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21. INTRODUCTIONThe well-founded semantics [29] provides a natural and robust declarative mean-ing to all logic programs with negation in rule bodies. Practical use of the well-founded semantics, however, depends upon the implementation of an e�ective ande�cient query evaluation procedure. Although various procedural semantics havebeen proposed, implementation techniques for the well-founded semantics have notyet received adequate attention.Earlier procedures for the well-founded semantics by Przymusinski [16] and Ross[20] are extensions of SLDNF resolution with in�nite failure. They are not suit-able for e�ective computation of queries due to possible in�nite loops even whenprograms are function-free.E�ective top-down computation with tabling is explored inWell! [2] and XOLDTNF[5] for the well-founded semantics. Two aspects of these approaches should be noted.First, a ground negative subgoal is solved by computing its positive counterpart upto a �xpoint as in Prolog. The �xpoint computation is a simple mechanism toguarantee that the positive counterpart of a negative literal be completely eval-uated. Second, to prevent negative loops, each subgoal has an associated set ofground negative literals, called a negative context. When a ground negative literalis selected, there is a negative loop if it is already in the negative context of the cur-rent subgoal. These two mechanisms, however, prohibit the full sharing of answersto subgoals across di�erent negative contexts in the nested �xpoint computation.Although simple to implement, they may cause exponential behavior in the worstcase [7].Bottom-up computation of the well-founded semantics has also been studied[10, 11, 13, 15]. These approaches are based upon either van Gelder's alternat-ing �xpoint characterization of the well-founded model [28] or the �xpoint for thesmallest three valued stable model [4, 17]. Due to the single �xpoint computation,all answers of subgoals can be shared. Each iteration of the �xpoint computation,however, may over-estimate the truth or unde�nedness of negative subgoals. Thisover-estimate is necessary for non-strati�ed programs in general, but should beproperly controlled so as to avoid evaluating irrelevant subgoals.The �rst work on controlling the search in bottom-up computation is reported in[18] for left-to-right modularly strati�ed programs. The Ordered Search techniquein [18] attempts to capture relevant subgoals in a top-down fashion by controllingthe availability of magic tuples (that represent calls in a top-down computation).This is achieved by maintaining subgoal dependencies in a sequence of so calledContextNodes. The idea of subgoal dependencies can be traced back to [21], wherethey were used to determine if subgoals were completely evaluated. However, theissue of e�cient dependency maintenance was not investigated in detail.Our work on e�ective computation of the well-founded semantics started withXOLDTNF [5]. As we have mentioned, XOLDTNF uses a �xpoint computation toguarantee that the positive counterpart of a negative literal be completely evalu-ated, and it uses negative contexts for handling negative loops. Both mechanismsmay cause redundant computation. To resolve this problem, we investigated theidea of subgoal dependencies, which proved to provide a simple solution to bothcompletion of subgoals and detection of negative loops. The conceptual frameworkof this new approach, called SLG resolution, was reported in [6]. It is goal-orientedand has a polynomial data complexity for function-free programs. Detailed proofs



3can be found in [7] for the soundness and search space completeness of SLG resolu-tion with respect to three valued stable models, including the well founded partialmodel as a special case. A similar framework is presented in [3]. A meta in-terpreter implementation integrating Prolog and SLG resolution, called The SLGSystem [8], is available by anonymous FTP from seas.smu.edu or cs.sunysb.edu. AWAM-based compiler implementation integrating Prolog and the restricted SLGresolution for left-to-right modularly strati�ed programs, called The XSB LogicProgramming System, [22], has been released and is available by anonymous FTPfrom cs.sunysb.edu.As a conceptual framework, SLG resolution consists of a number of transforma-tions by which a query is reduced to a set of answer clauses, but it does not specifyin what order these transformations should be applied. Two important transfor-mations are completion and delaying. Completion detects subgoals that havebeen completely evaluated so that their negative counterparts can be resolved. De-laying delays ground negative literals so that computation can proceed even in caseof negative loops. Delaying in SLG resolution corresponds to over-estimating thetruth or unde�nedness of negative subgoals in bottom-up computation. To avoidcomputation of irrelevant subgoals, delaying should be tightly controlled.This paper addresses the fundamental issues of implementation that are commonin both top-down and bottom-up computation of the well-founded semantics. Inparticular, we present incremental algorithms for maintaining dependencies amongsubgoals. By inspecting the dependency information of a single subgoal, we candetermine e�ciently if subgoals are completely evaluated or are possibly involvedin negative loops.Practically, the XSB system implementing SLG resolution for left-to-right mod-ularly strati�ed programs is upwardly compatible with Prolog. With a few simpledeclarations for the XSB compiler, either given by the user or generated by the sys-tem, Prolog programs can be executed using SLG resolution, SLDNF resolution, ora mixture of the two. At an operational level, implementing SLG in a WAM-basedframework not only allows for smooth integration of the deductive database andlogic programming paradigms; it also allows the SLG engine to bene�t from thehighly optimized uni�cation and control algorithms in the WAM. As a simple in-stance, a left linear ancestor predicate executed using SLG spends 70% of the timeon WAM instructions, and about 30% of the time on instructions created for SLG.The rest of the paper is organized as follows. Section 2 describes the searchforest and the corresponding subgoal graph that may be induced by transformationsof SLG resolution in query evaluation. Section 3 introduces the main issues inincremental maintenance of subgoal dependencies during query evaluation. Section4 presents detailed algorithms in our implementation of SLG resolution. Section 5concludes with a summary and a comparison with related work.2. SLG RESOLUTION FOR WELL-FOUNDED SEMANTICSThis section reviews brie
y the well-founded semantics of logic programs [29] anddiscusses the search forest and dependency graph for query evaluation. The basicframework of SLG resolution and its correctness theorem [6, 7] are described, whichwill be used to establish the correctness of our implementation.



4 2.1. Well-Founded SemanticsWe assume the basic terminology of logic programs [12]. A program is a �nite setof clauses of the form: A :- L1; :::; Lnwhere A is an atom and L1; :::; Ln are literals. When n = 0, a clause, possiblycontaining variables, is called a fact. By a subgoal we mean an atom. Subgoals(and literals) that are variants of each other are considered syntactically identical.The Herbrand universe of a program P is the set of all ground terms that may beconstructed from the constants and function symbols appearing in P . An arbitraryconstant is added if no constant occurs in P . The Herbrand base of P , denoted byBP , is the set of all ground atoms with predicates occurring in P whose argumentsare in the Herbrand universe of P . The Herbrand instantiation of P is the (possiblyin�nite) set of all ground clauses obtained by substituting terms in the Herbranduniverse for variables in clauses in P .Let P be a logic program and BP be the Herbrand base of P . A set I ofground literals is consistent if for no ground atom A, both A and �A are in I. Aninterpretation I is a consistent set of ground literals.The well-founded semantics depends upon the notion of unfounded sets to deriveatoms that are false.De�nition 2.1. [29] Let P be a logic program, I be an interpretation, and U be asubset of the Herbrand base BP . U is an unfounded set of P with respect to I ifevery atom A 2 U satis�es the following condition: for every ground instance ofa clause in P whose head is A, either� some literal L in the body is false in I; or� some positive literal L in the body is also in U .The union of all unfounded sets of P with respect to I coincides with the greatestunfounded set of P with respect to I, denoted by UP (I).Intuitively if a set of atoms depends upon each other through positive literalsand there is no escape clause for any of the atoms, then the set is unfounded andall atoms in the set will be false in the well-founded semantics.De�nition 2.2. [29] Let P be a logic program, and I be an interpretation. Trans-formations TP and WP are de�ned as follows:� A 2 TP (I) if and only if there is a ground instance of some clause in P withhead A such that all literals in the body are true in I;� WP (I) = TP (I) [ f�AjA 2 UP (I)g.TransformationsTP andWP are known to be monotonic [29]. The powersW�Pare de�ned in the standard manner, where � ranges over all countable ordinals. Thewell-founded partial model of a program P , denoted by WF (P ), is the union of allW�P .2.2. Search Forest and Dependency GraphIn SLG resolution [6], query evaluation is viewed as traversing a search tree ora search forest for a query. This subsection describes the search forest and thecorresponding dependency graph of subgoals for a query.



52.2.1. SLD Resolution with Tabling For programs without negation, SLG reso-lution reduces to SLD resolution with tabling [9, 27, 30]. In all the examples, weuse a left-most computation rule although an arbitrary but �xed computation ruleis allowed.Let P be a program without negation and A be a subgoal. We construct asearch forest for A with respect to P . Each node in the forest is labeled by a clause.Initially, the search forest has one tree, namely the tree for A, whose root node islabeled by A :- A.The root node of the tree for a subgoal A, labeled by A :- A, has a child nodefor each resolvent of A :- A with a clause in P on the A in the body of A :- A.If a node is labeled by a fact B in the tree for a subgoal A, then B is an answerfor A. Two answers are considered identical if they are renaming variants of eachother.Let v be a non-root node in the tree for subgoal A, G be the clause labeling v,and B be the selected atom of G. If the current search forest does not contain thetree for subgoal B, the tree for B is added, whose root node is labeled by B :- B.For each (distinct) answer B0 of B, v has a child that is labeled by the resolventof G with B0 on the selected atom B. This process continues until no new node ornew tree can be created.Example 2.1. [5] Consider a small cyclic graph and the common de�nition oftransitive closure:e(a; b): e(b; c): e(b; a):tc(X;Y ) :- e(X;Y ):tc(X;Y ) :- e(X;Z); tc(Z; Y ):Figure 1 shows the search forest for subgoal tc(a; V ). (Trees for subgoals of predicatee=2 are not shown.)Corresponding to each search forest, there is a dependency graph of subgoals.Each node in the dependency graph is a subgoal. An edge from a subgoal A to asubgoal B corresponds to a non-root node v in the tree for A such that B is thesubgoal of the selected literal from the label of v.For instance, the tree for tc(a; V ) contains a non-root node labeled by tc(a; V ) :- tc(b; V ).It determines an edge in the dependency graph from tc(a; V ) to tc(b; V ), the se-lected atom of the label of the non-root node. The dependency graph correspondingto the forest in Figure 1 is shown in Figure 2. The intuition behind the dependencygraph is that it contains a path from subgoal A to subgoal B if the truth value ofA may depend in some way on the truth value of B.2.2.2. Strati�ed Negation For strati�ed programs [1], one issue is how to ensurethat a ground subgoal be completely evaluated so that the success of its negativecounterpart can be determined. A negative literal can succeed only if the corre-sponding positive subgoal has no answers after having been completely evaluated.The notion of a search forest can be extended to strati�ed programs in a straight-forward way. When a ground negative literal �B is selected, we start the tree forB if the current search forest does not contain the tree for B. If B succeeds with ananswer, then every node with �B selected is marked as failed. If B is completely



6
tc(a,V) :- tc(a,V).

tc(a,V) :- e(a,V).

tc(a,b).

tc(a,V) :- e(a,W), tc(W,V).

tc(a,V) :- tc(b,V).

tc(a,c). tc(a,a). tc(a,b).

tc(b,V) :- tc(b,V).

tc(b,V) :- e(b,V).

tc(b,a).

tc(b,V) :- e(b,U), tc(U,V).

tc(b,V) :- tc(c,V). tc(b,V) :- tc(a,V).

tc(b,c).

tc(c,V) :- tc(c,V).

tc(c,V) :- e(c,V). tc(c,V) :- e(c,Z), tc(Z,V).

tc(b,a).

tc(b,c).

tc(b,b).Figure 1. Search forest for tc(a;V )evaluated and has no answers, then �B succeeds and every node with �B selectedhas a single child node obtained by deleting �B.Example 2.2. Consider the following program and subgoal m(c):m(X) :- �p(X):p(a):p(X) :- q(X):q(b):q(X) :- p(X):Figure 3 shows a search forest and the corresponding dependency graph amongsubgoals before the success of �p(c) is determined. Notice that m(c) dependsupon p(c) negatively due to the node labeled with m(c) :- �p(c). A negativeedge is marked by a slash in the middle.



