server it can.
Should this connection attempt fail, the client would then report a normal
network connection failure.
Version 3.8 262 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
• TDS_MSG_MIG_SYNC is sent by a client after receiving TDS_MSG_MIG_REQ
from the server. Once TDS_MSG_MIG_SYNC is sent, the client cannot send
anything else to the server prior to receiving TDS_MSG_MIG_CONT or
TDS_MSG_MIG_IGN except an attention or TDS_LOGOUT.

• TDS_MSG_MIG_CONT is sent by a server to the client at any time after the
server receives TDS_MSG_MIG_SYNC. Upon receiving this token, the client
will connect to the first server in the parameter list provided by
TDS_MSG_MIG_REQ that it can. After successfully completing the connection
to the new server, the client closes the current session and resumes reading
the TDS data stream.

• TDS_MSG_MIG_IGN is sent by a server to cancel a previous
TDS_MSG_MIG_SYNC. The TDS_BUF_MIGRATE packet can contain a
TDS_MSG_MIG_IGN followed immediately by TDS_MSG_MIG_REQ.

• TDS_MSG_MIG_FAIL is sent by a client to the server that sent the
TDS_MSG_MIG_CONT should a migration attempt fail. This message may have
a parameter which the server is free to ignore. The parameter should indicate
why the migration failed. The client does not have to send the parameter. The
protocol for dealing with this parameter is not defined yet.

Examples

See Also

TDS_LOGINACK, TDS_PARAMFMT, TDS_PARAMS
TDS 5.0 Functional Specification 263 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 264 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
Message Buffer Header

Function

Describes the buffer header used by messages.

Syntax

Arguments

 This one-byte unsigned integer defines the buffer type. The
types are:

Table 51: Buffer Types

Define Value Description

TDS_BUF_LANG 1 The buffer contains a language command. TDS does
not specify the syntax of the language command.

TDS_BUF_LOGIN 2 The buffer contains a login record

TDS_BUF_RPC 3 The buffer contains a remote procedure call com-
mand.

TDS_BUF_RESPONSE 4 The buffer contains the response to a command.

TDS_BUF_UNFMT 5 The buffer contains raw unformatted data.

TDS_BUF_ATTN 6 The buffer contains a non-expedited attention
request.

TDS_BUF_BULK 7 The buffer contains bulk binary data.

TDS_BUF_SETUP 8 A protocol request to setup another logical channel.
This buffer is a header only and does not contain any
data.

TDS_BUF_CLOSE 9 A protocol request to close a logical channel.This
buffer is a header only and does not contain any data.

MsgType LengthStatus Channel Packet # Window

MsgType
TDS 5.0 Functional Specification 265 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_BUF_ERROR 10 A resource error was detected while attempting to
setup or use a logical channel. This buffer is a header
only and does not contain any data.

TDS_BUF_PROTACK 11 A protocol acknowledgment associated with the logi-
cal channel windowing protocol. This buffer is a
header only and does not contain any data.

TDS_BUF_ECHO 12 A protocol request to echo the data contained in the
buffer.

TDS_BUF_LOGOUT 13 A protocol request to logout an active logical channel.
This buffer is a header only and does not contain any
data.

TDS_BUF_ENDPARAM 14 What is this???

TDS_BUF_NORMAL 15 This packet contains a tokenized TDS request or
response.

TDS_BUF_URGENT 16 This packet contains an urgent tokenized TDS request
or response.

TDS_BUF_MIGRATE 17 This packet contains a migration protocol message.
Currently these are only TDS_MSG tokens.

TDS_BUF_CMDSEQ_NORM
AL

24 SQL Anywhere CMDSEQ protocol

TDS_BUF_CMDSEQ_LOGI
N

25 SQL Anywhere CMDSEQ protocol

TDS_BUF_CMDSEQ_LIVEN
ESS

26 SQL Anywhere CMDSEQ protocol

TDS_BUF_CMDSEQ_RESER
VED1

27 SQL Anywhere CMDSEQ protocol

TDS_BUF_CMDSEQ_RESEV
ERD2

28 SQL Anywhere CMDSEQ protocol

Table 51: Buffer Types

Define Value Description
Version 3.8 266 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
 This is a bit field used to indicate the message status. Status is a
one-byte unsigned integer.

 Length is the size of the buffer including the eight bytes in the
buffer header. It is the number of bytes from the start of this header to the
start of the next buffer header. For example, if there are 504 bytes of data
in the buffer, Length will be 512. Length is a two-byte, unsigned integer.
Regardless of the hardware architecture of either the server or the client,
Length is represented by <MSB, LSB>. The most significant byte is first,
followed by the least significant byte.

 This is the channel number of the logical dialog. It is used for
multiplexing dialogs across the same physical connection. If multiplexing
is not being used Channel must be set to 0. Channel is a two-byte,
unsigned integer. Regardless of the hardware architecture of either the
server or the client, Channel is represented by <MSB, LSB>. The most
significant byte is first, followed by the least significant byte.

 This is used for numbering buffers that contain data in addition
to the buffer header. It is only significant when multiplexing. Each time a
data buffer is sent the value of Packet is incremented, modulo 256.
Packet is a one-byte, unsigned integer.

Table 52: Status Values

Define Value Description

TDS_BUFSTAT_EOM 0x01 This is the last buffer in a request or a response.

TDS_BUFSTAT_ATTNACK 0x02 This is an acknowledgment to the last received atten-
tion.

TDS_BUFSTAT_ATTN 0x04 This is an attention request buffer.

TDS_BUFSTAT_EVENT 0x08 This is an event notification buffer.

TDS_BUFSTAT_SEAL 0x10 The buffer is encrypted

TDS_BUFSTAT_ENCRYPT 0x20 The buffer is encrypted (SQL Anywhere CMDSEQ
protocol)

Status

Length

Channel

Packet #
TDS 5.0 Functional Specification 267 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is used to control the number of buffers which will be sent
before an acknowledgment is received. Acknowledgments are sent using
TDS_BUF_PROTACK type buffers. The receiving side defines its buffering
limit, which it reports in the Window field of each TDS_BUF_PROTACK
buffer and in the TDS_BUF_SETUP buffer. A TDS_BUF_SETUP buffer must
always be acknowledged immediately so that the site that initiated the
dialog can be informed of the window size it uses. The sending side
cannot send a buffer if the receiving side has not acknowledged enough
buffers and might have to buffer more than its window size. Window is a
one-byte, unsigned integer. If not multiplexing, window size must be set
to 0.

Comments

• Requests and responses between clients and servers are passed in buffers.
Every buffer has a message buffer header which describes the buffer’s type,
length, and status information.

• Clients and servers send logical messages to each other. A logical message
may consist of multiple buffers. The last buffer in a logical message has the
EOM bit set in the Status field.

• All multi-byte fields in the message buffer header are in a fixed byte and bit
order. The two-byte integers are represented by <MSB,LSB> which matches
the data representation used by the 68000 but is reverse of the 80x86 and
the VAX. The most significant byte is first, followed by the least significant
byte.

