
TTable Of Contentable Of Contentss
1. Introduction

2. Configuring Your Environment

3. Laying Out a Symfony Application

4. Working With Phing

5. Deployments

6. Designing MajorAuth

7. Building the MajorAuth API

8. Building the MajorAuth Admin

9. Wrap Up

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

IntroductionIntroduction
Thank you for reading Advanced Web Applications! You are reading

this book not only because you want to become more familiar with

the PHP framework Symfony, but also because you want to gain a list

of skills you can directly apply to a wide variety of web development

tasks. Not only will this book show you how to use Symfony at an

expert level, but you will learn how to configure a production server,

develop Symfony applications on a team, secure your server with

SSL, SSH, and iptables, deploy your code without downtimes, and

many more advanced topics.

About MeAbout Me
My name is Vic Cherubini and I have been programming for the web

since 1999. I was fortunate to grow up in an environment that

fostered a passion for computers: my father owns a software company

in Houston, TX. I was thirteen years old when the web really started

to become popular in 1997 and I spent countless hours at my father's

office bugging the other developers to teach me HTML.

In 1999 I finally picked up some Perl, and quickly moved into

learning PHP. Understanding PHP opened up a whole new world of

opportunities for me. Finally, I had an easy to understand

programming language that could connect to a database! It was quite

earth shattering.

The last fourteen years have taught me a lot. I consider myself an

expert level developer, and my goal with this book is to make you a

2

better programmer. As for my official credentials, I have a Bachelors

of Science in Computer Science from the University of Texas at

Dallas. I started programming PHP in 1999 and have had a job doing

that in one form or another since then.

I currently live in Dallas, TX and run a small software consulting

company, Bright March, fulltime. We have built a variety of web

applications, almost entirely in Symfony. With each application, my

knowledge of Symfony has become stronger, and I am finally at a

point where I feel comfortable writing this book. I have helped author

other technical books in the past; this is the first commercial book I

have authored entirely — with plenty of help, naturally.

It is my sincere hope that you become not only an expert level

Symfony developer by the conclusion of this book, but also that you

become a well rounded engineer that has the ability to handle any

problem thrown their way.

About YouAbout You
This book is aimed at the Symfony or PHP developer that wants to

become a better, more well-rounded programmer. Many pieces of this

book will not be only about Symfony. Thus, you should have a solid

grasp on PHP already. You should be relatively comfortable from the

command line, and I highly recommend you have a Unix based

computer to work on (however, we will be using Vagrant to create a

normalized development environment).

3

http://brightmarch.com

Additionally, you should have a basic understanding of how Model-

View Controller (MVC) frameworks work (don't worry as much

about Object Relational Mappers (ORM) — we'll discuss Doctrine in

depth). Ideally you are aware of how Symfony is set up; even better if

you have already installed and started to tinker with it. While you can

certainly gain a lot from this book without having a Symfony project

under your belt, there may be some areas where the Symfony

documentation explains a basic subject in more detail (for example,

understanding what a Bundle is, or their default directory structure).

SSample Symfony Applicample Symfony Applicaationstions
Symfony2 — Symfony throughout the rest of the book unless noted

otherwise — was released on July 28, 2011. The company I worked for

at the time had several Symfony 1.0 and 1.4 applications in production

(and was committed to using Symfony in the future), so I decided to

give Symfony a shot for a side project. Before using Symfony, I

preferred to write my own frameworks. Like many PHP developers,

I always felt using a mainstream framework meant my application

was going to be slow. To date I have written three separate MVC

frameworks (Artisan System, Jolt), and Kin, and one ORM

(DataModeler).

Writing my own MVC frameworks certainly taught me a lot on how

frameworks are structured, so I do not consider the time I put in

wasted effort, but in the end, it is always a much better idea to use a

popular framework when the application suites it.

4

While I was certainly productive using my own frameworks, they

would always be missing something. Even though I understood

everything under the hood, development ended up taking longer

because I would have to implement some piece of boilerplate code.

