Data Representation and Efficient Solution:

A Decision Diagram Approach

Gilanfranco Ciardo

University of California, Riverside

Decision diagrams: a static view

(Reduced ordered) binary decision diagrams (BDDs) 3

“Graph-based algorithms for boolean function manipulation”
Randy Bryant (Carnegie Mellon University)
IEEE Transactions on Computers, 1986

X X3X2X1 + (X4 + X3)(X2 + X1) '

-”
-
-
”
-

BDDs are a canonical representation of boolean functions f : {0, 1}* — {0, 1}

Ordered binary decision diagrams (BDDs) 4

A BDD is an acyclic directed edge-labeled graph where:
e The only terminal nodes can be 0 and 1, and are at level 0 0.lvl =1.lvl =0
e A nonterminal node pis atalevel k, with L > k > 1 p.lvl =k
e A nonterminal node p has two outgoing edges labelled 0 and 1, pointing to children p[()] and p[l]
e The level of the children is lower than that of p; p|0].lvl < p.lvl, p[1].lvl < p.lvl

e A node p at level k encodes the function Up - B — B defined recursively by

:) D itk =20
Up\T1,y....L7) =
! Vplap] (TLs -y 1) iR >0

Instead of levels, we can also talk of variables:
e The terminal nodes are associated with the range variable x

e A nonterminal node is associated with a domain variable x, with L > k > 1

Canonical versions of BDDs 5

For canonical BDDs, we further require that

e There are no duplicates: if p.lvl = q.lvl and p[0] = ¢[0] and p[1] = q[1], then p = ¢

Then, if the BDD is quasi-reduced, there is no level skipping:
e The only root nodes with no incoming arcs are at level L

e The children p|0] and p[1] of a node p are at level p.lvl — 1

Or, if the BDD is fully-reduced, there is maximum level skipping:

e There are no redundant nodes p satisfying p|0] = p[1]

Both versions are canonical , if functions f and g are encoded using BDDs:
e Satisfiability, / # 0, or equivalence, [= ¢ O(1)

e Conjunction, f A g, disjunction, f \/ g, relational product: ~ O(|N¢| x [N
Zszz1 O(\Nf,k

), if fully-reduced
X |Ny.k|), if quasi-reduced

N = set of nodes in the BDD encoding f N ;= set of nodes at level & in the BDD encoding f

Quasi-reduced vs. fully reduced BDDs 6

4

T4 4

T3 xo w1 + 23 (T2 + 71) vyl TBT2T A+ 33 (024 2)

L2

L1

Ordered multiway decision diagrams (MDDs) 7
Assume a domain X = X X -+ x X1, where X, = {0,1,...,n,—1}, for some ny € N
An MDD is an acyclic directed edge-labeled graph where:
e The only terminal nodes can be 0 and 1, and are at level 0 O0.lvl=1.lvl=0
e A nonterminal node pis atalevel k, with L > k > 1 p.lvl =k

e The level of the children is lower than that of p;

e A node p at level k encodes the function Up /'? — B defined recursively by

:) P ifk =0
Up\T1,y...,L7) =
! Vplzp] (TL, -y x1) ik >0

Instead of levels, we can also talk of variables:
e The terminal nodes are associated with the range variable x

e A nonterminal node is associated with a domain variable x, with L > k > 1

e A nonterminal node p at level k has nj outgoing edges pointing to children pliy], for i, € X

plik].lvl < p.lvl

Canonical versions of MDDs

For canonical MDDs, we further require that

e There are no duplicates: if p.lvl = q.lvl = k and p|ix| = q[ix] forall iy, € Xj, thenp = ¢

Then, if the MDD is quasi-reduced, there is no level skipping:
e The only root nodes with no incoming arcs are at level L

e Each child p|ix| of a node p is at level p.lvl — 1

Or, if the MDD is fully-reduced, there is maximum level skipping:

e There are no redundant nodes p satisfying plix| = q for all iy, € X

Quasi-reduced vs. fully-reduced MDDs; full vs. sparse stor age

0|1]2

Ordered multiterminal multiway decision diagrams (MTMDDSs) 10

Assume a domain X = X X -+ x X1, where X, = {0,1,...,n,—1}, for some ny € N

Assume a range Xy = {0, 1,...,ng—1}, forsome ng € N (or an arbitray Xj...)

An MTMDD is an acyclic directed edge-labeled graph where:
e The only terminal nodes are values from X, and are at level 0 Vig € Xy, 19.lvl =0
e A nonterminal node pis atalevel k, with L > k > 1 p.lvl =k
e A nonterminal node p at level k has n;, outgoing edges pointing to children p[zk] for 1. € X}

e The level of the children is lower than that of p; pl0].lvl < p.lvl, p[1].lvl < p.lvl

e A node p at level k encodes the function Up - ?/C'\ — Xy defined recursively by

:) D ifk =20
Up\T1,y....L7) =
! Vplzn](TL, oy 21) iR >0

Instead of levels, we can also talk of variables:
e The terminal nodes are associated with the range variable x

e A nonterminal node is associated with a domain variable x, with L > k > 1

Canonical versions of MTMDDs

For canonical MTMDDs, we further require that

e There are no duplicates: if p.lvl = q.lvl = k and p|ix| = q[ix] forall iy, € Xj, thenp = ¢

Then, if the MTMDD is quasi-reduced, there is no level skipping:
e The only root nodes with no incoming arcs are at level L

e Each child p|ix| of a node p is at level p.lvl — 1

Or, if the MTMDD is fully-reduced, there is maximum level skipping:

e There are no redundant nodes p satisfying plix| = q for all iy, € X

11

12

Quasi-reduced vs. fully reduced MTMDDs

Representing matrices with decision diagrams 13

A function f : X — A}y can be thought of as an Xj-valued one-dimensional vector of size | X|

We also need to store functions X x X — Xy, or two-dimensional matrices

We can use a decision diagram with 2L levels:
e Unprimed x, for the rows, or from, variables
e Primed :zzj,C for columns, or to variables

e Levels can be interleaved, (v, 2 , ..., 21, x}), or non-interleaved, (7, ..., x1, 27 , ..., 27)

We can use a (terminal-valued) matrix diagram (MxD), analogous to a BDD, MDD, or MTMDD:
e A non-terminal node P at level k, for L > k>1, has nj X nj edges

e Plif, ;| points to the child corresponding to the choices xj = if and =}, = i}

ldentity patterns and identity-reduced decision diagrams

In the matrices that we need to encode, it is often the case that the entry is O if 3, # xﬁg