• Packets with TDS_BUFSTAT_SEAL set are interpreted differently. The packet
is formed by taking the data section of the packet and encrypting it. If the
resultant packet size plus two (2) bytes will not fit in the negotiated packet
size, the encrypted data is split across as many TDS PDUs as are needed to
transfer the packet. The first two (2) bytes after the Message Header of the
first packet give the number of bytes in network byte order <MSB,LSB>
that make up the encrypted data.

Window
Version 3.8 268 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
Examples

To send a request that is 1500 bytes long the headers sent look like:

504 bytes of SQL command

504 bytes of SQL command

492 bytes of SQL command

1 5120 0 0 0

1 5120 0 0 0

1 5001 0 0 0
TDS 5.0 Functional Specification 269 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 270 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_OFFSET

Function

Returns the offset of the specified keyword in the language command buffer.

Syntax

Arguments

 This is the token for keyword offset information.

 This is the keyword to which the Offset applies. This argument
is a two-byte, unsigned integer. The following keywords are supported:

TDS_OFF_SELECT - 0x016D

TDS_OFF_FROM - 0x014F

TDS_OFF_ORDER - 0x0165

TDS_OFF_COMPUTE - 0x0139

TDS_OFF_TABLE - 0x0173

TDS_OFF_PROC - 0x016A

TDS_OFF_STMT - 0x01CB

TDS_OFF_PARAM - 0x01C4

 This is the offset into the command buffer where Keyword
begins. The first byte in a command buffer is byte number 0. Offset is a
two-byte, unsigned integer.

TDS_OFFSET Keyword Offset

0x78

TDS_OFFSET

Keyword

Offset
TDS 5.0 Functional Specification 271 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Comments

• This token is used to tell a client where a particular key word appears in a
command buffer. This allows a client to use a server to perform primitive
parsing. For example, if a client wants to know each place in a command
buffer the keyword from appears the information can be returned via this
token.

• The appropriate language option must be set for offsets to be returned.

Examples

See Also

TDS_OPTIONCMD
Version 3.8 272 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_OPTIONCMD

Function

Clear, set, and report on options.

Syntax

Arguments

 This is the token used to get, set, or clear options.

 This is the length, in bytes, of the remaining data stream for this
token. It is a two-byte, unsigned integer.

 This is the option. It is a one-byte, unsigned integer. The
possible Commands are:

 The option being manipulated by this option command. A
complete list of all supported options is below. Option is a one-byte,
unsigned integer.

Table 53: Option Commands

Command Value Description

TDS_OPT_SET 1 Set an option.

TDS_OPT_DEFAULT 2 Set option to its default value.

TDS_OPT_LIST 3 Request current setting of a specific
option.

TDS_OPT_INFO 4 Report current setting of a specific option.

TDS_OPTIONCMD Length

option arg

Command

ArgLength

0xA6

Option

• • •

TDS_OPTIONCMD

Length

Command

Option
TDS 5.0 Functional Specification 273 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This defines the length, in bytes, of the following option arg.
It is an unsigned one-byte integer.

 This is the parameter that applies to the option listed in
Option. The format of this argument is based on the option. See the table
below. The length of this argument is in the ArgLength argument.

Comments

• This is the token used by both the client and server to set, clear, check, or
return information about options.

• A Command to TDS_OPT_SET must specify the option being set in Option.
The value to set it to must be sent in OptionArg. Arglength must be set
correctly for OptionArg.

• A Command of TDS_OPT_DEFAULT must specify the option to set to the
server’s default in the Option argument. ArgLength must be set to 0.

• A Command of TDS_OPT_LIST must specify the option on which infor-
mation is being requested in the Option argument. ArgLength must be set to
0.

• A Command of TDS_OPT_SET or TDS_OPT_DEFAULT is acknowledged with a
TDS_DONE(FINAL). The error bit is set in the TDS_DONE if the option request
was not processed successfully.

• The TDS_OPT_LIST command is acknowledged by a server using the
TD_OPT_INFO command. The TDS_OPT_INFO command contains the option
specified in the TDS_OPT_LIST command in Option, and the current value of
this option in OptionArg. ArgLength must be set correctly for OptionArg.
A TDS_DONE(FINAL) is also sent following the TDS_OPT_LIST token.

• There is no way to request a server to return the values for all known options.

• A complete list of all supported options is:

Table 54: Supported Options

Name Value Description

TDS_OPT_UNUSED 0 Used to specify no option.

TDS_OPT_DATEFIRST 1 Set first day of week.

ArgLength

option arg
Version 3.8 274 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_OPT_TEXTSIZE 2 Set maximum text size.

TDS_OPT_STAT_TIME 3 Return server time statistics.

TDS_OPT_STAT_IO 4 Return server I/O statistics.

TDS_OPT_ROWCOUNT 5 Set maximum row count to return.

TDS_OPT_NATLANG 6 Change national language.

TDS_OPT_DATEFORMAT 7 Set date format.

TDS_OPT_ISOLATION 8 Transaction isolation level.

TDS_OPT_AUTHON 9 Set authority level on.

TDS_OPT_CHARSET 10 Change character set.

TDS_OPT_SHOWPLAN 13 Show execution plan.

TDS_OPT_NOEXEC 14 Do not execute query.

TDS_OPT_ARITHIGNOREON 15 Set arithmetic exception handling.

TDS_OPT_ARITHABORTON 17 Set arithmetic abort handling.

TDS_OPT_PARSEONLY 18 Parse the query only. Return error messages.

TDS_OPT_GETDATA 20 Return trigger data.

TDS_OPT_NOCOUNT 21 Do not return done count.

TDS_OPT_FORCEPLAN 23 Forces substitution order for joins in the order
of the tables provided in this option.

TDS_OPT_FORMATONLY 24 Send format information only.

TDS_OPT_CHAINXACTS 25 Set chained transaction mode.

TDS_OPT_CURCLOSEONXACT 26 Close all open cursors at end of transaction.

TDS_OPT_FIPSFLAG 27 Enable FIPs flagging.

Table 54: Supported Options

Name Value Description
TDS 5.0 Functional Specification 275 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_OPT_RESTREES 28 Return resolution trees.

TDS_OPT_IDENTITYON 29 Turn on explicit identity.

TDS_OPT_CURREAD 30 Set session label @@curread.

TDS_OPT_CURWRITE 31 Set session label @@curwrite.

TDS_OPT_IDENTITYOFF 32 Turn off explicit identity.

TDS_OPT_AUTHOFF 33 Turn authority off.

TDS_OPT_ANSINULL 34 Support ANSI null data.

TDS_OPT_QUOTED_IDENT 35 Quoted identifiers.

TDS_OPT_ANSIPERM 36 Check permissions on search columns for
update clause.

TDS_OPT_STR_RTRUNC 37 ANSI string right trunc.

TDS_OPT_SORTMERGE 38 Set Sort-Merge for session.