Symfony was a breath of fresh air for me. It handled a tremendous

amount of boilerplate code very well, and made development happen

at a rapid pace. Symfony is also useful at multiple levels of PHP

expertise. Junior developers can use it knowing it takes care of a lot of

complex tasks, and more senior developers can take advantage of all

of the different configuration options it offers.

By introducing the Bundle system, Symfony finally made library and

code reuse easy and intuitive. Combine the Bundle system with

Composer and Packagist, and you have a very robust environment for

building complex applications without duplicating code.

The first Symfony application I built was quite complex. It handled

moving thousands of e-commerce order data a day to different

warehouses using a REST API. That initial project used Resque,

Redis, PostgreSQL, a Ruby program named God, and of course PHP. I

was able to thoroughly test it with PHPUnit and it performed very,

very well. I was really proud of my work and impressed with what

Symfony could do.

From there, I went on to build several other REST APIs using an

open source bundle I wrote. Eventually, I started converting all of

Bright March's projects from my custom frameworks to Symfony with

great success. It was during these transitions that I was able to hone

5

how to configure, build, and deploy a Symfony application. The

majority of this book will be taught using that knowledge.

When Not To UWhen Not To Use Symfonyse Symfony
As I mentioned previously, Symfony is an amazing framework when

the application suites it. When does using Symfony (or any

framework for that matter) not make sense? There are a few

situations.

Small ApplicSmall Applicaationtion
Symfony is a large, complex framework. If your application is very

small, you do not need database access, or it will not be in production

a long time, Symfony is probably not a good choice. A small PHP

script or static HTML can serve your needs just fine.

AbAbsolute Performancesolute Performance
If you need a dynamic application where performance is paramount

above all else, then you might look into writing it in "raw" PHP — or

ditching PHP altogether and using a faster language like Java, C++, or

Go.

6

In a previous job, we had a very small API that delivered a small

XML payload to millions of Android phones running our software

alerting them if an update was available. Each request used exactly

two database queries, and each payload was around 400 bytes in size.

We served around 540,000,000 requests a month using a very small

API written using "raw" PHP.

No Control Over Production EnvironmentNo Control Over Production Environment
Using Symfony on a managed server or hosting environment that you

do not control entirely is not something I would advise. This means

your "unlimited" host you pay almost no money for is not suited for

running a Symfony application. You need root access to the

production machine. However, Symfony works great in a virtualized

environment. In fact, all Bright March's applications are hosted using

virtual machines. And of course, Symfony works wonderful if you

own or control the hardware it runs on too.

MajorAMajorAuthuth
The application you will build throughout this book is named

MajorAuth. Within Bright March, we have a whole series of projects

that start with the prefix "Major" and this is one of them.

MajorAuth is a user management as a service REST API. MajorAuth

is similar (though less feature-filled) to the services Mozilla Persona,

Stormpath, and Authy (among many others).

Imagine you manage ten e-commerce sites and each of them has their

own authentication and user management code. You discover a bug in

7

that code which means that you have to go around to each

implementation and fix the bug. MajorAuth fixes that by storing all

account data in one central location. Each site makes HTTP requests

to the API to manage users and perform authentication. If a bug with

authentication were to pop-up, you would only have to fix it in one

place rather than all ten.

This book will take you through building a MajorAuth clone from

scratch. Each chapter will build upon the previous so by the end of the

book you have a complete application you can put into production. It

is highly recommended you read each chapter sequentially.

MajorAuth comes with two main components: the REST API and

admin panel. The REST API is an HTTP API that primarily uses

JSON as the content type, and the admin panel is a basic HTML

frontend that allows you to manage account data visually.

Even if the MajorAuth product does not solve an immediate problem

of yours, the skills you will learn during its development throughout

this book will make you a better programmer.

Large Code SLarge Code Sampleampless
We will be going through a lot of code in this book. Large code

samples do not lend themselves well to traditional print layouts. To

remedy this, a link to a GitHub Gist will be used. This gives us the

added benefit that readers of the book can comment on the code.

Additionally, its history will be automatically preserved by GitHub so

you can watch as it progresses with multiple versions of the book.

