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EFFICIENT TOP-DOWN COMPUTATION OF
QUERIES UNDER THE WELL-FOUNDED
SEMANTICS

WEIDONG CHEN * , TERRANCE SWIFT' , AND DAVID
S. WARREN?

The well-founded model provides a natural and robust semantics for logic
programs with negative literals in rule bodies. Although various procedural
semantics have been proposed for query evaluation under the well-founded
semantics, the practical issues of implementation for effective and efficient
computation of queries have been rarely discussed.

This paper investigates two major implementation issues of query evalua-
tion under the well-founded semantics, namely (a) to ensure that negative
literals be resolved only after their positive counterparts have been com-
pletely evaluated, and (b) to detect and handle potential negative loops.
We present efficient incremental algorithms for maintaining positive and
negative dependencies among subgoals in a top-down evaluation. Both
completely evaluated subgoals and potential negative loops are detected
by inspecting the dependency information of a single subgoal. Our imple-
mentation can be viewed as an effective successor to SLDNF resolution,
extending Prolog computation in a natural and smooth way.
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1. INTRODUCTION

The well-founded semantics [29] provides a natural and robust declarative mean-
ing to all logic programs with negation in rule bodies. Practical use of the well-
founded semantics, however, depends upon the implementation of an effective and
efficient query evaluation procedure. Although various procedural semantics have
been proposed, implementation techniques for the well-founded semantics have not
yet received adequate attention.

Earlier procedures for the well-founded semantics by Przymusinski [16] and Ross
[20] are extensions of SLDNF resolution with infinite failure. They are not suit-
able for effective computation of queries due to possible infinite loops even when
programs are function-free.

Effective top-down computation with tabling is explored in Well! [2] and XOLDTNF
[5] for the well-founded semantics. Two aspects of these approaches should be noted.
First, a ground negative subgoal 1s solved by computing its positive counterpart up
to a fixpoint as in Prolog. The fixpoint computation is a simple mechanism to
guarantee that the positive counterpart of a negative literal be completely eval-
uated. Second, to prevent negative loops, each subgoal has an associated set of
ground negative literals, called a negative context. When a ground negative literal
is selected, there is a negative loop if it 1s already in the negative context of the cur-
rent subgoal. These two mechanisms, however, prohibit the full sharing of answers
to subgoals across different negative contexts in the nested fixpoint computation.
Although simple to implement, they may cause exponential behavior in the worst
case [7].

Bottom-up computation of the well-founded semantics has also been studied
[10, 11, 13, 15]. These approaches are based upon either van Gelder’s alternat-
ing fixpoint characterization of the well-founded model [28] or the fixpoint for the
smallest three valued stable model [4, 17]. Due to the single fixpoint computation,
all answers of subgoals can be shared. Each iteration of the fixpoint computation,
however, may over-estimate the truth or undefinedness of negative subgoals. This
over-estimate is necessary for non-stratified programs in general, but should be
properly controlled so as to avoid evaluating irrelevant subgoals.

The first work on controlling the search in bottom-up computation is reported in
[18] for left-to-right modularly stratified programs. The Ordered Search technique
in [18] attempts to capture relevant subgoals in a top-down fashion by controlling
the availability of magic tuples (that represent calls in a top-down computation).
This is achieved by maintaining subgoal dependencies in a sequence of so called
ContextNodes. The idea of subgoal dependencies can be traced back to [21], where
they were used to determine if subgoals were completely evaluated. However, the
issue of efficient dependency maintenance was not investigated in detail.

Our work on effective computation of the well-founded semantics started with
XOLDTNF [5]. As we have mentioned, XOLDTNF uses a fixpoint computation to
guarantee that the positive counterpart of a negative literal be completely evalu-
ated, and it uses negative contexts for handling negative loops. Both mechanisms
may cause redundant computation. To resolve this problem, we investigated the
idea of subgoal dependencies, which proved to provide a simple solution to both
completion of subgoals and detection of negative loops. The conceptual framework
of this new approach, called SLG resolution, was reported in [6]. Tt is goal-oriented
and has a polynomial data complexity for function-free programs. Detailed proofs



can be found in [7] for the soundness and search space completeness of SLG resolu-
tion with respect to three valued stable models, including the well founded partial
model as a special case. A similar framework is presented in [3]. A meta in-
terpreter implementation integrating Prolog and SLG resolution, called The SLG
System [8], is available by anonymous FTP from seas.smu.edu or cs.sunysb.edu. A
WAM-based compiler implementation integrating Prolog and the restricted SLG
resolution for left-to-right modularly stratified programs, called The XSB Logic
Programming System, [22], has been released and is available by anonymous FTP
from cs.sunysb.edu.

As a conceptual framework, SLG resolution consists of a number of transforma-
tions by which a query is reduced to a set of answer clauses, but it does not specify
i what order these transformations should be applied. Two important transfor-
mations are COMPLETION and DELAYING. COMPLETION detects subgoals that have
been completely evaluated so that their negative counterparts can be resolved. DE-
LAYING delays ground negative literals so that computation can proceed even in case
of negative loops. Delaying in SLG resolution corresponds to over-estimating the
truth or undefinedness of negative subgoals in bottom-up computation. To avoid
computation of irrelevant subgoals, delaying should be tightly controlled.

This paper addresses the fundamental issues of implementation that are common
in both top-down and bottom-up computation of the well-founded semantics. In
particular, we present incremental algorithms for maintaining dependencies among
subgoals. By inspecting the dependency information of a single subgoal, we can
determine efficiently if subgoals are completely evaluated or are possibly involved
in negative loops.

Practically, the XSB system implementing SLG resolution for left-to-right mod-
ularly stratified programs is upwardly compatible with Prolog. With a few simple
declarations for the XSB compiler, either given by the user or generated by the sys-
tem, Prolog programs can be executed using SLG resolution, SLDNF resolution, or
a mixture of the two. At an operational level, implementing SLG in a WAM-based
framework not only allows for smooth integration of the deductive database and
logic programming paradigms; it also allows the SLG engine to benefit from the
highly optimized unification and control algorithms in the WAM. As a simple in-
stance, a left linear ancestor predicate executed using SLG spends 70% of the time
on WAM instructions, and about 30% of the time on instructions created for SLG.

The rest of the paper is organized as follows. Section 2 describes the search
forest and the corresponding subgoal graph that may be induced by transformations
of SLG resolution in query evaluation. Section 3 introduces the main issues in
incremental maintenance of subgoal dependencies during query evaluation. Section
4 presents detailed algorithms in our implementation of SLG resolution. Section 5
concludes with a summary and a comparison with related work.

2. SLG RESOLUTION FOR WELL-FOUNDED SEMANTICS

This section reviews briefly the well-founded semantics of logic programs [29] and
discusses the search forest and dependency graph for query evaluation. The basic
framework of SLG resolution and its correctness theorem [6, 7] are described, which
will be used to establish the correctness of our implementation.



2.1. Well-Founded Semantics

We assume the basic terminology of logic programs [12]. A program is a finite set
of clauses of the form:

A - Ll, ceny Ln
where A is an atom and Lq, ..., L, are literals. When n = 0, a clause, possibly
containing variables, is called a fact. By a subgoal we mean an atom. Subgoals
(and literals) that are variants of each other are considered syntactically identical.

The Herbrand universe of a program P is the set of all ground terms that may be
constructed from the constants and function symbols appearing in P. An arbitrary
constant 1s added if no constant occurs in P. The Herbrand base of P, denoted by
Bp, is the set of all ground atoms with predicates occurring in P whose arguments
are in the Herbrand universe of P. The Herbrand instantiation of P is the (possibly
infinite) set of all ground clauses obtained by substituting terms in the Herbrand
universe for variables in clauses in P.

Let P be a logic program and Bp be the Herbrand base of P. A set I of
ground literals is consistent if for no ground atom A, both A and ~A are in I. An
wnterpretation I is a consistent set of ground literals.

The well-founded semantics depends upon the notion of unfounded sets to derive
atoms that are false.

Definition 2.1. [29] Let P be a logic program, I be an interpretation, and U be a
subset of the Herbrand base Bp. U is an unfounded set of P with respect to I if
every atom A € U satisfies the following condition: for every ground instance of
a clause in P whose head is A, either

e some literal L in the body is false in I; or
e some positive literal L in the body is also in U.

The union of all unfounded sets of P with respect to I coincides with the greatest
unfounded set of P with respect to I, denoted by Up(I).
Intuitively if a set of atoms depends upon each other through positive literals
and there is no escape clause for any of the atoms, then the set is unfounded and
all atoms in the set will be false in the well-founded semantics.

Definition 2.2. [29] Let P be a logic program, and I be an interpretation. Trans-
formations Tp and Wp are defined as follows:

e A€ Tp(I)if and only if there is a ground instance of some clause in P with
head A such that all literals in the body are true in I;
e Wp(l)=Tp(I)U{~A|A € Up(I)}.

Transformations T p and Wp are known to be monotonic [29]. The powers W§
are defined in the standard manner, where « ranges over all countable ordinals. The
well-founded partial model of a program P, denoted by W F(P), is the union of all
Ws.

2.2. Search Forest and Dependency Graph

In SLG resolution [6], query evaluation is viewed as traversing a search tree or
a search forest for a query. This subsection describes the search forest and the
corresponding dependency graph of subgoals for a query.



2.2.1. SLD Resolution with Tabling For programs without negation, SLG reso-
lution reduces to SLD resolution with tabling [9, 27, 30]. In all the examples; we
use a left-most computation rule although an arbitrary but fixed computation rule
is allowed.

Let P be a program without negation and A be a subgoal. We construct a
search forest for A with respect to P. Each node in the forest is labeled by a clause.
Initially, the search forest has one tree, namely the tree for A, whose root node is

labeled by A :- A.

The root node of the tree for a subgoal A, labeled by A :- A, has a child node
for each resolvent of A :- A with a clause in P on the A in the body of A :- A.

If a node 1s labeled by a fact B in the tree for a subgoal A, then B is an answer
for A. Two answers are considered identical if they are renaming variants of each
other.

Let v be a non-root node in the tree for subgoal A, G be the clause labeling v,
and B be the selected atom of (. If the current search forest does not contain the
tree for subgoal B, the tree for B is added, whose root node is labeled by B :- B.
For each (distinct) answer B’ of B, v has a child that is labeled by the resolvent
of G with B’ on the selected atom B. This process continues until no new node or
new tree can be created.

Fzample 2.1. [5] Consider a small cyclic graph and the common definition of
transitive closure:

e(a,b). e(b,c). e(b,a).
te(X,Y) - e(X,Y).
te(X,Y) - e(X,7),te(2,Y).

Figure 1 shows the search forest for subgoal tc(a, V7). (Trees for subgoals of predicate
e/2 are not shown.)

Corresponding to each search forest, there is a dependency graph of subgoals.
Each node in the dependency graph is a subgoal. An edge from a subgoal A to a
subgoal B corresponds to a non-root node v in the tree for A such that B is the
subgoal of the selected literal from the label of v.