TDS_OPT_JTC 39 Set JTC for session

TDS_OPT_CLIENTREALNAME 40 Set Client Real Name

TDS_OPT_CLIENTHOSTNAME 41 Set Client Host Name

TDS_OPT_CLIENTAPPLNAME 42 Set Client Application Name

TDS_OPT_IDENTITYUPD_ON 43 Turn on explicit update identity on table

TDS_OPT_IDENTITYUPD_OFF 44 Turn off explicit update identity on table

TDS_OPT_NODATA 45 Turn on/off “nodata”option

TDS_OPT_CIPHERTEXT 46 Turn on/off ciphertext (column encryption)

TDS_OPT_SHOW_FI 47 Expose Functional Indexes

TDS_OPT_HIDE_VCC 48 Hide/Show Virtual Computed Columns

Table 54: Supported Options

Name Value Description
Version 3.8 276 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
• The table below summarizes the option arguments. It includes the defined
argument length and defined values for the option value.

Table 55: Option Arguments

Name
Argument
Length

Option Argument

TDS_OPT_DATEFIRST 1 byte TDS_OPT_MONDAY(1)
TDS_OPT_TUESDAY(2)
TDS_OPT_WEDNESDAY(3)
TDS_OPT_THURSDAY(4)
TDS_OPT_FRIDAY(5)
TDS_OPT_SATURDAY(6)
TDS_OPT_SUNDAY(7)

TDS_OPT_TEXTSIZE 4 bytes Size in bytes. XDR is performed on this
field.

TDS_OPT_STAT_TIME 1 byte Boolean

TDS_OPT_STAT_IO 1 byte Boolean

TDS_OPT_ROWCOUNT 4 bytes Number of rows. XDR is performed on
this field.

TDS_OPT_NATLANG Arg
length

National language string (7 bit ASCII).

TDS_OPT_DATEFORMAT 1 byte TDS_OPT_FMTMDY(1)
TDS_OPT_FMTDMY(2)
TDS_OPT_FMTYMD(3)
TDS_OPT_FMTYDM(4)
TDS_OPT_FMTMYD(5)
TDS_OPT_FMTDYM(6)

TDS_OPT_ISOLATION 1 byte TDS_OPT_LEVEL0(0)
TDS_OPT_LEVEL1(1)
TDS_OPT_LEVEL2(2)
TDS_OPT_LEVEL3(3)

TDS_OPT_AUTHON Arg
length

Authorization level string (7 bit ASCII).
TDS 5.0 Functional Specification 277 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
TDS_OPT_CHARSET Arg
length

Character set string (7 bit ASCII).

TDS_OPT_SHOWPLAN 1 byte Boolean

TDS_OPT_NOEXEC 1 byte Boolean

TDS_OPT_ARITHIGNOREON 4 bytes TDS_OPT_ARITHOVERFLOW(0x01)
TDS_OPT_NUMERICTRUNC(0x02)

TDS_OPT_ARITHABORTON 4 bytes TDS_OPT_ARITHOVERFLOW(0x01)
TDS_OPT_NUMERICTRUNC(0x02)

TDS_OPT_PARSEONLY 1 byte Boolean

TDS_OPT_GETDATA 1 byte Boolean

TDS_OPT_NOCOUNT 1 byte Boolean

TDS_OPT_FORCEPLAN 1 byte Boolean

TDS_OPT_FORMATONLY 1 byte Boolean

TDS_OPT_CHAINXACTS 1byte Boolean

TDS_OPT_CURCLOSEONXACT 1 byte Boolean

TDS_OPT_FIPSFLAG 1 byte Boolean

TDS_OPT_RESTREES 1 byte Boolean

TDS_OPT_IDENTITYON Arg
length

Table name string.

TDS_OPT_CURREAD Arg
length

Read label string (7 bit ASCII).

TDS_OPT_CURWRITE Arg
length

Write label string (7 bit ASCII).

Table 55: Option Arguments

Name
Argument
Length

Option Argument
Version 3.8 278 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_OPT_IDENTITYOFF Arg
length

Table name string.

TDS_OPT_AUTHOFF Arg
length

Authorization level string (7 bit ASCII).

TDS_OPT_ANSINULL 1 byte Boolean

TDS_OPT_QUOTED_IDENT 1 byte Boolean

TDS_OPT_ANSIPERM 1 byte Boolean

TDS_OPT_STR_RTRUNC 1 byte Boolean

TDS_OPT_SORTMERGE 1 byte Boolean

TDS_OPT_JTC 1 byte Boolean

TDS_OPT_CLIENTREALNAME Arg
length

Client name string (7 bit ASCII)

TDS_OPT_CLIENTHOSTNAME Arg
length

Client host name string (7 bit ASCII)

TDS_OPT_CLIENTAPPLNAME Arg
length

Client appl name string (7 bit ASCII)

TDS_OPT_IDENTIFYUPD_ON Arg
length

Table name string.

TDS_OPT_IDENTIFYUPD_OFF Arg
length

Table name string.

TDS_OPT_NODATA 1 byte Boolean

TDS_OPT_CIPHERTEXT 1 byte Boolean

TDS_OPT_SHOW_FI 1 byte Boolean

TDS_OPT_HIDE_VCC 1 byte Boolean

Table 55: Option Arguments

Name
Argument
Length

Option Argument
TDS 5.0 Functional Specification 279 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• Boolean option arguments are sent using TDS_OPT_FALSE(0) and
TDS_OPT_TRUE(1).

• Older servers may expect that tablename arguments be 7-bit ASCII.

• Note that clients do not need to enforce any 7-bit ASCII restrictions.

Examples

See Also

TDS_CAPABILITY
Version 3.8 280 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_ORDERBY

Function

Describes the columns in an “order by” clause of a select.

Syntax

Arguments

 This is the token that indicates that this is column
order information.

 This is the number of columns in the order-by clause. This
argument is a two-byte, unsigned integer.

 This is the number of column that is in the order-by clause.
The first column in the select list is number 1. For example, in the statement:

select empid, lastname, firstname
from employees

order by lastname, firstname
the order-by columns are columns 2 and 3. This argument is a one-byte
unsigned integer.

Comments

• This token is used to describe the columns in an order-by clause of a select
list.

• There will always be a least one column # defined by a TDS_ORDERBY token.

Example

See Also

TDS_ORDERBY # Columns column #

0xA9 repeat for each column

TDS_ORDERBY

Columns

column #
TDS 5.0 Functional Specification 281 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 282 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_ORDERBY2

Function

Describes the columns in an “order by” clause of a select.

Syntax

Arguments

 This is the token that indicates that this is column
order information.

 This 4 byte integer indicates the length of the remaining stream.

 This is the number of columns in the order-by clause. This
argument is a two-byte, unsigned integer.

 This is the number of column that is in the order-by clause.
The first column in the select list is number 1. For example, in the statement:

select empid, lastname, firstname
from employees

order by lastname, firstname
the order-by columns are columns 2 and 3. This argument is a two-byte
unsigned integer.