An identity pattern in an interleaved 2 L-level MDD is
e anode p at level k
. . . /
e with plix] = pj,
e such that p} |i}] = 0 for i) # i

e and p;, = q # 0 only for i} = iy

In an identity-reduced primed level k, we skip the nodes pfb-k

An identity node in an MxD is
e anode P
e such that Pliy,i,] = Oforall ig, i), € Xy, i # 0},

e and Plig,ix| = gforall iy € Xy

In an identity-reduced MxD, we skip these identity nodes

15

Pat
| -
e
= é
m OIIA\:I
a\ T
o
~ o
.Il
X
N
@\
¢ < . AN~ — o~
= = S 8 S
o
N——"
N ~ AN — ~ — ~ —
S 2 = S 8 S

AN TN TN N TN

O - O - O

e e e e e

8 8 8 8 8 8
OO0 - A

000101
000110
222222
8 8 8 8 8 8 DO OO
N— N N N N NS

1 e {1 OO OO
O = AN MmN <t 10 O M <O

OO OO OO
OoO—H OO OO

2L-level MDDs vs. MxDs: encoding a
012345

Ordered edge-valued multiway decision diagrams (EVMDDSs) 16

Assume a domain X = X X -+ x X1, where X, = {0,1,...,n,—1}, for some ny € N

Assume the range Z (can generalize to an arbitrary set)

An EVMDD is an acyclic directed edge-labeled graph where:
e The only terminal node is {2 and is at level 0 Q.lvl =0
e A nonterminal node pis atalevel k, with L > k > 1 p.lvl =k
e A nonterminal node p at level k£ has nj, outgoing edges
e For iy € X}, edge p|ix| points to child p|ix|.child, and has value plix].val € Z
e The level of the children is lower than that of p; plig].child.lvl < p.lvl

e Anedge (0, p), with p.lvl = k encodes the function v,) : X — 7 defined recursively by

:) o ifk =0
’UJ’ LLyeeey 1) —
(o) 0+ Vplz (L, oy x1) >0

Canonical versions of EVMDDs 17

For canonical EVMDDs, we first normalize each node p at level £ > 1 in one of two ways:
e pl0].val =0, or EVMDDs

e plir|.val > 0forall i € X), and p|ji| = O for at least one ji € X EVTMDDs

Then, the usual reduction requirements apply:

e There are no duplicates: if p.lvl = q.lvl = k and plix] = qlix] forall i, € X, thenp = ¢

And, if the MDD is quasi-reduced, there is no level skipping:
e The only root nodes with no incoming arcs are at level L, and have root edge values in Z

e Each child p[ig|.child of a node p is at level p.lvl — 1

Or, if the MDD is fully-reduced, there is maximum level skipping:

e There are no redundant nodes p satisfying p|ix|.child = q and p|ix|.val = O for all i, € Xy

EVMDDs, quasi-reduced EV "MDDs, fully-reduced EV "MDDs

For EVMDDs, the value of the incoming root edge is f((), ey O)

For EVTMDDs, the value of the incoming root edge is min f

The EVTMDDs normalization allows to store partial functions X — 7Z U {co}

f(0,...,0)

0 [18]36]|54

L4

L3

L2

L1

min f

L4

L3

L2

L1

min f

110(2]2

18

Matrix diagrams (MxDs) 19

Assume a domain X = X X -+ x X1, where X, = {0,1,...,n,—1}, for some ny € N

Assume the range R=0 = [0, +oo) (can generalize to an arbitrary set)

An (edge-valued) MxD is an acyclic directed edge-labeled graph where:
e The only terminal node is {2 and is at level 0 Odvl =0
e A nonterminal node Pisatalevel k,with L > k > 1 P.lvl =k
e A nonterminal node P at level k has nj X nj outgoing edges
® Forig, i) € Xy, edge Pliy, 1| points to child Plif, jk|.child, and has value Pli, i}.].val >0
e The level of the children is lower than that of P Plig, i,].child.lvl < P.lvl

e Anedge (o, P), with P.lvl = k encodes the function V(o,P) X — 7 defined recursively by

o itk =20

/ /
Vo, P)(TL, XL,y T1, X)) = / o
O VP[zy,2) | (TL, T ey T1,27) >0

Canonical versions of MxDs

For canonical MxDs, we first normalize each node P in one of two ways:
o max{Plig,i|.val : ig, 1, € X} =1, 0r
o min{Pli,i,|.val : iy, i, € Xy, Plig,i].val #0} =1

Then, the usual reduction requirements apply, there are no duplicates:

o If Plvl = Q.lvl = k and Plix] = Q|ig] for all i, € Xj, then P = Q)

And, if the MxD is quasi-reduced, there is no level skipping:
e The only root nodes with no incoming arcs are at level L, and have root edge values in Z

e Each child P|ig,)].child of anode P is at level p.lvl — 1

Or, if the MxD is fully-reduced, there is no redundant node P satisfying:

o Pliy,i,].child = @ and Plig, i, |.val = 1forall iy, 1), € Xy

Or, if the MxD is identity-reduced, there are no identity nodes P satisfying:
o Pliy,ir].child = Q and Plig,ix|.val = 1forall iy, € X,

o Pli,i,].val = 0forall iy # i},

20

Quasi-reduced vs. identity-reduced MxDs; sparse storage 21

min f
min f

L2

L1

22

Properties and applications

Properties of fully-reduced ordered BDDs 23

e Given a boolean expression, or a function, f : BL — B, thereis a unigue BDD encoding it
(for a fixed variable order x,, ..., 1)

e Many functions have a very compact encoding as a BDD
e The constant functions 0 and 1 are represented by the nodes 0 and 1, respectively
e Given the BDD encoding of a boolean expression f: test whether f = 0or f = 1in O(1) time

e Given the BDD encodings of boolean expressions f and g: test whether f = g in O(1) time

e The variable ordering affects the size of the BDD, consider X; < yr A - AX1 & Y1
o with the order (z 7, Y1, ..., T1,Y1) O(L) nodes
o with the order (T, ..., 21, YL, -, Y1) O(2%) nodes
e The BDD encoding of some functions is large (exponential) for any order
o the expression for bit 32 of the 64-bit result of the multiplication of two 32-bit integers

e Finding the optimal ordering that minimizes the BDD size is an NP-complete problem

MDDs to encode sets 24

An important application of BDDs and MDDs is to encode large sets to be manipulated symbolically

To encode aset S C X', we simply store its indicator function y s in a decision diagram:

xs(ir,...,i1) =1 & (ig,....,11) €S

X, ={0,1,2,3}
X; = {0,1,2}
X, = {0,1}

X, ={0,1,2}

An example of MTMDD: the transition rate matrix of an SPN 25

x4:{p1,p0}z{o,1} Xy AP0 00 ={0,1,20 Xy {0 ={0,1} Ay {0 ={0.1}
R [o]1]

o = rate of a

(B =rate of b 0
v = rate of ¢
d = rate of d e
¢ —rate of e

note the shaded identity patterns!!!