For instance, the tree for te(a, V) contains a non-root node labeled by te(a, V) - te(b, V).
It determines an edge in the dependency graph from tc(a, V) to te(b, V), the se-
lected atom of the label of the non-root node. The dependency graph corresponding
to the forest in Figure 1 is shown in Figure 2. The intuition behind the dependency
graph is that it contains a path from subgoal A to subgoal B if the truth value of
A may depend in some way on the truth value of B.

2.2.2. Stratified Negation For stratified programs [1], one issue is how to ensure
that a ground subgoal be completely evaluated so that the success of its negative
counterpart can be determined. A negative literal can succeed only if the corre-
sponding positive subgoal has no answers after having been completely evaluated.

The notion of a search forest can be extended to stratified programs in a straight-
forward way. When a ground negative literal ~B is selected, we start the tree for
B if the current search forest does not contain the tree for B. If B succeeds with an
answer, then every node with ~B selected 1s marked as failed. If B is completely



tc(a V) :- tc(aV).

tc(aV) - eaV). tc(a V) :- e(a W), tc(W,V).
tc(ab). tc(a V) :- tc(b,V).
tc(a,c). tc(a\,La). tc(ab).

tc(b,V) :- tc(b,V).

tc(bV) = e(b.V). tc(bV) - eb,U), te(U,V).
tbg).  teba).  te(bV) ‘ﬂc({ % tc(aV).

N

tc(b,b). tc(b,c).  tc(b,a).

tc(c,V) :- te(c,V).

tc(c,V) - e(c,V). tc(c,V) :- e(c,2), tc(Z,V).

Figure 1. Search forest for tc(a, V)

evaluated and has no answers, then ~ B succeeds and every node with ~B selected
has a single child node obtained by deleting ~B.

Frample 2.2. Consider the following program and subgoal m/(¢):

m(X) - ~p(X).
p(a).

p(X) = q(X)
q(b).

¢(X) - p(X)

Figure 3 shows a search forest and the corresponding dependency graph among
subgoals before the success of ~p(c) is determined. Notice that m(c) depends
upon p(c) negatively due to the node labeled with m(c) :- ~p(¢). A negative
edge is marked by a slash in the middle.



tc(a V) tc(bV) ———————=tc(c,\V)

S

e@Vv) eb,V) e(cV)

Figure 2. Dependency graph for tc(a, V)

m(c) :- m(c). p(c) :- p(c). q(c) :- q(c).

m(c) :- ~p(c). p(c) :- q(c). q(c) :- p(c).

m(c) —~— p(c) a(c)

Figure 3. Search forest and dependency graph for m(c)

As in Prolog, our approach performs a depth-first search and maintains a stack

of subgoals. The initial subgoal m(c) is pushed onto the stack first. Traversing the
tree for m(c) leads to a new subgoal p(c), which is pushed onto the stack. Traversing
the tree for p(c) leads to another subgoal ¢(¢), which is also pushed onto the stack
of subgoals. The node p(e) :- q(¢) in the tree for p(ec) is suspended, waiting for an
answer from ¢(c). Traversing the tree for ¢(c) leads to a node ¢(¢) :- p(¢). Since p(c)
has been encountered before and is on the stack, the node ¢(¢) :- p(c) is suspended,
waiting for an answer from p(c). The current stack of subgoals is shown in Figure

4.

q(c)
p(c)
m(c)

Figure 4. Stack of subgoals in a depth-first search for m(c)

At this point, there are no new nodes in the tree for ¢(c) that have not been

explored. However, we cannot determine that q(c¢) is completely evaluated since it



depends upon a previous subgoal, namely p(c), deeper in the stack. Computation
returns to subgoal p(e). Similarly, there are no new nodes in the tree for p(c) that
have not been explored. But p(c) does not depend upon any previous subgoal deeper
in the stack. Furthermore, there are no negative edges among the set {p(c),¢(c)}
of subgoals. Therefore both p(c) and ¢(c) are completely evaluated, so they are
popped off the stack and their suspended clauses are disposed. When p(¢) and
q(c) are marked as completed, the node waiting on ~p(e) in the tree for m(c) is
processed, and the answer m(c) is derived.

To detect subgoals that are completely evaluated, we maintain, for each subgoal
A, the deepest subgoal B in the stack which A or any subgoal on top of A may
depend upon. When there are no new nodes that have not been explored in the
trees for A and subgoals on top of A, we check the subgoal associated with A. If
the subgoal is deeper in the stack than A, A may depend upon subgoals below A
and therefore cannot be completed. Otherwise, A and all subgoals on top of A
are completely evaluated provided that there are no negative edges among these
subgoals.

2.2.3. Negative Loops and Delaying According to the definition of subgoals that
are completely evaluated, every selected ground negative literal from any node in
the trees of these subgoals must have been resolved. This may be impossible for
programs that are not stratified.

Frample 2.3. Consider the subgoal w(a) with respect to the following program:

w(X) - m(X,)Y), ~w(Y),p(Y).
m(a,b). m(b,ec). m(c,b).
p(b).

Figure 5 shows the search forest and the dependency graph when a negative
loop is encountered. Our implementation follows the depth-first and tuple-at-a-
time computation in Prolog, and maintains a stack of subgoals as in Prolog, the
current state of which is shown in Figure 6. (A determinacy analysis or indexing
scheme may detect that subgoals such as m(a,Y), m(b,Y), and m(c,Y) can be
executed without being pushed onto the stack.)

Consider the most recent subgoal m(e,Y'). Tt is called in the node labeled by:

w(e) - m(e,Y), ~w(Y), p(Y)

in the tree for w(c) during the evaluation of w(c). Following the tuple-at-a-time
strategy, the answer m(c, b) for m(e,Y) is returned immediately to the node waiting
on it, which leads to a new node in the tree for w(c):

w(c) - ~w(b), p(b)

Since w(b) is on the stack and is not completely evaluated, the new node is sus-
pended. At this point, there are no new nodes in the tree for m(e, ') that can be ex-
plored, nor are there any new nodes created by the answer of m(¢,Y) that have not
been explored. We check to see if m(c,Y) is completely evaluated. In this example,
m(c,Y) does not depend upon any other subgoal. Thus it is completely evaluated
and so is popped off the stack and marked as completed. The edge directed towards



w(a) :- w(a).

w(a) - m(a,Y), ~w(Y), p(Y).

w(a) :- ~w(b), p(b).

w(b) :- w(b). w(c) :- w(c).
w(b) :- m(b,Y), ~w(Y), p(Y). w(c) - m(c,Y), ~w(Y), p(Y).
w(b) :- ~w(c), p(c). w(c) :- ~w(b), p(b).

w(a) —~—= w(b) w(c)

m(aY) m(b,Y) m(c,Y)

Figure 5. Search forest and dependency graph for w(a)

m(c,Y) in the dependency graph, namely w(e) - m(c, V), ~w(Y),p(Y), is deleted
since all answers of m(¢,Y) have been propagated.

Similarly we check the next subgoal on the stack, namely w(c). It cannot be
completely evaluated since it depends upon a subgoal, w(b), deeper in the stack.
Therefore w(e) remains on the stack.

Computation returns to the next subgoal m(b,Y"). The subgoal m(b,Y") does not
depend upon other subgoals and is in fact completely evaluated. However without
a possibly costly re-organization of the stack, m(b,Y") cannot be popped off due to
the fact that w(e) on top of it depends upon a subgoal deeper in the stack than
m(b,Y).

Computation then returns to subgoal w(b). No subgoal from the top of the stack
up to and including w(b) depends upon any subgoal deeper than w(b). However,
neither w(b) nor w(c) can be completed since each depends upon the other through
negation.

Our approach in SLG resolution is to delay negative literals in case of possible
negative loops so that computation of queries can proceed. It may be the case that
another subgoal in the body of the clause may fail, thus in effect eliminating the
negative loop. In Figure 5, we delay ~w(b) in the node:

w(c) - ~w(b), p(b)
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m(c,Y)
w(c)
m(b,Y)
w(b)
m(a,Y)
w(a)

Figure 6. Stack of subgoals in a depth-first search for w(a)

and the node has a single child labeled by:

w(e) = ~w(b) | p(b)

Similarly we delay ~w(¢) in the node:

w(b) - ~w(e),p(c)

and the node has a single child labeled by:

w(b) = ~w(e) | ple)

We use | to separate delayed literals (on the left of |) from the other body
literals (on the right of |) that are yet to be solved. As far as dependencies
among subgoals are concerned, delaying eliminates the previous negative edge and
possibly introduces a new edge. For instance, delaying ~w(b) in w(c) - ~w(b), p(b)
eliminates the corresponding negative edge from w(e) to w(b), and introduces a
new edge from w(c) to p(b) by creating a new node w(e) :- ~w(b) | p(b). Figure
7 shows the search forest and the subgoal dependency graph after delaying ~w(b)
and ~w(c).

Delayed literals are not included in the consideration of subgoal dependencies as
far as completely evaluated subgoals are concerned. The intuition is that we are
now trying to prove contingent answers, 1.e., answers that are implications. So in
some sense, the dependency has been moved from the proof into the answer. The
delayed literals will, however, have to be simplified if and when their truth or falsity
becomes known.

The nodes newly created by delaying are then processed, leading to new subgoals
p(b) and p(c) on the stack. Subgoal p(b) succeeds, leading to an answer node:

w(c) - ~w(b) |

for w(c). Subgoal p(c) fails. Both p(b) and p(c) are completely evaluated and are
popped off the stack. Since w(c¢) does not depend upon any subgoal that is not
completed evaluated, w(e) is completely evaluated and popped off the stack, so are
m(b,Y) and w(b). However, w(b) is completed without any answers. The failure
of w(b) is propagated to the delayed literal ~w(b) in the answer w(e) - ~w(b) |,
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w(a) - w(a).

w(@) - m(aY), ~w(Y), p(Y).

w(a) :- ~w(b), p(b).

w(b) :- w(b). w(c) :- w(c).

w(b) :- m(b,Y), ~w(Y), p(Y). w(c) - m(c,Y), ~w(Y), p(Y).

w(b) :- ~w(c), p(©)- w(c) :- ~w(b), p(b).
w(b) :- ~w(c) | p(c) w(c) :- ~w(b) | p(b).
w(a) w(b) w(c)
m(aY) m(b,Y) p(c) m(c,Y) p(b)

Figure 7. Search forest and dependency graph for w(a) after delaying

leading to a definite answer w(c). The failure of w(b) is also propagated to ~w(b)
in the node:

w(a) - ~w(b), p(b)

which, after resolving away p(b), leads to an answer w(a).

In general, the well-founded model is three valued. Answers for a subgoal
may contain delayed literals that cannot be simplified away, and these answers are
neither true nor false in the well-founded model.

