
Gambit Scheme: Inside Out
Marc Feeley

October 20, 2010

GAMBIT

THIS IS A NUTS-AND-BOLTS TALK!

WARNING!!!

Goals

Give a tour of Gambit Scheme implementation

Programmer’s perspective -- how to use it!

Implementation of system -- how it works!

Talk Overview

Brief overview of Scheme and Gambit

Compiler and portability

Highlights of Gambit Scheme language and
implementation

Applications and demos

Scheme and Gambit
Overview

Scheme

1975: Sussman & Steele design Scheme at MIT

Few but powerful building blocks

Small language... “Do it yourself” philosophy

Scheme is a “Lisp-1”: unified name space for
functions, macros and variables

1978: RABBIT Scheme compiler thesis: reduce
complex constructs to a small core based on the
lambda calculus => simple and efficient compiler

Evolution of Standards
“Academic era”: concerns for purity

Evolution by unanimous consent:
R1RS (1978), R2RS (1985), R3RS (1986),
R4RS (1991), R5RS (1998) => 50 page spec

“Real-world era”: practical concerns

Scheme Request for Implementation (SRFI),
over 100 documents, ongoing since 1998

Evolution by revolution: R6RS (2007)
=> 160 page spec, controversial, R7RS (?)

Scheme Systems
Over 50 implementations of Scheme, many
toys and over 15 mature systems:

Compilers to VM and interpreters: Gauche,
Guile, Kawa, Scheme48, SCM, SISC, Ypsilon

Compilers to native code (including JIT):
Chez Scheme, Ikarus, Larceny, MIT Scheme,
MzScheme, Racket (PLT Scheme)

Compilers to C: Bigloo, Chicken, Gambit-C,
Stalin, Petit Larceny

Gambit System Evolution

1989: Compiler to M68K, no interpreter, no GC

1991: MacGambit

1993: Message passing implementation of
futures on 90 processor BBN Butterfly

1994: C back-end, first commercial use

2004: Gambit v4, threads, I/O, LGPL/Apache

Gambit Uses in Academia
Education: PL concepts, compilers, AI,
math (numerical analysis, homework on web)

Research: concurrent systems, real-time GC,
continuations, optimizations, FPGAs, ...

Compiler research:

Scheme as UNCOL: Erlang/Java/JavaScript
Scheme -> C/JavaScript/VHDL
For embedded sys: BIT, PICBIT, PICOBIT
(< 20 kB R4RS on microcontrollers)

Gambit Commercial Uses
Selling Point: product configuration (Gambit
used as back-end for custom OO language)

EdScheme: a Scheme for teaching math

Parallel Geometry: CAD for exact 3D modeling

Quantz: casual video game (PC/Mac/Linux)
iPhone games (Farmageddon, Reverso)

JazzScheme: an OO Scheme, with many
libraries, GUI, IDE (PC/Mac/Linux)

Auphelia inc: Enterprise Resource Planning

Gambit-C Goals

A Scheme system that is
conformant to R5RS and robust (no bugs)
portable
efficient (i.e. fast)

Provide simple building blocks for
developing practical applications
building more complex languages

Avoid “being in the programmer’s way”

GSI and GSC
Gambit has 2 main programs
gsi: interpreter (best for debugging but not fast)
gsc: compiler (which includes interpreter)

Interpreted and compiled code can be freely mixed

Gambit v4.6.0
% gsi

> (load "fib")
55
"/Users/feeley/fib.scm"
> (fib 20)
6765
> (exit)

% gsi fib.scm
55
% gsc fib.scm
% gsi fib.o1
55
% gsc -exe fib.scm
% ./fib
55
% gsc -c fib.scm

Compiler and Portability

Portability

gsc generates C code that is independent of the
target processor, C compiler and OS

Code is compilable by any C or C++ compiler,
on 32/64 bit processors, any endianness

Trampolines are used for supporting tail calls
(Scheme stack managed separately from C’s)

gsc CScheme

Gambit Virtual Machine
GVM is the compiler’s intermediate language

Register based VM (nb of regs depends on BE)

First few parameters in registers, rest on stack

Stack is allocated implicitly (no push/pop)

No call instruction, only jump

jump/poll instruction indicates safe points
where interrupts are allowed and where stack
and heap overflows are checked