An example of EV *MDD: the transition rate matrix of an SPN 26

X4:{P1,p0}5{0,1} X3 {"r%q % r =012 A s =0, A =1{0.1
B

R 501
\ o] 1] o1
q_/ \ ap -~ &lp
’ 5 nnn >

,—l [1] m 12 . [0]
\//)
t 0 1

‘e

« = rate of @ 0| |of1
5 = rate of b X

~ = rate of ¢ 0

d = rate of d

€ —rate of € @

hidden identity patterns remain!!!

An example of EVBDDs 27

[Lai et al. 1992] defined edge-valued binary decision diagrams

0 0 -3
i;]00001111 o0f1] 01
0 2 1 1 2 3
i,[00110011 olr] [o[r] [ol1] [o[T
3.0 1.2 2.3

0 -1 0 -1 2 -1

i1/01010101 0] 1] 0] 1) 0]1) 0] 1) 0] 1) 0]1)
o2 01 M1 10 a1 21

102322410 \@/ \@/ \@/

Canonicity: all nodes have a value 0 associated to the 0-arc (only the EVBDD on the left is canonical)

In canonical form, the root edge has value f(O, e ,O)

An example of EV "MDDs

28

[CiaSim FMCAD’02] defined edge-valued positive multiway decision diagrams

From BDD to MDD: the usual extension
o0-edge values: can store partial arithmetic functions
Canonization rule different from that of EVBDDs: essential to encode partial arithmetic functions

is

00001111

00110011

01010101

02322410

2

0 2 0
0]1 0]1

1o

00001111

00110011

01010101

0230000410

Canonicity: all edge values are non-negative and at least one is zero
In canonical form, the root edge has value min,_ 5 f(i)

£(1,0,0) = 0o but f(1,0,1) =4

0 0

o i
Qg B
\@//

EVMDDs to store the lexicographic state indexing function W 29

X, =10,1,2,3}
X3 ={0,1,2}
Xy ={0,1}
X1 ={0,1,2}
o 1 1 1 1 1 2 3 3 3 3 3
S — 2 0 0 1 1 2 O 2 2 2 2 2
B 1 0 1 0 1 1 0 O 0 1 1 1
O 0 0 0 0 0 O 1 2 0 1 2
. _ 0
To compute the index of a state, use edge values: | o[1]2]3 |
e Sum the values found on the corresponding path: 0 16 11

(2,1,1,0) =6+2+14+0=9 m
/l 2 4 0=1 2
® A state is unreachable if the path is not complete: 0]1]

1(0,2,0,0) =040+ 00 = ¢

lexicographic, not discovery, order!!! 0&2

30

Decision diagrams: a dynamic view

The unique table and the operation cache 31

To ensure canonicity, thus greater efficiency, all operations use a Unique Table (a hash table):
e Search key: level p.lvl and edges p[0], ..., p[ni — 1] of a node p Return value: a node_id
e Alternative: one UT per level, no need to store p.lvl, but more fragmentation
e All (non-dead) nodes are referenced by the UT

e Collision must be without loss, multiple nodes with different node_td may have the same hash_val

With the UT, we avoid duplicate nodes

To achieve polynomial complexity, all operations use an Operation Cache (a hash table):
e Search key: op_code and operands node_id,node_ids,... Return value: node_td
e Alternative: one OC per operation type, no need to store op_code, but more fragmentation
e Before computing op_code(node_idy, node_ids, ...), we search the OC
e If the search is successful, we avoid recomputing a result.

e Collision can be managed either without loss or with loss

With the OC, we visit every node combination instead of traveling every path

Union (Or) and Intersection (And) for fully-reduced BDDs

bdd Union(bdd p, bdd q) is

local bdd r;
1 ifp=0o0rq = 1thenreturng;
if g = 0 or p = 1 then return p;
if p = g then return p;
if UnionCache contains entry ({p, ¢} : r) then return r;
if p.lvl = q.[lvl then
r «— UniqueTableInsert(p.lvl, Union(p|0], q[0]), Union(p[1], q[1]));
else if a.lvl > b.lvl then
r < UniqueTableInsert(p.lvl, Union(p[0], q), Union(p[l], q));
else since a.lvl < b.lvl then
10 r «— UniqueTableInsert(q.lvl, Union(p, q|0]), Union(p, q[1]));
11 enter ({p, q} :) in UnionCache;
12 return r;

O© 00N O O WOWDN

Intersection(p, q) differs from Union(p, q) only in the terminal cases:

32

Union: ifp = 0orqg = 1 thenreturn q; Intersection: if p =1 or g = 0 then return q;

if ¢ = 0 or p = 1 then return p; if ¢ = 1 or p = O then return p;

complexity: O(|N,| x |N,|)

Union (Or) and Intersection (And) for quasi-reduced MDDs

33

mdd Union(lvl k, mdd p, mdd q) is

local mdd r,710,...,Tn, —1;

1 if k = Othenreturnp V q; pandqgare Oor1

if p = g then return p;
if UnionCache contains entry ((k, {p, q}) = r) then return r;
fort: = 0tonr — 1do
r; < Union(k—1,pli], qli]);
end for
r «— UniqueTableInsert(k,ro,...,Tn,—1);

enter ((k, {p,q}) = r) in UnionCache;

return 7;

O© 00 N O O h WODN

Intersection(k, p, q) differs from Union(k, p, q) only in the terminal case:

Union: if k = 0thenreturnp V g; Intersection: if k = 0thenreturnp A g;

complexity: O(Zszzl Npi| X [Nggl)

I'T'E and the Apply operator for fully-reduced BDDs 34

The if-then-else, or ITE, ternary operator is defined as ITE(f,g,h) = (f A g) V (=f A h)

Let f|c/x1] be the function obtained from f by substituting variable zj, with the constant ¢ € B
Then, f = ITE(xk, f|1/xk], f|0/xy]) is the Shannon expansion of f with respect to variable xj
For any binary boolean operator ©: [TFE(x,u,v) ® ITE(x,y,z) = ITE(x,u®y,v® 2)