2.3. Transformations in SLG Resolution

This subsection reviews the basic definitions and transformations in SLG resolu-
tion that are essentially operations over search forests of a query. The correctness
theorem of SLG resolution [6, 7] is described and explained, which will be used to
establish the correctness of our implementation of SLG resolution.

Definition 2.3. An X-clause (G is a clause of the form:

A-D|B
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where A is an atom, D is a sequence of (delayed) ground negative literals and

(possibly nonground) atoms, and B is a sequence of literals. Literals in D are

called delayed literals. If B is empty, an X-clause is called an answer clause.

A clause in a program is viewed as an X-clause in which D i1s empty. We usually
omit | when D is empty. As far as the declarative semantics is concerned, each
X-clause is viewed as an ordinary clause whose body is the conjunction of all literals
in D and B. That is, the | is purely a control annotation.

Given an X-clause A :- D | B where B is non-empty, a computation rule R selects
from B exactly one literal, called the selected literal.

Definition 2.4. [SLG Resolution] Let G be an X-clause A - D | Ly, ..., L,, where
n > 0 and L; be the selected atom. Let C' be an X-clause with no delayed literals,
and C’, of the form A’ - L{, ..., L}, be a variant of C' with variables renamed so
that G and C” have no variables in common. G is SLG resolvable with C if L;
and A’ are unifiable. The clause

(A - D | Ll, ...,Li_l,Lll, "'aL;naLi-I-la ,Ln)g

is the SLG resolvent of G with C', where 6 is a most general unifier of I; and A’.
SLG resolution is used for resolution with a clause in a program or with an
answer clause that has an empty sequence of delayed literals (on the left of | ).
For an answer clause that has a non-empty sequence of delayed literals, relevant
variable bindings in the head of the answer clause are propagated by SLG factoring,
but the sequence of delayed literals in the body is not propagated.

Definition 2.5. [SLG Factoring] Let G be an X-clause A :- D | Ly, ..., L,,, where
n > 0 and L; be the selected atom. Let C' be an answer clause, and C”’, of the
form A’ - D' | , be a variant of C' with variables renamed so that G and C’ have
no variables in common. If D’ is not empty and L; and A’ are unifiable with a
most general unifier 8, then the SLG factor of G with C is

(A - D,LZ' | Ll, ~~~,Li—1,Li+1, ,Ln)g

The motivation of not propagating delayed literals in an answer clause is to
guarantee the polynomial complexity for computation of queries on function-free
programs[6]. If there are multiple answer clauses with the same atom (up to variable
renaming) in the head, only one of them will be propagated by using either SLG
resolution or SLG factoring. As far as answer propagation is concerned, two answer
clauses are considered distinct if the head atoms are not renaming variants of each
other.

We associate with each non-root node in a tree a status value, which can be
either new, answer, active, floundered, or disposed. The initial status of each newly
created node is new. The processing of a new node may change the status to:

answer if the clause labeling the node is an answer clause;

floundered if the selected literal 1s a non-ground negative literal;

active if the selected literal is not floundered and is not completely evaluated;
and



13

o disposed if all possible child nodes of the node have been created (and so the
node is no longer useful).

Initially, if a query is an atom A, the search forest starts with a single tree for
A, whose root node is labeled A - A and has a child node for each SLG resolvent
of A :- A with program clauses.

Each transformation is an operation that changes the search forest. Transforma-
tions (i-iii) process the X-clause of a new node, whose status is changed (mutually
exclusively) to answer, floundered, or active. Transformation (iii) also starts a new
subgoal when 1t is first encountered.

Let G be the X-clause of a new (non-root) node v.

(i) NEW ANSWER. If (G is an answer clause, then the status of v is changed to
answer;

If G is not an answer clause, let L be the selected literal of G.

(i) FLOUNDERING. If L is a non-ground negative literal, the status of v is
changed to floundered,

(ili) NEwW ACTIVE. If L is an atom B or a ground negative literal ~ B, the status of
v 18 changed to active and its associated set of atoms is empty. Furthermore
if there is no tree for B in the current search forest, it is created whose root
node is labeled with B :- B and has a child node for each SLG resolvent of
B :- B with program clauses;

The set of atoms associated with an active node indicates what answers have been
returned to the active node.
Let GG be the clause of an active node v and L be the selected literal of G.

(iv) ANSWER RETURN. If L is an atom B and for some answer clause C' in the
tree for B, of the form H < D |, H is not in the associated set of atoms
of v, then H is added to the associated set of atoms of v, and v has a new
child node labeled by the SLG resolvent of G with C' on L if D is empty or
by the SLG factor of G with C on L if D is not empty;

Transformations (v) and (vi) solve a ground negative subgoal by negation-as-
failure if the corresponding positive subgoal is either successful or failed. Otherwise,
transformation (vii) delays the selected ground negative subgoal.

If the selected literal L of the X-clause G of an active node v is a ground negative
literal ~ B, there are three cases:

(V) NEGATION FAILURE-R. If B has an answer with no delayed literals, the status
of v 1s changed to disposed,
(vi) NEGATION SUCCEsSS-R. If B is completely evaluated without any answers,
then v has a new child node labeled by GG with L deleted, and the status of
v is changed to disposed;
(vii) DELAYING. Otherwise, v has a new child node labeled by a clause obtained
from GG by moving L into the sequence of delayed literals, and the status of
v is changed to disposed.

Subgoals that are completely evaluated can be determined by inspecting their
trees in the current search forest according to the following definition.



Definition 2.6. Let P be a program and ) be a query atom. Given the search
forest at any point of the computation of () with respect to P, and a set A
of subgoals, A is completely evaluated in the search forest if for every subgoal
A € A, the search forest contains the tree for A, whose root node is labeled by
A - A and which satisfies the following conditions:

e For each SLG resolvent G of A - A with a program clause on the A in the
body, the root node has a child node labeled by G;

e For each non-root node v labeled by a clause G with a selected atom B,
either B is already marked as completed or B € A, and for every distinct
atom B’ that occurs in the head of some answer clause of B, v has a child
node labeled by the SLG resolvent or SLG factor of G with C' on B, where
C'is an answer clause with B’ in the head;

e For each non-root node v labeled by a clause G with a selected negative
literal ~B, B 1s ground. Furthermore, either B has an answer B and v is a
failed leaf node; or B is already marked as completed and has no answers,
in which case v has a single child labeled by GG with ~B deleted; or ~B
is delayed and v has a single child node labeled by G’ obtained from G by
delaying ~B (i.e., moving ~B from the right to the left of the | ).

The completion transformation is as follows:

(viii) COMPLETION. Let A be a non-empty subset of subgoals that is completely
evaluated. Then for each A € A, every active node in the tree for A is
disposed and A is marked as completed.

Given an arbitrary but fixed computation rule, there are programs in which
ground negative literals must be delayed before their truth or falsity is known.
Additional transformations are needed for simplifying delayed literals when their
truth value is determined, the details of which are omitted. These transformations
have no effect on the correctness of SLG resolution, but are necessary to derive the
most simplified answer clauses.

We also use the term SLG resolution to refer to the process of applying transfor-
mations starting with the initial forest of a query atom with respect to a program.
Since the Herbrand universe is countable, there is a stage, which may be larger
than w, when no transformation can be applied to the search forest of a query. It
was shown [6] that when no transformation can be applied to a search forest, either
some node in the forest is floundered or every subgoal in the forest is marked as
completed. In the latter case, the only nodes that are not disposed in the tree of
each subgoal are the root node and the answer nodes. If A is the initial query atom,
let P4 denote the set of all answer clauses 1n the search forest at the end.

The well-founded partial model of a logic program coincides with the smallest
three valued stable model [17]. The correctness of SLG resolution is proved in [6]
using three valued stable models.

Theorem 2.1. [6] Let P be a program, R be an arbitrary bul fized computation rule,
A be a query atom, and P4 be the set of all answer clauses in the final search
forest derived from A that has no floundered nodes. Let HB be the set of all
ground instances of all atoms in Py. Then

for every three valued stable model M of P, the restriction of M to HB,
denoted by M|ug, is a three valued stable model of Pa; and
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e for every three valued stable model M4 of Pa, which is an interpretation over
H B, there exists a three valued stable model M of P such that M|gp = Ma.

In particular, WF(P)|lgp = WF(P4).

A key step in the proof of the theorem is to show that each transformation
preserves all three valued stable models. Let P be a program. Given any search
forest that has been constructed for a query atom A with respect to P, the clauses of
all non-root nodes that are not disposed in the forest represent a partially evaluated
program Py for all the subgoals in the search forest. The literals on the right of |
in each X-clause remain to be evaluated with respect to P, while delayed literals
on the left of | are partially evaluated. To relate partially evaluated subgoals to the
original program, we replace each predicate p in P4 that occurs in the head of an
X-clause or in a delayed literal with a new distinct primed predicate p’ (of the same
arity). Let the resulting program be denoted by P/,. The invariant of the proof is
that in every three valued stable model of PU P/, the meaning of each primed atom
coincides with that of the corresponding unprimed atom. This invariant holds for
the initial forest, and is preserved by each transformation. When every subgoal in
a search forest 1s completely evaluated, P4 contains only answer clauses, and the
program P’ becomes independent of predicates in P, which leads to the theorem
above. Readers are referred to [6] for further details of the proofs.

3. DATA REPRESENTATION AND DEPENDENCY MAINTENANCE

There are two major issues in an efficient implementation of SLG resolution, namely
completion and delaying. Completion, if implemented directly according to the def-
inition, requires inspection of the trees of a set of subgoals in order to check whether
they are completely evaluated. The cost of checking for completion can become a
bottleneck. Delaying basically skips a negative literal so that the rest of the body
of an X-clause can be solved. Delaying is needed to handle negative loops, but
should be avoided as much as possible in order to reduce computation of subgoals
that are irrelevant to a query. This section describes the data representation for a
search forest and an incremental scheme for dependency maintenance. The latter
1s used for efficient completion and negative loop checking.

3.1. Table Entries

The search forest is represented by a global table 7 of subgoals. Each table entry
is identified by a subgoal, and is of the form (A, Anss, Poss, Negs, Comp), where

A is a subgoal,

Anss 1s the set of answers in the current tree for A;

Poss is a sequence of pairs (B, ), where B is a subgoal and G is an X-clause
labeling an active node in the tree for B with the selected atom A;

e Negsis asequence of pairs (B, (), where B is a subgoal and G is an X-clause
labeling an active node in the tree for B with the selected ground negative
literal ~A;

e (Comp is a boolean variable indicating whether A is completely evaluated.
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In a pair (B, (), B is the subgoal that is waiting on A through an edge represented
by the clause G. Whenever an answer for A is found, it is returned to every pair
(B, G) that is waiting in Poss or Negs. Thus there is no need to have an explicit
representation of the set of all answers that have been returned to a waiting node.
We use Anss(A), Poss(A), Negs(A), and Comp(A) to denote the corresponding
fields of A in table 7.