7
tc(a,V) tc(b,V) tc(c,V)

e(a,V) e(b,V) e(c,V)Figure 2. Dependency graph for tc(a; V )
m(c) :- m(c).

m(c) :- ~p(c).

p(c) :- p(c). q(c) :- q(c).

m(c) p(c) q(c)

p(c) :- q(c). q(c) :- p(c).

Figure 3. Search forest and dependency graph for m(c)As in Prolog, our approach performs a depth-�rst search and maintains a stackof subgoals. The initial subgoal m(c) is pushed onto the stack �rst. Traversing thetree form(c) leads to a new subgoal p(c), which is pushed onto the stack. Traversingthe tree for p(c) leads to another subgoal q(c), which is also pushed onto the stackof subgoals. The node p(c) :- q(c) in the tree for p(c) is suspended, waiting for ananswer from q(c). Traversing the tree for q(c) leads to a node q(c) :- p(c). Since p(c)has been encountered before and is on the stack, the node q(c) :- p(c) is suspended,waiting for an answer from p(c). The current stack of subgoals is shown in Figure4.
q(c)

p(c)

m(c)Figure 4. Stack of subgoals in a depth-�rst search for m(c)At this point, there are no new nodes in the tree for q(c) that have not beenexplored. However, we cannot determine that q(c) is completely evaluated since it



8 depends upon a previous subgoal, namely p(c), deeper in the stack. Computationreturns to subgoal p(c). Similarly, there are no new nodes in the tree for p(c) thathave not been explored. But p(c) does not depend upon any previous subgoal deeperin the stack. Furthermore, there are no negative edges among the set fp(c); q(c)gof subgoals. Therefore both p(c) and q(c) are completely evaluated, so they arepopped o� the stack and their suspended clauses are disposed. When p(c) andq(c) are marked as completed, the node waiting on �p(c) in the tree for m(c) isprocessed, and the answer m(c) is derived.To detect subgoals that are completely evaluated, we maintain, for each subgoalA, the deepest subgoal B in the stack which A or any subgoal on top of A maydepend upon. When there are no new nodes that have not been explored in thetrees for A and subgoals on top of A, we check the subgoal associated with A. Ifthe subgoal is deeper in the stack than A, A may depend upon subgoals below Aand therefore cannot be completed. Otherwise, A and all subgoals on top of Aare completely evaluated provided that there are no negative edges among thesesubgoals.2.2.3. Negative Loops and Delaying According to the de�nition of subgoals thatare completely evaluated, every selected ground negative literal from any node inthe trees of these subgoals must have been resolved. This may be impossible forprograms that are not strati�ed.Example 2.3. Consider the subgoal w(a) with respect to the following program:w(X) :- m(X;Y );�w(Y ); p(Y ):m(a; b): m(b; c): m(c; b):p(b):Figure 5 shows the search forest and the dependency graph when a negativeloop is encountered. Our implementation follows the depth-�rst and tuple-at-a-time computation in Prolog, and maintains a stack of subgoals as in Prolog, thecurrent state of which is shown in Figure 6. (A determinacy analysis or indexingscheme may detect that subgoals such as m(a; Y ), m(b; Y ), and m(c; Y ) can beexecuted without being pushed onto the stack.)Consider the most recent subgoal m(c; Y ). It is called in the node labeled by:w(c) :- m(c; Y );�w(Y ); p(Y )in the tree for w(c) during the evaluation of w(c). Following the tuple-at-a-timestrategy, the answer m(c; b) form(c; Y ) is returned immediately to the node waitingon it, which leads to a new node in the tree for w(c):w(c) :- �w(b); p(b)Since w(b) is on the stack and is not completely evaluated, the new node is sus-pended. At this point, there are no new nodes in the tree form(c; Y ) that can be ex-plored, nor are there any new nodes created by the answer of m(c; Y ) that have notbeen explored. We check to see if m(c; Y ) is completely evaluated. In this example,m(c; Y ) does not depend upon any other subgoal. Thus it is completely evaluatedand so is popped o� the stack and marked as completed. The edge directed towards
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w(a) :- w(a).

w(a) :- m(a,Y), ~w(Y), p(Y).

w(a) :- ~w(b), p(b).

w(b)

m(b,Y)

w(c)

m(c,Y)

w(a)

m(a,Y)

w(b) :- w(b).

w(b) :- m(b,Y), ~w(Y), p(Y).

w(b) :- ~w(c), p(c).

w(c) :- w(c).

w(c) :- m(c,Y), ~w(Y), p(Y).

w(c) :- ~w(b), p(b).

Figure 5. Search forest and dependency graph for w(a)m(c; Y ) in the dependency graph, namely w(c) :- m(c; Y );�w(Y ); p(Y ), is deletedsince all answers of m(c; Y ) have been propagated.Similarly we check the next subgoal on the stack, namely w(c). It cannot becompletely evaluated since it depends upon a subgoal, w(b), deeper in the stack.Therefore w(c) remains on the stack.Computation returns to the next subgoalm(b; Y ). The subgoalm(b; Y ) does notdepend upon other subgoals and is in fact completely evaluated. However withouta possibly costly re-organization of the stack, m(b; Y ) cannot be popped o� due tothe fact that w(c) on top of it depends upon a subgoal deeper in the stack thanm(b; Y ).Computation then returns to subgoal w(b). No subgoal from the top of the stackup to and including w(b) depends upon any subgoal deeper than w(b). However,neither w(b) nor w(c) can be completed since each depends upon the other throughnegation.Our approach in SLG resolution is to delay negative literals in case of possiblenegative loops so that computation of queries can proceed. It may be the case thatanother subgoal in the body of the clause may fail, thus in e�ect eliminating thenegative loop. In Figure 5, we delay �w(b) in the node:w(c) :- �w(b); p(b)
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m(c,Y)

w(c)

m(b,Y)

w(b)

m(a,Y)

w(a)Figure 6. Stack of subgoals in a depth-�rst search for w(a)and the node has a single child labeled by:w(c) :- �w(b) j p(b)Similarly we delay �w(c) in the node:w(b) :- �w(c); p(c)and the node has a single child labeled by:w(b) :- �w(c) j p(c)We use j to separate delayed literals (on the left of j ) from the other bodyliterals (on the right of j ) that are yet to be solved. As far as dependenciesamong subgoals are concerned, delaying eliminates the previous negative edge andpossibly introduces a new edge. For instance, delaying �w(b) in w(c) :- �w(b); p(b)eliminates the corresponding negative edge from w(c) to w(b), and introduces anew edge from w(c) to p(b) by creating a new node w(c) :- �w(b) j p(b). Figure7 shows the search forest and the subgoal dependency graph after delaying �w(b)and �w(c).Delayed literals are not included in the consideration of subgoal dependencies asfar as completely evaluated subgoals are concerned. The intuition is that we arenow trying to prove contingent answers, i.e., answers that are implications. So insome sense, the dependency has been moved from the proof into the answer. Thedelayed literals will, however, have to be simpli�ed if and when their truth or falsitybecomes known.The nodes newly created by delaying are then processed, leading to new subgoalsp(b) and p(c) on the stack. Subgoal p(b) succeeds, leading to an answer node:w(c) :- �w(b) jfor w(c). Subgoal p(c) fails. Both p(b) and p(c) are completely evaluated and arepopped o� the stack. Since w(c) does not depend upon any subgoal that is notcompleted evaluated, w(c) is completely evaluated and popped o� the stack, so arem(b; Y ) and w(b). However, w(b) is completed without any answers. The failureof w(b) is propagated to the delayed literal �w(b) in the answer w(c) :- �w(b) j ,
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w(b) :- w(b).

w(b) :- m(b,Y), ~w(Y), p(Y).

w(b) :- ~w(c), p(c).

w(b) :- ~w(c) | p(c)

w(c) :- w(c).

w(c) :- m(c,Y), ~w(Y), p(Y).

w(c) :- ~w(b), p(b).

w(c) :- ~w(b) | p(b).

w(a) :- w(a).

w(a) :- m(a,Y), ~w(Y), p(Y).

w(a) :- ~w(b), p(b).

w(a)

m(a,Y) p(c)

w(b)

m(b,Y)

w(c)

m(c,Y) p(b)Figure 7. Search forest and dependency graph for w(a) after delayingleading to a de�nite answer w(c). The failure of w(b) is also propagated to �w(b)in the node: w(a) :- �w(b); p(b)which, after resolving away p(b), leads to an answer w(a).In general, the well-founded model is three valued. Answers for a subgoalmay contain delayed literals that cannot be simpli�ed away, and these answers areneither true nor false in the well-founded model.2.3. Transformations in SLG ResolutionThis subsection reviews the basic de�nitions and transformations in SLG resolu-tion that are essentially operations over search forests of a query. The correctnesstheorem of SLG resolution [6, 7] is described and explained, which will be used toestablish the correctness of our implementation of SLG resolution.De�nition 2.3. An X-clause G is a clause of the form:A :- D j B



