Garbage collection

David Walker
CS 320

Where are we?

* Lasttime: A survey of common garbage
collection techniques

— Manual memory management
— Reference counting (Appel 13.2)
— Copying collection (Appel 13.3)
— Generational collection (Appel 13.4)
— Baker’s algorithm (Appel 13.6)
* Today:
— Mark-sweep collection (Appel 13.1)
— Conservative collection
— Compiler interface (13.7)

Mark-sweep

* A two-phase algorithm

— Mark phase: Depth first traversal of object
graph from the roots to mark live data

— Sweep phase: iterate over entire heap,
adding the unmarked data back onto the free
list

Example

r1

Free list

B [nuse

On free list

Example

Mark Phase: mark nodes reachable from roots

——<)

] _

N/

r1

Free list

B [nuse

On free list

Marked

Example

Mark Phase: mark nodes reachable from roots

Free list

B [nuse

On free list

Marked

Example

Mark Phase: mark nodes reachable from roots

Free list

B [nuse

On free list

Marked

Example

Sweep Phase: set up sweep pointer; begin sweep

Free list r1

B [nuse

On free list

Marked

Example

Sweep Phase: add unmarked blocks to free list

Y

Free list r1

B [nuse

On free list

Marked

Example

Sweep Phase

Y

—

S

Free list r1
B [nuse

On free list

Marked

Example

Sweep Phase: retain & unmark marked blocks

Y

| 0

\ / A

Free list r1

B Inuse

On free list

Marked

Example

Sweep Phase

Free list r1

B [nuse

On free list

Marked

Example

Sweep Phase: GC complete when heap boundary
encountered; resume program

a\
N/

Free list r1

B [nuse

On free list

Marked

Cost of Mark Sweep

* Cost of mark phase:
— O(R) where R is the # of reachable words
— Assume cost is ¢c1 * R (c1 may be 10 instr’s)

* Cost of sweep phase:
— O(H) where H is the # of words in entire heap
— Assume cost is c2 * H (c2 may be 3 instr's)

* Amortized analysis
— Each collection returns H - R words
— For every allocated word, we have GC cost:
* ((c1*R)+(c2*H))/(H-R)
— R/ H must be sufficiently small or GC cost is high
— Eg: if R/ His larger than .5, increase heap size

A Hidden Cost

* Depth-first search is usually implemented
as a recursive algorithm

— Uses stack space proportional to the longest
path in the graph of reachable objects

* one activation record/node in the path
* activation records are big
— If the heap is one long linked list, the stack

space used in the algorithm will be greater
than the heap sizel!!

— What do we do?

A nifty trick

* Deutsch-Schorr-Waite pointer reversal

— Rather using a recursive algorithm, reuse the
components of the graph you are traversing to
build an explicit stack

— This implementation trick only demands a few
extra bits/block rather than an entire activation
record/block

— We already needed a few extra bits per block
to hold the "mark™ anyway

DSW Algorithm

back next

\

e

back next

\

DSW Algorithm

:{,

=

=

back

<7

— |

mf

N

next

back next

\

DSW Algorithm

back —

next

:{,

—»

=

=

back

<7

— |

mf

N

next

back next

\

DSW Algorithm

back —

next

:{,

—»

=

=

back

4 |

next

next

back

[4

next

\

DSW Algorithm

mf

back —

next

—»

=

=

=

<7

- =

j/ N

back ——

~

:jj/ "™ next

* extra bits needed to keep track of which
record fields we have processed so far

DSW Setup

* Extra space required for sweep:

— 1 bit/record to keep track of whether the record has
been seen (the “mark bit")

— flog 2 bits/record where f is the number of fields in
the record to keep track of how many fields have
been processed

* assume a vector: done[x]

* Functions:
— mark x = sets x’s mark bit
— marked x = true if x’s mark bit is set
— pointer x = true if x is a pointer
— fields x = returns number of fields in the record x

DSW Algorithm

fun dfs(next) = (* depth-first search in
if (pointer next) & constant space *)
not (marked next) then
(* initialization *)

(* next is object being processed *)
while true do /

(* done[next] is field being processed *)
i = done[next] —

if i < (fields next) then
(* process ith field *)
else

(* back-track to previous
record *)

DSW Algorithm

fun dfs(next) = (* depth-first search in
if (pointer next) & constant space *)
not (marked next) then

(* initialization *) —

while true do back = nil;
mark next;
i = done[next] done[next] = 0;

if i < (fields next) then
(* process ith field *)
else

(* back-track to previous
record *)

DSW Algorithm

fun dfs(next) = (* depth-first search in
if (pointer next) & constant space *)
not (marked next) then

(* initialization *) y = next.i
if (pointer y) & not (marked y) then
while true do next.i = back; }
back = next; reuse field to
i = done[next] next =y; store back ptr
if i < (fields next) then mark next;
done[next] = 0;
(* process ith field *) else
\ done[next] =i + 1

else

(* back-track to previous
record *)

DSW Algorithm

fun dfs(next) = (* depth-first search in
if (pointer next) & constant space *)
not (marked next) then

(* initialization *) y = next.i
if (pointer y) & not (marked y) then
while true do next.i = back;
back = next;
| = done[next] next =vy; o
if i < (fields next) then mark next: } initialize for
done[next] = 0; next iteration
(* process ith field *) else
\ done[next] =i + 1

else

(* back-track to previous
record *)

DSW Algorithm

fun dfs(next) =
if (pointer next) &
not (marked next) then

(* initialization *)
while true do

| = done[next]
if i < (fields next) then

(* process ith field *)