This is the basis for the recursive BDD operator Apply

bdd Apply(operator ®, bdd p, bdd q) is

local bdd r;
1ifp € {0,1}andqg € {0,1} thenreturn p ® q;
2 if OperationCache contains entry (@,p, q: 7") then return 7;
if p.lvl = q.lvl then

r « UniqueTableInsert(p.lvl, Apply(®, p[0], q[0]), Apply(©, p[1], ¢[1]));
else if p.lvl > q.lvl then

r «— UniqueTableInsert(p.lvl, Apply(©®, p[0], q), Apply(®, p[1], q));
else since p.lvl < q.lvl then

r «— UniqueTableInsert(q.lvl, Apply(®, p, q[0]), Apply(®, p, q[1]));
enter (®, p, q : r) in OperationCache;
10 return r;

© 0N O O b W

Computing the relational product symbolically

Given an L-level BDD rooted at p* encoding a set X C X’ of states

Given a 2L-level BDD rooted at P*, encoding a relation 7 over X
The call Relational Product(p*, P*) returns the root of the BDD encoding the set of states:

Yy={j:dieXx

A 3(1,j) € T}

35

1

~N o oA WO

bdd RelationalProduct(bdd p, bdd P)is

local bdd 71,71, 72!

if p = 0 or P = 0 then return O;
ifp=1and P = 1 thenreturn 1;

guasi-reduced version

if RelationalProductCache contains entry {(p, P : r) then return r;
ro < Union(RelationalProduct(p[0], P|[0][0]), RelationalProduct(p[1], P[1]]0]));
P .

r1 < Union(RelationalProduct(p[0], P[0][1
r < UniqueTableInsert(p.lvl, ro,r1);
enter (p, P : 1) in RelationalProductCache;

]
1), Relational Product(p[1],

The above algorithm assumes that:

e the order of the variables for X' is (zp, ..., 1)

e the order of the variables for 7 is (1, 27 ..., 21, x})

The Min operator for quasi-reduced EV. "MDDs

36

local node p’, q’,r:

local int u, o', 3"

local local 1x;

1 if « = oo then return (3, q);

if MinCache contains entry (k,p,q,c — 3 : 7, 7) then return (v + p, 1);

forty, = 0tong — 1do
p’ «— p.child[ig);
o — a— p+ p.vallig];
10 ¢ <« q.child[ix];
11 B — B — u+ q.vallig];
12 rlik] — Min(k—1,(a’,p"), (8", ¢));
13 UniqueTableInsert(k,r);
14 enter (k,p,q, — B : u,) in MinCache;
15 return (p, 7);

O© 00N O O WOWDN

edge Min(level k, edge (o, p), edge (8, q)) edge is a pair (int, node)

if 3 = oo then return (v, p);
i — min(a, B);
if kK = 0 then return (u, 2); the only node at level O is 2

r < NewNode(k); create new node at level k with edges set to (0o, €2)

continue downstream

An example of the Min operator for quasi-reduced EV. "MDDs s

f 0 g 0 h=min(f,g) 0

510000111122 22 of1]2
0 I\ 2 0,2 1 0 1 1

ir (001 100110011 EO{ mm
2 0 O

B

Hal
02 1 0 0 0 2 0 1 1
i, /010101010101 I-%KI/ ﬂ m'*m
Doo 2 020000 1 300002
O 2 0 02 O 0

N

02000024 00l 3003 O\CQ)/O
02 2002401132

38

Structured system analysis

Definition of structured discrete-state model 39

A structured discrete-state model is specified by

® a potential state space .5(\ =X x---x X
o the “type” of the (global) state
o A is the (discrete) local state space for the k'™ submodel

o if X} is finite, we can map itto {0, 1,...,ny—1} ny, might be unknown a priori

e a set of initial states X;,,;: C X

o often there is a single initial state X;,,+

e a set of events £ defining a disjunctively-partitioned next-state function or transition relation
o T, : X — 2% j € 71,(i) iff state j can be reached by firing event « in state i

o T:X—2% T(i)=U,ce Tu(i)
o naturally extended to sets of states 7, (X) = (J;cx Za(i) and T(X) = U;cr 7 ()
o «vis enabled in iiff 7, (i) # (), otherwise it is disabled

o iis absorbing, or dead, if 7 (i) = ()

Using BDDs to build the state space X,..qch 40

L-level BDD encodes a set of states S as a subset of the potential state space X = {0, 1}

1= (iL, s 'il) € S < the corresponding path from the root leads to terminal 1
2 L-level BDD encodes the transition relation 7 C /? X /if'\
(i,j) = (ir,JL,---,%1,J1) € 7 < the system can go from i to j in one step

We can also think of it as the next-state function 7 : X — 2%

j € T(i) & the system can go from i to j in one step

Standard method Alternative All method

ExploreBdd(Xinit, T) is
AllEzploreBdd (Xinit, T) is

1S «— Xinit; known states
2 U — Xinit; unexplored states 1S — Xinit;
3 repeat 2 repeat
X —T(U); potentially new states 3 O« §; old states

U—x\S, truly new states 4 S—0UT(0); new states

4
5
6 S —Suu; 5 until O = §;
7 until U = (); 6 return S;

8

return S:

Explicit vs. symbolic state space generation 41

Explicit generation of the state space &X,..,.; adds one state at a time

e memory O(states), increases linearly, peaks at the end

i | {0 (w0 |mp|

Symbolic generation of the state space X,..,.; With decision diagrams adds sets of states instead

e memory O(decision diagram nodes), grows and shrinks, usually peaks well before the end

Petri nets and their state space X, finite case 42

e fires

. .
s

—p B G ¥ 0aCa oo

1)

)
4%

==l

Ay

S
%

N+ 1)(N +2)(2N + 3
If the initial state is X;,;; = (IV,0,0,0,0), Xreach contains(+ 1)(—g JN +)states

Self-modifying Petri nets with inhibitor arcs, guards, prio rities 43

A self-modifying Petri net with inhibitor arcs, guards, and priorities is a tuple

(7)7 87 D_7 D+7 D07 G) ~ X'énit)

e Pand & places and events
e D" DT:EXP x NPl 5N state-dependent input, output arc cardinalities
e D°: £ xP x NP 5NU {oo} state-dependent inhibitor arc cardinalities
o G: & x NPl {true, false} state-dependent guards
o~ CEXCE acyclic (preselection) priority relation
® Xint i N 71 initial state