12 where A is an atom, D is a sequence of (delayed) ground negative literals and(possibly nonground) atoms, and B is a sequence of literals. Literals in D arecalled delayed literals. If B is empty, an X-clause is called an answer clause.A clause in a program is viewed as an X-clause in which D is empty. We usuallyomit j when D is empty. As far as the declarative semantics is concerned, eachX-clause is viewed as an ordinary clause whose body is the conjunction of all literalsin D and B. That is, the j is purely a control annotation.Given an X-clause A :- D j B where B is non-empty, a computation ruleR selectsfrom B exactly one literal, called the selected literal.De�nition 2.4. [SLG Resolution] Let G be an X-clause A :- D j L1; :::; Ln, wheren > 0 and Li be the selected atom. Let C be an X-clause with no delayed literals,and C0, of the form A0 :- L01; :::; L0m, be a variant of C with variables renamed sothat G and C 0 have no variables in common. G is SLG resolvable with C if Liand A0 are uni�able. The clause(A :- D j L1; :::; Li�1; L01; :::; L0m; Li+1; :::; Ln)�is the SLG resolvent of G with C, where � is a most general uni�er of Li and A0.SLG resolution is used for resolution with a clause in a program or with ananswer clause that has an empty sequence of delayed literals (on the left of j ).For an answer clause that has a non-empty sequence of delayed literals, relevantvariable bindings in the head of the answer clause are propagated by SLG factoring,but the sequence of delayed literals in the body is not propagated.De�nition 2.5. [SLG Factoring] Let G be an X-clause A :- D j L1; :::; Ln, wheren > 0 and Li be the selected atom. Let C be an answer clause, and C0, of theform A0 :- D0 j , be a variant of C with variables renamed so that G and C0 haveno variables in common. If D0 is not empty and Li and A0 are uni�able with amost general uni�er �, then the SLG factor of G with C is(A :- D;Li j L1; :::; Li�1; Li+1; :::; Ln)�The motivation of not propagating delayed literals in an answer clause is toguarantee the polynomial complexity for computation of queries on function-freeprograms[6]. If there are multiple answer clauses with the same atom (up to variablerenaming) in the head, only one of them will be propagated by using either SLGresolution or SLG factoring. As far as answer propagation is concerned, two answerclauses are considered distinct if the head atoms are not renaming variants of eachother.We associate with each non-root node in a tree a status value, which can beeither new, answer, active, 
oundered, or disposed. The initial status of each newlycreated node is new. The processing of a new node may change the status to:� answer if the clause labeling the node is an answer clause;� 
oundered if the selected literal is a non-ground negative literal;� active if the selected literal is not 
oundered and is not completely evaluated;and



13� disposed if all possible child nodes of the node have been created (and so thenode is no longer useful).Initially, if a query is an atom A, the search forest starts with a single tree forA, whose root node is labeled A :- A and has a child node for each SLG resolventof A :- A with program clauses.Each transformation is an operation that changes the search forest. Transforma-tions (i-iii) process the X-clause of a new node, whose status is changed (mutuallyexclusively) to answer, 
oundered, or active. Transformation (iii) also starts a newsubgoal when it is �rst encountered.Let G be the X-clause of a new (non-root) node v.(i) new answer. If G is an answer clause, then the status of v is changed toanswer;If G is not an answer clause, let L be the selected literal of G.(ii) floundering. If L is a non-ground negative literal, the status of v ischanged to 
oundered;(iii) new active. If L is an atomB or a ground negative literal�B, the status ofv is changed to active and its associated set of atoms is empty. Furthermoreif there is no tree for B in the current search forest, it is created whose rootnode is labeled with B :- B and has a child node for each SLG resolvent ofB :- B with program clauses;The set of atoms associated with an active node indicates what answers have beenreturned to the active node.Let G be the clause of an active node v and L be the selected literal of G.(iv) answer return. If L is an atom B and for some answer clause C in thetree for B, of the form H  D j , H is not in the associated set of atomsof v, then H is added to the associated set of atoms of v, and v has a newchild node labeled by the SLG resolvent of G with C on L if D is empty orby the SLG factor of G with C on L if D is not empty;Transformations (v) and (vi) solve a ground negative subgoal by negation-as-failure if the corresponding positive subgoal is either successful or failed. Otherwise,transformation (vii) delays the selected ground negative subgoal.If the selected literal L of the X-clause G of an active node v is a ground negativeliteral �B, there are three cases:(v) negation failure-r. If B has an answer with no delayed literals, the statusof v is changed to disposed;(vi) negation success-r. If B is completely evaluated without any answers,then v has a new child node labeled by G with L deleted, and the status ofv is changed to disposed;(vii) delaying. Otherwise, v has a new child node labeled by a clause obtainedfrom G by moving L into the sequence of delayed literals, and the status ofv is changed to disposed.Subgoals that are completely evaluated can be determined by inspecting theirtrees in the current search forest according to the following de�nition.



14 De�nition 2.6. Let P be a program and Q be a query atom. Given the searchforest at any point of the computation of Q with respect to P , and a set Aof subgoals, A is completely evaluated in the search forest if for every subgoalA 2 A, the search forest contains the tree for A, whose root node is labeled byA :- A and which satis�es the following conditions:� For each SLG resolvent G of A :- A with a program clause on the A in thebody, the root node has a child node labeled by G;� For each non-root node v labeled by a clause G with a selected atom B,either B is already marked as completed or B 2 A, and for every distinctatom B0 that occurs in the head of some answer clause of B, v has a childnode labeled by the SLG resolvent or SLG factor of G with C on B, whereC is an answer clause with B0 in the head;� For each non-root node v labeled by a clause G with a selected negativeliteral �B, B is ground. Furthermore, either B has an answer B and v is afailed leaf node; or B is already marked as completed and has no answers,in which case v has a single child labeled by G with �B deleted; or �Bis delayed and v has a single child node labeled by G0 obtained from G bydelaying �B (i.e., moving �B from the right to the left of the j ).The completion transformation is as follows:(viii) completion. Let A be a non-empty subset of subgoals that is completelyevaluated. Then for each A 2 A, every active node in the tree for A isdisposed and A is marked as completed.Given an arbitrary but �xed computation rule, there are programs in whichground negative literals must be delayed before their truth or falsity is known.Additional transformations are needed for simplifying delayed literals when theirtruth value is determined, the details of which are omitted. These transformationshave no e�ect on the correctness of SLG resolution, but are necessary to derive themost simpli�ed answer clauses.We also use the term SLG resolution to refer to the process of applying transfor-mations starting with the initial forest of a query atom with respect to a program.Since the Herbrand universe is countable, there is a stage, which may be largerthan !, when no transformation can be applied to the search forest of a query. Itwas shown [6] that when no transformation can be applied to a search forest, eithersome node in the forest is 
oundered or every subgoal in the forest is marked ascompleted. In the latter case, the only nodes that are not disposed in the tree ofeach subgoal are the root node and the answer nodes. If A is the initial query atom,let PA denote the set of all answer clauses in the search forest at the end.The well-founded partial model of a logic program coincides with the smallestthree valued stable model [17]. The correctness of SLG resolution is proved in [6]using three valued stable models.Theorem 2.1. [6] Let P be a program, R be an arbitrary but �xed computation rule,A be a query atom, and PA be the set of all answer clauses in the �nal searchforest derived from A that has no 
oundered nodes. Let HB be the set of allground instances of all atoms in PA. Thenfor every three valued stable model M of P , the restriction of M to HB,denoted by M jHB, is a three valued stable model of PA; and



15�� for every three valued stable modelMA of PA, which is an interpretation overHB, there exists a three valued stable model M of P such that M jHB = MA.In particular, WF (P )jHB = WF (PA).A key step in the proof of the theorem is to show that each transformationpreserves all three valued stable models. Let P be a program. Given any searchforest that has been constructed for a query atomA with respect to P , the clauses ofall non-root nodes that are not disposed in the forest represent a partially evaluatedprogram PA for all the subgoals in the search forest. The literals on the right of jin each X-clause remain to be evaluated with respect to P , while delayed literalson the left of j are partially evaluated. To relate partially evaluated subgoals to theoriginal program, we replace each predicate p in PA that occurs in the head of anX-clause or in a delayed literal with a new distinct primed predicate p0 (of the samearity). Let the resulting program be denoted by P 0A. The invariant of the proof isthat in every three valued stable model of P [P 0A, the meaning of each primed atomcoincides with that of the corresponding unprimed atom. This invariant holds forthe initial forest, and is preserved by each transformation. When every subgoal ina search forest is completely evaluated, PA contains only answer clauses, and theprogram P 0A becomes independent of predicates in P , which leads to the theoremabove. Readers are referred to [6] for further details of the proofs.3. DATA REPRESENTATION AND DEPENDENCY MAINTENANCEThere are two major issues in an e�cient implementation of SLG resolution, namelycompletion and delaying. Completion, if implemented directly according to the def-inition, requires inspection of the trees of a set of subgoals in order to check whetherthey are completely evaluated. The cost of checking for completion can become abottleneck. Delaying basically skips a negative literal so that the rest of the bodyof an X-clause can be solved. Delaying is needed to handle negative loops, butshould be avoided as much as possible in order to reduce computation of subgoalsthat are irrelevant to a query. This section describes the data representation for asearch forest and an incremental scheme for dependency maintenance. The latteris used for e�cient completion and negative loop checking.3.1. Table EntriesThe search forest is represented by a global table T of subgoals. Each table entryis identi�ed by a subgoal, and is of the form (A;Anss; Poss;Negs; Comp), where� A is a subgoal;� Anss is the set of answers in the current tree for A;� Poss is a sequence of pairs (B;G), where B is a subgoal and G is an X-clauselabeling an active node in the tree for B with the selected atom A;� Negs is a sequence of pairs (B;G), where B is a subgoal and G is an X-clauselabeling an active node in the tree for B with the selected ground negativeliteral �A;� Comp is a boolean variable indicating whether A is completely evaluated.