\

else

(* back-track to previous
record *)

(* depth-first search in

constant space *)

y = next.i
if (pointer y) & not (marked y) then
next.i = back;
back = next;
next =vy;
mark next;
done[next] = 0;
else
done[next] =i + 1} field is done

DSW Algorithm

fun dfs(next) = (* depth-first search in
if (pointer next) & constant space *)
not (marked next) then

o dfs complete
(* initialization *)

while true do Yy = next;
next = back;
| = done[next] /
if i < (fields next) then if next = nil then return;
(* process ith field *) | = done[next];
back = next.i;
else next.i =vy;
done[next] =i + 1;

(* back-track to previous _—
record *)

DSW Algorithm

fun dfs(next) = (* depth-first search in
if (pointer next) & constant space *)
not (marked next) then

(* initialization *)

while true do Yy = next;

next = back;

| = done[next]

if i < (fields next) then if next = nil then return;

(* process ith field *) i = done[next];)
back = next.i; advance to
. > .

else next.i =vy; next field

done[next] =i + 1;

(* back-track to previous _—
record *)

More Mark-Sweep

* Mark-sweep collectors can benefit from the
tricks used to implement malloc/free efficiently

— multiple free lists, one size of block/list

* Mark-sweep can suffer from fragmentation
— blocks not copied and compacted like in copying
collection
* Mark-sweep doesn’t require 2x live data size to
operate

— but if the ratio of live data to heap size is too large
then performance suffers

Conservative Collection

* Even languages like C can benefit from GC

— Boehm-Weiser-Demers conservative GC uses
heuristics to determine which objects are pointers and
which are integers without any language support

* last 2 bits are non-zero => can'’t be a pointer

* integer is not in allocated heap range => can’t be a pointer

* mark phase traverses all possible pointers

* conservative because it may retain data that isn’t reachable
— thinks an integer is actually a pointer

* all gc is conservative anyway so this is almost never an issue
(despite what people say)

* sound if your program doesn’t manufacture pointers from
integers by, say, using xor (using normal pointer arithmetic is
fine)

Compiler Interface

* The interface to the garbage collector involves
two main parts

— allocation code
* languages can allocated up to approx 1 word/7 instructions
* allocation code must be blazingly fast!
* should be inlined and optimized to avoid call-return overhead

— gc code
* to call gc code, the program must identify the roots
* to traverse data, heap layout must be specified somehow

Allocation Code

Assume size of record allocated is N:

1.

o0k Wb

Call alloc function

Test next + N < limit (call gc on failure)
Move next into function result

Clear M[next], ..., M[next + N — 1]

next = next + N

Return from alloc function

Allocation Code

Assume size of record allocated is N:

1.

S S Al o

Call alloc function

Test next + N < limit (call gc on failure)
Move next into function result

Clear M[next], ..., M[next + N — 1]

useful computation

next = next + N not alloc overhead
Return from alloc function ,/ j
Move result into computationally useful place

Store useful values into M[next],....,M[next + N - 1]

Allocation Code

Assume size of record allocated is N:

S-S

~

inline
Test next + N < limit (call gc on failure) 2232
Move next into function result

Clear M[next], ..., M[next + N — 1]

next = next + N

Move result into computationally useful place
Store useful values into M[next],....,M[next + N - 1]

Allocation Code

Assume size of record allocated is N:

combine
Test next + N < limit (call gc on failure) MoVes
Move next into computationally useful place
Clear M[next], ..., M[next + N — 1]
next = next + N

S-S

8. Store useful values into M[next],....,M[next + N - 1]

Allocation Code

Assume size of record allocated is N:

2. Testnext+ N <Iimit (call gc on failure) 322}?:;6

3. Move next into computationally USGW store

5 next=next+ N

8. Store useful values into M[next],....,M[next + N - 1]

Allocation Code

Assume size of record allocated is N:

8.

Test next + N < limit (call gc on failure)
Move next into computationally useful place

next = next + N

Store useful values into M[next],....,M[next + N - 1]

total overhead for allocation on the order of 3 instructions/alloc

Calling GC code

* To call the GC, program must:

— identify the roots:

* a GC-point, is an control-flow point where the
garbage collector may be called
— allocation point; function call
* for any GC-point, compiler generates a pointer

map that says which registers, stack locations in
the current frame contain pointers

* a global table maps GC-points (code addresses) to
pointer maps
* when program calls the GC, to find all roots:

— GC scans down stack, one activation record at a time,
looking up the current pointer map for that record

Calling GC code

* To call the GC, program must:

— enable GC to determine data layout of all
objects in the heap

* for ML, Tiger, Pascal:

— every record has a header with size and pointer info

* for Java, Modula-3:
— each object has an extra field that points to class
definition
— gc uses class definition to determine object layout
including size and pointer info

Summary

* Garbage collectors are a complex and
fascinating part of any modern language
iImplementation

* Different collection algs have pros/cons

— explicit MM, reference counting, copying,
generational, mark-sweep

— all methods, including explicit MM have costs

— optimizations make allocation fast, GC time, space
and latency requirements acceptable

— read Appel Chapter 13 and be able to analyze,
compare and contrast different GC mechanisms

	Garbage collection
	Where are we?
	Mark-sweep
	Example
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Cost of Mark Sweep
	A Hidden Cost
	A nifty trick
	DSW Algorithm
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	DSW Setup
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	More Mark-Sweep
	Conservative Collection
	Compiler Interface
	Allocation Code
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Calling GC code
	Slide 40
	Summary