Event o is enabled in a state i € N7, written a € £(i), iff

Vpe P, D, (i) <ip A Dg (i) >i, NGo(i) NVBEE, B=a = B¢E()

If i—j, the new state j satisfies Vp € P, j, =i, — D (i) +DZ (i) (deterministic effect)

Symbolic state-space generation of safe Petri nets [Pastor9 4]

We can store
e any set of markings X C X = {0, 1}/”! of a safe PN with a | P|-level BDD

e any relation over X, or function X — 2%, such as 7, with a 2|P|-level BDD

We can encode 7 using 4|5| boolean functions, each corrresponding to a very simple BDD

o APM, = Hp:F_p fetlxp =1) (all predecessor places of v are marked)
e NPM, = Hp:F_p Wty =0) (no predecessor place of «v is marked)
o ASM, = Hp:Fﬂ) ei(xp =1) (all successor places of o are marked)

o NSMo = [L,5+p.a-1(®p =0) (no successor place of « is marked)

Symbolic state-space generation of safe Petri nets (cont.) 45

The topological image computation for a transition «c on a set of states {/ can be expressed as

T.(U)= (U~ APM,)- NPM)+ NSM,) - ASM

where “=-" indicates the cofactor operator and “-” indicates boolean conjunction
Given
e a boolean function f over (zy,...,x1)

e aliteral xp, = tp,with L > k > landi, € B

the cofactor f + (xp = i) is defined as

o f(xLa ey D41, ikaxk—la s 7371)
The extension to multiple literals, f + (g, = ik ,..., Tk, = ik,), iS recursively defined as
o f(:EL, oy Thod 1y bk ThogeTy - - - ,ZCl) - (:Ckc_l = U, 1y Thy = ikzl)

Thus, 7 is stored in a disjunctively partition formas 7 = U 7.
ael

Chaining [Roig95]

For a Petri net where 7 is stored in a disjunctively partitioned form, the effect of

X —TU);
U—X\S;

is exactly achieved with the statements

X — 0;
foreach a € £ do

X — XUT,(U);
U—X\S;

However, if we do not require strict breadth-first order, we can use chaining

foreach a € &€ do
U—UUT,(U);
U—U\S;

46

Symbolic SsGen: breadth-first vs. chaining, new vs. all states

a7

BfSsGen(Xinit,{7o : € £}

1S — Xinit;

2 Z/[— Xinz’t;

3 repeat

4 X — O

5 foreach o € £ do

6 X — XUT,(U);
7 U—X\S;

8 S —Suu;

9 untl U = 0;

10 return S;

ChSsGen(Xinit, {Za : a0 € E})

1S — Xinit

2 U — Xinit;

3 repeat

4 foreach o € &€ do

5 U—UUTL(U);
6 U—U\S,;

7 S—Suu;

8 until U = 0;

9 return S;

AlIBfSsGen(Xinit,{Ta : a € E})

1S «— Xinit;

2 repeat

3 O — S;

4 X — 0

5 foreach o € £ do

6 X — X U7T,(0);
7 S—0OuUdX;

8 unti O =S8;

9 return S;

AllChSsGen(Xinit, {ZTa : a0 € E})

1S — Xinit
2 repeat

3 O — S;

4 foreach o« € £ do
5 S — SUT,(S);
6 unti O =S;

.

return S;

Comparing the four approaches

48

Time (sec) Memory (MB)

N | Xreach| || Bf AlIBf Ch AllCh Bf AllBf Ch AllCh final
Dining Philosophers: L=N/2, |X;|=34forall k

50|2.2x10% || 37.6| 36.8| 1.3 1.3| 146.8| 131.6| 2.2 22| 0.0
100 | 5.0x10% || 644.1| 630.4| 5.4 5.3|[>999.9(>999.9| 8.9 8.9| 0.0
1000 | 9.2 x 10°%° — —1895.4| 915.5 — —1895.2| 895.0| 0.3
Slotted Ring Network: L = N, |X|=15forall k

5|5.3%x10% 0.2 03| 0.1 0.1 0.8 1.1 0.3 0.2| 0.0
10| 8.3%x10° 215| 241| 21 1.2 39.0 45.0| 5.7 3.3| 0.0
15| 1.5x10% || 745.4| 7715| 185 89| 344.3| 3754 351 20.2| 0.0
Round Robin Mutual Exclusion: L=N-+1, |Xx|=10for all k except |X;|=N+1

10| 2.3x10* 0.2 03| 0.1 0.1 0.6 1.2| 0.1 0.1| 0.0
20 | 4.7 %10’ 2.7 44| 0.3 0.3 5.9 12.8| 0.5 05| 0.0
50|1.3x10% || 263.2| 427.6| 2.9 28| 126.7| 257.7| 4.3 38| 0.1
FMS: L=19, |Xx|=N+1for all kexcept |X17|=4,|X12]|=3,|X7|=2

5(2.9x10° 0.7 07| 0.1 0.1 2.6 22| 04 0.2| 0.0
10| 2.5x10° 7.0 58| 0.5 0.3 18.2 14.7| 2.3 1.3| 0.0
25|8.5x10" || 677.2| 437.9| 12.9 51| 319.7| 245.3| 427 21.2| 0.1

CTL: computation tree logic 49

Given a Kripke structure ()?, Xinit, T, A, L)

CTL has state formulas and path formulas
e State formulas:
oifa € A, a isa stateformula (a is an atomic proposition, true or false in each state)
o if pand p’ are state formulas, —p, pV p', pAp’ are state formulas
o if q is a path formula, Eq, Aq are state formulas
e Path formulas:
o if pand p’ are state formulas, Xp, Fp, Gp, pUp’, pRp’ are path formulas

o Note: unlike CTL™, a state formula is not also a path formula

In CTL, operators occur in pairs:

e a path quantifier, E or A, must always immediately precede a temporal operator, X, F, G, U, R
Of course, CTL expressions can be nested: p V E-pU(—p A AXp)

A CTL formula p identifies a set of model states (those satisfying p)

CTL semantics 50

E[pUq]

ol o B

AlpUq]

SRR

LEGEND: @® pholds @® gholds QO don'tcare

EX, EU, and EG form a complete set of CTL operators, since:

AXp = —EX—p EFp = E[true U p E[pRq| = —A[—pU—q]
AFp = —=EG—p A[pUgq| = —-E[~qU—-p A —q] AN —EG—q A[pRq] = —E[-pU—(]
AGp = —EF—p