16 In a pair (B;G), B is the subgoal that is waiting on A through an edge representedby the clause G. Whenever an answer for A is found, it is returned to every pair(B;G) that is waiting in Poss or Negs. Thus there is no need to have an explicitrepresentation of the set of all answers that have been returned to a waiting node.We use Anss(A), Poss(A), Negs(A), and Comp(A) to denote the corresponding�elds of A in table T .In our implementation, each new node is processed immediately so that its statusis changed to either answer, active, disposed, or 
oundered. Upon 
oundering, thecomputation halts with an error message. Therefore only clauses of answer nodesand active nodes have to be represented in a table.3.2. Dependency Maintenance: A Simple SchemeA stack of subgoals is used to maintain dependencies. They are updated incremen-tally whenever an edge from one subgoal to another is processed, and are checkedat certain points for completion and delaying.3.2.1. Stack Entries For smooth integration with Prolog, the search forest of aquery is traversed in a depth-�rst manner using a left-most computation rule. Astack S of subgoals is maintained, which is similar to the local stack in Prolog.New subgoals that are encountered during a depth-�rst search are pushed ontothe stack. Each subgoal has an associated depth-�rst number (DFN) so that therelative position of two subgoals in the stack is determined easily by comparingtheir DFNs. We say that a subgoal A is on top of another subgoal B (or B isbelow A) if both A and B are on the stack and A is pushed onto the stack after B.A global counter (COUNT) is used to compute the next depth-�rst number. It isinitialized to 1.The stack S plays an important role in detecting completely evaluated subgoalsand potential negative loops. The basic idea is as follows.When a new subgoalA is encountered, it is pushed onto S. A depth-�rst traversalof the tree for A is initiated, which may lead to other new subgoals that are pushedonto the stack after A.We associate with each subgoal A two additional numbers, called PosLink andNegLink, respectively. PosLink is initialized to the depth-�rst number of A, andNegLink is initialized to maxint { a value that is larger than all possible depth-�rstnumbers in an implementation. For each subgoal A, we denote by PosLink(A) andNegLink(A) the corresponding PosLink and NegLink of A. The stack entry in Sfor subgoal A is of the form (A,DFN,PosLink,NegLink).The PosLink of a subgoal A captures the deepest subgoal on the stack whichA may depend upon through positive edges, and the NegLink of A representsthe deepest subgoal on the stack which A may depend upon through at least onenegative edge. The PosLink and NegLink ofA are updated when an edge originatingfrom A is explored.3.2.2. Incremental Updates of Dependencies Suppose that the tree for A has anon-root node v labeled by an X-clause G with a selected atom L.Assume that L is an atom B. If B is not a new subgoal and is not completed, Bmust be on the stack. The PosLink and NegLink of A are updated by the followingassignments:



17PosLink(A) := min(PosLink(A), PosLink(B))NegLink(A) := min(NegLink(A), NegLink(B))where 'min' is the function that returns the minimum value of all its arguments.If B is a new subgoal, a depth-�rst traversal of the tree for B is initiated. Whenit �nishes, ifB is completely evaluated, all answers of B must have been returned tothe X-clause G. This is due to the tuple-at-a-time strategy in which we return eachanswer immediately to every waiting node. In this case, the PosLink and NegLinkof A are not updated. If B is not completely evaluated, then B must be on thestack, in which case PosLink and NegLink of A are updated as above.Another possibility is that the selected literal L is a ground negative literal �B.Then there is a negative edge from A to B.If B is not a new subgoal and is not completed, B must be on the stack. If B hasa de�nitely true answer, v is marked as a failed leaf node. The PosLink and NegLinkof A are not updated in this case as the success of B has been propagated. If B hasnot succeeded with a de�nitely true answer, the PosLink of A is left unchanged,but the NegLink of A is updated as follows:NegLink(A) := min(NegLink(A), PosLink(B), NegLink(B))If B is a new subgoal, a depth-�rst traversal of the tree for B is started. Whenit returns, if B is completely evaluated, it must have been popped o� the stack,and our strategy processes every node waiting on B or �B when B is marked ascompleted. The PosLink and NegLink of A are not updated. If B is not completed,B must be still on the stack, and the same update is carried out for the NegLinkof A.3.2.3. Checking for Completion and Delaying When the depth-�rst traversal ofthe tree for A �nishes, we check the PosLink and NegLink of A.� If PosLink(A) = DFN(A) and NegLink(A) = maxint, then A and all subgoalson top of A are completely evaluated. They are marked as completed andare popped o� the stack. All nodes waiting on any of these subgoals or itsnegation are processed.� If PosLink(A) = DFN(A) and DFN(A) � NegLink(A) < maxint, then theremay be negative loops among A and subgoals on top of A, in which casedelaying should be applied.� Otherwise, A or some subgoal on top of A depends upon some subgoaldeeper in the stack than A. They remain on the stack and are not markedas completed. Computation returns to the subgoal immediately below A onthe stack.3.3. Problems with the Simple SchemeThe checking for completion in the simple scheme assumes implicitly that everysubgoal depends upon all subgoals on top of it. That is, when PosLink(A) =DFN(A) and NegLink(A) = maxint, both A and all subgoals on top of A areconsidered to be completely evaluated. However, the PosLink and NegLink ofeach subgoal captures only explicit dependencies from edges between subgoals. Asa result, the simple scheme does not work in general. Some subgoal C may be



18 pushed onto the stack on top of B even though there is no path from B to C.Furthermore C may depend upon subgoals below B on the stack. Therefore whenB becomes completely evaluated, the subgoal C on top of B is popped o� the stackas well, which could be wrong. This can happen when an answer is returned toa node that has a selected atom or when the selected ground negative literal of anode is resolved.3.3.1. Answer Return to a Positive Literal Suppose that there is a non-rootnode in the tree for A labeled by an X-clause G of the form:A0 :- D j B;Cwith the selected atomB, and B is a new subgoal. According to the tuple-at-a-timestrategy, as soon as an answer for B is derived, it is returned to the waiting clauseG, and the next subgoal C, which happens to be a new subgoal too, is processed.Therefore C is on top of B and B is on top of A on the stack, even though thereis no dependency between B and C at all. The following example illustrates thissituation.Example 3.1. Consider the following program and query p:p :- q; r:p:q:r :- p:The dependency graph forp is depicted in Figure 1 (a). The initial subgoal p ispushed onto the stack, whose entry is (p; 1; 1;maxint). The evaluation of p leadsto a new subgoal q, whose stack entry is (q; 2; 2;maxint). By the tuple-at-a-timecomputation, the answer q is returned immediately to the node labeled by:p :- q; rA new node: p :- ris created and is expanded immediately. The rule matching r generates an edgefrom r to p, which is below q on the stack. Thus the PosLink of r is updatedto 1. When there are no new nodes to be explored, computation returns to themost recent subgoal, which is r. The current stack of subgoals is shown in Figure1 (b).Subgoal r is not completely evaluated since it depends upon p deeper in thestack, and so PosLink(r) < DFN(r). When the PosLink and NegLink of q arechecked, we have that PosLink(q) = DFN(q) and NegLink(q) = maxint. Accordingto the simple scheme, q and the subgoal on top of it, namely r, are completelyevaluated. This is clearly wrong since r should have an answer from p when thesecond clause of p is explored.Completion is not required for query evaluation with respect to positive pro-grams, but it can help reusing the stack space by popping o� subgoals that arecompletely evaluated. Example 1 shows that the simple scheme does not work forpositive programs.
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p

q r

(a)

(p,1,1,maxint)

(q,2,2,maxint)

(r,3,1,maxint)

(b)Figure 1. Dependency graph and stack of subgoals in a depth-�rst search for p3.3.2. Success of a Negative Literal The success of a ground negative literalcan also lead to subgoals on top of a subgoal A, even though there may be nodependencies between them.Example 3.2. Consider query p with respect to the following program:p :- q;�c; r:p:q:r :- p:The program is a slight variant of that in Example 1. The dependency graph ofsubgoals is shown in Figure 2(i).
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q rc

(i)

(p,1,1,maxint)

(q,2,2,maxint)

(c,3,3,maxint)

(ii)

(p,1,1,maxint)

(q,2,2,maxint)

(iii)

(r,4,1,maxint)Figure 2. Dependency graph and stacks for pFigure 2(ii) shows the stack of subgoals when c is being processed. Since thereis no clause for c, c is completely evaluated without any answers and is popped o�the stack. Therefore the negative literal �c succeeds, which leads to a new subgoalr. Figure 2(iii) shows a situation similar to that in Example 1.3.4. Dependency Maintenance: A Correct SchemeThe simple scheme assumes implicit dependencies of a subgoal upon all subgoalson top it on the stack when it checks for completion. We modify the simple schemeto capture the implicit dependencies and describe how dependencies are updatedwhen negative loops are handled.



20 3.4.1. Capturing Implicit Dependencies We modify the procedure for the depth-�rst computation of a subgoal. The depth-�rst computation for A returns two num-bers, called PosMin and NegMin, respectively. While the PosLink and NegLink ofA capture the direct dependencies through edges coming out of A in the depen-dency graph, the PosMin and NegMin returned from the evaluation of A also modelthe implicit dependencies by the linear nature of the stack of subgoals as illustratedin Example 1 and Example 2. In other words, the PosMin of A is the minimumdepth-�rst number of all subgoals which A and subgoals on top of A on the stackmay depend upon through positive edges, and the NegMin of A is the minimumdepth-�rst number of all subgoals which A and subgoals on top of A may dependupon through some negative edges.When the depth-�rst computation of A �nishes, PosMin and NegMin are �rstmerged with PosLink and NegLink of A, i.e.,PosLink(A) := min(PosLink(A), PosMin)NegLink(A) := min(NegLink(A), NegMin)The same method is then used to determine if A and subgoals on top of it arecompletely evaluated or may be involved in negative loops. The e�ect is that thecompletion of A is postponed until all subgoals on top of A are also completelyevaluated.3.4.2. Dependency Update after Delaying Let SA be the set of subgoals from thetop of the stack S down to and including A. Suppose that PosLink(A) = DFN(A)and DFN(A) � NegLink(A) < maxint, which indicates that there may be negativeloops among subgoals in SA. The delaying transformation is applied to everynode v in the current search forest such that v is labeled by an X-clause with aselected ground negative literal �B, where B is in SA. As far as the dependencygraph is concerned, all negative edges to subgoals in SA are eliminated. This isre
ected by resetting NegLink of every subgoal in SA to maxint. Subgoals in SAremain on the stack and will be re-checked again after all the new nodes createdby delaying are processed.Example 3.3. Consider the following program and a subgoal s.s :- �p;�q:p :- �s; q.q :- �s; p.Initially, the subgoal is s, and (s; 1; 1;maxint) is pushed onto the stack of subgoals.Traversing the tree for s leads to a new subgoal p, and so (p; 2; 2;maxint) ispushed onto the stack. The node, p :- �s; q, represents a negative edge fromp to s. Therefore the NegLink of p is updated to 1. The node, p :- �s; q, issuspended, and computation returns to s. The NegLink of s is updated to theminimum of PosLink and NegLink of p, which is 1. Figure 3 shows the searchforest, the dependency graph, and the stack of subgoals at this point.Since PosLink(s) = DFN(s) and DFN(s) � NegLink(s) < maxint, fp; sg maybe (and, in this case, are) involved in negative loops. We apply the delayingtransformation to all the negative edges with a selected ground negative literal�p or �s. This creates two new nodes, namely s :- �p j �q and p :- �s j q. In
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s :- s.