In our implementation, each new node is processed immediately so that its status
is changed to either answer, active, disposed, or floundered. Upon floundering, the
computation halts with an error message. Therefore only clauses of answer nodes
and active nodes have to be represented in a table.

3.2. Dependency Maintenance: A Simple Scheme

A stack of subgoals is used to maintain dependencies. They are updated incremen-
tally whenever an edge from one subgoal to another is processed, and are checked
at certain points for completion and delaying.

3.2.1. Stack Enlries For smooth integration with Prolog, the search forest of a
query is traversed in a depth-first manner using a left-most computation rule. A
stack § of subgoals 1s maintained, which is similar to the local stack in Prolog.

New subgoals that are encountered during a depth-first search are pushed onto
the stack. Each subgoal has an associated depth-first number (DFN) so that the
relative position of two subgoals in the stack is determined easily by comparing
their DFNs. We say that a subgoal A is on top of another subgoal B (or B is
below A) if both A and B are on the stack and A is pushed onto the stack after B.
A global counter (COUNT) is used to compute the next depth-first number. Tt is
initialized to 1.

The stack & plays an important role in detecting completely evaluated subgoals
and potential negative loops. The basic idea is as follows.

When a new subgoal A is encountered, it is pushed onto §. A depth-first traversal
of the tree for A is initiated, which may lead to other new subgoals that are pushed
onto the stack after A.

We associate with each subgoal A two additional numbers, called PosLink and
NegLink, respectively. PosLink is initialized to the depth-first number of A, and
NegLink is initialized to mazint — a value that is larger than all possible depth-first
numbers in an implementation. For each subgoal A, we denote by PosLink(A4) and
NegLink(A) the corresponding PosLink and NegLink of A. The stack entry in S
for subgoal A is of the form (A4,DFN,PosLink,NegLink).

The PosLink of a subgoal A captures the deepest subgoal on the stack which
A may depend upon through positive edges, and the NegLink of A represents
the deepest subgoal on the stack which A may depend upon through at least one
negative edge. The PosLink and NegLink of A are updated when an edge originating
from A is explored.

3.2.2. Incremental Updates of Dependencies Suppose that the tree for A has a
non-root node v labeled by an X-clause G with a selected atom L.

Assume that L is an atom B. If B is not a new subgoal and is not completed, B
must be on the stack. The PosLink and NegLink of A are updated by the following
assignments:
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PosLink(A) := min(PosLink(A4), PosLink(B))
NegLink(A4) := min(NegLink(A4), NegLink(B))

where 'min’ is the function that returns the minimum value of all its arguments.

If B is a new subgoal, a depth-first traversal of the tree for B is initiated. When
it finishes, if B is completely evaluated, all answers of B must have been returned to
the X-clause (G. This is due to the tuple-at-a-time strategy in which we return each
answer immediately to every waiting node. In this case, the PosLink and NegLink
of A are not updated. If B is not completely evaluated, then B must be on the
stack, in which case PosLink and NegLink of A are updated as above.

Another possibility is that the selected literal L is a ground negative literal ~B.
Then there is a negative edge from A to B.

If B is not a new subgoal and is not completed, B must be on the stack. If B has
a definitely true answer, v is marked as a failed leaf node. The PosLink and NegLink
of A are not updated in this case as the success of B has been propagated. If B has
not succeeded with a definitely true answer, the PosLink of A is left unchanged,
but the NeglLink of A is updated as follows:

NegLink(A) := min(NegLink(A), PosLink(B), NegLink(B))

If B is a new subgoal, a depth-first traversal of the tree for B is started. When
it returns, if B is completely evaluated, it must have been popped off the stack,
and our strategy processes every node waiting on B or ~B when B is marked as
completed. The PosLink and NegLink of A are not updated. If B is not completed,
B must be still on the stack, and the same update is carried out for the NegLink
of A.

3.2.3. Checking for Completion and Delaying When the depth-first traversal of
the tree for A finishes, we check the PosLink and NegLink of A.

e If PosLink(A) = DFN(A) and NegLink(A) = maxint, then A and all subgoals
on top of A are completely evaluated. They are marked as completed and
are popped off the stack. All nodes waiting on any of these subgoals or its
negation are processed.

e If PosLink(A4) = DFN(A) and DFN(A4) < NegLink(A) < maxint, then there
may be negative loops among A and subgoals on top of A, in which case
delaying should be applied.

e Otherwise, A or some subgoal on top of A depends upon some subgoal
deeper in the stack than A. They remain on the stack and are not marked
as completed. Computation returns to the subgoal immediately below A on
the stack.

3.3. Problems with the Simple Scheme

The checking for completion in the simple scheme assumes implicitly that every
subgoal depends upon all subgoals on top of it. That is, when PosLink(A4) =
DFN(A) and NegLink(A) = maxint, both 4 and all subgoals on top of A are
considered to be completely evaluated. However, the PosLink and NeglLink of
each subgoal captures only explicit dependencies from edges between subgoals. As
a result, the simple scheme does not work in general. Some subgoal C' may be
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pushed onto the stack on top of B even though there is no path from B to C'.
Furthermore C' may depend upon subgoals below B on the stack. Therefore when
B becomes completely evaluated, the subgoal C' on top of B is popped off the stack
as well, which could be wrong. This can happen when an answer is returned to
a node that has a selected atom or when the selected ground negative literal of a
node is resolved.

3.3.1. Answer Return to a Positive Literal Suppose that there 1s a non-root
node in the tree for A labeled by an X-clause G of the form:

A"~ D] B,C

with the selected atom B, and B is a new subgoal. According to the tuple-at-a-time
strategy, as soon as an answer for B is derived, it is returned to the waiting clause
G, and the next subgoal ', which happens to be a new subgoal too, is processed.
Therefore €' is on top of B and B is on top of A on the stack, even though there
is no dependency between B and C' at all. The following example illustrates this
situation.

Ezample 3.1. Consider the following program and query p:

p-qr.
p.

q.

- p.

The dependency graph forp is depicted in Figure 1 (a). The initial subgoal p is
pushed onto the stack, whose entry is (p, 1, 1, mawzint). The evaluation of p leads
to a new subgoal ¢, whose stack entry is (¢, 2, 2, mazint). By the tuple-at-a-time
computation, the answer ¢ is returned immediately to the node labeled by:

p-qr

A new node:

p-r

is created and is expanded immediately. The rule matching r generates an edge

from r to p, which is below ¢ on the stack. Thus the PosLink of r is updated

to 1. When there are no new nodes to be explored, computation returns to the
most recent subgoal, which is . The current stack of subgoals is shown in Figure

1 (b).

Subgoal r is not completely evaluated since it depends upon p deeper in the
stack, and so PosLink(r) < DFN(r). When the PosLink and NegLink of ¢ are
checked, we have that PosLink(q) = DFN(q) and NegLink(¢q) = maxint. According
to the simple scheme, ¢ and the subgoal on top of it, namely r, are completely
evaluated. This is clearly wrong since r should have an answer from p when the
second clause of p is explored.

Completion is not required for query evaluation with respect to positive pro-
grams, but it can help reusing the stack space by popping off subgoals that are
completely evaluated. Example 1 shows that the simple scheme does not work for
positive programs.
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(r,3,1,maxint)

(9,2,2,maxint)

q r (p,1,1,maxint)

@ (b)

Figure 1. Dependency graph and stack of subgoals in a depth-first search for p

3.3.2. Success of a Negative Literal The success of a ground negative literal
can also lead to subgoals on top of a subgoal A, even though there may be no
dependencies between them.

Ezample 3.2. Consider query p with respect to the following program:

pP-q,~cr.
p.

q.

r-p.

The program is a slight variant of that in Example 1. The dependency graph of
subgoals is shown in Figure 2(i).

p
(c,3,3,maxint) (r,4,1,maxint)
(9,2,2,maxint) (9,2,2,maxint)
q c r (p,1,1,maxint) (p,1,1,maxint)

(i) (if) (iii)
Figure 2. Dependency graph and stacks for p

Figure 2(ii) shows the stack of subgoals when ¢ is being processed. Since there
is no clause for ¢, ¢ is completely evaluated without any answers and is popped off
the stack. Therefore the negative literal ~c succeeds, which leads to a new subgoal
r. Figure 2(iii) shows a situation similar to that in Example 1.

3.4. Dependency Maintenance: A Correct Scheme

The simple scheme assumes implicit dependencies of a subgoal upon all subgoals
on top 1t on the stack when it checks for completion. We modify the simple scheme
to capture the implicit dependencies and describe how dependencies are updated
when negative loops are handled.
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3.4.1. Capturing Implicit Dependencies We modify the procedure for the depth-
first computation of a subgoal. The depth-first computation for A returns two num-
bers, called PosMin and NegMin, respectively. While the PosLink and NegLink of
A capture the direct dependencies through edges coming out of A in the depen-
dency graph, the PosMin and NegMin returned from the evaluation of A also model
the implicit dependencies by the linear nature of the stack of subgoals as illustrated
in Example 1 and Example 2. In other words, the PosMin of A is the minimum
depth-first number of all subgoals which A and subgoals on top of A on the stack
may depend upon through positive edges, and the NegMin of A is the minimum
depth-first number of all subgoals which A and subgoals on top of A may depend
upon through some negative edges.

When the depth-first computation of A finishes, PosMin and NegMin are first
merged with PosLink and NegLink of A i.e.,

PosLink(A) := min(PosLink(A4), PosMin)
NegLink(A4) := min(NegLink(A4), NegMin)

The same method is then used to determine if A and subgoals on top of it are
completely evaluated or may be involved in negative loops. The effect is that the
completion of A is postponed until all subgoals on top of A are also completely
evaluated.

3.4.2. Dependency Update after Delaying Let S4 be the set of subgoals from the
top of the stack § down to and including A. Suppose that PosLink(A4) = DFN(A)
and DFN(A4) < NegLink(A) < maxint, which indicates that there may be negative
loops among subgoals in S4. The DELAYING transformation is applied to every
node v in the current search forest such that v is labeled by an X-clause with a
selected ground negative literal ~B, where B is in S4. As far as the dependency
graph is concerned, all negative edges to subgoals in S, are eliminated. This is
reflected by resetting NegLink of every subgoal in S4 to maxint. Subgoals in Sy4
remain on the stack and will be re-checked again after all the new nodes created
by DELAYING are processed.

Frample 3.3. Consider the following program and a subgoal s.

§ = ~p, ™.
p-~85,q.
q - ~s5D.

Initially, the subgoal is s, and (s, 1, 1, maxint) is pushed onto the stack of subgoals.
Traversing the tree for s leads to a new subgoal p, and so (p, 2,2, mawint) is
pushed onto the stack. The node, p :- ~s,q, represents a negative edge from
p to s. Therefore the NegLink of p is updated to 1. The node, p :- ~s,q, is
suspended, and computation returns to s. The NegLink of s is updated to the
minimum of PosLink and NegLink of p, which is 1. Figure 3 shows the search
forest, the dependency graph, and the stack of subgoals at this point.