8

Code samples to GitHub Gists are hyperlinks in the PDF and HTML

versions of this book and will resemble the style below.

https://gist.github.com/leftnode/6367991

Lets get started!

9

https://gist.github.com/leftnode/6367991

Configuring Your EnvironmentConfiguring Your Environment
It is time to get started! The very first thing we must do is to ensure

you have a capable environment to develop in.

To do this, we are going to use a piece of software named Vagrant to

normalize your environment and my environment. This way, we

guarantee they are identical and issues of "it works on my machine!"

will be minimized.

Vagrant is a simple yet incredibly useful piece of software.

Essentially, it is a command line wrapper to a virtual machine

hypervisor (VirtualBox by default) and it allows you to provision a

new virtual machine with a pre-configured list of software very

easily.

Vagrant has completely changed how we work at Bright March.

Previously, using a combination of Homebrew and manually

compiling software, I would configure my computer and then try to

get Neil, my co-founder, to do the same — usually with dismal results.

Some library or binary would always end up missing or incorrect.

10

However, with Vagrant, I was able to write a shell script that

completely provisioned a virtual machine for us. That script is stored

as part of the configuration files for the project we are working on.

With a single command, we can both launch an identical virtual

machine ready for development.

Configuring the HoConfiguring the Hosstt
Before we start setting up Symfony and Vagrant, we need to ensure

that your host machine is configured properly. Fortunately, this is

simple and only requires that you have a very basic version of PHP

5.5 installed on your host machine.

WindoWindowwss
If you are running Windows, you can install PHP 5.5 using the

installer from http://windows.php.net/download/#php-5.5.

LinuxLinux
If you are running a Linux distribution, you may have to manually

compile PHP 5.5 because it is not available in any package manager

yet. Fortunately, you only need a basic set of modules: openssl, curl,

simplexml, xml, and phar.

The following commands will install PHP 5.5 from source on Ubuntu

Linux. They assume you have already downloaded and extracted the

PHP 5.5 archive and are located in its root directory as the root user.

11

http://windows.php.net/download/#php-5.5

$ apt-get update
$ apt-get install -y build-essential libssl-dev openssl \

curl libxml2-utils libxml2 libxml2-dev libxslt1-dev \
libcurl4-openssl-dev libmcrypt4 libmcrypt-dev

$./configure --with-openssl --with-zlib --with-curl \
--enable-zip --with-xmlrpc --enable-sockets \
--with-mcrypt --enable-mbstring --with-libxml-dir

$ make && make install

Mac OMac OS XS X
The easiest way to install PHP 5.5 on OS X is to use the wonderful

tool Homebrew. If you do not already have Homebrew installed, visit

http://brew.sh and install it using the directions on the website. After

you have it installed, you can install PHP 5.5.

$ brew update
$ brew tap josegonzalez/homebrew-php
$ brew install php55 php55-http php55-mcrypt

The Homebrew maintainers took the PHP formula out of the main
Homebrew repositories, which is why you must tap josegonzalez/homebrew-

php first.

InsInsttalling Valling Vagragrantant
Installing Vagrant is a very easy and straightforward process

regardless of your environment. However, before you install Vagrant

you will need to install VirtualBox first. VirtualBox is a virtual

machine hypervisor; it provisions and manages the actual virtual

machines. Many people use VirtualBox from a GUI and do not realize

the GUI is simply a nice wrapper for several command line utilities.

12

http://brew.sh

Vagrant takes advantage of these utilities and provides a nice

command line interface for them.

To install VirtualBox, navigate to https://www.virtualbox.org and

install the binary appropriate for your host system.

Installing Vagrant is equally as simple as installing VirtualBox. To

install Vagrant, navigate to http://downloads.vagrantup.com and

install the latest available version for your operating system. This

book will use Vagrant 1.2.7.

Great, now you are ready to install Symfony.

InsInsttalling Symfonyalling Symfony
The best and easiest way to install Symfony is through Composer.

Composer gives you fine-grained control over what packages are

installed. Composer is a relatively new package manager for PHP.