C Back-End

(print
 (max 11 22))

mod1.scm

#1 fs=0 entry-point 0 ()
 STK1 = R0
 R2 = ’22
 R1 = ’11
 R0 = #2
 jump/poll fs=4 max 2

#2 fs=4 return-point
 R0 = STK1
 jump/poll fs=0 print 1

mod1.gvm

gsc

C back-endFront-end GVM CScheme

#include "gambit.h"

BEGIN_SW
DEF_SLBL(0,L0_mod1)
 SET_STK(1,R0)
 SET_R2(FIX(22L))
 SET_R1(FIX(11L))
 SET_R0(LBL(2))
 ADJFP(4)
 POLL(1)
DEF_SLBL(1,L1_mod1)
 JUMPGLO(NARGS(2),
 1,G_max)
DEF_SLBL(2,L2_mod1)
 SET_R0(STK(-3))
 ...

mod1.c

non-tail-call

tail-call

Note: GVM and C code
modified for readability

System Portability
gambit.h allows late binding of GVM implem.

a configure script tunes the gambit.h macro
definitions to take into account:

target OS, C compiler, pointer width, etc

E.g. trampoline operation BEGIN_SW becomes

“switch (pc-start) ...” by default

“goto *(pc->lbl);” if gcc is used

System Portability
Gambit adopts a Scheme-in-Scheme approach

primitives, interpreter, debugger, bignums, ...

Non-Scheme code (~ 30%) is mainly for OS
interface and is in portable C (no asm code!)

Runtime relies only on standard C libraries

Compiled application can be distributed as the
set of generated “.c” files (Gambit not needed
on the target system, great for embedded sys)

System Portability

main.c
os.c

mem.c

...

_kernel.scm

_io.scm

_num.scm...

app.scm

_kernel.c

_io.c

_num.c...

app.c
app_.c

config.h

gambit.h

configure

gsc

cc app.exe

link file

runtime library

application

System Portability
Compiles “out-of-the box” for Intel, SPARC,
PPC, MIPS, ARM, etc

Porting to a new processor: 0 to 60 minutes

Unusual porting examples:
Nintendo DS (ARM, 4 MB RAM)
Linksys WRT54GL (MIPS, 16 MB RAM)
iPhone/iTouch (ARM, 128 MB RAM)
Xilinx FPGA (PPC, few MB RAM, no OS)

Gambit Scheme Language

Main Extensions
Declarations

Namespaces

Threads, I/O, Serialization

Scheme Infix eXtension (SIX)

Foreign Function Interface (FFI)

Declarations

Declarations
By default Gambit obeys R5RS semantics
This has an impact on performance
Declarations allow the programmer to indicate
where it is OK to make some assumptions,
which enable various optimizations

 (car x) ;; 1) read the “car” global variable
 ;; 2) check that it is a function
 ;; 3) call the function

 (declare (standard-bindings))

 (car x) ;; car is known to contain the car
 ;; function so the compiler can inline it

Other Declarations

(block)
assume global vars
defined in this file are not
mutated outside it

(fixnum) fixnum arithmetic only
(flonum) flonum arithmetic only
(not safe) assume no type checks fail

(debug) generate debug info
(not
 proper-tail-calls) turn off TCO

Impact on Performance

no declaration (i.e. pure R5RS semantics) 5.68 s
(declare (standard-bindings)) 4.80 s
+ (declare (block)) 3.30 s
+ (declare (fixnum)) 2.70 s
+ (declare (not safe)) 1.11 s

MacBook Pro
2.8 GHz Intel Core 2 Duo
4 GB RAM

(define (fib n)
 (if (< n 2)
 n
 (+ (fib (- n 1))
 (fib (- n 2)))))

(fib 40)

gcc -O2 fib40.c 1.63 s
sbcl < fib40.lisp (no declaration) 4.24 s

Main Optimizations
Inlining

Primitive functions (car, cons, map, ...)