Since PosLink(s) = DFN(s) and DFN(s) < NegLink(s) < maxint, {p, s} may
be (and, in this case, are) involved in negative loops. We apply the DELAYING
transformation to all the negative edges with a selected ground negative literal
~p or ~s. This creates two new nodes, namely s :- ~p | ~¢ and p :- ~s | ¢. In
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s:-s. p:-p. s
| | < } 0229
s:-~p,~q. Pp:--S Q. p (1,11

Figure 3. The first negative loop for s

effect, the two negative edges in Figure 3 are eliminated. The NegLink of s and the
NegLink of p are both reset to maxzint. Computation continues by exploring the
newly created nodes and then p and s will be re-checked for completion.

Exploring the node, s :- ~p | ~¢, leads to a new subgoal ¢, and so (¢, 3, 3, mawzint)
is pushed onto the stack. Traversing the tree for ¢ leads to a node ¢ :- ~s,p. The
NegLink of ¢ is updated to 1. Since NegLink(¢) < DFN(g), ¢ is not completely
evaluated and remains on the stack. After the traversal of the tree for ¢ finishes,
the NegLink of s is updated to 1 since there is a negative edge from s to ¢ and the
minimum of the PosLink and NegLink of ¢ is 1.

Computation continues to explore the node, p :- ~s5 | q. The NegLink of p is
updated to 1 since NegLink of ¢ is currently 1. As NegLink(p) < DFN(p), p
remains on the stack. Figure 4 shows the search forest, the dependency graph, and
the stack of subgoals at this point.

S-S p:-p. qg:- Q. s
J/ i i (9,33 1)
S-~p,~0. P:-~S0q. g:i-~SP. (P 2,2,1)
\L i p—>( (S, 1,1, l)

S-~p|~g. p:--s|a

Figure 4. The second negative loop for s

We check the dependencies of s. Tt holds that PosLink(s) = DFN(s) and DFN(s)
< NegLink(s) < maxint. The dependency graph reveals that there are negative
loops among {q¢,p, s}. DELAYING transformation is applied and the NegLinks of ¢,
p and s are reset to maxint.

The new node, s :- ~p, ~q | , is an answer node since there are no literals on the
right of | . Subgoal s no longer depends upon any other subgoal in the dependency
graph, although delayed literals will have to be simplified if and when their truth
or falsity becomes known. The new node, ¢ :- ~s | p, is explored, and the PosLink
of ¢ i1s updated to the PosLink of p, which is 2. Figure 5 shows the search forest,
the dependency graph, and the stack of subgoals at this point, where the isolated
node s is not displayed in the dependency subgoal.

Notice that PosLink(p) = DFN(p) and NegLink(p) = maxint. Both ¢ and p
are completely evaluated and are popped off the stack. The failure of ¢ and p is
used to simplify s - ~p, ~q | , deriving a definitely true answer for s. Similarly s is
completely evaluated and popped off the stack, and thus computation of the initial
subgoal s terminates.
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s:-s. p:ip. q:lq. p
S:-~p,~q. P:-~S0 g:i-~Sp. (9, 3, 2, maxint)

l (p, 2, 2, maxint)
s-~p|~q. p--s|q q:--s|p. q (5,1, 1, maxint)
s:-~p, ~q|.

Figure 5. After elimination of the second negative loop

4. ALGORITHM

This section describes in detail the mutually recursive procedures for an imple-
mentation of SLG resolution. We separate them into two groups, one for basic
transformations and the other for COMPLETION transformation. We establish the
correctness of the implementation by relating it to the correctness of SLG resolu-
tion.

4.1. Basic Transformations

Let P be an arbitrary logic program, and R be an arbitrary but fixed computation
rule. Without loss of generality, we assume that the initial query consists of only
one atom. For each subgoal A, K4 denotes the set of clauses in P with which
A - A is SLG resolvable.

Three global variables are used, namely the table 7 of subgoals, the stack § of
subgoals, and a counter (COUNT), which have been described in Section 3. Figure
1 shows the main program. It initializes COUNT to 1, inserts a table entry for
the initial subgoal A into the table, and pushes an entry (A, 1,1, mazint) of the
initial subgoal A onto the stack. COUNT is incremented every time a new subgoal is
pushed onto the stack. After initialization, the main program calls SLG_SUBGOAL
to carry out a depth-first computation of subgoal A. Pushing an entry onto the
stack and calling SLG.SUBGOAL corresponds to the creation of a tree for a new
subgoal in the search forest.

In SLG_.SUBGOAL(A,PosMin,NegMin), A4 is a new subgoal that has just been
inserted into the table 7 and pushed onto the stack §. PosMin and NegMin are
input/output variables. As discusses in Section 3, PosMin and NegMin return the
minimum depth first number of all subgoals which A or subgoals on top of A may
depend upon through positive edges only and through at least one negative edge
respectively. They are passed through all recursive procedures that will be called
during the execution of SLG_.SUBGOAL(A,PosMin,NegMin).

Procedure SLG_SUBGOAL creates a new node for each child of the root node of
a subgoal. For each newly created non-root node, SLG_NEWCLAUSE is called to
process the new node, or more precisely the X-clause labeling the new node. The
processing may lead to other new nodes or even new subgoals, which are handled re-
cursively by calling other procedures. Therefore each procedure implements not just
one transformation, but a sequence of transformations. When SLG_NEWCLAUSE
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Input: a program P and a query atom A.
Output: a set of answer clauses.
Algorithm:
begin
Initialize Count to be 1;
Initialize 7 to be the table with one entry, (A,{},[],[],false);
Initialize & to be the empty stack of subgoals;
DFN := Count; PosLink := DFN; NegLink := maxint;
push (A,DFN,PosLink,NegLink) onto stack S;
Count := Count+1;
PosMin := DFN; NegMin := maxint;
SLG_SUBGOAL(A,PosMin,NegMin);
output all answer clauses in 7T
end

Figure 1. Algorithm for SLG resolution

returns for all the child nodes of the root node of a subgoal, SLG.COMPLETE
is called to determine if A and its relevant subgoals are completely evaluated.
Figure 2 shows the details of the procedure SLG_SUBGOAL and the procedure
SLG.NEWCLAUSE.

In procedure SLG.NEWCLAUSE(A,G,PosMin,NegMin), GG is an X-clause la-
beling a new non-root node v in the tree for subgoal A. SLG.INEWCLAUSE calls
procedures SLG_ANSWER, SLG_POSITIVE or SLG_NEGATIVE, depending upon
whether the newly created X-clause (G has no selected literal, a positive selected
literal, or a ground negative selected literal. The branching corresponds to transfor-
mations NEW ANSWER, NEW ACTIVE, and FLOUNDERING, which changes the status
of the new node v.

Procedure SLG_ANSWER (see Figure 3) checks to see if an answer for A is
new. If the answer is not subsumed by any existing answer for A, SLG_ANSWER
proceeds to apply all transformations ANSWER RETURN and NEGATION FAILURE-R
that are made possible by the new answer. In particular, if the answer has an
empty body, all (active) nodes that are waiting on ~A are failed and disposed.
The answer is returned to all nodes waiting on A by either SLG resolution or SLG
factoring. All new nodes created by these transformations are handled by calling
SLG_NEWCLAUSE recursively.

In procedure SLG_POSITIVE(A, G, B, PosMin, NegMin) shown in Figure 4, G
is an X-clause labeling an active non-root node in the tree for A and has a selected
atom B. Therefore (G is a positive edge from A to B. If B is not in the table 7,
then B must be a new subgoal and so G is a solution edge from A to B (as G leads
to the creation of a new subgoal B). The new subgoal B is inserted into the table
and pushed onto the stack. Notice that the pair (A, ) is inserted into the positive
waiting list for answers of B. A depth-first computation is initiated for B by calling
SLG_SUBGOAL, which returns BPosMin and BNegMin. BPosMin and BNegMin
represent the minimum depth-first number of all subgoals that B and subgoals on
top of B may depend upon through positive edges only and through at least some
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procedure SLG_SUBGOAL(A,PosMin,NegMin):
begin
for each SLG resolvent GG of A - A with some clause C' € K4 do begin
SLG_NEWCLAUSE(A,G PosMin,NegMin);
end;
SLG_COMPLETE(A,PosMin,NegMin);

end

procedure SLG NEWCLAUSE(A,G,PosMin,NegMin);
begin
if G has no body literal on the right of | then
SLG_ANSWER(A,G,PosMin,NegMin)
else if GG has a selected atom B then
SLG_POSITIVE(A,G,B,PosMin,NegMin)
else if GG has a selected ground negative literal ~B then
SLG_NEGATIVE(A,G,B,PosMin,NegMin)
else begin /* G has a selected non-ground negative literal */
halt with an error message
end
end

Figure 2. Procedures to evaluate a subgoal

negative edges respectively. The PosLink and NegLink of A and the corresponding
PosMin and NegMin are then updated by calling procedure UPDATE_SOLUTION.

If B is in the current table 7, then B is not a new subgoal and so G is a lookup
edge from A to B. If B is not marked as completed, we insert (A, ) into the
positive waiting list for potentially more answers of B so that this node will be
notified if more answers are added for B. The PosLink and NegLink of A and the
corresponding PosMin and NegMin are updated by calling UPDATE_LOOKUP.
This procedure effectively applies ANSWER RETURN transformations to return any
existing answers of B to the node labeled by G in the tree for subgoal A. The
resolution of these answers creates new nodes in the tree for subgoal A each of
which is processed in its turn by the procedure SLG_INEWCLAUSE.

The procedure SLG.INEGATIVE(A, G, B, PosMin, NegMin), shown in Fig-
ure 5, handles an active node in the tree for A that is labeled by an X-clause
G with a selected ground negative literal ~B. Its structure is similar to that of
SLG_POSITIVE.

If B is not in the table 7, then B must be a new subgoal and G is a solu-
tion edge from A to B. It is inserted into the table and pushed onto the stack.
The pair (A4, G) is inserted in the negative waiting list of B, waiting for the truth
value of B to be determined. A depth-first computation of B is initiated by calling
SLG_SUBGOAL. It returns BPosMin and BNegMin that represent the minimum
depth-first number of all subgoals that B and subgoals on top of B may depend
up through positive edges only and through at least some negative edges respec-
tively. When the depth-first computation of B finishes, the PosLink and NegLink
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procedure SLG_ANSWER(A,G PosMin,NegMin):
begin
if GG is not subsumed by any answer in Anss(A) in 7 then begin
insert G into Anss(A);
if GG has no delayed literals then begin
reset Negs(A) to empty;
let L be the list of all pairs (B, H'), where (B, H) € Poss(A) and
H'’ is the SLG resolvent of H with G;
for each (B, H') in L do begin
SLG.NEWCLAUSE(B,H',PosMin,NegMin);
end;
end else begin /* G has a non-empty delay. */
if no other answer in Anss(A) has the same head as GG does then
begin
let L be the list of all pairs (B, H'), where (B, H) € Poss(A)
and H' is the SLG factor of H with G;
for each (B, H') in L do begin
SLG.NEWCLAUSE(B,H' ,PosMin,NegMin);
end;

bl

end;

end;
end;

)
end

Figure 3. Procedure to handle an answer node

of A and the corresponding PosMin and NegMin are updated by calling procedure
UPDATE_SOLUTION.

