
This material takes 1 hour.

1 Persistent Data Structures

Sarnak and Tarjan, ”Planar Point Location using persistent trees”, Communi-
cations of the ACM 29 (1986) 669–679
”Making Data Structures Persistent” by Driscoll, Sarnak, Sleator and Tarjan
Journal of Computer and System Sciences 38(1) 1989
Idea: be able to query and/or modify past versions of data structure.

• ephemeral: changes to struct destroy all past info

• partial persistence: changes to most recent version, query to all past ver-
sions

• full persistence: queries and changes to all past versions (creates “multiple
worlds” situtation)

Goal: general technique that can be applied to any data structure.
Application: planar point location.

• planar subdivision

– n segments meeting only at ends

– defines set of polygons

– query: “what polygon contains this point”

• numerous special-purpose solutions

• One solution:

– vertical line through each vertex

– divides into slabs

– in slab, segments maintain one vertical ordering

– find query point slab by binary search

– build binary search tree for slab with “above-below” queries

– n binary search trees, size O(n2), time O(n2 log n)

• observation: trees all very similar

• think of x axis as time, slabs as “epochs”

• at end of epoch, “delete” segments that end, “insert” those that start.

• over all time, only n inserts, n deletes.

• must be able to query over all times

1



Persistent sorted sets:

• find(x, s, t) find (largest key below) x in set s at time t

• insert(i, s, t) insert i in s at time t

• delete(i, s, t).

We use partial persistence: updates only in “present”
Implement via persistent search trees.
Result: O(n) space, O(log n) query time for planar point location.

2 Persistent Trees

Full copy bad.
Fat nodes method:

• replace each (single-valued) field of data structure by list of all values
taken, sorted by time.

• requires O(1) space per data change (unavoidable if keep old date)

• to lookup data field, need to search based on time.

• store values in binary tree

• checking/changing a data item takes O(log m) time after m updates

• multiplicative slowdown of O(log m) in structure access.

Path copying:

• much of data structure consists of fixed-size nodes conencted by pointers

• can only reach node by traversing pointers starting from root

• changes to a node only visible to ancestors in pointer structure

• when change a node, copy it and ancestors (back to root of data structure

• keep list of roots sorted by update time

• O(log m) time to find right root (or const, if time is integers) (additive
slowdown)

• same access time as original structure

• additive instead of multiplicative O(log m).

• modification time and space usage equals number of ancestors: possibly
huge!

Combined Solution (trees only):

2



• in each node, store 1 extra time-stamped field

• if full, overrides one of standard fields for any accesses later than stamped
time.

• access rule

– standard access, just check for overrides while following pointers

– constant factor increase in access time.

• update rule:

– when need to change/copy pointer, use extra field if available.

– otherwise, make new copy of node with new info, and recursively
modify parent.

• Analysis

– live node: pointed at by current root.

– potential function: number of full live nodes.

– copying a node is free (new copy not full, pays for copy space/time)

– pay for filling an extra pointer (do only once, since can stop at that
point).

– amortized space per update: O(1).

Power of twos: Like Fib heaps. Show binary tree of modifications.
Application: persistent red-black trees:

• aggressive rebalancers

• amortized cost O(1) to change a field.

• store red/black bit in each node

• use red/black bit to rebalance.

• depth O(log n)

• search: standard binary tree search; no changes

• update: causes changes in red/black fields on path to item, O(1) rotations.

• result: (log n) space per insert/delete

• geometry does O(n) changes, so O(n log n) space.

• O(log n) query time.

Improvement:

• red-black bits used only for updates

3



• only need current version of red-black bits

• don’t store old versions: just overwrite

• only updates needed are for O(1) rotations

• so O(1) space per update

• so O(n) space overall.

Result: O(n) space, O(log n) query time for planar point location.
Extensions:

• method extends to arbitrary pointer-based structures.

• O(1) cost per update for any pointer-based structure with any constant
indegree. s

• full persistence with same bounds.

4