Comments

• This token is identical is use to the TDS_ORDERBY token, but has was intro-
duced to support > 255 columns in the result set.

• The TDS_ORDERBY token does not include a separate Length field since the
column# information was being expressed as 1-byte integers - thus the
#Columns value correctly indicates the remaining length of the token and
was not repeated.

TDS_ORDERBY2

0x22
repeat for each column

Columns column #Length

TDS_ORDERBY2

Length

Columns

column #
TDS 5.0 Functional Specification 283 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• Servers should only return this token if the TDS_ORDERBY2 Response
Capability bit is true - otherwise the client does not know this token (added
in version 3.4 of this specification).

Example

See Also
Version 3.8 284 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_PARAMFMT

Function

The token describing the data type, length, and status of TDS_PARAMS data.

Syntax

Arguments

 This is the command token used to describe parameter
data.

 This length specifies the number of bytes remaining in the datas-
tream. It is an unsigned, two-byte integer.

 This argument specifies the number of parameters being
described. It is an unsigned, two-byte integer.

 This is the length of the parameter name which follows.
Since parameter names may be NULL, NameLength may be 0. If
NameLength is 0, no param name argument follows. NameLength is a
one-byte, unsigned integer.

TDS_PARAMFMT

0xEC

Length param nameNameLength

Status user type DataType Length

1, 2 or 4 bytes

• • • Precision Scale

repeat everything but the Length and #Params for each parameter

#Params

LocaleLen locale info• • • ClassIDClassIDLen

TDS_PARAMFMT

Length

#Params

NameLength
TDS 5.0 Functional Specification 285 Version 3.6

TDS 5.0 Reference Pages Sybase Confidential
 This is the name of the parameter being described. It’s length
is described by the preceding parameter. Parameter names are optional.

 This field is used to describe any non-datatype characteristics of
the data. For example, when remote procedure calls use TDS_PARAMFMT to
describe their parameters’ format, the TDS_PARAM_RETURN status marks a
parameter as an output parameter, i.e., passed by reference, in effect. Status
is a one-byte, unsigned integer. The valid status bits and values are:

 This is the user-defined data type of the parameter. It is a
signed, four-byte integer.

 This is the datatype of the data. It is a one-byte unsigned
integer. Datatypes which are fixed, standard length (1, 2, 4, or 8 bytes) are
represented by a single datatype byte and have no Length parameter
following. The text and image datatypes are not currently supported as
parameter datatypes.* DataType is a one-byte, unsigned integer.

The rest of the fields in the repeating datatype descriptions are as described in the Format description for
the corresponding DataType see section on page 167

Table 56: Valid Status Values

Name Value Description

TDS_PARAM_RETURN 0x01 This is a return parameter. It is like a parameter
passed by reference.

TDS_PARAM_COLUMNSTATUS 0x08 This parameter will have a columnstatus byte
in its corresponding TDS_PARAM token. Note
that it will be a protocol error for this bit to be
set when the TDS_DATA_COLUMNSTATUS
capability bit is off.

TDS_PARAM_NULLALLOWED 0x20 This parameter can be NULL

*

param name

Status

user type

DataType
Version 3.8 286 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
 This is the maximum length, in bytes, of DataType. It is a one-byte
unsigned integer or a four-byte, signed integer. The size of Length depends
on the DataType. If the preceding DataType is a fixed length datatype of
standard length, e.g., int1, int2, datetime, etc., there is no Length argument.

This is the precision associated with numeric and decimal
data types. It is only in the data stream if the parameter is a numeric or
decimal data type.

This is the scale associated with numeric and decimal data
types. It is only in the data stream if the parameter is a numeric or decimal
data type.

 This is the length of the localization information, if any,
which follows. It is a one-byte, unsigned integer which may be 0. If the
length is 0, no localization information follows.

 This is the localization information for the parameter. It is
character string whose length is given by LocaleLen.

 This is the 2-byte length of the ClassID, if any, which follows.
This length field is only present if the DataType is TDS_BLOB.

 This is the class identification information for BLOB types.
Its length in bytes is given by the preceding ClassIDLen value. If
ClassIDLen is missing because this is not a TDS_BLOB data format, or if
ClassIDLen is 0, then this field is absent.

Comments

• This is the token used to provide a description of data. It is just like the old
TDS_COLNAME and TDS_COLFMT tokens except that it provides a parameter
name and Status for each DataType.

• This token is used to describe TDS_PARAMS data. Parameter data is sent with
parameterized cursor declares, opens, and updates as well as for parameter
language statements and messages.

• It is illegal to send a TDS_PARAMFMT data stream with zero parameters.

Length

Precision

Scale

LocaleLen

locale info

ClassIDLen

ClassID
TDS 5.0 Functional Specification 287 Version 3.6

TDS 5.0 Reference Pages Sybase Confidential
• Each parameter must be described in a TDS_PARAMFMT data stream. Only
one parameter can be sent for each TDS_PARAMFMT description. For
example, it is illegal to send a TDS_PARAMFMT that contains a description of
two parameters, and then send multiple TDS_PARAMS data streams, each
with two parameters. Each parameter sent from a client or server in a
TDS_PARAMS data stream must be preceded by a description in a
TDS_PARAMFMT data stream.

• The TDS_PARAMFMT token has exactly the same format as the TDS_ROWFMT
token. Two tokens are used to provide state information. The formats will
remain the same so that client and server code used to encode and decode the
tokens can be the same.

• The TDS_PARAMFMT/PARAMS tokens are used to send return parameters to a
client if the TDS_RES_NOPARAM capability bit is false.

Examples

See Also

TDS Datatypes, TDS_PARAMFMT2, TDS_ROW, TDS_ROWFMT, TDS_ROWFMT2,

TDS_PARAMS
Version 3.8 288 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_PARAMFMT2

Function

The token describing the data type, length, and status of TDS_PARAMS data.

It is idential to the TDS_PARAMFMT token except that the length field is 4 bytes
long (to accomodate a greater number of parameters in/out) and the Status field
has been expanded to 4 bytes (status bits were nearly used up).

Syntax

Arguments

 This is the command token used to describe parameter
data.

 This length specifies the number of bytes remaining in the datas-
tream. It is an unsigned, four-byte integer.

Refer to the TDS_PARAMFMT token for further documentation of fields.

TDS_PARAMFMT

0x20

param nameNameLength

user type DataType Length

1, 2 or 4 bytes

• • • Precision Scale

repeat everything but the Length and #Params for each parameter

#Params

LocaleLen locale info• • • ClassIDClassIDLen

Length

Status

TDS_PARAMFMT2

Length
TDS 5.0 Functional Specification 289 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 290 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_PARAMS

Function

The token for parameter data.

Syntax

Arguments

 This is the command token to send parameter data.