If B is already in the table 7, then B is not a new subgoal and G is a lookup
edge from A to B. If B is not yet marked as completed, we check if B has a
definitely true answer. If so, the node labeled by G in the tree for subgoal A is
a failed leaf node by transformation NEGATION FAILURE-R. Otherwise, (A, G) is
inserted into the negative waiting list of B. The PosLink and NegLink of A and the
corresponding PosMin and NegMin are updated by calling UPDATE_LOOKUP. If
B is already marked as completed, either NEGATION SUCCESS-R 1s applied if B has
no answers, or DELAYING 1s applied if B has only answers with delayed literals. In
either case, the new node is then processed by calling SLG_NEWCLAUSE.

It should be mentioned that all basic transformations are applied in an eager
manner, which is ensured by the following properties of the implementation.

e For any new subgoal A that is encountered, including the initial one, all the
child nodes of the root node of the tree for A are created by SLG resolution
with program clauses. Every newly created node is processed immediately
by SLGINEWCLAUSE.

e FEach new answer of a subgoal A is returned immediately to every active
node with a selected atom A as soon as the answer i1s found. In addition,
if the answer does not have delayed literals, all active nodes waiting on ~ A
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procedure SLG_POSITIVE(A,G, B,PosMin,NegMin):
begin
if B is not in table 7 then begin
insert (B,{},[(4,G)],[], false) into T;
DFN := Count; PosLink := Count; NeglLink := maxint;
push (B,DFN,PosLink,NegLink) onto stack S;
Count := Count+1;
BPosMin := DFN; BNegMin := maxint;
SLG_SUBGOAL(B,BPosMin,BNegMin);
UPDATE_SOLUTION(A, B,pos,PosMin,NegMin,BPosMin,BNegMin);
end else begin
if Comp(B) is not true then begin
insert (A, () into Poss(B);
UPDATE_LOOKUP(A,B,pos,PosMin,NegMin);
end;
let L be the empty list;
for each atom B’ in the head of some answer in Anss(B) do begin
if B’ .- | € Anss(B) then begin
let G’ be the SLG resolvent of G with B" - | ;
insert (A, G') into L;
end else begin
let H € Anss(B) with head atom B’;
let G’ be the SLG factor of G with H;
insert (A, () into L;
end;
end;
for each (A,G’) in L do begin
SLG.NEWCLAUSE(A,G',PosMin,NegMin);
end;

bl
end;

end

Figure 4. Procedure to handle a node with a selected atom
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procedure SLG_NEGATIVE(A,G,B,PosMin,NegMin):
begin
if B is not in table 7 then begin
insert (B, {},[], [(4, G)], false) into T;
DFN := Count; PosLink := DFN; NegLink := maxint;
push (B,DFN,PosLink,NegLink) onto stack S;
Count := Count+1;
BPosMin := DFN; BNegMin := maxint;
SLG_SUBGOAL(B,BPosMin,BNegMin);
UPDATE_SOLUTION(A, B,neg,PosMin,NegMin,BPosMin,BNegMin);
end else begin
if Comp(B) is not true then begin
if B :- | ¢ Anss(B) then begin
insert (4, G) into Negs(B);
UPDATE_LOOKUP(A, B neg,PosMin,NegMin);
end;
end else begin
if Anss(B) = {} then begin
let G' be G with ~B deleted;
SLG.NEWCLAUSE(A,G’,PosMin,NegMin);
end else if B - | € Anss(B) then begin
let G’ be G with ~B delayed;
SLG.NEWCLAUSE(A,G’,PosMin,NegMin);
end;

bl

end;

end;

end

Figure 5. Procedure to handle a node with a selected ground negative literal
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are marked as failed and disposed.

e When an active node v with a selected atom A is encountered, all existing
answers for A are returned to v. The node v becomes a waiting node for
potentially more answers of A4 (if A is not yet completely evaluated).

e When an active node v with a selected ground negative literal ~B is pro-
cessed, v is failed if B has a definitely true answer. If B is completely
evaluated with no answers, NEGATION SUCCESS-R 1s applied.

The operation of each basic transformation is straightforward and corresponds di-
rectly to the definition in Section 2.3.

4.2. Completion and Delaying

The application of COMPLETION and DELAYING is carefully controlled in order to
ensure an efficient implementation. The DELAYING of a negative literal ~B is
applied under two situations. One 1s when B 1s already completed and has only
indefinite answers so that it is neither successful nor failed. The other is when there
is a potential negative loop.

All edges between subgoals are processed in either SLG_POSITIVE or SLG_.NEGATIVE.

Let G be an X-clause labeling a non-root node in the tree for subgoal A, repre-
senting an edge from A to a subgoal B. Let Sign be either positive or negative
representing the polarity of the edge.

If B is already in the table 7 and thus is not a new subgoal, G is a lookup
edge from A to B. The PosLink and NegLink of A on the stack are updated using
the PosLink and NegLink of B in UPDATE_LOOKUP(A,B,Sign,PosMin,NegMin),
and so are PosMin and NegMin.

If B is not yet in the table and thus is a new subgoal, G is a solution edge from
A to B. In this case, a depth-first computation of B is initiated. When it returns,
UPDATE_SOLUTION is called to update the PosLink and NegLink of A and the
corresponding PosMin and NegMin. The evaluation of B may have left additional
subgoals on the stack, which are on top of A. They may depend upon subgoals
deeper in the stack, which are captured by BPosMin and BNegMin in

UPDATE_SOLUTION(A, B, Sign, PosMin, NegMin, BPosMin, BNegMin)

If B is completely evaluated, BPosMin and BNegMin are propagated. Otherwise,
dependencies are updated as in UPDATE_LOOKUP. In the latter case, BPosMin
and BNegMin are merged into the PosLink and NegLink of B before the computa-
tion of B returns, and so they are implicitly propagated through the PosLink and
NegLink of B.

Recall that in SLG_.SUBGOAL(A, PosMin, NegMin), SLG.NEWCLAUSE is
called for each SLG resolvent G of A - A with a program clause. Each call to
SLG_NEWCLAUSE processes the node labeled by G, as well as all new nodes and
all new subgoals that are created from the processing of G by calling itself and other
procedures recursively. When this is finished, SLG_.COMPLETE(A,PosMin,NegMin)
(shown in Figure 7 is called within SLG_SUBGOAL(A4,PosMin,NegMin).

First, PosMin and NegMin are merged with PosLink and NeglLink of subgoal A
respectively. This is necessary as shown by Example 1 and Example 2 in Section 3.

If PosLink(A) = DFN(A4) and NegLink(A) = maxint, then A and all subgoals on
top of A are considered to be completely evaluated and are popped off the stack. All
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procedure UPDATE_LOOKUP(A,B,Sign,PosMin,NegMin):
begin
if Sign= pos then begin
PosLink(A) := min(PosLink(A4),PosLink(B));
NegLink(A4) := min(NegLink(A4),NegLink(B));
PosMin := min(PosMin, PosLink(B));
NegMin := min(NegMin, NegLink(B));
end else begin /* Sign = neg */
NegLink(A) := min(NegLink(A),PosLink(B),NegLink(B));
NegMin := min(NegMin, PosLink(B), NegLink(B));
end;
end

procedure UPDATE_SOLUTION(A,B,Sign,PosMin,NegMin,BPosMin,BNegMin):
begin
if Comp(B) # true then begin
UPDATE_LOOKUP(A,B,Sign,PosMin,NegMin);
else begin
PosLink(A) := min(PosLink(A4), BPosMin);
NegLink(A4) := min(NegLink(A4),BNegMin);
PosMin := min(PosMin, BPosMin);
NegMin := min(NegMin, BNegMin);
end;

)
end

Figure 6. Procedures to update dependencies
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nodes waiting on them that have a selected atom are disposed. All nodes waiting
on them that have a selected ground negative literal are processed. The latter may
lead to new nodes, which are processed by calling SLG_INEWCLAUSE.

Notice that both PosMin and NegMin are re-initialized to maxint. The previous
values of PosMin and NegMin are obtained from those subgoals that are just com-
pleted, and thus should be discarded. However, the completion of those subgoals
may create new nodes that are processed by calling SLG_INEWCLAUSE. The han-
dling of the new nodes can introduce new subgoals that are pushed onto the stack.
The PosMin and NegMin returned from the processing of those new nodes (and
also from SLG_SUBGOAL(A,PosMin,NegMin)) are used in UPDATE_SOLUTION
to update the dependencies of the subgoal that leads to the creation of subgoal A.

If PosLink(A4) = DFN(A) and DFN(A) < NegLink(A4) < maxint, A and subgoals
on top of A may be involved in negative loops. Delaying is applied to all nodes
that have a selected ground negative literal whose subgoal is A or on top of A. The
NegLink of A and subgoals on top of A are reset to maxint. Delaying creates some
new nodes. The PosMin is reset to the DFN of the subgoal at the top of the stack
and NegMin is reset to maxint before those newly created nodes are processed.
When it finishes, A and subgoals on top of A are re-checked for completion.

4.3. Correctness of the Algorithm

The correctness of SLG resolution, as proved in [6], is independent of the order
in which transformations are applied. Qur implementation uses a depth-first and
tuple-at-a-time strategy to decide the order of transformations to be applied to the
search forest represented by the global table of subgoals. For the correctness of the
algorithm, 1t is sufficient to show that each transformation is implemented correctly
and that when the evaluation of a query atom A finishes, either A is floundered, or A
and all relevant subgoals are completed. Theorem 2.1 guarantees that the program
consisting of the answer clauses of A and relevant subgoals preserve all three valued
stable models of the original program, including the well-founded partial model.

All transformations except COMPLETION are implemented directly according to
the definitions in Section 2.3. Although the decision of when to apply DELAYING
is made based upon dependency information, the algorithm carries out DELAYING
transformation following the definition.

The only exception is COMPLETION, which uses dependency information to derive
subgoals that are completely evaluated. The following theorem shows that the
implementation of COMPLETION 1is correct in the sense that all subgoals that are
popped off are completely evaluated by Definition 6.

Theorem 4.1. Let P be a program and @QQ be a query atom. Let T be the global table
of subgoals and S be the global stack of subgoals. Then every subgoal A in table
T that is not on stack § is completed.

ProoFr. We prove by induction on the number of times subgoals are popped off
the stack. The theorem holds initially since both 7 and & contains only the initial
subgoal @.