s :- ~p, ~q.

p :- p.

p :- ~s, q.

s

p (s, 1, 1, 1)

(p, 2, 2, 1)Figure 3. The �rst negative loop for se�ect, the two negative edges in Figure 3 are eliminated. The NegLink of s and theNegLink of p are both reset to maxint. Computation continues by exploring thenewly created nodes and then p and s will be re-checked for completion.Exploring the node, s :- �p j �q, leads to a new subgoal q, and so (q; 3; 3;maxint)is pushed onto the stack. Traversing the tree for q leads to a node q :- �s; p. TheNegLink of q is updated to 1. Since NegLink(q) < DFN(q), q is not completelyevaluated and remains on the stack. After the traversal of the tree for q �nishes,the NegLink of s is updated to 1 since there is a negative edge from s to q and theminimum of the PosLink and NegLink of q is 1.Computation continues to explore the node, p :- �s j q. The NegLink of p isupdated to 1 since NegLink of q is currently 1. As NegLink(p) < DFN(p), premains on the stack. Figure 4 shows the search forest, the dependency graph, andthe stack of subgoals at this point.
s :- s.

s :- ~p, ~q.

s :- ~p | ~q.

p :- p.

p :- ~s, q.

p :- ~s | q.

q :- q.

q :- ~s, p.

s

p q (s, 1, 1, 1)

(p, 2, 2, 1)

(q, 3, 3, 1)Figure 4. The second negative loop for sWe check the dependencies of s. It holds that PosLink(s) = DFN(s) and DFN(s)� NegLink(s) < maxint. The dependency graph reveals that there are negativeloops among fq; p; sg. Delaying transformation is applied and the NegLinks of q,p and s are reset to maxint.The new node, s :- �p;�q j , is an answer node since there are no literals on theright of j . Subgoal s no longer depends upon any other subgoal in the dependencygraph, although delayed literals will have to be simpli�ed if and when their truthor falsity becomes known. The new node, q :- �s j p, is explored, and the PosLinkof q is updated to the PosLink of p, which is 2. Figure 5 shows the search forest,the dependency graph, and the stack of subgoals at this point, where the isolatednode s is not displayed in the dependency subgoal.Notice that PosLink(p) = DFN(p) and NegLink(p) = maxint. Both q and pare completely evaluated and are popped o� the stack. The failure of q and p isused to simplify s :- �p;�q j , deriving a de�nitely true answer for s. Similarly s iscompletely evaluated and popped o� the stack, and thus computation of the initialsubgoal s terminates.



22
s :- s.

s :- ~p, ~q.

s :- ~p | ~q.

s :- ~p, ~q |.

(s, 1, 1, maxint)

(p, 2, 2, maxint)

(q, 3, 2, maxint)

p

q

q :- q.

q :- ~s, p.

q :- ~s | p.

p :- p.

p :- ~s, q.

p :- ~s | q.Figure 5. After elimination of the second negative loop4. ALGORITHMThis section describes in detail the mutually recursive procedures for an imple-mentation of SLG resolution. We separate them into two groups, one for basictransformations and the other for completion transformation. We establish thecorrectness of the implementation by relating it to the correctness of SLG resolu-tion.4.1. Basic TransformationsLet P be an arbitrary logic program, and R be an arbitrary but �xed computationrule. Without loss of generality, we assume that the initial query consists of onlyone atom. For each subgoal A, KA denotes the set of clauses in P with whichA :- A is SLG resolvable.Three global variables are used, namely the table T of subgoals, the stack S ofsubgoals, and a counter (COUNT), which have been described in Section 3. Figure1 shows the main program. It initializes COUNT to 1, inserts a table entry forthe initial subgoal A into the table, and pushes an entry (A; 1; 1;maxint) of theinitial subgoalA onto the stack. COUNT is incremented every time a new subgoal ispushed onto the stack. After initialization, the main program calls SLG SUBGOALto carry out a depth-�rst computation of subgoal A. Pushing an entry onto thestack and calling SLG SUBGOAL corresponds to the creation of a tree for a newsubgoal in the search forest.In SLG SUBGOAL(A,PosMin,NegMin), A is a new subgoal that has just beeninserted into the table T and pushed onto the stack S. PosMin and NegMin areinput/output variables. As discusses in Section 3, PosMin and NegMin return theminimum depth �rst number of all subgoals which A or subgoals on top of A maydepend upon through positive edges only and through at least one negative edgerespectively. They are passed through all recursive procedures that will be calledduring the execution of SLG SUBGOAL(A,PosMin,NegMin).Procedure SLG SUBGOAL creates a new node for each child of the root node ofa subgoal. For each newly created non-root node, SLG NEWCLAUSE is called toprocess the new node, or more precisely the X-clause labeling the new node. Theprocessing may lead to other new nodes or even new subgoals, which are handled re-cursively by calling other procedures. Therefore each procedure implements not justone transformation, but a sequence of transformations. When SLG NEWCLAUSE



23Input: a program P and a query atom A.Output: a set of answer clauses.Algorithm:begin Initialize Count to be 1;Initialize T to be the table with one entry, (A,fg,[],[],false);Initialize S to be the empty stack of subgoals;DFN := Count; PosLink := DFN; NegLink := maxint;push (A,DFN,PosLink,NegLink) onto stack S;Count := Count+1;PosMin := DFN; NegMin := maxint;SLG SUBGOAL(A,PosMin,NegMin);output all answer clauses in T ;end Figure 1. Algorithm for SLG resolutionreturns for all the child nodes of the root node of a subgoal, SLG COMPLETEis called to determine if A and its relevant subgoals are completely evaluated.Figure 2 shows the details of the procedure SLG SUBGOAL and the procedureSLG NEWCLAUSE.In procedure SLG NEWCLAUSE(A,G,PosMin,NegMin), G is an X-clause la-beling a new non-root node v in the tree for subgoal A. SLG NEWCLAUSE callsprocedures SLG ANSWER, SLG POSITIVE or SLG NEGATIVE, depending uponwhether the newly created X-clause G has no selected literal, a positive selectedliteral, or a ground negative selected literal. The branching corresponds to transfor-mations new answer, new active, and floundering, which changes the statusof the new node v.Procedure SLG ANSWER (see Figure 3) checks to see if an answer for A isnew. If the answer is not subsumed by any existing answer for A, SLG ANSWERproceeds to apply all transformations answer return and negation failure-rthat are made possible by the new answer. In particular, if the answer has anempty body, all (active) nodes that are waiting on �A are failed and disposed.The answer is returned to all nodes waiting on A by either SLG resolution or SLGfactoring. All new nodes created by these transformations are handled by callingSLG NEWCLAUSE recursively.In procedure SLG POSITIVE(A, G, B, PosMin, NegMin) shown in Figure 4, Gis an X-clause labeling an active non-root node in the tree for A and has a selectedatom B. Therefore G is a positive edge from A to B. If B is not in the table T ,then B must be a new subgoal and so G is a solution edge from A to B (as G leadsto the creation of a new subgoal B). The new subgoal B is inserted into the tableand pushed onto the stack. Notice that the pair (A;G) is inserted into the positivewaiting list for answers of B. A depth-�rst computation is initiated for B by callingSLG SUBGOAL, which returns BPosMin and BNegMin. BPosMin and BNegMinrepresent the minimum depth-�rst number of all subgoals that B and subgoals ontop of B may depend upon through positive edges only and through at least some



24 procedure SLG SUBGOAL(A,PosMin,NegMin):beginfor each SLG resolvent G of A :- A with some clause C 2 KA do beginSLG NEWCLAUSE(A,G,PosMin,NegMin);end;SLG COMPLETE(A,PosMin,NegMin);endprocedure SLG NEWCLAUSE(A,G,PosMin,NegMin);beginif G has no body literal on the right of j thenSLG ANSWER(A,G,PosMin,NegMin)else if G has a selected atom B thenSLG POSITIVE(A,G,B,PosMin,NegMin)else if G has a selected ground negative literal �B thenSLG NEGATIVE(A,G,B,PosMin,NegMin)else begin /* G has a selected non-ground negative literal */halt with an error messageendend Figure 2. Procedures to evaluate a subgoalnegative edges respectively. The PosLink and NegLink of A and the correspondingPosMin and NegMin are then updated by calling procedure UPDATE SOLUTION.If B is in the current table T , then B is not a new subgoal and so G is a lookupedge from A to B. If B is not marked as completed, we insert (A;G) into thepositive waiting list for potentially more answers of B so that this node will benoti�ed if more answers are added for B. The PosLink and NegLink of A and thecorresponding PosMin and NegMin are updated by calling UPDATE LOOKUP.This procedure e�ectively applies answer return transformations to return anyexisting answers of B to the node labeled by G in the tree for subgoal A. Theresolution of these answers creates new nodes in the tree for subgoal A each ofwhich is processed in its turn by the procedure SLG NEWCLAUSE.The procedure SLG NEGATIVE(A, G, B, PosMin, NegMin), shown in Fig-ure 5, handles an active node in the tree for A that is labeled by an X-clauseG with a selected ground negative literal �B. Its structure is similar to that ofSLG POSITIVE.If B is not in the table T , then B must be a new subgoal and G is a solu-tion edge from A to B. It is inserted into the table and pushed onto the stack.The pair (A;G) is inserted in the negative waiting list of B, waiting for the truthvalue of B to be determined. A depth-�rst computation of B is initiated by callingSLG SUBGOAL. It returns BPosMin and BNegMin that represent the minimumdepth-�rst number of all subgoals that B and subgoals on top of B may dependup through positive edges only and through at least some negative edges respec-tively. When the depth-�rst computation of B �nishes, the PosLink and NegLink