User functions, including recursive functions

Speculative inlining of primitive functions
(when binding of global var unknown)

Lambda lifting

Copy/constant propagation, constant folding

Namespaces

Namespaces
Namespace declarations allow mapping
identifiers to spaces

They are lexically scoped

They work by prefixing unqualified identifiers
into qualified identifiers of the form space#id

(##namespace ("foo#")) ID -> foo#ID (for all ID)

(##namespace ("bar#" a b)) a -> bar#a b -> bar#b

Namespaces as Modules
Can be used as a simple module system

(##namespace
 ("stk#" empty push pop))

(##namespace ("stk#"))
(##include "~~lib/gambit#.scm")
(##include "stk#.scm")

(define (empty) ’())
(define (push x s) (cons x s))
(define (pop s) (cdr s))

(define (test)
 (if (equal? (push 1 (empty))
 ’(1))
 "good!"
 "bad!"))

stk#.scm

stk.scm

(define (stk#empty) ’())
(define (stk#push x s) (cons x s))
(define (stk#pop s) (cdr s))

(define (stk#test)
 (if (equal? (stk#push 1 (stk#empty))
 ’(1))
 "good!"
 "bad!"))

(##namespace
 ("" cons car cdr define ...))

~~lib/gambit#.scm

Namespaces as Modules

(##include "stk#.scm")

(define (test)
 (pp (pop (empty))))

client.scm

(define (test)
 (pp (stk#pop (stk#empty))))

Namespaces as Modules
Quiz: Why “##” prefix?

(##namespace
 ("stk#" empty push pop))

(##namespace ("stk#"))
(##include "~~lib/gambit#.scm")
(##include "stk#.scm")

(define (empty) ’())
(define (push x s) (cons x s))
(define (pop s) (cdr s))

(define (test)
 (if (equal? (push 1 (empty))
 ’(1))
 "good!"
 "bad!"))

stk#.scm

stk.scm

(##namespace
 ("" cons car cdr define ...))

~~lib/gambit#.scm

Threads, I/O, Serialization

Threads
Green threads

Preemptive scheduler with priorities

Very lightweight and scalable

Thread = descriptor (324 bytes) + continuation

Thread creation/synchronization ~ 0.5 µs

O(log N) enqueue/dequeue operations

Supports millions of active threads (in ~ 1GB)

Threads: API
API of SRFI-21 “Real-time multithreading”
Objects: threads, mutexes, condition variables
Priority inheritance

 (define n 0)

 (define m (make-mutex))

 (define (increment)
 (do ((i 100000000 (- i 1))) ((= i 0))
 (mutex-lock! m)
 (set! n (+ n 1))
 (mutex-unlock! m)))

 (define threads (list (make-thread increment)
 (make-thread increment)))

 (for-each thread-start! threads)
 (for-each thread-join! threads)

 (print n) => 200000000

Threads: Scheduler
Scheduler is implemented in Scheme

Suspension: done internally with call/cc

Preemption: done with heartbeat interrupts

Threads have
a continuation
a priority level and a quantum
a “specific” field (for thread local storage)
a mailbox (for thread-send/receive)

Threads: Mailboxes
Mailboxes simplify thread interaction
A mailbox acts as an operation serializer

 (define (make-server op)
 (thread-start!
 (make-thread
 (lambda ()
 (let loop ()
 (let ((msg (thread-receive)))
 (thread-send (car msg) ;; client
 (op (cdr msg)))
 (loop)))))))

 (define file-server (make-server get-file))

 (thread-send file-server
 (cons (current-thread)
 "/etc/passwd"))

 (print (thread-receive)) ;; print file

I/O

I/O is compatible with R5RS text-only model

Extensions:

control over character and EOL encoding

binary I/O

bulk I/O
nonblocking I/O (on all port types)

Port types: file, directory, OS process,
TCP client, TCP server, string, vector, pipe, ...

I/O: Port Types
Port types are organized in a class hierarchy

Byte port <: character port <: object port

read/write read-char/write-char read-u8/write-u8

byte port

char port

obj port

char encodingreadtable

I/O: Settings List
The procedures which create ports allow a
settings list specifying the set of parameters

 (define (log-msg msg)
 (with-output-to-file
 (list path: "~/log"
 append: #t
 eol-encoding: ’cr-lf
 char-encoding: ’UTF-8
 output-width: 80)
 (lambda ()
 (println msg))))

 (log-msg "hello")
 (log-msg "world!")

I/O: Directory Ports
Directory ports allow constant space iteration
over directories
Reading a directory port yields the next entry
(directory ports are thus not character ports)

 (define (for-each-directory-entry dir proc)
 (let ((dir-port (open-directory dir)))
 (let loop ()
 (let ((file (read dir-port)))
 (if (eof-object? file)
 (close-port dir-port)
 (begin
 (proc file)
 (loop)))))))

 (for-each-directory-entry "~" println)

I/O: TCP Ports
2 kinds: TCP server ports and TCP client ports

Reading a TCP server port yields a port which
is the accepted connection with the client
(TCP server ports are thus not character ports)

 (define (start-server port-num proc)
 (let ((serv-sock (open-tcp-server port-num)))
 (let loop ()
 (proc (read serv-sock))
 (loop))))

 (start-server 8080
 (lambda (conn)
 (display "hello\n" conn)
 (close-port conn)))

 ... (open-tcp-client "localhost:8080") ...