Unquestionably, it is one of the tools PHP needed to be competitive

with Ruby and Python (which both have great package managers).

Like many things with PHP, Composer package files are a bit more

verbose than Ruby or Python package manager files, but they also

give you a lot more control.

Composer uses a composer.json and composer.lock file to indicate

what packages and what versions of those packages your application

uses. Unsurprisingly, composer.json is a JSON file that describes your

project.

13

https://www.virtualbox.org
http://downloads.vagrantup.com

To install Symfony, we must first install Composer. You installed PHP

to ensure that Composer would work on your host system. After we

install Composer and Symfony, we will have Vagrant take over and

do the rest of the project configuration on the virtual machine.

Keeping all of my projects organized on my host machine is important to me.
I generally create a Sites directory in my home directory and put my projects

in there.

InsInsttalling Compoalling Composerser
Composer is simple to install. The Composer installation, by default,

gives you a nicely packaged binary file, composer.phar, to work with.

First, Navigate to http://getcomposer.org/download/ and run the

command to install the composer.phar file in the root of the directory

you are going to store your projects in. For example, I installed

composer.phar in my ~/Sites/ directory.

#!/usr/bin/env php
All settings correct for using Composer
Downloading...

Composer successfully installed to: /Users/vcherubini/Sites/composer.phar
Use it: php composer.phar

As the installation suggests, run php composer.phar to ensure that

Composer was installed successfully.

14

http://getcomposer.org/download/

$ php composer.phar

/ ____/___ ____ ___ ____ ____ ________ _____

/ / / __ \/ __ `__ \/ __ \/ __ \/ ___/ _ \/ ___/
/ /___/ /_/ / / / / / / /_/ / /_/ (__) __/ /
____/____/_/ /_/ /_/ .___/____/____/___/_/

/_/
Composer version ef072ff8c008f35d90fe3460608bdb1365a8d7a7

...

InsInsttalling Symfonyalling Symfony
You are now ready to install Symfony. Assuming you are in the

directory you store your projects in, run the following command to

install Symfony.

php composer.phar create-project symfony/framework-standard-edition MajorAuth 2.3.3

Composer will create a directory named MajorAuth and install

Symfony in there. During the installation process, you may be asked

to enter some application settings and database credentials. You can

simply press Enter to ignore these as we will not be using that method

to manage Symfony parameters at all.

Creating the "app/config/parameters.yml" file.
Some parameters are missing. Please provide them.
database_driver (pdo_mysql):
database_host (127.0.0.1):
database_port (null):
database_name (symfony):
database_user (root):
database_password (null):
mailer_transport (smtp):
mailer_host (127.0.0.1):
mailer_user (null):
mailer_password (null):
locale (en):
secret (ThisTokenIsNotSoSecretChangeIt):

15

Navigate into the directory you installed Symfony in, and test that

Symfony was installed properly by running the command php app/

console.

$ php app/console

Symfony version 2.3.3 - app/dev/debug

Usage:
[options] command [arguments]

...

Great! Symfony is now installed properly.

RemoRemoving the Cruftving the Cruft
Now that Symfony is properly installed, it is time to clean it up and

get it ready to work on. These steps could certainly be scripted, but we

will go through them one by one so that you will understand exactly

what is happening.

The very first thing we want to do is get everything managed by

source control. The examples shown will use Git, but migrating them

to your favorite version control system should be pretty trivial. To

start, we want to ignore some files so they are never commited to Git.

Open a .gitignore file in the root of your project, and add the

following lines.

16

/web/bundles/
/app/bootstrap.php.cache
/app/cache/*
/app/config/build.settings
/app/config/parameters.yml
/app/logs/*
/app/SymfonyRequirements.php
!app/cache/.gitkeep
!app/logs/.gitkeep
/build/
/bin/
/config/phing
/log/
/vendor/
nohup.out
composer.phar
phpunit.phar
REVISION
tmp
.sass-cache
*.swp
.DS_Store
.vagrant

We will eventually cover why all of these files are ignored.