25procedure SLG ANSWER(A,G,PosMin,NegMin):beginif G is not subsumed by any answer in Anss(A) in T then begininsert G into Anss(A);if G has no delayed literals then beginreset Negs(A) to empty;let L be the list of all pairs (B;H 0), where (B;H) 2 Poss(A) andH0 is the SLG resolvent of H with G;for each (B;H 0) in L do beginSLG NEWCLAUSE(B,H 0,PosMin,NegMin);end;end else begin /* G has a non-empty delay. */if no other answer in Anss(A) has the same head as G does thenbeginlet L be the list of all pairs (B;H0), where (B;H) 2 Poss(A)and H0 is the SLG factor of H with G;for each (B;H0) in L do beginSLG NEWCLAUSE(B,H 0,PosMin,NegMin);end;end;end;end;end Figure 3. Procedure to handle an answer nodeof A and the corresponding PosMin and NegMin are updated by calling procedureUPDATE SOLUTION.If B is already in the table T , then B is not a new subgoal and G is a lookupedge from A to B. If B is not yet marked as completed, we check if B has ade�nitely true answer. If so, the node labeled by G in the tree for subgoal A isa failed leaf node by transformation negation failure-r. Otherwise, (A;G) isinserted into the negative waiting list of B. The PosLink and NegLink of A and thecorresponding PosMin and NegMin are updated by calling UPDATE LOOKUP. IfB is already marked as completed, either negation success-r is applied if B hasno answers, or delaying is applied if B has only answers with delayed literals. Ineither case, the new node is then processed by calling SLG NEWCLAUSE.It should be mentioned that all basic transformations are applied in an eagermanner, which is ensured by the following properties of the implementation.� For any new subgoal A that is encountered, including the initial one, all thechild nodes of the root node of the tree for A are created by SLG resolutionwith program clauses. Every newly created node is processed immediatelyby SLG NEWCLAUSE.� Each new answer of a subgoal A is returned immediately to every activenode with a selected atom A as soon as the answer is found. In addition,if the answer does not have delayed literals, all active nodes waiting on �A
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procedure SLG POSITIVE(A,G,B,PosMin,NegMin):beginif B is not in table T then begininsert (B; fg; [(A;G)]; []; false) into T ;DFN := Count; PosLink := Count; NegLink := maxint;push (B,DFN,PosLink,NegLink) onto stack S;Count := Count+1;BPosMin := DFN; BNegMin := maxint;SLG SUBGOAL(B,BPosMin,BNegMin);UPDATE SOLUTION(A,B,pos,PosMin,NegMin,BPosMin,BNegMin);end else beginif Comp(B) is not true then begininsert (A;G) into Poss(B);UPDATE LOOKUP(A,B,pos,PosMin,NegMin);end;let L be the empty list;for each atom B0 in the head of some answer in Anss(B) do beginif B0 :- j 2 Anss(B) then beginlet G0 be the SLG resolvent of G with B0 :- j ;insert (A;G0) into L;end else beginlet H 2 Anss(B) with head atom B0;let G0 be the SLG factor of G with H;insert (A;G0) into L;end;end;for each (A;G0) in L do beginSLG NEWCLAUSE(A,G0,PosMin,NegMin);end;end;end Figure 4. Procedure to handle a node with a selected atom
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procedure SLG NEGATIVE(A,G,B,PosMin,NegMin):beginif B is not in table T then begininsert (B; fg; []; [(A;G)]; false) into T ;DFN := Count; PosLink := DFN; NegLink := maxint;push (B,DFN,PosLink,NegLink) onto stack S;Count := Count+1;BPosMin := DFN; BNegMin := maxint;SLG SUBGOAL(B,BPosMin,BNegMin);UPDATE SOLUTION(A,B,neg,PosMin,NegMin,BPosMin,BNegMin);end else beginif Comp(B) is not true then beginif B :- j 62 Anss(B) then begininsert (A;G) into Negs(B);UPDATE LOOKUP(A,B,neg,PosMin,NegMin);end;end else beginif Anss(B) = fg then beginlet G0 be G with �B deleted;SLG NEWCLAUSE(A,G0,PosMin,NegMin);end else if B :- j 62 Anss(B) then beginlet G0 be G with �B delayed;SLG NEWCLAUSE(A,G0,PosMin,NegMin);end;end;end;endFigure 5. Procedure to handle a node with a selected ground negative literal



28 are marked as failed and disposed.� When an active node v with a selected atom A is encountered, all existinganswers for A are returned to v. The node v becomes a waiting node forpotentially more answers of A (if A is not yet completely evaluated).� When an active node v with a selected ground negative literal �B is pro-cessed, v is failed if B has a de�nitely true answer. If B is completelyevaluated with no answers, negation success-r is applied.The operation of each basic transformation is straightforward and corresponds di-rectly to the de�nition in Section 2.3.4.2. Completion and DelayingThe application of completion and delaying is carefully controlled in order toensure an e�cient implementation. The delaying of a negative literal �B isapplied under two situations. One is when B is already completed and has onlyinde�nite answers so that it is neither successful nor failed. The other is when thereis a potential negative loop.All edges between subgoals are processed in either SLG POSITIVE or SLG NEGATIVE.Let G be an X-clause labeling a non-root node in the tree for subgoal A, repre-senting an edge from A to a subgoal B. Let Sign be either positive or negativerepresenting the polarity of the edge.If B is already in the table T and thus is not a new subgoal, G is a lookupedge from A to B. The PosLink and NegLink of A on the stack are updated usingthe PosLink and NegLink of B in UPDATE LOOKUP(A,B,Sign,PosMin,NegMin),and so are PosMin and NegMin.If B is not yet in the table and thus is a new subgoal, G is a solution edge fromA to B. In this case, a depth-�rst computation of B is initiated. When it returns,UPDATE SOLUTION is called to update the PosLink and NegLink of A and thecorresponding PosMin and NegMin. The evaluation of B may have left additionalsubgoals on the stack, which are on top of A. They may depend upon subgoalsdeeper in the stack, which are captured by BPosMin and BNegMin inUPDATE SOLUTION(A, B, Sign, PosMin, NegMin, BPosMin, BNegMin)If B is completely evaluated, BPosMin and BNegMin are propagated. Otherwise,dependencies are updated as in UPDATE LOOKUP. In the latter case, BPosMinand BNegMin are merged into the PosLink and NegLink of B before the computa-tion of B returns, and so they are implicitly propagated through the PosLink andNegLink of B.Recall that in SLG SUBGOAL(A, PosMin, NegMin), SLG NEWCLAUSE iscalled for each SLG resolvent G of A :- A with a program clause. Each call toSLG NEWCLAUSE processes the node labeled by G, as well as all new nodes andall new subgoals that are created from the processing of G by calling itself and otherprocedures recursively. When this is �nished, SLG COMPLETE(A,PosMin,NegMin)(shown in Figure 7 is called within SLG SUBGOAL(A,PosMin,NegMin).First, PosMin and NegMin are merged with PosLink and NegLink of subgoal Arespectively. This is necessary as shown by Example 1 and Example 2 in Section 3.If PosLink(A) = DFN(A) and NegLink(A) = maxint, then A and all subgoals ontop ofA are considered to be completely evaluated and are popped o� the stack. All
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procedure UPDATE LOOKUP(A,B,Sign,PosMin,NegMin):beginif Sign= pos then beginPosLink(A) := min(PosLink(A),PosLink(B));NegLink(A) := min(NegLink(A),NegLink(B));PosMin := min(PosMin, PosLink(B));NegMin := min(NegMin, NegLink(B));end else begin /* Sign = neg */NegLink(A) := min(NegLink(A),PosLink(B),NegLink(B));NegMin := min(NegMin, PosLink(B), NegLink(B));end;endprocedure UPDATE SOLUTION(A,B,Sign,PosMin,NegMin,BPosMin,BNegMin):beginif Comp(B) 6= true then beginUPDATE LOOKUP(A,B,Sign,PosMin,NegMin);else beginPosLink(A) := min(PosLink(A), BPosMin);NegLink(A) := min(NegLink(A),BNegMin);PosMin := min(PosMin, BPosMin);NegMin := min(NegMin, BNegMin);end;end Figure 6. Procedures to update dependencies



30 nodes waiting on them that have a selected atom are disposed. All nodes waitingon them that have a selected ground negative literal are processed. The latter maylead to new nodes, which are processed by calling SLG NEWCLAUSE.Notice that both PosMin and NegMin are re-initialized to maxint. The previousvalues of PosMin and NegMin are obtained from those subgoals that are just com-pleted, and thus should be discarded. However, the completion of those subgoalsmay create new nodes that are processed by calling SLG NEWCLAUSE. The han-dling of the new nodes can introduce new subgoals that are pushed onto the stack.The PosMin and NegMin returned from the processing of those new nodes (andalso from SLG SUBGOAL(A,PosMin,NegMin)) are used in UPDATE SOLUTIONto update the dependencies of the subgoal that leads to the creation of subgoal A.If PosLink(A) = DFN(A) and DFN(A) � NegLink(A) < maxint,A and subgoalson top of A may be involved in negative loops. Delaying is applied to all nodesthat have a selected ground negative literal whose subgoal is A or on top of A. TheNegLink of A and subgoals on top of A are reset to maxint. Delaying creates somenew nodes. The PosMin is reset to the DFN of the subgoal at the top of the stackand NegMin is reset to maxint before those newly created nodes are processed.When it �nishes, A and subgoals on top of A are re-checked for completion.4.3. Correctness of the AlgorithmThe correctness of SLG resolution, as proved in [6], is independent of the orderin which transformations are applied. Our implementation uses a depth-�rst andtuple-at-a-time strategy to decide the order of transformations to be applied to thesearch forest represented by the global table of subgoals. For the correctness of thealgorithm, it is su�cient to show that each transformation is implemented correctlyand that when the evaluation of a query atomA �nishes, either A is 
oundered, or Aand all relevant subgoals are completed. Theorem 2.1 guarantees that the programconsisting of the answer clauses of A and relevant subgoals preserve all three valuedstable models of the original program, including the well-founded partial model.All transformations except completion are implemented directly according tothe de�nitions in Section 2.3. Although the decision of when to apply delayingis made based upon dependency information, the algorithm carries out delayingtransformation following the de�nition.The only exception is completion, which uses dependency information to derivesubgoals that are completely evaluated. The following theorem shows that theimplementation of completion is correct in the sense that all subgoals that arepopped o� are completely evaluated by De�nition 6.Theorem 4.1. Let P be a program and Q be a query atom. Let T be the global tableof subgoals and S be the global stack of subgoals. Then every subgoal A in tableT that is not on stack S is completed.Proof. We prove by induction on the number of times subgoals are popped o�the stack. The theorem holds initially since both T and S contains only the initialsubgoal Q.Subgoals are popped o� the stack in procedure SLG COMPLETE(A,PosMin,NegMin),where A is a subgoal, provided that PosLink(A) = DFN(A) and NegLink(A) = max-int. Let SA be the set of subgoals from the top of stack S up to and including A.We show that SA are completely evaluated according to De�nition 6.