 This byte is present only when the following two conditions
have been met: The first is that the client and server have negotiated
through the TDS_DATA_COLUMNSTATUS and
TDS_DATA_NOCOLUMNSTATUS capability bits that the client can send
columnstatus bytes to the server. And secondly, the PARAMFMT token for
this parameter has the TDS_PARAM_COLUMNSTATUS status bit set.
For more information on the columnstatus byte, please see the chapter on
datatypes.

 This is the actual, as opposed to maximum, data length, in
bytes, of the parameter data If the parameter data is a fixed length data type
of standard length, e.g., ints, floats, datetimes, then there is no Length
argument. Length is either a one-byte, unsigned integer, an unsigned, two-
byte integer, or a signed, four-byte integer. The size of Length depends on
the data types of the data.

 This is the actual data for the parameter. Its length, if variable,
is indicated by the preceding Length argument. It is in the format specified
by the client in the login request. The server always does any translation so
that the client receives data in its native format.*

* See previous note.

TDS_PARAMS

0xD7

Length parameter

1, 2 or 4 bytes

repeat for each

columnstatus

optional

TDS_PARAMS

columnstatus

Length

parameter
TDS 5.0 Functional Specification 291 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Comments

• This is the token that contains the parameter data described by a preceding
TDS_PARAMFMT data stream.

• A TDS_PARAMS token consists of Length and parameter pairs, one for each
parameter described by a preceding TDS_PARAMFMT token. The Length
component doesn’t appear if the data is a fixed data type of standard length,
e.g., INT2, MONEY, DATETIME, etc. If the data type allows nulls then the data
will always be preceded by a Length argument. Fixed length datatypes that
are not of a standard length, e.g., CHAR and BINARY are also preceded by a
Length.

• The TDS_PARAMS token has exactly the same format as the TDS_ROW and
TDS_KEY tokens. Three tokens are used for the same data stream to provide
data stream state information. The formats will remain the same so that client
and server code used to encode and decode the data streams can be the same.

• The TDS_PARAMS token may appear repeatedly after a TDS_PARAMFMT
token. A TDS_DONE must be sent after all the TDS_PARAM tokens for a
particular TDS_PARAMFMT.

Examples

See Also

TDS_PARAMFMT, TDS_ROW, TDS_KEY
Version 3.8 292 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_RPC

Function

Describes the data stream which contains a remote procedure call request. This
token is obsolete.

Syntax

Arguments

 This is the command token to send an RPC request.

 This is the length, in bytes, of the remaining TDS_RPC data
stream. It is a two-byte, unsigned integer.

 This is length, in bytes, of the RPC name. It is a one-byte,
unsigned integer.

 This is the name of the RPC. Its length, in bytes, is given by the
preceding argument.

TDS_RPC

0xE0

Length NameLen rpc name Options

param nameNameLen Status

DataType

ActualLen

• • •

MaxLen
repeat for • • •

each param

param data

Precision Scale

1, 2, or 4 bytes

• • •

1, 2, or 4 bytes

TDS_RPC

Length

NameLen

rpc name
TDS 5.0 Functional Specification 293 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is a bit mask which contains options related to the RPC. The
mask is a two-byte, unsigned integer. The defined options are:

 This the length, in bytes, of the parameter name. It may be 0.
The argument is a one-byte, unsigned integer.

 This the parameter name. Its length, in bytes, is given by the
preceding argument. If NameLen is 0, the param name argument will not
be included in the data stream.

 This is a one-byte, unsigned integer which is used as a bit field. It
indicates any special status for the particular parameter being described.
The possible Status values are:

Table 57: RPC Option Values

Name Value Description

TDS_RPC_UNUSED 0x0000 Option argument is not used.

TDS_RPC_RECOMPILE 0x0001 Recompile the RPC before execution.

Table 58: Status Field Values

Name Value Description

TDS_RPC_STATUS_UNUSED 0x00 The statuss argument is not used.

TDS_RPC_OUTPUT 0x01 This value of this parameter will be returned to the cli-
ent. It may contain an original value, but it may be
changed. Return parameters are returned using the
TDS_RETURNVALUE token.

TDS_RPC_NODEF 0x02 This indicates that there is no default value for this
parameter. The value of this parameter is undefined.
This bit is only valid with TDS_RPC_OUTPUT.

Options

NameLen

param name

Status
Version 3.8 294 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
 This is the data type of the parameter and is a one-byte
unsigned integer. Datatypes which are fixed, standard length (1, 2, 4, or 8
bytes) are represented by a single data type byte and have no Maxlen or
ActualLen parameters following. Variable data types are followed by a
length which gives the maximum length, in bytes, for the data type.

 This is the maximum length, in bytes, of the preceding
DataType. The size of MaxLen depends on the data type. If the preceding
DataType is a fixed length data type of standard length, e.g., int1, int2,
datetime, etc., there is no MaxLen argument.

This is the precision associated with numeric and decimal
data types. It is only in the data stream if the parameter is a numeric or
decimal data type.

This is the scale associated with numeric and decimal data
types. It is only in the data stream if the parameter is a numeric or decimal
data type.

 This is the actual length, in bytes, of the following param
data field. The size of ActualLen depends on the data type.* If the
preceding DataType is a fixed length data type of standard length, e.g.,
int1, int2, datetime, etc., there is no ActualLen argument.

 This is the actual parameter data. Its length, if variable, is
indicated by the preceding ActualLen argument. It is in the native format
of the client machine. For example, if the client is running on a SUN and
the server on a VAX, the representation of the INT4 data type has
different byte ordering. The server always does any byte swapping so that
the client receives the data in native format.

Comments

• This token is used by a client to make an RPC request to a server.

• Currently, only one TDS_RPC token per request is allowed.

• RPC return parameters for the TDS_RPC token are returned using the
TDS_RETURNVALUE token.

*. See previous note.

DataType

MaxLen

Precision

Scale

ActualLen

param data
TDS 5.0 Functional Specification 295 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• Note that the total length of the RPC information is limited to 64k-1. Because
of this, this token has been replaced by the TDS_DBRPC token. It should not be
used in any new products.

• The TDS_RPC token should be used by clients only if the TDS_REQ_PARAM
capability bit is false.

Examples

See Also

TDS_RETURNVALUE, TDS_DBRPC.
Version 3.8 296 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_RETURNSTATUS

Function

Describes the token which is used to return status information to a client.

Syntax

Arguments

 This is the token used to return status infor-
mation.

 This is the value of the return status. It is a four-byte, signed
integer. Note that the value may not be null; that is, it must be present in
the datastream.

Comments

• This is the token that is used to return a status code to a client.

• When a remote procedure call is executed on a server, a return status value
may be returned.

• Only one TDS_RETURNSTATUS per RPC is allowed.

Examples

See Also

TDS_RETURNVALUE

TDS_RETURNSTATUS

0x79

value

TDS_RETURNSTATUS

value
TDS 5.0 Functional Specification 297 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 298 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_RETURNVALUE

Function

Return parameter information to a client.