It is essential that you ignore the vendor directory. This directory is

created by Composer and contains all of the code that makes up

Symfony and all of the libraries you use, so you definitely do not want

it committed to your project. Additionally, we ignore a lot of dotfiles

that will not be used or are created by the operating system, and

finally we ignore the parameters.yml and build.settings files which

will hold production credentials and run-time parameters. We

definitely do not want to ever commit any credentials, API keys, or

configuration data to source control!

In addition to being a security vulnerability (if your code is stolen or

lost, you could potentially expose your production settings), it makes

17

working on a team more difficult. While we will do our best to

normalize the development environments using Vagrant, it is still

best to allow for all configuration values to easily change if necessary.

This makes updating your code to work with new services easy as

well.

Commit the .gitignore file, and then add the rest of the files not

covered under .gitignore to your project. The src directory will

contain the bulk of your files, which makes sense: it is where your

Bundles and code are stored.

Next, you can remove several files that are not necessary for your

project.

• .travis.yml

• LICENSE

• README.md

• UPGRADE-2.2.md

• UPGRADE-2.3.md

• UPGRADE.md

• app/config/parameters.yml.dist

RemoRemoving Incenteevving Incenteev
The final administration task we will want to do is to remove the

Incenteev library that Symfony 2.3 installs by default. This is the

library that asks for your input when installing a new version of

Symfony. We will use Phing to build our parameters.yml file from a

18

template and settings file, and thus do not want any interaction while

building our development (and eventually production) environment.

To completely remove the Incenteev library, open up the

composer.json file and remove the requires line that includes this

library.

"incenteev/composer-parameter-handler": "~2.0"

Don't forget to remove the trailing comma after "sensio/generator-bundle":

"2.3.*" so that your JSON file remains valid.

Next, remove the lines in both the post-install-cmd and post-

update-cmd sections that run Incenteev after Composer is finished

updating.

"Incenteev\\ParameterHandler\\ScriptHandler::buildParameters",

And finally, remove the complete incenteev-parameters block in the

extra section.

"incenteev-parameters": {
"file": "app/config/parameters.yml"

},

Your final composer.json file should look like the file outlined below.

https://gist.github.com/leftnode/6367991

19

https://gist.github.com/leftnode/6367991

Now that Incenteev is removed from the composer.json file, you will

need to update your lock file so it is not re-installed the next time you

build your application.

$ cp ../composer.phar .
$ php composer.phar update

...

You will notice I first copied the composer.phar file to the project root. This

simply makes it easier to locate and execute.

After Composer has updated the lock file, commit both composer.json

and composer.lock to your Git repository.

BootBootsstrtrapping With Vapping With Vagragrantant
You are now ready to use Vagrant to bootstrap your development

environment. To keep things simple, we will use a 64bit version of

Ubuntu 12.04 LTS. Vagrant does a wonderful job of providing a pre-

built virtual machine image for you, and installing it is extremely

simple. LTS — long term support — versions of Ubuntu are preferred

for server operating systems because they are officially supported for

five years by Canonical.

The three commands you will use most often with Vagrant are:

vagrant up, vagrant ssh, and vagrant halt. The command vagrant

up provisions your virtual machine and brings it up. vagrant ssh

allows you to SSH into your virtual machine. Finally, vagrant halt

20

completely halts and shuts down your virtual machine, but leaves its

hard-disk in-tact for when you bring the virtual machine back up.

Vagrant provides other commands to destroy, suspend, and resume

your virtual machine. I have found the three outlined above to be the

most useful.

In the root of your Symfony installation, run this command to install

the virtual machine from Vagrant. You will only have to run this

command one time. After you run this command, you can use

Vagrant in a totally separate project with the same command —

simply leave out the URL to the virtual machine image.

vagrant init precise64 http://files.vagrantup.com/precise64.box

The codename for Ubuntu 12.04 is Precise Pangolin, which is why the virtual
machine image is named precise64 — Precise Pangolin 64bit.

Because this is the first time you ran Vagrant, the actual virtual

machine image will be downloaded for you. This may take a few

minutes.