31procedure SLG COMPLETE(A,PosMin,NegMin):beginPosLink(A) := min(PosLink(A),PosMin);NegLink(A) := min(NegLink(A),NegMin);if PosLink(A)=DFN(A) and NegLink(A)=maxint then beginpop subgoals o� stack S until A is popped;let SA be the list of all popped subgoals;let L be the empty list;for each subgoal B 2 SA do beginNegs := Negs(B);Comp(B) := true; Poss(B) := []; Negs(B) := [];for each (A0; G) 2 Negs do beginif Anss(B)=fg then beginlet G0 be G with �B deleted;insert (A0; G0) into L;else if B :- j 62 Anss(B) then beginlet G0 be G with �B delayed;insert (A0; G0) into L;end;end;PosMin := maxint; NegMin := maxint;for each (A0; G0) in L doSLG NEWCLAUSE(A0,G0,PosMin,NegMin);end else if PosLink(A)=DFN(A) and NegLink(A)�DFN(A) then beginlet SA be the sequence of all subgoals from the top of S to A;let L be the empty list;for each subgoal B in SA do beginfor each (A0; G) 2 Negs(B) do beginlet G0 be G with the selected negative literal delayed;insert (A0; G0) into L;end;NegLink(B) := maxint; Negs(B) := [];end;PosMin := DFN(A0), where A0 is at the top of stack S;NegMin := maxint;for each (A0; G0) in L doSLG NEWCLAUSE(A0,G0,PosMin,NegMin);for each subgoal B in SA doSLG COMPLETE(B,PosMin,NegMin);end;end Figure 7. Procedure to complete a subgoal



32 First, for every subgoal B 2 SA, there is currently no new node that needs to beprocessed for B and its relevant subgoals. The reason is that SLG COMPLETE iscalled in SLG SUBGOAL after all the child nodes of the root of the tree for A havebeen fully processed, including all other new nodes created during the processing.Since A is the �rst subgoal created among all subgoals in SA, all new nodes that arecreated during the evaluation of A have been processed when SLG COMPLETE iscalled for A.Second, let G be any non-root node v in the tree for a subgoal B 2 SA and letL be the selected literal of G.� If L is a non-ground negative literal, then computation must have beenaborted, a contradiction.� If L is a ground negative literal of the form �B0, there are several cases:{ IfB0 is not in the table T , then B0 is a new subgoal. SLG SUBGOAL(B0,BPosMin,BNegMin)is called. IfB0 is not completed when SLG SUBGOAL returns, NegLink(B)is updated whose new value must be less than maxint, and so is theNegLink ofA, a contradiction. If B0 is completed when SLG SUBGOALreturns, G must have been disposed when B0 is completed and L eitherfails, succeeds, or is delayed.{ If B0 is in the table T and is completed, then G must have been disposedand L either fails, succeeds, or is delayed.{ If B0 is in the table T and is not completed, NegLink(B) is updatedwhose new value must be less than maxint, and so is the NegLink of A,a contradiction.� If L is an atom, say B0, then there is a positive edge from B to B0. Thereare several cases:{ If B0 is a subgoal in T , but not on stack, then B is completed byinductive hypothesis. Neither the PosLink nor the NegLink of A isupdated in this case. All answers of B0 are returned to G.{ If B0 is on stack S, but not in SA, then DFN(B0) < DFN(A). Sincethere is a positive edge from B to B0, the PosLink of B must be lessthan DFN(A) and so is the PosLink of A, a contradiction;{ Otherwise, B0 must be on stack and in SA. Since every new answer isreturned immediately to all waiting nodes, and all existing answers arereturned to a newly created node with a selected atom, all answers ofB0 must have been returned to G.By De�nition 6, SA are completely evaluated. By completion transformation,subgoals in SA are popped o� the stack and are marked as completed. 2In summary, every transformation in SLG resolution is implemented correctlyby our algorithm. Let P be a program and A be the initial query atom. WhenSLG SUBGOAL(A,PosMin,NegMin) returns, the stack must be empty. This isbecause A has the least depth-�rst number. By Theorem 4.1, A and all relevantsubgoals are completely evaluated by De�nition 6. Therefore a �nal search foresthas been constructed for A, all subgoals of which are completely evaluated. Thecorrectness of the algorithm is then established by Theorem 2.1.



335. DISCUSSIONThis section compares with related work and presents some performance measure-ments of two implementations of SLG resolution.5.1. Related WorkThe framework of tabulated resolution for well-founded semantics by Bol andDegerstedt [3] de�nes a search space for query evaluation, which is similar to SLGresolution [6]. One interesting aspect of the approach in [3] is that non-groundnegative literals are also returned as part of answers. This allows a more 
exiblehandling of some queries that would be 
oundered in SLG resolution.The bottom-up techniques presented in [10, 11, 13, 15] evaluate queries accord-ing to the alternating �xpoint [28] or the smallest three valued stable model [4, 17]in a more direct manner. The magic sets technique in [10, 11] may make too manymagic facts true, and thus evaluate subgoals that are irrelevant. The improve-ment proposed by Morishita [13] alleviates this problem, but still generates manyirrelevant magic facts in the initial stages of computing the alternating �xpoint.Example 5.1. The following program is from [19].p(X) :- t(X;Y; Z);�p(Y );�p(Z):p(X) :- p0(X):For query p(a), the corresponding magic program is:mp(a):mp(Y ) :- mp(X); t(X;Y; Z):mp(Z) :- mp(X); t(X;Y; Z);�p(Y ):p(X) :- mp(X); t(X;Y; Z);�p(Y );�p(Z):p(X) :- mp(X); p0(X):This program is in fact an example where the well-founded semantics of the magicprogram does not agree with that of the original program, assuming the followingfacts for base predicates:p0(c2):t(a; a; b1): t(b1; c1; b2): t(b2; c2; b3): t(bn; cn; cn+ 1):Morishita's method [13] uses a slight variant of the alternating �xpoint. The earlystages of the computation still generates many magic facts that are not rele-vant. For example, both the �rst positive overestimate and the second positiveunderestimate contain the following magic tuples:mp(a): mp(b1): ... mp(bn): mp(c1). ... mp(cn + 1):Our implementation of SLG resolution generates only subgoals (or magic tuples)that are relevant, namely p(a); p(b1); p(c1); p(b2); p(c2).Ross �rst used subgoal dependencies in query evaluation with modularly strati-�ed programs [21]. Facts representing transitive dependencies among subgoals are



34 computed explicitly. However, techniques for e�cient maintenance and computa-tion of subgoal dependencies were not explored.The work most closely related to ours is the Ordered Search technique for bottom-up evaluation of left-to-right modularly strati�ed programs by Ramakrishnan etal [18]. An extension of Ordered Search, called well-founded ordered search, wasrecently proposed by Stuckey and Sudarshan [23]. The idea of Ordered Searchis to simulate the subgoal dependencies induced by top-down evaluation. Thereare three interesting di�erences between (well-founded) ordered search and ourimplementation.First, Ordered Search generates all answers of the �rst subgoal in the body of aclause before trying to solve the second subgoal in the body. We, however, followclosely the tuple-at-a-time computation of Prolog. As soon as an answer of the�rst subgoal in the body of a clause is generated, our implementation continueswith the next subgoal in the body of a clause. This allows fast generation of the�rst answer for a query. In the case of a ground negative subgoal �A, as soon as ade�nitely true answer for A is derived, �A can fail and subgoals that are createdduring the evaluation of A can be discarded under certain conditions (even if theyare not fully evaluated). An additional bene�t is the integration of Prolog withe�ective query evaluation. This objective has been achieved in XSB, where Prologexecution and SLG resolution are tightly interconnected. From the users' point ofview, ordinary Prolog programs can be executed using SLG resolution with just afew declarations.Second, Ordered Search maintains a topological order among all subgoals thathave been expanded using a sequence of so-called ContextNodes. The topologicalorder is based upon the dependency graph of subgoals. Each ContextNode may con-tain more than one subgoal when there are mutual dependencies among subgoals.A ContextNode is marked if some of its subgoals are marked, and subgoals aremarked if their trees have been created and expanded. Each unmarked ContextN-ode contains a single subgoal whose tree has not yet been created. By re-arrangingthe sequence of ContextNodes at run time, strongly connected components in thedependency graphs can be identi�ed.In contrast, the stack of subgoals in SLG resolution behaves like the local stackof subgoals in Prolog. New subgoals are simply pushed onto the stack as theyare encountered. There is no re-ordering of subgoals on the stack at run time.This may, however, cause unnecessary delaying and evaluation of some irrelevantsubgoals, even when programs are strati�ed.Example 5.2. Suppose that a query m is evaluated with respect to the followingprogram:m :- c;�a; e:c :- b:c:b :- c; d:a :- �b:Figure 1(i) shows the stack after the edge from b to c is traversed. The computationreturns to subgoal c and derives an answer using the second clause of c. Theanswer is returned to every waiting node, including the node in the tree forsubgoal m. This leads to a new subgoal a. Figure 1(ii) shows the stack after



35the negative from a to b is processed. The NegLink of a is updated to 2, whichis propagated to b and c through NegMin, creating a condition of a potentialnegative loop (even though the program is strati�ed). The negative subgoals �aand �b are delayed, leading to a new subgoal e that is irrelevant to m since �ais false in the well-founded semantics.
(i) (ii)

(m,1,1,maxint)

(c,2,2,maxint)

(b,3,2,maxint)

(m,1,1,maxint)

(c,2,2,maxint)

(b,3,2,maxint)

(a,4,4,2)Figure 1. Stacks of subgoals indicating unnecessary delayingThe tradeo� is between maintaining precise dependencies through run-time re-ordering of subgoals on the stack and risking the evaluation of irrelevant subgoals.Which approach is more e�cient in practice remains to be determined.The third di�erence lies in the handling of negative loops. Well-founded orderedsearch uses the alternating �xpoint technique for subgoals involved in negative loopsby calculating possibly true or false facts. Our implementation delays all selectedground negative literals possibly involved in negative loops. The negative edges areeliminated and the negative dependencies are reset. Delayed literals are simpli�edaway later when their truth or falsity is known, but there is no redundant inference.Example 5.3. The following program is from Example 4.1 in [24]:r(X) :- �s(X):s(X) :- q(X;Y );�r(Y ); t(Y ):q(X; a) :- �r(X):To handle negative loops, well-founded ordered search introduces predicates forcomputing true or unde�ned facts. The Undef Magic rewriting in [24, 23] pro-duces the program below:r(X) :- query(r(X)); done(s(X);�un(s(X)):s(X) :- query(s(X)); q(X;Y ); done(r(Y ));�un(r(Y )); t(Y ):q(X; a) :- query(q(X; a)); done(r(X));�un(r(X)):un(r(X)) :- query(r(X)); un(�s(X)):un(s(X)) :- query(s(X)); un(q(X;Y )); un(�r(Y )); un(t(Y )):un(q(X; a)) :- query(q(X; a)); un(�r(X)):un(r(X)) :- r(X):un(s(X)) :- s(X):un(q(X; a)) :- q(X; a):un(�r(X)) :- done(r(X));�r(X):