The EX algorithm for CTL (explicit version)

An algorithm to label all states that satisfy EXp

We assume that all states satisfying p have been correctly labeled already

51

BuildEX (p) is

1 X — {i€ Xrecach : p € labels(i)};

2 while X # () do

3 pick and remove a state j from X;

4 foreachi € 7 '(j)do

5 labels(i) < labels(i) U {EXp};

initialize X’ with the states satisfying p

state i can transition to state j

The EU algorithm for CTL (explicit version)

An algorithm to label all states that satisfy E|[pU(¢]

52

We assume that all states satisfying p and all states satisfying ¢ have been correctly labeled already

BuildEU (p, q) is

1 X — {i€ Xreach : q € labels(i)};

2 foreachi € X do

3 labels(i) < labels(i) U {E[pUq]};

4 while X # () do

5 pick and remove a state j from X;
foreachi € 7' (j) do

6
7
8 labels(i) « labels(i) U {E[pUq|};
9 X — X U{i};

if E[pUq| & labels(i) and p € labels(i) then

initialize X’ with the states satisfying g

state i can transition to state j

The EG algorithm for CTL (explicit version)

An algorithm to label all states that satisfy EGp

We assume that all states satisfying p have been correctly labeled already

BuildEG(p) is

1 X «— {i€ Xreacn : p € labels(i)}; initialize X’ with the states satisfying p
2 build the set C of SCCs in the subgraph of 7 induced by X’;

3)Y« {i:iisinascCofC};

4 foreachi €) do

5 labels(i) « labels(i) U {EGp};

6 while) # () do
7 pick and remove a state j from),
8 foreachi € 7 '(j)do state i can transition to state j
9 if EGp & labels(i) and p € labels(i) then
10 labels(i) « labels(i) U {EGp};
11 Y — YU{i}

This algorithm relies on finding the (nontrivial) strongly connected components (SCCs) of a graph

The EX algorithm for CTL (symbolic version)

All sets of states and relations over sets of states are encoded using BDDs

An algorithm to build the BDD encoding the set of states that satisfy EXp

Assume that the BDD encoding the set P of states satisfying p has been built already

54

BuildEXsymbolic(P) is
1 X « RelationalProduct(P,T 1),
2 return X;

perform one backward step in the transition relation

The EU algorithm for CTL (symbolic version) 55

Two algorithms to build the BDD encoding the set of states that satisfy E|[pUq|
Assume that the BDDs encoding the sets P and O of states satisfying p and ¢ have been built already

BuildEUsymbolic(P, Q) is

1 X «— 0

2 U — O; initialize the unexplored set {/ with the states satisfying ¢
3 repeat

4 X « Union(X,U); currently known states satisfying E[pUq]
5 Y « RelationalProduct(U, T "); perform one backward step in the transition relation
6 Z «— Intersection(Y, P); discard the states that do not satisfy p
7 U < Difference(Z,X); discard the states that are not new
8 until U = 0,

9 return X’;

BuildEUsymbolicAll(P, Q) is

1 X «— O; initialize the currently known result with the states satisfying q
2 repeat

3 O — X; save the old set of states
4 Y « RelationalProduct(X,T 1), perform one backward step in the transition relation
5 Z « Intersection(),P); discard the states that do not satisfy p
6 X «— Union(Z,X); add to the currently known result
7 until O = A&

8 return X;

The EG algorithm for CTL (symbolic version)

An algorithm to build the BDD encoding the set of states that satisfy EGp

Assume that the BDDs encoding the set P of states satisfying p has been built already

56

BuildEGsymbolic(P) is
1 X «— P; initialize X’ with the states satisfying p
2 repeat
3 O — X; save the old set of states
4 Y «— RelationalProduct(X, T "); perform one backward step in the transition relation
5 X « Intersection(X,));
6 until O = X:
7 return X;

This algorithm starts with a larger set of states and reduces it

This algorithm is not based on finding the strongly connected components of 7°

57

Locality and the Saturation algorithm

Kronecker-consistent decomposition of a structured model 58

A decomposition of a discrete-state model is Kronecker-consistent if:

e 7 is disjunctively partitioned according to a set of events £ T(i) = Uyee Za(i)
o X = X [>k>14&%, aglobal state i consists of L local states i=(ip,...,11)
e and, most importantly, we can write To(i) = X p>6>1Tk,0(ik)

Define the (potential) incidence matrix T[i,j]=1 < j € 7(i)

T = Zaeg To = Zaee ®L2k21 Tk.a

We encode the next state function with L - |£| small matrices T o, € B Xk X Xk |

for Petri nets, any partition of the places into L subsets will do!
(even with inhibitor, reset, or probabilistic arcs)

Using structural information to encode 7 (L = 5) 59

Xy =7 Xy =7 Xo =7 X =7
EVENTS —

T5 a- 7 I | I T5 e !
L
E
Vv
E T4,a1? T4b ? T4,C 7 | 1
L
S
l

Ty 47 I I To g7 I

I I I ledl 7 T1761 7 r \ t

Top(a):5 Top(b):4 Top(c):4 Top(d):2 Top(e):5
Bot(a):2 Bot(d):1 Bot(e):1

we determine a priori from the model whether Tk,a =1

Kronecker encoding of 7: T = Zae{a bc.de) ®5>k>1 Ti.a

X5 plp't={0,1} Xy :{¢%¢'1={0,1}

— omrm<mr

Xy :{sYs11={0,1} A : {1 ={0,1}

q

9

p

>

/

\

S

C

EVENTS —
T5,a;[85] I I I Tg,ezlg)g]
T4,a;[8 (1)] T4,b;[85 T4,C;[98 I I
Twlgg)] I I |00 1
I I I |T.|0) Tl,e;[g)g]
D

Top(a):5 Top(b):4 Top(c):4 Top(d):2 Top(e):

Bot(a):2

Bot(d):1 Bot(e):1

f’@*

!

o

¢
’

60

Using structural information to encode 7 (K = 4) 61

Xy =7 Xy =7 Xo =7 X =7
EVENTS —

. Ty, 7 I I I Ty :?