Vagrant can intelligently determine where the Vagrantfile is located

in your project, but it is best to execute all of the Vagrant commands

in the same directory it is located in.

Vagrantfile
After the virtual machine is downloaded and installed, Vagrant will

create a new file named Vagrantfile in the root directory of your

21

project. This is a configuration script written in Ruby and tells

Vagrant how to provision and build your virtual machine. The default

Vagrantfile is made up almost entirely of comments.

I generally keep the comments in the Vagrantfile for each of my

projects, but you are welcome to remove them. I have removed most

of the comments for display purposes in this book. However, they are

maintained in the actual source code that accompanies the book itself.

Below is the entirety of the Vagrantfile used for building MajorAuth.

We will take the time to go through line by line to explain how

everything works.

Vagrantfile API/syntax version. Don't touch unless you know what you're doing!
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
Every Vagrant virtual environment requires a box to build off of.
config.vm.box = "precise64"
config.vm.provision :shell, :path => "app/config/vagrant-bootstrap.sh"

Create a forwarded port mapping.
config.vm.network :forwarded_port, guest: 8000, host: 8000, auto_correct: true

Create a private network, which allows host-only access to the machine
using a specific IP.
Ignore for Windows.
config.vm.network :private_network, ip: "192.168.100.100"

Share an additional folder to the guest VM.
Remove , :nfs => true if using Windows.
config.vm.synced_folder ".", "/var/apps/major-auth", :nfs => true

Provider-specific configuration so you can fine-tune various
backing providers for Vagrant. These expose provider-specific options.
config.vm.provider "virtualbox" do |v|

v.customize ["modifyvm", :id, "--memory", "1024"]
v.customize ["modifyvm", :id, "--cpus", "8"]
v.customize ["modifyvm", :id, "--cpuexecutioncap", "100"]
v.customize ["modifyvm", :id, "--hwvirtex", "on"]

end
end

22

First, we begin by telling Vagrant to use the precise64 virtual

machine image previously installed. Next, we tell Vagrant how to

provision this virtual machine by pointing to a shell script we will

write. This shell script will bootstrap the entire environment

necessary for developing a Symfony application. Vagrant supports

using Chef and Puppet to provision your virtual machine as well,

however, I highly recommend you learn how to build it from scratch

(from source), and then move on to more abstract topics like Chef or

Puppet.

Forwarding a port is important so you can use the built-in PHP

server for development. While it should never be used in production,

Symfony works great with it for development. By default, it runs on

port 8000 so we forward that port to our host machine.

One incredibly useful feature of Vagrant is its ability to manage

multiple synced directories against the host and guest operating

systems. These directories are transparent, meaning if you create a

file while on the virtual machine, the file will exist on the host

machine as well.

Symfony (and Doctrine) aggressively cache a lot of files during

development. Caching all of these files and syncing them with the VM

can take a lot of time — sometimes several seconds on slower host

machines. This means each request to the virtual machine can take

two to four seconds, which makes development agonizing. To get

around this issue, we use NFS — network file system — to sync the

files.

23

To use NFS, you must assign a static IP to the virtual machine. You

may have to change the IP address above to work with your home or

work router. Additionally, Vagrant will require sudo access when

provisioning your virtual machine so be prepared to enter your

password.

Now that Vagrant knows to assign a static IP to the virtual machine,

we also want to automatically create a synced directory when the

virtual machine is provisioned. Vagrant will use NFS to sync files to

this directory as well.

And finally, we tell Vagrant to pass some additional command line

parameters to the headless version of VirtualBox.

• --memor--memoryy: Set the memory to 1024MB.

• --cpus--cpus: Give the virtual machine eight processors.

• --cpue--cpuexxecutioncapecutioncap: Allow the virtual machine CPUs to use 100%

of the available resources if necessary.

• --hwvir--hwvirtteexx: Enables "hardware virtualization extensions" which

will use specific extensions built into your hardware to speed up

the virtual machine.

24

These are my default settings for my 8-core 16GB RAM MacBook Pro.
Obviously, if your machine is less powerful than mine, you will need to adjust
these settings.

vagrant-bootstrap.sh
Before you can fully provision your virtual machine, we need to tell

Vagrant how to build it. This is where the vagrant-bootstrap.sh file

comes into play.