I/O: String Port Generalization
Generalized to objects, characters and bytes

Pipe ports: port pairs connected by a FIFO

Useful for interthread communication

(call-with-values
 (lambda ()
 (open-string-pipe))
 (lambda (i o)

 (write 1 o) (newline o)
 (write 2 o) (newline o)

 (force-output o)

 (println (read i)) ;; 1
 (println (read i)))) ;; 2

(define a
 (open-output-string))

(write (list 1 2 3) a)

(get-output-string a)
 => "(1 2 3)"
(define b
 (open-output-vector))

(write 1 b) (write 2 b)

(get-output-vector b)
 => #(1 2)

or vector

I/O: Nonblocking I/O
Ports have a timeout for input and output ops,
which defaults to infinity, i.e. blocking op

This can be set for all types of ports including
TCP server and directory ports

 (define (rl-with-timeout timeout)
 (let* ((port (current-input-port))
 (line (call/cc
 (lambda (abort)
 (input-port-timeout-set!
 port
 timeout
 (lambda () (abort #f)))
 (read-line port)))))
 (input-port-timeout-set! port +inf.0)
 line))

 (rl-with-timeout 10) ;; #f if no input after 10 secs

Serialization

Objects can be serialized into byte vectors

Supports closures, continuations, cycles

Useful for distributed computing (Termite)

Source and destination can be of different type
(processor, OS, word width, endianness, ...)

Serialization
Example: parallel processing

 ;; server running on machines foo and bar

 (let ((serv-sock (open-tcp-server "*:5000")))
 (let loop ()
 (let ((conn (read serv-sock)))
 (write (object->u8vector
 ((u8vector->object (read conn))))
 conn)
 (close-port conn)
 (loop))))

Serialization
 ;; client somewhere on the network

 (define (on address thunk)
 (thread-start!
 (make-thread
 (lambda ()
 (let ((conn (open-tcp-client address)))
 (write (object->u8vector thunk) conn)
 (force-output conn)
 (let ((result (u8vector->object (read conn))))
 (close-port conn)
 result))))))

 (define (test n)

 (define (f n)
 (if (< n 2) 1 (* n (f (- n 1)))))

 (let ((a (on "foo:5000" (lambda () (f (+ n 1)))))
 (b (on "bar:5000" (lambda () (f n)))))
 (/ (thread-join! a) (thread-join! b))))

 (test 1000) => 1001

Serialization
Extra “encoder/decoder” parameter allows
custom encoding, which is useful for otherwise
unserializable objects (ports, threads, ...)

(define (print-to port)
 (lambda (x) (display x port)))

(define a (print-to (current-output-port)))

(define cop-repr 'the-cop) ;; todo: unique record

(define (encoder x)
 (if (eq? x (current-output-port)) cop-repr x))

(define (decoder x)
 (if (eq? x cop-repr) (current-output-port) x))

(define b (object->u8vector a encoder))
(define c (u8vector->object b decoder))

(c "hello") ;; prints to current-output-port

Scheme Infix eXtension

SIX: Goals

Infix syntax close to C/Java

Multiple goals:

Reduce adoption barrier for non-Lispers
(emphasize Scheme semantics, not syntax!)

Compact notation for arithmetic expressions

Built-in parser for compiler course

SIX: “\” Escapes
Idea: a “\” switches between prefix and infix

In prefix syntax: \ <infix statement>

In infix syntax: \ <prefix expression>

 (let ((v ’#(10 17 44))
 (s 0))

 \ for (int i=0; i<\vector-length(v); i++)
 s += v[i]*v[i];

 (println s))

SIX: Syntax
SIX extends C’s syntax with anonymous and
nested functions, list constructor,
({...}) blocks, Prolog clauses, etc

 \ obj foo(int n)
 {
 int fact(int x)
 { if (x<2) 1; else x*fact(x-1); }

 map(int (int s) { fact(n<<s); },
 [2, 3, 4, 5]);
 }

 (foo 1) => (24
 40320
 20922789888000
 263130836933693530167218012160000000)

SIX: Semantics
Reader builds AST as a S-expression
Semantics is given by predefined “six.XXX”
macros, which can be redefined

 > ’ \ "hello " + "world!";

 (six.x+y (six.literal "hello ")
 (six.literal "world!"))