Syntax

Arguments

 This is the token that indicates that is used to return
parameter information to a client.

 This is the length, in bytes, of the remaining TDS_RETURNVALUE
data stream. It is a two-byte, unsigned integer.

 This is length, in bytes, of the name, if any, of the return
parameter. It is a one-byte, unsigned integer.

 This is the name of the return parameter. Its length, in bytes, is
given by the preceding argument. If NameLen is 0, then the param name
field is omitted from the data stream.

TDS_RETURNVALUE

0xAC

param nameNameLen

Status DataType

Precision

• • •

MaxLen• • • Scale

UserType

Length

ActualLen• • • data

1, 2, or 4 bytes

1, 2, or 4 bytes

TDS_RETURNVALUE

Length

NameLen

param name
TDS 5.0 Functional Specification 299 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is a one-byte, unsigned integer which is used as a bit field. It
indicates any special status for the particular parameter being described.
The possible Status values are:

 This is the user-defined data type, if any, for the returned
value. It is a signed, four-byte integer. If there is no UserType for return
value UserType will be 0.

 This is the datatype of the return value and is a one-byte
unsigned integer. Datatypes which are fixed, standard length (1, 2, 4, or 8
bytes) are represented by a single datatype byte and have no Maxlen or
Actual Len arguments following. Variable datatypes are followed by a
length which gives the maximum length, in bytes, for the datatype.

 This is the maximum length, in bytes, of the preceding
DataType. The size of MaxLen depends on the data type. If the preceding
DataType is a fixed length data type of standard length, e.g., int1, int2,
datetime, etc., there is no MaxLen argument in this data stream.

This is the precision associated with numeric and decimal
data types. It is only in the data stream if the parameter is a numeric or
decimal data type.

Table 59: Status Values

Name Value Description

TDS_PARAM_UNUSED 0x00 The status field is not used.

TDS_PARAM_RETURN 0x01 This indicates that the return value was origi-
nally sent to the server as an output parame-
ter in an RPC.

TDS_FUNC_RET 0x02 This indicates that the return value is non-
integral. When set, the parameter name
length should be 0 and the subsequent data
information should be treated as the RPC
return value.

Status

UserType

DataType

MaxLen

Precision
Version 3.8 300 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
This is the scale associated with numeric and decimal data
types. It is only in the data stream if the parameter is a numeric or decimal
data type.

 This is the actual length, in bytes, of the following param
data argument. The size of ActualLen depends on the data type. If the
preceding DataType is a fixed length datatype of standard length, e.g.,
int1, int2, datetime, etc., there is no ActualLen argument in this data
stream.

 This is the actual data for the parameter. Its length, if variable, is
indicated by the preceding ActualLen argument. It is in the native format
of the client machine. For example, if the client is running on a SUN and
the server on a VAX, the representation of the INT4 data type has
different byte ordering. The server always does any byte swapping so that
the client receives the data in native format.

Comments

• This is the token that is used by a server to return a value to the client.

• When remote procedure calls (stored procedures) are executed, the param-
eters may be designated as output or return parameters. This data stream is
used to return a description of the return parameter and the value of the
return parameter to the client application.

• There may be multiple return values per RPC. There is a separate
TDS_RETURNVALUE data stream for each parameter returned.

• Return parameters are sent in the order in which they were defined in the
procedure.

• The MaxLen and ActualLen components don’t appear if the return value is
a fixed data type of standard length, e.g., INT2, MONEY, DATETIME. Param-
eters that are fixed length data types that are not of a standard length, e.g.,
CHAR and BINARY include MaxLen and ActualLen.

• The TDS_RETURNVALUE data stream limits the total length of return param-
eters to 64K-1. Because of this restriction this token has been replaced with
the TDS_PARAMFMT/PARAMS tokens to return parameters to a client.

• The TDS_RETURNVALUE token should only be used to return parameters to
a client if the TDS_RES_NOPARAM capability bit is true.

Scale

ActualLen

 data
TDS 5.0 Functional Specification 301 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
• This token is obsolete for most uses and should only be used when an RPC
return value is not an integer.

Examples

See Also

TDS_RPC
Version 3.8 302 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_ROW

Function

A row of data.

Syntax

Arguments

 This is the token that is used to send row data.

 This byte is present only when the following two conditions
have been met: The first is that the client and server have negotiated
through the TDS_DATA_COLUMNSTATUS and
TDS_DATA_NOCOLUMNSTATUS capability bits that the server can
send columnstatus bytes to the client. And secondly, the ROWFMT token for
this column has the TDS_ROW_COLUMNSTATUS status bit set. For
more information on the columnstatus byte, please see the chapter on
datatypes.

 This is the actual, as opposed to maximum, data length, in bytes,
of the following data. If the following column data is a fixed length data
type of standard length, e.g., ints, floats, datetimes, then there is no Length
argument. Length is either a one-byte, unsigned integer, an unsigned, two-
byte integer, or a signed, four-byte integer. The size of Length depends on
the data type of the data.

 This is the actual data for the column data. Its length, if variable,
is indicated by the preceding Length argument. It is in the format
specified in the login record of the client request. The server always does
any translation so that the client receives data in its expected format.

TDS_ROW

0xD1

Length data

0, 1, or 4 bytes

repeat for each column

columnstatus

optional

TDS_ROW

columnstatus

Length

data
TDS 5.0 Functional Specification 303 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Comments

• This is the token that contains the data for one row.

• A TDS_ROWFMT token was used to describe the data sent in the TDS_ROW
token.

• A TDS_ROW token consists of Length and data pairs, one for each column
described by a preceding TDS_ROWFMT token. The Length argument
doesn’t appear if the data is a fixed length data type of standard length, e.g.,
INT2, MONEY, DATETIME, etc. If the data type allows nulls then the data will
always be preceded by a Length argument. Fixed length data types that are
not of a standard length, e.g., CHAR and BINARY are also preceded by a
Length.

• The TDS_ROW token has exactly the same format as the TDS_PARAMS and
TDS_KEY tokens.

• A separate TDS_ROW token is used for each row in a result set.

Examples

See Also

TDS_ROWFMT, TDS_ROWFMT2
Version 3.8 304 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_ROWFMT

Function

The token for describing the data type, length, and status of row data.

Syntax

Arguments

 This is the token used to send a description of row data.

 This length specifies the number of bytes remaining in the data
stream. It is an unsigned, two-byte integer.

 This argument contains the number of columns which are being
described. It is an unsigned, two-byte integer.

 This is the length of the column name which follows. Since
column names may be NULL, ColLength may be 0. If ColLength is 0, no col
name argument follows. ColLength is a one-byte unsigned integer.

 This is the name of the column being described. It’s length is
described by the preceding parameter. Column names are optional.