As previously mentioned, this is a shell script that builds your virtual

machine from scratch. It installs the necessary libraries needed, and

then goes on to compile Ruby, PostgreSQL, Redis, and PHP from

source.

My general philosophy of server administration is that you install libraries
from your Linux distributions package manager and compile your vital
applications from source. For example, libxml2 is installed from Aptitude,

but PHP is compiled from source. Essential libraries are more likely to be
very stable, so trusting the maintainers is easy. By installing essential binaries
from source, you have greater control over the upgrade paths on your
production systems.

The vagrant-boostrap.sh file is long, so it will be presented in its

entirety and then we will disect it.

https://gist.github.com/leftnode/6370185

25

https://gist.github.com/leftnode/6370185

Understanding how this file works is important because it will be the

basis for how we provision our production server. The vagrant-

bootstrap.sh file should be placed in the app/config/ directory as

specified in the Vagrantfile.

No Redundant ProNo Redundant Provisioningvisioning
The very first thing we want to check when bringing up a virtual

machine is if it has already been provisioned. If it is, we do not want

to provision it again. As the comment states, you can run the

command vagrant up --no-provision to bring up the virtual machine

without provisioning it. However, if you leave off the --no-provision

argument flag, the machine will be provisioned. Thus, this initial

check prevents that from happening.

DDaattabaabasesess
During development, we will be using two databases: major_auth and

major_auth_test, each with their own eponymous user. Creating two

separate databases makes sense: the primary database, major_auth,

will be used for browser and blackbox testing whereas the

major_auth_test database will be used for automated testing.

26

The major_auth_test database will have its data deleted and re-

inserted many times throughout the course of a test-suite run. The

major_auth database will have its data manipulated when actually

using the application as a normal user would.

DefDefaault Pult Packageackagess
The lines beginning with apt-get install essential software needed to

compile Ruby, PostgreSQL, Redis, and PHP. These lines install the

libraries through the package manager.

DDaate and Time Configurte and Time Configuraationtion
We want to ensure that the server is in the UTC timezone. Our

production server will use UTC, so we want our development

environment to mimic that. This will almost certainly be a different

timezone than your host computer. Additionally, we set the default

language and locale as English, UTF-8.

CompilaCompilationtion
The /etc/skel/.profile file on Ubuntu servers stores the default

.profile file added to a users home directory when it is created. I use

a customized .profile file to add the default PostgreSQL binary

location to my $PATH.

27

You will notice all software and files are downloaded from an Amazon S3
bucket named build.brightmarch. I store everything in that bucket because

not all vendors provide an easily discoverable direct link to their tarballs
(PHP) and some FTP servers are very, very slow (Ruby). The files uploaded
are identical to the ones provided by the vendors. You are free to use my
bucket and bandwidth.

We can finally start compiling all of the software necessary for the

server. First, we create all of the directories in /opt/src/ to store all of

the source code.

RRubyuby
Compiling Ruby is simple. Although we are building a PHP

application, we will make extensive use of Ruby software. Installing

Ruby 2.0.0 will also install the gem program which makes installing

Ruby applications simple.

After we compile Ruby, four pieces of software are installed: sass,

compass, god, and zurb-foundation.

Sass and Compass are used to manage CSS. We will not be covering

them in depth, but they are useful tools we will use alongside ZURB

Foundation. Foundation is a CSS framework that makes it incredibly

simple to build beautiful, well constructed applications. It uses Sass as

well.

The application god is a "process monitoring framework". Essentially,

we will use it to monitor our Resque workers to ensure they always

stay up. You can read more about god at http://godrb.com and we will

28

http://godrb.com

cover it in depth when we begin talking about Resque and

background workers.

PoPosstgreSQLtgreSQL
Compiling PostgreSQL is surprisingly simple. We start by creating a

user, postgres, that will run all of the PostgreSQL services. The home

directory for the postgres user is also where we will store all of the

database data (PostgreSQL calls this data the cluster).