 > (define-macro (six.x+y x y)
 `(string-append ,x ,y))

 > \ "hello " + "world!";

 "hello world!"

Foreign Function Interface

FFI
Allows calls between Scheme and C (both ways)
Useful for linking with C libraries
Automatic representation conversions:

C Scheme

int int

unsigned int unsigned-int

char char

char *
char-string
or nonnull-char-string
or UTF-8-string or ...

T * (pointer T [(type-id...) [release-fn]])
or (nonnull-pointer T ...) etc

FFI: Type Definition
c-define-type gives names to foreign types

 (c-define-type boolean int) ;; type alias

 (c-define-type Window "Window") ;; new type

 (c-define-type Window*
 (pointer Window (Window*) "release_Window"))

 ;; GC and (foreign-release! ptr) call release_fn

 ;; a type with custom conversion functions:

 (c-define-type foo "foo" "foo_c2s" "foo_s2c")

FFI: Calling C
c-lambda yields a Scheme proxy of C function

 (c-declare "#include <stdio.h>")

 (c-define-type FILE "FILE")
 (c-define-type FILE* (pointer FILE))

 (define fopen
 (c-lambda (char-string char-string) FILE* "fopen"))

 (define fgetc
 (c-lambda (FILE*) int "fgetc"))

 (define fputc
 (c-lambda (int FILE*) int "fputc"))

 (define fclose
 (c-lambda (FILE*) int "fclose"))

FFI: Calling Scheme
c-define defines a function callable from C

 ;; hook into Scheme’s eval from C:

 (c-define (eval-string str)

 (char-string) char-string "eval_string" ""

 (object->string
 (eval (with-input-from-string str read))))

Other Extensions

Tables
Hash-tables with several options including:

Test: eq?, equal?, ...
Hash function: eq?-hash, equal?-hash, ...
Load factor limits (low and high)
Key and value reference “weakness”

(define t (make-table test: eq?
 weak-keys: #t))

(define obj (cons 1 2))

(table-set! t obj 99)
(table-ref t obj) => 99

(set! obj #f) ;; GC will remove entry from t

Wills
Will objects control object finalization

(define obj (cons 1 2))

(make-will obj (lambda (x)
 (pp x)
 (finalize x)))

(set! obj #f) ;; GC will call action procedure

Serial Numbers
Serial numbers are used by the printer to
identify objects which can’t be read

Convenient for debugging
> (let ((n 2)) (lambda (x) (* x n)))
#<procedure #2>
> (pp #2)
(lambda (x) (* x n))
> (map #2 ’(1 2 3 4 5))
(2 4 6 8 10)
> ,(v #2)
1> ,e
n = 2
1> (set! n 10)
1> ,t
> (map #2 ’(1 2 3 4 5))
(10 20 30 40 50)

Records
Extensible records (using single inheritance)
Serializable
Field attributes

(define-type pt x y) ;; (make-pt x y)
 ;; (pt? obj)
 ;; (pt-x obj)
 ;; (pt-x-set! obj val) ...

(define-type person
 id: B3D36093-BC54-7D78E7CB7ADA
 extender: define-type-of-person
 (name read-only:))

(define-type-of-person employee
 id: C4DA4307-A1A1-E7F7461E8DDF
 (employer unprintable: equality-skip:))

Homogeneous Vectors
Vectors of fixed width integers and floats

(define v (make-f64vector 10 3.1416))

(f64vector-set! v 0 (* 2 (f64vector-ref v 0)))

;; u8vector unsigned integers
;; u16vector
;; u32vector
;; u64vector

;; s8vector signed integers
;; s16vector
;; s32vector
;; s64vector

;; f32vector floating point numbers
;; f64vector

Optional/Named Parameters
Similar to Common-Lisp
Optional parameters, by position
Named parameters use keyword objects

(define (fmt n
 #!optional (base 10)
 #!key (port (current-output-port)))
 (display (number->string n base) port))

(fmt 123)

(fmt 123 2)

(fmt 123 2 port: (current-error-port))