E

\%

E Tg’a 7 TS,b 7 Tg,c 7 I Tg,e 7

L

S K,

l TQ’CL 7 1 I Tg’d ;7 |

S

I I I Tl,d 7 T1,€ 7 K&
Top(a):4 Top(b):3 Top(c):3 Top(d):2 Top(e):4 r

13
Bot(a):2 Bot(b):3 Bot(c):3 Bot(d):1 Bot(e):1

Top(b) = Bot(b)= Top(c) = Bot(c) =3: we can merge b and c into a single local event [

we determine automatically from the model whether Tk,a =1

Kronecker encodingof 7: T =) 1. y.00Qusp>1 Tha o

X4 : {plij}E{O’l} X3 : {q0T07q1rO’qOT1}E{07172} XQ : {80731}5{071} Xl : {to,tl}E{O,l}

EVENTS —
TM;[g(l)] I I I T4,e:[98]
L
E
\Y, 010 000 000 000
E T37a2 000 Tg,bi 000 Tg’cl 001 I Tg,ei 000
L 000 010 000 100
S
01 00
! T2a[00] I I [Tou|g I
I I I |T.92 Tl,e;[gg]

'3 :3 Top(d):2 Top(e):4
Bot(a):2 Bot(b):3 Bot(c):3 Bot(d):1 Bot(e):1

63

(L =4)

The matrix T encoded by the Kronecker descriptor

= O\ =
L [| [

= NO—
=NOO

Y]] e]
== @ J

T el O
o (S [

= O =
OO

OO
e ([)

ONIr——
ON=O

CONO—
OO

O v e
Or=r=

OO
o=

OO i
COoO=O

OO

=

(D) .
oo - e O |

O O O O O O
QO ™+ OO i OO r=ir
OO OO r=ir= == QIO A\
CO OO OO OO OO OO

O O O O O O
CO ™+ OO i OO r=ir
OC OO r=ir= mir= QI AN
= r=r= = = e —{r—

Q

@

®-:

~
—_~ o~
L L | L
o o o o
R A e
l‘d oo
e e
(@) —~ — —
v = OT . %7
- o
S V) +=
fmu 0" =
~ &
>
A
~
(@»)]
>
——

Locality 64

The Kronecker encoding of 7 evidences locality:
o |f Tk,a — I, we say that event v and submodel k are independent
o If Vi € Xk, Tk olik, Ji] = 0, the state of submodel k affects the enabling of event «
o If 47, #~ 11, Tk,a[ik,jk] — 1, the firing of event @ can change the state of submodel &

e In the last two cases, we say that event v depends on submodel £ and vice versa

Most events in a globally-asynchronous locally-synchronous model are highly localized:
e Let Top(a) and Bot(«) be the highest and lowest levels on which o depends

o {Top(«), ..., Bot(a)} is the range (of levels) for event «, often much smaller than {L, ..., 1}

standard 2 L-level MDD encoding of 7 does not exploit locality

need Kronecker or identity-reduced 2L-level MDD encoding

Exploiting locality 65

Locality takes into account the range of levels to which 7, must be applied:
Ifi€ Xreach,] E’Zy(i), TOp(Ck) =k A Bot(a) =h: j= (iL, ooy Uty Jhy ey Jhy CheT sy oey il)
In addition, it enables in-place updates of a node p at level k:

°/ ./ ./ ° N ./ o/ o/_ ./ -/
If1 :(Zlﬂ "'7Zk+17zk7 "'77’1)€XT€CLCh' J 67'04(1) AW _(ZLa "'7/Lk—|—17]k7 ooy Jhs th—1, '-'77/1)

Top(a) = Bot(«) Top(c) > Bot(«)
Local event av: ij,— jj Synchronizing event a: (ij,, ..., ip)~ (Jis ey 1)

S S NI § S 0 NI U S A

21 2 g 1 I 7 I e P A R I g | 4 1)

q r q Union(q,r) q r q Union(Fire(a,q),r)

locality and in-place-updates save huge amounts of computation

Saturation: an iteration strategy based on the model structu re o6

An MDD node p at level k is saturated if it encodes a fixed point w.r.t. any a s.t. Top(a) < k

(this implies that all nodes reachable from p are also saturated)

e build the L-level MDD encoding of X, ;¢ (if | Xjnit| = 1, there is one node per level)
e saturate each node at level 1: fire in them all events o s.t. Top(a) =1

e saturate each node at level 2: fire in them all events « s.t. Top(a) = 2
(if this creates nodes at level 1, saturate them immediately upon creation)

e saturate each node at level 3: fire in them all events « s.t. Top(a) = 3
(if this creates nodes at levels 2 or 1, saturate them immediately upon creation)

e saturate the root node at level L: fire in it all events « s.t. Top(a) = L
(if this creates nodes at levels L—1, L—2, ..., 1, saturate them immediately upon creation)

States are not discovered in breadth-first order

This can lead to enormous time and memory savings for asynchronous systems

Saturation behavior and properties 67

Traditional approaches apply the global next-state function 7 once to each node at each iteration and
make extensive use of the unique table and operation caches

e We exhaustively fire each event «v in each node p at level k = Top(«),fromk = lupto L

e We must consider redundant nodes as well, thus we prefer quasi-reduced MDDs

e Once node p at level k is saturated, we never fire any event o with & = Top(«v) on p again

e The recursive Fire calls stop at level Bot(a), although the Unzon calls can go deeper

e Only saturated nodes are placed in the unique table and in the union and firing caches

e Many (most?) nodes we insert in the MDD will still be present in the final MDD

e Firing « in p benefits from having saturated the nodes below p

usually enormous memory and time savings

but Saturation is not optimal for all models

Saturation pseudocode: Saturate(L, X;p;)

mdd Saturate(level k, mdd p) is

local mdd r,70,...,7Tn, —1;

1 if p = 0O then return O;

if p = 1 then return 1;

if C'ache contains entry (SaturateCODE, p : r) then return r;

fori =tony — 1dor; « Saturate(k — 1, pli]); first, be sure that the children are saturated

repeat
choose e € &, 1,j € Xk, st. r; # 0and Zc|i]|j] # O; Er ={a: Top(a) =k}
r; «— Or(r;, RelProdSat(k — 1,7, 7c[i][j]));

until g, ..., 7n, —1 do not change;

r «— UniqueTablelnsert(k,ro, ...,Tn, —1);

enter (SaturateCODE,p : r)in Cache;

11 returnr;

© 00 N O O & WDIN

=
o

mdd RelProdSat(level k, mdd g, mdd2 F') is

local mdd 7,70,...,7Tn,—1;

1 ifq = 0or F' = 0 thenreturn O;

2 if Cache contains entry (RelProDsatCODE, q, F : r) then return r;

3 foreach i, j € Xy s.it. q[i] #0 and F'[i][j] #0 do r;j < Or(r;, RelProdSat(k — 1, q[i], F[i][j]));
4 r «— Saturate(k, UniqueTableInsert(k,ro, ..., Tn, —1));

5 enter (RelProdSatCODE, q, F : r) in Cache;

6 return .