Subgoals are popped off the stack in procedure SLG_COMPLETE(A,PosMin,NegMin),

where A is a subgoal, provided that PosLink(A) = DFN(A) and NegLink(A) = max-
int. Let Sy be the set of subgoals from the top of stack § up to and including A.
We show that S4 are completely evaluated according to Definition 6.
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procedure SLG_COMPLETE(A,PosMin,NegMin):
begin
PosLink(A) := min(PosLink(A),PosMin);
NegLink(A) := min(NegLink(A),NegMin);
if PosLink(A)=DFN(A4) and NegLink(A)=maxint then begin
pop subgoals off stack & until A is popped;
let S4 be the list of all popped subgoals;
let L be the empty list;
for each subgoal B € 54 do begin
Negs := Negs(B);
Comp(B) := true; Poss(B) := [|; Negs(B) := [];
for each (A’,G) € Negs do begin
if Anss(B)={} then begin
let G' be G with ~B deleted;
insert (4',G") into L;
else if B :- | ¢ Anss(B) then begin
let G’ be G with ~B delayed;
insert (4',G") into L;
end;
end;
PosMin := maxint; NegMin := maxint;
for each (A’,G’) in L do
SLG.NEWCLAUSE(A’,G’ ,PosMin,NegMin);
end else if PosLink(A)=DFN(A) and NegLink(A)>DFN(A) then begin
let S4 be the sequence of all subgoals from the top of § to A4;
let L be the empty list;
for each subgoal B in 54 do begin
for each (A’, ) € Negs(B) do begin
let G’ be G with the selected negative literal delayed;
insert (4',G") into L;
end;
NegLink(B) := maxint; Negs(B) := [|;
end;
PosMin := DFN(A’), where A’ is at the top of stack S;
NegMin := maxint;
for each (A’,G’) in L do
SLG.NEWCLAUSE(A’,G’ ,PosMin,NegMin);
for each subgoal B in S, do
SLG_.COMPLETE(B,PosMin,NegMin);
end;
end

Figure 7. Procedure to complete a subgoal




First, for every subgoal B € 5S4, there is currently no new node that needs to be
processed for B and its relevant subgoals. The reason is that SLG_.COMPLETE is
called in SLG_SUBGOAL after all the child nodes of the root of the tree for A have
been fully processed, including all other new nodes created during the processing.
Since A is the first subgoal created among all subgoals in Sy, all new nodes that are
created during the evaluation of A have been processed when SLG_.COMPLETE is
called for A.

Second, let G be any non-root node v in the tree for a subgoal B € 54 and let
L be the selected literal of G.

e If L is a non-ground negative literal, then computation must have been
aborted, a contradiction.
e If L is a ground negative literal of the form ~ B’, there are several cases:

— If B'isnot in the table 7, then B’ is a new subgoal. SLG_.SUBGOAL(B’ ,BPosMin,BNegMin)
is called. If B’ is not completed when SLG_SUBGOAL returns, NegLink(B)
is updated whose new value must be less than maxint, and so is the
NegLink of A, a contradiction. If B’ is completed when SLG_SUBGOAL
returns, G must have been disposed when B’ is completed and L either
fails, succeeds, or is delayed.

— 1If B’ is in the table 7 and is completed, then G must have been disposed
and L either fails, succeeds, or is delayed.

— If B’ is in the table 7 and is not completed, NegLink(B) is updated
whose new value must be less than maxint, and so is the NegLink of A,

a contradiction.

e If L is an atom, say B’, then there is a positive edge from B to B’. There
are several cases:

— If B’ is a subgoal in 7, but not on stack, then B is completed by
inductive hypothesis. Neither the PosLink nor the NegLink of A is
updated in this case. All answers of B’ are returned to G.

— If B’ is on stack &, but not in S4, then DFN(B’) < DFN(A). Since
there is a positive edge from B to B’, the PosLink of B must be less
than DFN(A) and so is the PosLink of A, a contradiction;

— Otherwise, B’ must be on stack and in S4. Since every new answer is
returned immediately to all waiting nodes, and all existing answers are
returned to a newly created node with a selected atom, all answers of
B’ must have been returned to G.

By Definition 6, S4 are completely evaluated. By COMPLETION transformation,
subgoals in 54 are popped off the stack and are marked as completed. O

In summary, every transformation in SLG resolution is implemented correctly
by our algorithm. Let P be a program and A be the initial query atom. When
SLG_SUBGOAL(A,PosMin,NegMin) returns, the stack must be empty. This is
because A has the least depth-first number. By Theorem 4.1, A and all relevant
subgoals are completely evaluated by Definition 6. Therefore a final search forest
has been constructed for A, all subgoals of which are completely evaluated. The
correctness of the algorithm is then established by Theorem 2.1.
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5. DISCUSSION

This section compares with related work and presents some performance measure-
ments of two implementations of SLG resolution.

5.1. Related Work

The framework of tabulated resolution for well-founded semantics by Bol and
Degerstedt [3] defines a search space for query evaluation, which is similar to SLG
resolution [6]. One interesting aspect of the approach in [3] is that non-ground
negative literals are also returned as part of answers. This allows a more flexible
handling of some queries that would be floundered in SLG resolution.

The bottom-up techniques presented in [10, 11, 13, 15] evaluate queries accord-
ing to the alternating fixpoint [28] or the smallest three valued stable model [4, 17]
in a more direct manner. The magic sets technique in [10, 11] may make too many
magic facts true, and thus evaluate subgoals that are irrelevant. The improve-
ment proposed by Morishita [13] alleviates this problem, but still generates many
irrelevant magic facts in the initial stages of computing the alternating fixpoint.

Frample 5.1. The following program is from [19].

p(X) - t(X’ Y, Z)a NP(Y)a NP(Z)'
p(X) = pO(X).

For query p(a), the corresponding magic program is:

mp(a).

mp(Y) - mp(X),t(X,Y, 7).

mp(Z) = mp(X), H(X,Y, Z), ~p(Y).
p(X) = mp(X),4(X,Y, Z), ~p(Y), ~p(Z).
p(X) = mp(X), pO(X).

This program is in fact an example where the well-founded semantics of the magic
program does not agree with that of the original program, assuming the following
facts for base predicates:

p0(c2).
tla,a,bl). #(b1,c1,62). ¢(b2,¢2,63). t(bn,en,en+1).

Morishita’s method [13] uses a slight variant of the alternating fixpoint. The early
stages of the computation still generates many magic facts that are not rele-
vant. For example, both the first positive overestimate and the second positive
underestimate contain the following magic tuples:

mp(a). mp(bl). ... mp(bn). mp(cl). ... mp(en + 1).

Our implementation of SLG resolution generates only subgoals (or magic tuples)
that are relevant, namely p(a), p(bl), p(cl), p(b2), p(c2).

Ross first used subgoal dependencies in query evaluation with modularly strati-
fied programs [21]. Facts representing transitive dependencies among subgoals are
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computed explicitly. However, techniques for efficient maintenance and computa-
tion of subgoal dependencies were not explored.

The work most closely related to ours is the Ordered Search technique for bottom-
up evaluation of left-to-right modularly stratified programs by Ramakrishnan et
al [18]. An extension of Ordered Search, called well-founded ordered search, was
recently proposed by Stuckey and Sudarshan [23]. The idea of Ordered Search
is to simulate the subgoal dependencies induced by top-down evaluation. There
are three interesting differences between (well-founded) ordered search and our
implementation.

First, Ordered Search generates all answers of the first subgoal in the body of a
clause before trying to solve the second subgoal in the body. We, however, follow
closely the tuple-at-a-time computation of Prolog. As soon as an answer of the
first subgoal in the body of a clause is generated, our implementation continues
with the next subgoal in the body of a clause. This allows fast generation of the
first answer for a query. In the case of a ground negative subgoal ~A, as soon as a
definitely true answer for A is derived, ~A can fail and subgoals that are created
during the evaluation of A can be discarded under certain conditions (even if they
are not fully evaluated). An additional benefit is the integration of Prolog with
effective query evaluation. This objective has been achieved in XSB, where Prolog
execution and SLG resolution are tightly interconnected. From the users’ point of
view, ordinary Prolog programs can be executed using SLG resolution with just a
few declarations.

Second, Ordered Search maintains a topological order among all subgoals that
have been expanded using a sequence of so-called ContertNodes. The topological
order is based upon the dependency graph of subgoals. Each ContextNode may con-
tain more than one subgoal when there are mutual dependencies among subgoals.
A ContextNode 1s marked if some of its subgoals are marked, and subgoals are
marked if their trees have been created and expanded. Each unmarked ContextN-
ode contains a single subgoal whose tree has not yet been created. By re-arranging
the sequence of ContextNodes at run time, strongly connected components in the
dependency graphs can be identified.

In contrast, the stack of subgoals in SLG resolution behaves like the local stack
of subgoals in Prolog. New subgoals are simply pushed onto the stack as they
are encountered. There is no re-ordering of subgoals on the stack at run time.
This may, however, cause unnecessary delaying and evaluation of some irrelevant
subgoals, even when programs are stratified.

FEzample 5.2. Suppose that a query m is evaluated with respect to the following
program:

m - ¢, ~a,e.

¢ - b.
c.
b:-c,d
a - ~b.

Figure 1(i) shows the stack after the edge from b to ¢ is traversed. The computation
returns to subgoal ¢ and derives an answer using the second clause of ¢. The
answer 1s returned to every waiting node, including the node in the tree for
subgoal m. This leads to a new subgoal a. Figure 1(ii) shows the stack after
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the negative from a to b is processed. The NegLink of a 1s updated to 2, which
is propagated to b and ¢ through NegMin, creating a condition of a potential
negative loop (even though the program is stratified). The negative subgoals ~a
and ~b are delayed, leading to a new subgoal e that is irrelevant to m since ~a
is false in the well-founded semantics.

(a4,4,2)
(b,3,2,maxint) (b,3,2,maxint)
(c,2,2,maxint) (c,2,2,maxint)
(m,1,1,maxint) (m,1,1,maxint)

(i) (if)
Figure 1. Stacks of subgoals indicating unnecessary delaying

The tradeoff is between maintaining precise dependencies through run-time re-
ordering of subgoals on the stack and risking the evaluation of irrelevant subgoals.
Which approach is more efficient in practice remains to be determined.

The third difference lies in the handling of negative loops. Well-founded ordered
search uses the alternating fixpoint technique for subgoals involved in negative loops
by calculating possibly true or false facts. Our implementation delays all selected
ground negative literals possibly involved in negative loops. The negative edges are
eliminated and the negative dependencies are reset. Delayed literals are simplified
away later when their truth or falsity is known, but there is no redundant inference.

FEzample 5.3. The following program is from Example 4.1 in [24]:

r(X) = ~s(X).
s(X) = q(X,Y), ~r(Y), 1Y),
¢(X, a) = ~r(X).