Memory Management

Memory Management
For portability, all memory allocated with malloc
Small objects and cont. frames are MOVABLE
Objects that are large or allocated by FFI are STILL

from to from to from to from to

0.5 MB

SPHP HL SL

MOVABLE
sections

small
objects

continuation
framesrc

0
rc
1

rc
0

rc
0STILL objects

(large or FFI) external reference (from C)

MOVABLE Objects
Allocation = pointer increment (HP or SP)
Stop-and-copy compacting GC
MOVABLE sections added/removed to maintain a
given live ratio at end of GC (0.5 by default)

from to from to from to from to

0.5 MB

SPHP HL SL

MOVABLE
sections

small
objects

continuation
framesrc

0
rc
1

rc
0

rc
0STILL objects

(large or FFI) external reference (from C)

STILL Objects
Reference count for external refs simplifies FFI
Mark-sweep compacting GC
Reclaim when rc=0 and no refs from heap

from to from to from to from to

0.5 MB

SPHP HL SL

MOVABLE
sections

small
objects

continuation
framesrc

0
rc
1

rc
0

rc
0STILL objects

(large or FFI) external reference (from C)

PERMANENT Objects
Not reclaimed or scanned by GC, C “static”
Constant objects in Scheme program
Descriptors of code points in Scheme program

function entry points
function call return points

 nbp:1
 nbc:0

host:

 map:0110
 fs:4
host:

 void H_mod1(...)
 {
 ...
 }

mod1.c

1

2

 (define f
 (lambda (x)
 (+ (g x) x)))

mod1.scm

1

2

Continuations
Continuation frames are “pushed” by moving SP
Typically, frames are “popped” on function return
call/cc protects captured frames with: SC := SP
Protected frames are copied to TOS, never popped
Interrupt: SL := SC

SPSL
captured

continuation
frames

SC
poppable

continuation
frames

SPSL
captured

continuation
frames

SC
poppable

continuation
frames

Continuations
(define (A) (B) (C) 1)

(define (B) 2)

(define (C) (call/cc D) 3)

(define (D k) (k 4))

A

SPSL
captured

continuation
frames

SC
poppable

continuation
frames

Continuations
(define (A) (B) (C) 1)

(define (B) 2)

(define (C) (call/cc D) 3)

(define (D k) (k 4))

AB

SPSL
captured

continuation
frames

SC
poppable

continuation
frames

Continuations
(define (A) (B) (C) 1)

(define (B) 2)

(define (C) (call/cc D) 3)

(define (D k) (k 4))

A

SPSL
captured

continuation
frames

SC
poppable

continuation
frames

Continuations
(define (A) (B) (C) 1)

(define (B) 2)

(define (C) (call/cc D) 3)

(define (D k) (k 4))

AC

SPSL
captured

continuation
frames

SC
poppable

continuation
frames

Continuations
(define (A) (B) (C) 1)

(define (B) 2)

(define (C) (call/cc D) 3)

(define (D k) (k 4))

ACD

SPSL
captured

continuation
frames

SC
poppable

continuation
frames

Continuations
(define (A) (B) (C) 1)

(define (B) 2)

(define (C) (call/cc D) 3)

(define (D k) (k 4))

ACC

SPSL
captured

continuation
frames

SC
poppable

continuation
frames

Continuations
(define (A) (B) (C) 1)

(define (B) 2)

(define (C) (call/cc D) 3)

(define (D k) (k 4))

ACA

Continuations
Live frames are copied to heap by GC (explicit
links are added to form a chain of frames)

Space for link reserved when frame is created

An “underflow handler” is used to copy the next
frame when SP = SC

No overhead when call/cc not called

Constant time call/cc

Note: interleaving of frames from different threads

Third Party Stuff

Third Party
Code repository: Gambit Dumping Grounds

Libraries: OpenGL, MySQL, HTTP servers,
Scheme to JS compiler, lexer and LALR parser
generator

Black hole module system

JazzScheme system (OO extension + IDE + libs)

statprof statistical profiler

Demos

Gamerizon Inc

iPhone Apps

Emacs Debugging

Jedi: Jazz/Gambit IDE

Emilie: DB Front-End

Hospital Scheduler

Interested?

Source and binary distributions
Gambit wiki
Gambit mailing list

Google “Gambit Scheme”

Many thanks to:

Guillaume Cartier (JazzScheme)

Robert Lizee (Quantz)

James Long (Farmageddon)