TDS_ROWFMT Length

0xEE

Status user type DataType Length

0, 1, or 4 bytes

column nameNameLength

• • •

LocaleLen locale info

Cols

repeat for each column

Precision Scale

• • • ClassIDLen ClassID

TDS_ROWFMT

Length

#Cols

NameLength

col name
TDS 5.0 Functional Specification 305 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This field is used to describe any non-datatype characteristics for
the data. A column may have more than one status bit set. Status is an
unsigned, one-byte integer. The valid values are:

Table 60: Valid Status Values

Name Value Description

TDS_ROW_HIDDEN 0x01 This is a hidden column. It was not listed in
the target list of the select statement. Hidden
fields are often used to pass key information
back to a client. For example: select a, b from
table T where columns b and c are the key col-
umns. Columns a, b, and c may be returned
and c would have a status of
TDS_ROW_HIDDEN|TDS_ROW_KEY.

TDS_ROW_KEY 0x02 This indicates that this column is a key.

TDS_ROW_VERSION 0x04 This column is part of the version key for a
row. It is used when updating rows through
cursors.

TDS_ROW_COLUMNSTATUS 0x08 All rows in this column will contain the col-
umnstatus byte. Note that it will be a protocol
error to set this bit if the
TDS_DATA_COLUMNSTATUS capability
bit is off.

TDS_ROW_UPDATABLE 0x10 This column is updatable. It is used with cur-
sors.

TDS_ROW_NULLALLOWED 0x20 This column allows nulls.

TDS_ROW_IDENTITY 0x40 This column is an identity column.

TDS_ROW_PADCHAR 0x80 This column has been padded with blank
characters.

Status
Version 3.8 306 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
 This is the user-defined data type of the data. It is a signed,
four-byte integer.

 This is the data type of the data and is a one-byte unsigned
integer. Datatypes which are fixed, standard length (1, 2, 4, or 8 bytes) are
represented by a single data type byte and have no Length argument.
Variable data types are followed by a length which gives the maximum
length, in bytes, for the datatype.

The rest of the fields in the repeating datatype descriptions are as described in the Format description for
the corresponding DataType see section on page 167

 This is the maximum length, in bytes, of DataType. The size of
Length depends on the data type. If the preceding DataType is a fixed
length data type of standard length, e.g., int1, int2, datetime, etc., there is no
Length argument. It the preceding type is text or image, then the format is
a four-byte length argument, followed by a two-byte object name length,
and finally the object name.

This is the precision associated with numeric and decimal
data types. It is only in the data stream if the column is a numeric or
decimal data type.

This is the scale associated with numeric and decimal data
types. It is only in the data stream if the column is a numeric or decimal
data type.

 This is the length of the localization information which
follows. It is a one-byte, unsigned integer which may be 0. If the length is 0,
no localization information follows.

 This is the localization information for the column. It is
character string whose length is given by LocaleLen.

 This is the 2-byte length of the ClassID, if any, which follows.
This length field is only present if the DataType is TDS_BLOB.

user type

DataType

Length

Precision

Scale

LocaleLen

locale info

ClassIDLen
TDS 5.0 Functional Specification 307 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is the class identification information for BLOB types.
Its length in bytes is given by the preceding ClassIDLen value. If
ClassIDLen is missing because this is not a TDS_BLOB data format, or if
ClassIDLen is 0, then this field is absent.

Comments

• This is the token used to provide a description of data. It is just like the old
TDS_COLNAME and TDS_COLFMT tokens except that it provides the column
name and Status argument for each DataType.

• This data stream is used to describe TDS_ROW data sent in response to a non-
cursor or cursor select.

• The information in TDS_ROWFMT is used to decode the TDS_ROW token.

• The TDS_ROWFMT token has exactly the same format as the TDS_PARAMFMT
token. Two tokens are used for the same data stream in order to provide state
information. The formats will remain the same so that client and server code
used to encode and decode the tokens can be the same.

• The TDS_COLNAME and TDS_COLFMT tokens are no longer supported with
TDS 5.0.

Examples

See Also

TDS Datatypes, TDS_ROWFMT2, TDS_ROW, TDS_PARAMFMT

ClassID
Version 3.8 308 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_ROWFMT2

Function

The token for describing the data type, length, and status of row data.

Syntax

Arguments

 This is the token used to send a description of row data.

 This length specifies the number of bytes remaining in the data
stream. It is an unsigned, four-byte integer.

 This argument contains the number of columns which are being
described. It is an unsigned, two-byte integer.

To describe the next 10 arguments we will look at an example. Suppose that from the pubs2 data-
base one issued the following query:

SELECT au_fname AS “FIRST NAME” FROM dbo.authors

TDS_ROWFMT2

0x61

user type DataType Length

0, 1, or 4 bytes

catalog nameCatalogLen

• • •

LocaleLen locale info

Cols

repeat for each column

Precision Scale

• • • ClassIDLen ClassID

table nameTableLen column nameColumnLen

 schema nameSchemaLen

column labelLabelLenLength

Status

• • •

• • •

TDS_ROWFMT2

Length

#Cols
TDS 5.0 Functional Specification 309 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is the length of the column label which follows. Since
column labels may be NULL, LabelLength may be 0. If LabelLength is 0,
no column label argument follows. LabelLength is a one-byte unsigned
integer.

 This is the name of the column being described. It’s length is
described by the preceding parameter. Column labels are optional. In the
example above this value would be “FIRST NAME”, and the LabelLen value
would be 10.

 This is the length of the catalog name which follows. If
CatalogLength is 0, the catalog name field will be absent. It is an unsigned
one-byte unsigned integer.

 This is the name of the catalog (database) that the table with
this column is in. In the example above this value would be “pubs2” and the
CatalogLength value would be 5.

 This is the length of the schema name which follows. If it is
0, no schema name argument follows. It is a one-byte unsigned integer.

 This is the name of the schema (owner) of the table
containing the column being described. In the example above this value
would be “dbo”, and the SchemaLength value would be 3.

 This is the length of the table name which follows. It is a
one-byte unsigned integer.

 This is the name of the table containing the column being
described. In the example above this value would be “authors”, and the
TableLength value would be 7.

 This is the length of the column name which follows. It is a
one-byte unsigned integer.

 This is the actual name of the column being described. In the
example above this value would be “au_fname”, and the ColumnLen value
would be 8.

LabelLen

column label

CatalogLen

catalog name

SchemaLen

schema name

TableLen

table name

ColumnLen

column name
Version 3.8 310 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
 This field is used to describe any non-datatype characteristics for
the data. A column may have more than one status bit set. Status is an
unsigned, four-byte bit field. The valid values are:

Table 61: Valid Status Values

Name Value Description

TDS_ROW_HIDDEN 0x01 This is a hidden column. It was not listed in
the target list of the select statement. Hidden
fields are often used to pass key information
back to a client. For example: select a, b from
table T where columns b and c are the key col-
umns. Columns a, b, and c may be returned
and c would have a status of
TDS_ROW_HIDDEN|TDS_ROW_KEY.

TDS_ROW_KEY 0x02 This indicates that this column is a key.

TDS_ROW_VERSION 0x04 This column is part of the version key for a
row. It is used when updating rows through
cursors.