To handle negative loops, well-founded ordered search introduces predicates for
computing true or undefined facts. The Undef Magic rewriting in [24, 23] pro-
duces the program below:

(X)) - query(r(X)), done(s(X), ~un(s(X))

S(X) = query(s(X)), ¢(X, Y), done(r(¥)), ~un(r(¥), (Y)
(X, a) - query(q(X, a)), done(r(X)), ~un(r(X)).
un(r(X)) - query(r(X)), un(~s(X)).

un(s(X)) - query(s(X)), un(q¢(X,Y)), un(~r(Y)), un(t(Y))
un(g(X, a)) - query(¢(X, a)), un(~r(X))

un(r(X)) - r(X).

un(s(X)) - s(X).

un(q(X,a)) - q(X, a)

un(~r(X)) - done(r(X)),~r(X)
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query™ (r(X)) - query(q(X, a)).

The systematic duplication of true facts in un causes redundant computation and
extra space requirements for storing intermediate relations. The duplication is
avoided in our implementation due to a uniform representation of answer clauses,
which include both definitely true answers and possibly true answers that have
delayed literals.

In the evaluation of query r(a), there is a negative loop, involving r(a), s(a), and
q(a,Y). In well-founded ordered search, undefined facts are introduced: un(~s(a))
and un(~r(a)). This allows the computation to proceed and evaluate ¢(a). The
evaluation of ¢(a) is completed and produces no answers. Well-founded ordered
search returns to the ContextNode to evaluate the negative loop of r(a), s(a), and
q(a,Y), and starts alternating fixpoint computation for the negative loop, even
though the negative loop has been broken since s(a) fails. According to [24], the
following sequence of actions is invoked:

o Add done(s(a)) (since a fixpoint has been reached and wun(s(a)) is not
present);

o Delete un-facts un(g(a, a)) and un(r(a)) (to begin the next stage of fixpoint
computation);

e Fixpoint computation using the relevant rules in the magic program, which

derives un(q(a, a)), r(a) and un(r(a));

Add done(r(a)) (since r(a) is now present);

Remove un(~r(a)) (since r(a) is now present);

Delete un-facts un(q(a, a)) (to begin the next stage of fixpoint computation);

Fixpoint computation again, producing no new facts. Thus the ContextNode

for the negative loop is removed and done(q(a,Y)) is added.

Notice that un(g(a,a)) and un(r(a)) are deleted and then re-derived.

Our implementation delays ~s(a) and ~r(a), which is similar to adding unde-
fined facts of un(~s(a)) and un(~r(a)). However, subgoals r(a) and ¢(a,Y) are
both completely evaluated with conditional answers:

r(a) - ~s(a).

q(a, a) - ~r(a).

The subgoal s(a) is completely evaluated with no answers since t(a) fails. The
failure of s(a) is used to simplify the conditional answer for r(a), and in turn, the
success of r(a) is used to delete the conditional answer for ¢(a,Y). Two aspects
should be noted. First, the derivation of conditional answers is not repeated. Sec-
ond, the simplification of delayed literals is carried out only on conditional answers,
which is much more efficient than a fixpoint computation using the corresponding
clauses in the original magic program. Repeated derivation due to over-estimating
the truth or undefinedness of subgoals is avoided.
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It should be mentioned that repeated computation can occur due to the fact
that variant checking is used for identifying duplicate subgoals. It is possible that
both p(X,Y) and p(a,Y) are evaluated. Clearly all answers of p(a,Y) are answers
of p(X,Y") (unless Prolog builtin predicates like var/1 are used in the definition of
p/2). Subsumption checking of subgoals is needed to avoid such repetition.

5.2. Performance Measurements

There are two freely available implementations that make use of the algorithms
in this paper. The SLG system, which is a meta interpreter written in Quintus
Prolog, implements the algorithms fully. Another, the SLG-WAM of XSB compiles
a restriction of SLG for left-to-right modularly stratified programs[25]. (The SLG-
WAM is currently being extended to evaluate the full SLG resolution). To get a
rough idea how the meta interpreter and XSB perform, we took the benchmark
programs reported in [13] together with their timing information, and then ran
them using the meta interpreter and XSB. However, it should be pointed out that
a systematic study of benchmark that include negation has to be conducted before
a clear picture of the relative performance of the various systems can be obtained
(for definite programs, systematic experiments have been reported in [26]).

The following experiments are taken from [13]. The intensional database contains
only one rule:

win(X) - move(X,Y), ~win(Y).

Three different relations for move are used, one containing an acyclic linear list:
(1,2), ..., (N-1,N), another containing a complete binary tree of height H (with
2H+1 _ 1 tuples), and the other containing a cyclic linear list: (1,2), ..., (N-1,N),
(N,1). Execution times were provided in [13] for query win(1) in Glue-Nail’s imple-
mentations of Ross’s method for modularly stratified programs [19] and Morishita’s
alternating fixpoint tailored to magic programs [13].

We ran the meta interpreter implementation of SLG resolution on these programs
using Quintus Prolog 3.1 on a Decstation 3100 (Ultrix V4.2A (Rev. 47)). The timing
information in each experiment was obtained using the builtin predicate statistics/2
in one run. For the two modularly stratified programs, we re-ran the SLG meta
interpreter against XSB on a SPARCstation 2. The average of 100 iterations was
taken in comparing the meta interpreter to the emulator.

The following tables show the execution times (in seconds) of our meta inter-
preter in comparison with the timing information from [13]. The numbers for
Morishita’s implementation were taken from a DEC 5000 [14], a slightly faster ma-
chine than the DECstation 3100. In addition, meta interpreter times are also shown
normalized to XSB’s SLG evaluation. negation.

The results seem to indicate that our meta interpreter 1s competitive with Mor-
ishita’s implementation, and that the XSB system is an order of magnitude or more
faster than the meta interpreter. Morishita’s implementation performs better for
cyclic linear lists than for acyclic linear lists. This 1s due to the fact that all win
facts are undefined in the cyclic case and the fixpoint is immediately reached [13].
On the other hand, the execution times of the SLG meta interpreter are compa-
rable in both cases of linear lists. The delaying in the cyclic case makes the meta
interpreter slightly slower than in the acyclic case.
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N 8 16 32 64 128 256
SLG 0.050 | 0.100 | 0.233 | 0.467 | 0.933 | 2.000
Morishita | 0.199 | 0.715 | 2.621 | 10.18 | 40.79 | 161.9
Ross 0.145 | 0.309 | 0.738 | 2.05 6.56 23.7

Table 1. Timing for acyclic linear lists

H 6 7 8 9 10 11
SLG 0.934 | 1.934 | 4.084 | 13.18 | 28.02 | 63.45
Morishita | 1.11 2.64 5.24 12.5 25.0 59.6
Ross 1.62 4.12 10.86 | 33.6 111.0 | 398.4

Table 2. Timing for complete binary trees

N 8 16 32 64 128 256
SLG 0.067 | 0.134 | 0.283 | 0.600 | 1.233 | 2.550
Morishita | 0.055 | 0.094 | 0.180 | 0.348 | 0.691 | 1.391

Table 3. Timing for cyclic linear lists

Length 8 | 16 | 32 | 64 | 128 | 256
SLG Interp. | 30 | 30 | 33 | 32 | 29 | 29
XSB 1 1 1 1 1 1

Table 4. SLG engine and interpreter for acyclic linear lists

Height 6 1789 10]IL
SLG Interp. | 28 | 27 | 30 | 32 | 53 | 60
XSB T 1T [t [1]1]1

Table 5. SLG engine and interpreter for complete binary trees
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Further benchmarks of XSB for these programs show linear performance as the
database size is increased through 32k for linear lists, and through 64k for trees.
In summary these preliminary benchmark results seem to indicate that XSB out-
performs prototypes of deductive databases in most cases, and can be significantly
faster. XSB also provides an alternate form of negation for SLG evaluation which
can further optimize these programs.

5.3. Fxistential Negation in XSB

SLG evaluation as defined in this paper will not cause the exponential behavior that
can be observed in some other top-down approaches [7], because it fully evaluates
all subgoals even when they are created as a result of a call to a negative subgoal.
This method of evaluation is inefficient for the win/1 example over the binary tree.
To see this, consider the calls made by SLDNF for the query win(1) over a binary
tree with 31 nodes. The calls are represented as circled nodes in Figure 2. Because
SLDNF checks only for the existence of a solution for a negative subgoal, only 13
out of 31 possible subgoals are evaluated by SLDNF, and in general the execution
of win(1) over a binary tree grows proportionally to V2" in SLDNF rather than
to2m. !

@) )

® ©
/N /N /N /N
® ® ®

AN A AN NN

Figure 2. Calls to win/1 over a binary tree

®—@

Version 1.4 of XSB allows three different ways of executing win/1. The first
uses pure SLG resolution in which all subgoals are fully evaluated. This method is
used in the comparison with the SLG meta interpreter in Table 4 and Table 5. The
second uses SLDNF resolution. Ezistential negation is the third alternative of XSB,
which combines some of the search strategy of SLDNF resolution with SLG reso-
lution. In existential negation, when a definitely true answer is derived for A, the

I The exact formula is G(n) = olzl+2 _ 34 2(2 - [2]).
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corresponding ground negative subgoal ~A fails. Furthermore, subgoals that are
created during the evaluation of A can be discarded without being fully evaluated
under certain conditions without losing termination and correctness properties of
SLG resolution. The tables below show normalizations of the execution times of
the SLG meta interpreter and the first two methods of XSB to that of XSB with
existential negation for the two benchmark programs that are modularly stratified.

Length 8 16 | 32 | 64 | 128 | 256
SLG Interp. 30 1 30 | 33 | 32 | 29 | 29
XSB / No E-Neg | .99 | .99 | 1 | .99 1 97
XSB / SLDNF 67 | 21 | 22| 22| 24 | .26
XSB / E-Neg 1 1 1 1 1 1

Table 6. Comparisons of SL.G implementations for acyclic linear lists

Height 6 | 7 ] 8] 9 ] 10 11
SLG Interp. 123 | 116 | 229 | 261 | 812 | 906
XSB /No ENeg | 45 | 4.25 | 7.6 | 8.2 | 154 | 15.7
XSB / SLDNF 3 | 24 | 22| 24 | 24 | 23
XSB / E Neg T |1 |t 1|1 1

Table 7. Comparisons of SLG implementations for complete binary trees

6. CONCLUSION

We have presented efficient techniques for implementing SLG resolution [6], which
is a transformational framework for computation of queries with respect to the
well-founded semantics. We firmly believe that SLG resolution will have an impor-
tant impact on the theory and practice of logic-based computational systems. Its
termination properties on stratified Datalog programs make it a good strategy for
deductive database query processing; its ability to be integrated seamlessly with
Prolog evaluation makes it a good logic programming strategy, and its polyno-
mial data complexity for handling nonstratified Datalog programs makes it a good
strategy for nonmonotonic knowledge representation problems.

Implementation techniques developed in this paper not only bring the declarative
semantics of logic programs to Prolog programmers and other users, but also are
applicable to problems that involve various extensions of logic programs, including
constructive negation and constraint logic programming.
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