36 un(�s(X)) :- done(s(X));�s(X):un(�q(X; a)) :- done(q(X; a));�q(X; a):query�(s(X)) :- query(r(X)):query(q(X;Y )) :- query(s(X)):query�(r(Y )) :- query(s(X)); un(q(X;Y )):query(t(Y )) :- query(s(X)); un(q(X;Y )); un(�r(Y )):query�(r(X)) :- query(q(X; a)):The systematic duplication of true facts in un causes redundant computation andextra space requirements for storing intermediate relations. The duplication isavoided in our implementation due to a uniform representation of answer clauses,which include both de�nitely true answers and possibly true answers that havedelayed literals.In the evaluation of query r(a), there is a negative loop, involving r(a), s(a), andq(a; Y ). In well-founded ordered search, unde�ned facts are introduced: un(�s(a))and un(�r(a)). This allows the computation to proceed and evaluate t(a). Theevaluation of t(a) is completed and produces no answers. Well-founded orderedsearch returns to the ContextNode to evaluate the negative loop of r(a), s(a), andq(a; Y ), and starts alternating �xpoint computation for the negative loop, eventhough the negative loop has been broken since s(a) fails. According to [24], thefollowing sequence of actions is invoked:� Add done(s(a)) (since a �xpoint has been reached and un(s(a)) is notpresent);� Delete un-facts un(q(a; a)) and un(r(a)) (to begin the next stage of �xpointcomputation);� Fixpoint computation using the relevant rules in the magic program, whichderives un(q(a; a)), r(a) and un(r(a));� Add done(r(a)) (since r(a) is now present);� Remove un(�r(a)) (since r(a) is now present);� Delete un-facts un(q(a; a)) (to begin the next stage of �xpoint computation);� Fixpoint computation again, producing no new facts. Thus the ContextNodefor the negative loop is removed and done(q(a; Y )) is added.Notice that un(q(a; a)) and un(r(a)) are deleted and then re-derived.Our implementation delays �s(a) and �r(a), which is similar to adding unde-�ned facts of un(�s(a)) and un(�r(a)). However, subgoals r(a) and q(a; Y ) areboth completely evaluated with conditional answers:r(a) :- �s(a):q(a; a) :- �r(a):The subgoal s(a) is completely evaluated with no answers since t(a) fails. Thefailure of s(a) is used to simplify the conditional answer for r(a), and in turn, thesuccess of r(a) is used to delete the conditional answer for q(a; Y ). Two aspectsshould be noted. First, the derivation of conditional answers is not repeated. Sec-ond, the simpli�cation of delayed literals is carried out only on conditional answers,which is much more e�cient than a �xpoint computation using the correspondingclauses in the original magic program. Repeated derivation due to over-estimatingthe truth or unde�nedness of subgoals is avoided.



37It should be mentioned that repeated computation can occur due to the factthat variant checking is used for identifying duplicate subgoals. It is possible thatboth p(X;Y ) and p(a; Y ) are evaluated. Clearly all answers of p(a; Y ) are answersof p(X;Y ) (unless Prolog builtin predicates like var=1 are used in the de�nition ofp=2). Subsumption checking of subgoals is needed to avoid such repetition.5.2. Performance MeasurementsThere are two freely available implementations that make use of the algorithmsin this paper. The SLG system, which is a meta interpreter written in QuintusProlog, implements the algorithms fully. Another, the SLG-WAM of XSB compilesa restriction of SLG for left-to-right modularly strati�ed programs[25]. (The SLG-WAM is currently being extended to evaluate the full SLG resolution). To get arough idea how the meta interpreter and XSB perform, we took the benchmarkprograms reported in [13] together with their timing information, and then ranthem using the meta interpreter and XSB. However, it should be pointed out thata systematic study of benchmark that include negation has to be conducted beforea clear picture of the relative performance of the various systems can be obtained(for de�nite programs, systematic experiments have been reported in [26]).The following experiments are taken from [13]. The intensional database containsonly one rule: win(X) :- move(X;Y );�win(Y ):Three di�erent relations for move are used, one containing an acyclic linear list:(1,2), ..., (N-1,N), another containing a complete binary tree of height H (with2H+1 � 1 tuples), and the other containing a cyclic linear list: (1,2), ..., (N-1,N),(N,1). Execution times were provided in [13] for query win(1) in Glue-Nail's imple-mentations of Ross's method for modularly strati�ed programs [19] and Morishita'salternating �xpoint tailored to magic programs [13].We ran the meta interpreter implementation of SLG resolution on these programsusing Quintus Prolog 3.1 on a Decstation 3100 (Ultrix V4.2A (Rev. 47)). The timinginformation in each experiment was obtained using the builtin predicate statistics/2in one run. For the two modularly strati�ed programs, we re-ran the SLG metainterpreter against XSB on a SPARCstation 2. The average of 100 iterations wastaken in comparing the meta interpreter to the emulator.The following tables show the execution times (in seconds) of our meta inter-preter in comparison with the timing information from [13]. The numbers forMorishita's implementation were taken from a DEC 5000 [14], a slightly faster ma-chine than the DECstation 3100. In addition, meta interpreter times are also shownnormalized to XSB's SLG evaluation. negation.The results seem to indicate that our meta interpreter is competitive with Mor-ishita's implementation, and that the XSB system is an order of magnitude or morefaster than the meta interpreter. Morishita's implementation performs better forcyclic linear lists than for acyclic linear lists. This is due to the fact that all winfacts are unde�ned in the cyclic case and the �xpoint is immediately reached [13].On the other hand, the execution times of the SLG meta interpreter are compa-rable in both cases of linear lists. The delaying in the cyclic case makes the metainterpreter slightly slower than in the acyclic case.



38 N 8 16 32 64 128 256SLG 0.050 0.100 0.233 0.467 0.933 2.000Morishita 0.199 0.715 2.621 10.18 40.79 161.9Ross 0.145 0.309 0.738 2.05 6.56 23.7Table 1. Timing for acyclic linear listsH 6 7 8 9 10 11SLG 0.934 1.934 4.084 13.18 28.02 63.45Morishita 1.11 2.64 5.24 12.5 25.0 59.6Ross 1.62 4.12 10.86 33.6 111.0 398.4Table 2. Timing for complete binary treesN 8 16 32 64 128 256SLG 0.067 0.134 0.283 0.600 1.233 2.550Morishita 0.055 0.094 0.180 0.348 0.691 1.391Table 3. Timing for cyclic linear listsLength 8 16 32 64 128 256SLG Interp. 30 30 33 32 29 29XSB 1 1 1 1 1 1Table 4. SLG engine and interpreter for acyclic linear listsHeight 6 7 8 9 10 11SLG Interp. 28 27 30 32 53 60XSB 1 1 1 1 1 1Table 5. SLG engine and interpreter for complete binary trees



39Further benchmarks of XSB for these programs show linear performance as thedatabase size is increased through 32k for linear lists, and through 64k for trees.In summary these preliminary benchmark results seem to indicate that XSB out-performs prototypes of deductive databases in most cases, and can be signi�cantlyfaster. XSB also provides an alternate form of negation for SLG evaluation whichcan further optimize these programs.5.3. Existential Negation in XSBSLG evaluation as de�ned in this paper will not cause the exponential behavior thatcan be observed in some other top-down approaches [7], because it fully evaluatesall subgoals even when they are created as a result of a call to a negative subgoal.This method of evaluation is ine�cient for the win/1 example over the binary tree.To see this, consider the calls made by SLDNF for the query win(1) over a binarytree with 31 nodes. The calls are represented as circled nodes in Figure 2. BecauseSLDNF checks only for the existence of a solution for a negative subgoal, only 13out of 31 possible subgoals are evaluated by SLDNF, and in general the executionof win(1) over a binary tree grows proportionally to p2n in SLDNF rather thanto 2n. 1
1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31Figure 2. Calls to win/1 over a binary treeVersion 1.4 of XSB allows three di�erent ways of executing win/1. The �rstuses pure SLG resolution in which all subgoals are fully evaluated. This method isused in the comparison with the SLG meta interpreter in Table 4 and Table 5. Thesecond uses SLDNF resolution. Existential negation is the third alternative of XSB,which combines some of the search strategy of SLDNF resolution with SLG reso-lution. In existential negation, when a de�nitely true answer is derived for A, the1The exact formula is G(n) = 2bn2 c+2 � 3 + 2(n2 � bn2 c).



40 corresponding ground negative subgoal �A fails. Furthermore, subgoals that arecreated during the evaluation of A can be discarded without being fully evaluatedunder certain conditions without losing termination and correctness properties ofSLG resolution. The tables below show normalizations of the execution times ofthe SLG meta interpreter and the �rst two methods of XSB to that of XSB withexistential negation for the two benchmark programs that are modularly strati�ed.Length 8 16 32 64 128 256SLG Interp. 30 30 33 32 29 29XSB / No E-Neg .99 .99 1 .99 1 .97XSB / SLDNF .67 .21 .22 .22 .24 .26XSB / E-Neg 1 1 1 1 1 1Table 6. Comparisons of SLG implementations for acyclic linear listsHeight 6 7 8 9 10 11SLG Interp. 123 116 229 261 812 906XSB / No E-Neg 4.5 4.25 7.6 8.2 15.4 15.7XSB / SLDNF .3 .24 .22 .24 .24 .23XSB / E-Neg 1 1 1 1 1 1Table 7. Comparisons of SLG implementations for complete binary trees6. CONCLUSIONWe have presented e�cient techniques for implementing SLG resolution [6], whichis a transformational framework for computation of queries with respect to thewell-founded semantics. We �rmly believe that SLG resolution will have an impor-tant impact on the theory and practice of logic-based computational systems. Itstermination properties on strati�ed Datalog programs make it a good strategy fordeductive database query processing; its ability to be integrated seamlessly withProlog evaluation makes it a good logic programming strategy, and its polyno-mial data complexity for handling nonstrati�ed Datalog programs makes it a goodstrategy for nonmonotonic knowledge representation problems.Implementation techniques developed in this paper not only bring the declarativesemantics of logic programs to Prolog programmers and other users, but also areapplicable to problems that involve various extensions of logic programs, includingconstructive negation and constraint logic programming.ACKNOWLEDGMENTWe thank S. Sudarshan for discussions on the (well-founded) ordered search tech-niques and S. Dawson and K. Sagonas for their help on the time complexity of
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