TDS_ROW_COLUMNSTATUS 0x08 All rows in this column will contain the col-
umnstatus byte. Note that it will be a protocol
error to set this bit if the
TDS_DATA_COLUMNSTATUS capability
bit is off.

TDS_ROW_UPDATABLE 0x10 This column is updatable. It is used with cur-
sors.

TDS_ROW_NULLALLOWED 0x20 This column allows nulls.

TDS_ROW_IDENTITY 0x40 This column is an identity column.

TDS_ROW_PADCHAR 0x80 This column has been padded with blank
characters.

Status
TDS 5.0 Functional Specification 311 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
 This is the user-defined data type of the data. It is a signed,
four-byte integer.

 This is the data type of the data and is a one-byte unsigned
integer. Datatypes which are fixed, standard length (1, 2, 4, or 8 bytes) are
represented by a single data type byte and have no Length argument.
Variable data types are followed by a length which gives the maximum
length, in bytes, for the datatype.

The rest of the fields in the repeating datatype descriptions are as described in the Format description for
the corresponding DataType see section on page 167

 This is the maximum length, in bytes, of DataType. The size of
Length depends on the data type. If the preceding DataType is a fixed
length data type of standard length, e.g., int1, int2, datetime, etc., there is no
Length argument. It the preceding type is text or image, then the format is
a four-byte length argument, followed by a two-byte object name length,
and finally the object name.

This is the precision associated with numeric and decimal
data types. It is only in the data stream if the column is a numeric or
decimal data type.

This is the scale associated with numeric and decimal data
types. It is only in the data stream if the column is a numeric or decimal
data type.

 This is the length of the localization information which
follows. It is a one-byte, unsigned integer which may be 0. If the length is 0,
no localization information follows.

 This is the localization information for the column. It is
character string whose length is given by LocaleLen.

 This is the 2-byte length of the ClassID, if any, which follows.
This length field is only present if the DataType is TDS_BLOB.

user type

DataType

Length

Precision

Scale

LocaleLen

locale info

ClassIDLen
Version 3.8 312 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
 This is the class identification information for BLOB types.
Its length in bytes is given by the preceding ClassIDLen value. If
ClassIDLen is missing because this is not a TDS_BLOB data format, or if
ClassIDLen is 0, then this field is absent.

Comments

It is much like the TDS_ROWFMT token, with the following changes

- The Length field is 4 bytes long to allow for wider tables

- The Status byte has been expanded to 4 bytes (most of the original 8 bits
had been used up).

- Additional namelen/name pairs have been added to complete the
description of each column. The data contained in TDS_ROWFMT contains
only a single “column name” field. That value would be set to the “alias”
from the select query (select column AS alias ...) if the AS clause or T/SQL
equivalent were used. If there was no alias then the value would be the
actual name of the column in the table being selected. If the column is the
result of an expression and there is no alias, then the value was returned as
NULL. With TDS_ROWFMT2 this information has been enhanced as
{catalog, schema, table, column-name, column-label}. Addition of this
information makes it possible to implement JDBC and ODBC standards
compliant client software.

♦ The “column name” field from TDS_ROWFMT has changed names to “column label”.
The new item called “column name” in TDS_ROWFMT2 corresponds to the under-
lying column name if there is one. Any of these 5 fields may be left empty (but every
attempt should be made to fill them in correctly for the sake of standards
compliance).

• This data stream is used to describe TDS_ROW data sent in response to a non-
cursor or cursor select.

• The information in TDS_ROWFMT2 is used to decode the TDS_ROW token.

ClassID
TDS 5.0 Functional Specification 313 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Examples

See Also

TDS Datatypes, TDS_ROW, TDS_ROWFMT, TDS_PARAMFMT, TDS_PARAMFMT2
Version 3.8 314 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages
TDS_TABNAME

Function

The datastream for naming tables referenced in a result set.

Syntax

Arguments

 This is the token used to send table names.

 This is the total length of the remaining TDS_TABNAME data
stream. It is a two-byte, unsigned integer.

 This is the length, in bytes, of the name of a table.

 This is the table name. It’s length is given by the preceding
argument.

Comments

• This is the token sent by a server to the client when it wishes to list the tables
that are referenced in a result set. The name of each table which has columns
in the select list will be returned using this token.

• Views names are never returned, only the underlying table names.

• This token is always preceded by a TDS_ROWFMT token. It is always followed
by a TDS_COLINFO token.

• This token is only used for browse mode.

Examples

See Also

TDS_ROWFMT, TDS_COLINFO

TDS_TABNAME

0xA4 repeat for each table name

Length NameLength table name

TDS_TABNAME

Length

NameLength

table name
TDS 5.0 Functional Specification 315 Version 3.8

TDS 5.0 Reference Pages Sybase Confidential
Version 3.8 316 TDS 5.0 Functional Specification

	Introduction
	Features for 5.0
	Canceling Operations
	Event Notifications
	Examples
	Example - TDS token Scrollable Cursor Operations (scrollable example 1)
	Example - TDS token Scrollable Cursor Operations (scrollable example 2)
	Example - TDS token Scrollable Cursor Operations (scrollable example 3)
	Example - TDS token Scrollable Cursor Operations (scrollable example 4)
	Note:
	Example - Language-based Cursor Operations
	Identity Columns
	Security Support
	Cluster Support
	TDS 5.0 Reference Pages
	TDS_ALTFMT
	TDS_ALTFMT2
	TDS_ALTNAME
	TDS_ALTROW
	TDS_ALTROW2
	TDS_CAPABILITY
	TDS_COLINFO
	TDS_COLINFO2
	TDS_CONTROL
	TDS_CURCLOSE
	TDS_CURDECLARE
	TDS_CURDECLARE2
	TDS_CURDECLARE3
	TDS_CURDELETE
	TDS_CURFETCH
	TDS_CURINFO
	TDS_CURINFO2
	TDS_CURINFO3
	TDS_CUROPEN
	TDS_CURUPDATE
	TDS Datatypes
	TDS_DBRPC
	TDS_DBRPC2
	TDS_DONE
	TDS_DONEPROC, TDS_DONEINPROC
	TDS_DYNAMIC
	TDS_DYNAMIC2
	TDS_EED
	TDS_ENVCHANGE
	TDS_ERROR
	TDS_EVENTNOTICE
	TDS_INFO
	TDS_KEY
	TDS_LANGUAGE
	Login Record
	TDS_LOGINACK
	TDS_LOGOUT
	TDS_MSG
	Message Buffer Header
	TDS_OFFSET
	TDS_OPTIONCMD
	TDS_ORDERBY
	TDS_ORDERBY2
	TDS_PARAMFMT
	TDS_PARAMFMT2
	TDS_PARAMS
	TDS_RPC
	TDS_RETURNSTATUS
	TDS_RETURNVALUE
	TDS_ROW
	TDS_ROWFMT
	TDS_ROWFMT2
	TDS_TABNAME