After PostgreSQL is compiled and installed, we run a command as

the postgres user to initialize the database cluster in /home/postgres/

cluster/. Additionally, we tell PostgreSQL the default encoding for

the databases will be UTF-8.

The last piece of administrative work necessary is to install the

PostgreSQL initialization script. Ubuntu places these scripts, called

services, in /etc/init.d/. The initialization script is downloaded and

installed during the provisioning process. This ensures that Ubuntu

starts PostgreSQL when Vagrant starts the server.

Now that PostgreSQL is installed and running, we can create the

default databases and users.

PostgreSQL will also refer to users as roles.

RedisRedis
Redis is also incredibly simple to install. Like PostgreSQL, we want

Redis to start when the server starts, so an initialization script is

29

installed as well. Additionally, we have to tell Redis to run in the

background as a daemon because it does not by default.

PHPPHP
Finally, PHP is ready to be compiled and installed. To keep this

instance of PHP as light as possible, only the most essential

extensions are compiled.

By default, PHP looks in /usr/local/lib/ for the php.ini file, so we

copy the development sample file there.

We want to add the redis extension in addition to the extensions we

compiled into PHP. This is extension is not bundled with PHP by

default.

To complete the installation of PHP, we add the redis extension to the

php.ini file and tell PHP the default timezone is UTC.

Finishing UpFinishing Up
We're almost there! The last few steps are rather simple. By default,

Vagrant creates a user named vagrant which is the user you use to

SSH into the virtual machine. First, we ensure that the .profile file

downloaded earlier is in our home directory on the virtual machine.

Next, several pre-written files are downloaded. These are bash and

Vim files that I have built up over the years to make command line

work more enjoyable. Of course, you're free to replace them with the

files that make your development environment the most comfortable.

30

Finally, we create the file that lets Vagrant know the box is fully

provisioned.

And with that, your Vagrant virtual machine is fully provisioned.

Your VYour Vagragrantant
Now that your Vagrant virtual machine is provisioned, you can

access it using the command vagrant ssh. This command is identical

to the ssh command you are already familiar with, with the exception

that you can only access your virtual machine with it.

If you will recall, we told Vagrant to sync the directory /var/apps/

major-auth to the root of our project. Navigate to that directory and

create a sample file there.

$ cd /var/apps/major-auth
$ echo "In Your Vagrant" > in-vagrant.txt

In another terminal session, navigate to your project directory on
your host machine. You will see the file in-vagrant.txt listed along

with the contents In Your Vagrant.

File syncing is obviously very powerful and will allow us to develop

on our host machine while having the virtual machine execute all of

our code.

I have included a helper alias in the .bash_aliases file. You can run the

command goapps and it will take you directly to the /var/apps/ directory.

31

Because your virtual machine is quite literally a Linux server, you can

simply use the exit command to exit it and return to your host

machine.

In This ChapterIn This Chapter
In this chapter, you learned how to compile the essential architecture

of your development server (a skill that will be used when

provisioning your production server), and how to use Vagrant to

manage your virtual machines. Additionally, you installed Symfony,

tracked it in Git, and cleaned up some of the cruft that naturally

comes with a default installation.

You are now ready to begin laying out your Symfony application.

32

	Table Of Contents
	Introduction
	About Me
	About You
	Sample Symfony Applications
	When Not To Use Symfony
	Small Application
	Absolute Performance
	No Control Over Production Environment

	MajorAuth
	Large Code Samples

	Configuring Your Environment
	Configuring the Host
	Windows
	Linux
	Mac OS X

	Installing Vagrant
	Installing Symfony
	Installing Composer
	Installing Symfony

	Removing the Cruft
	Removing Incenteev

	Bootstrapping With Vagrant
	Vagrantfile
	vagrant-bootstrap.sh
	No Redundant Provisioning
	Databases
	Default Packages
	Date and Time Configuration
	Compilation
	Ruby
	PostgreSQL
	Redis
	PHP
	Finishing Up

	Your Vagrant
	In This Chapter