Results: SMART vs. NuSMV

Peak memory (kB) Time (sec)
N | Xreach]| SMART NuSMV | SMART NuSMV
Dining Philosophers: L = N
50 | 2.23x103! 22 10,819 0.15 5.9
200 | 2.47x10'%° 93 72,199 0.68 12,905.7
10,000 | 4.26x 100209 4,686 — | 877.82 —
Slotted Ring Network: L = N
10 | 8.29x10° 28 10,819 0.13 5.5
15 | 1.46x10%° 80 13,573 0.39 2,039.5
200 | 8.38x10%!! | 120,316 — | 902.11 —
Round Robin Mutual Exclusion: L=N+1
20 | 4.72x10’ 20 7,306 0.07 0.8
100 | 2.85x1032 372 26,628 3.81 2,475.3
300 | 1.37x10%3 3,109 — | 140.98 —
Flexible Manufacturing System: L =19
10 | 4.28x10° 26 11,238 0.05 9.4
20 | 3.84x10° 101 31,718 0.20 1,747.8
250 | 3.47x10%° 69,087 — | 231.17 —

69

Time and memory to generate X.., .5 USing Saturation in SMART vs. breadth—first iterations in NuSMV

70

EV ™MDDs and the distance function

The distance function 71

Given a model (9/(\, Xinit T), we can define the distance function 0 : ?/C'\ — N U {oo}

0(i) =min{d : i € Td(XZ-m-t)} thus 0(i) =00 & i€ Xreachn

Build X4 = {i: §(i) = d}, Build V!4 = {i: §(i) < d},
ford =0,1,...,dmazx ford =0,1,...,dmaz
DistanceMddForestEQ(Xinit, T) is DistanceMddForestLE(Xinit, T) is

1 d <« 0; Xreach — Xinit; 1d <« 0;

2 X[O] < init, 2 y[O] < Agnit,

3 repeat 3 repeat

4 yla+il T(X[d]) \ Xreach; 4 yld+1] T(y[d]) U pld.

5 d<—d‘|‘1, XreachHXreachUX[d]; 5 d%d‘k 1;

6 until X% =0 6 until Y = pld-1;

This is breadth-first symbolic state space generation

Xrcaon = {i€ X 1 6(1) < 0o} = UZZS“’ Xl = Yldmazl is 3 a by-product of this process!

Encoding the distance function: MDD vs. ADD (a.k.a. MTMDD) 72

dist=0 dist=1 dist=2 dist=3 dist=4

130000 1111

120011 0011

1110101 0101

f10230000410

With an MDD forest: node merging can be poor at the top

With an ADD: node merging can be poor at the bottom

Both approaches are explicit in the number of distinct distance values

Encoding the distance function: EVMDD [Lai et al.] 73

0 0 -3
i;]00001111 o0f1] 01
0 2 1 1 2 3

500110011 o[1] [oli] [eIi] [o[L 0[1]
3.0 1_2 2.3

0 -1 0 -1 2 -1

i;/01010101 0] 1] 0] 1) 0]1) 0] 1) 0] 1) 0]1)
o2 01 M1 1.0 Ml 21

102322410 \@/ \@/ \@/

The first EVMDD is canonical (all nodes have a value 0 associated to the 0-arc)

The second and third EVMDDs are not normalized

This encoding is truly “implicit” or “symbolic”

Encoding the distance function;: EV.~ "MDDs 74

p value of the root edge
/ (minimum value of

. 0
i3(]000 01111 o1 1] the function)

o. rootnoder, atlevel L =3

0
11001 10011
2 ot 0
1101010101 o7 p] -
1 P
| oafu
o2 0 0 120

F1023 0000410 \@/

if (p, r) encodes f, then p = min{f(i): i€ X}

EVMDDs can canonically represent all functions X — Z U {oco}

EVBDDs [Lai et al. 1992] cannot represent certain partial functions

Using Saturation to compute the distance function

It is easy to build the distance function 0 : X —NU {oo} using a breadth-first iteration

0(i) =min{d : i € Td(Xmit)} thus 0(i) =00 & i€ Xreachn

To use Saturation instead, think of § as the fixed-point of the iteration §[™ 1] = <I>(5[m]) where
s+ (i) = min (5[m](i),min {1 + 6lml(3) ‘ Jaef:ic %(J)})

initialized with 510! (i) =0ifi € &j,¢ and §10] (i) = oo otherwise

siml(;
Ginit /&>/»‘+\1

— =
5[m](i)

75

Results: time and memory to generate and store 0 76

Time (in seconds) Final nodes Peak nodes
N ‘S‘ ES Eb Mb AS Ab EsEb Mb ASAb ES Eb Mb AS Ab

Dining philosophers: dmae =2N, L=N/2, |X)| =34 for all k

10| 1.9-10° 0.01|0.06(0.05| 0.12| 0.46 21| 255 170 21| 605| 644 238 4022
30| 6.4-10'° 0.02|0.86(0.70| 7.39| 56.80 71| 2545| 1710 71| 7225| 7364| 2788| 140262

1000(9.2-10°%°|| 0.48| —| —| —| —|| 2496 —| —| 2496 —| —| — —
Kanban system: dmez =14N, L=4, |Xx|=(N+3)(N+2)(N+1)/6 for all k
5/ 2.5-10°|| 0.02|0.14|0.12| 0.24| 1.55 o| 444| 133|| 57| 1132| 1156 776| 13241
12| 55-10°|| 0.34|4.34|3.45|11.08|129.46|| 16| 2368| 518|| 218| 5633| 5805| 5585| 165938
50 1.0-10%°||179.48] —| —| —| —|| s8] —| —| 2802 — —| — —

Flex. manuf. syst.. dpmaes =14N, L=19, |X;|=N+1 for all k except | X17|=4, | X12| =3, |X2| =2

5/ 2.9-10°|| 0.01]0.42|0.34| 0.88| 11.78|| 149| 5640 2989| 211|15205|15693| 4903| 179577
10| 2.5-10°|| 0.04|2.96|2.40| 5.79|608.92| 354|28225| 11894|| 536|76676|78649|17885|1681625
140| 2.0-10%%|| 20.03| —| —| — —||32012| — —|ls2864] —| —| — —

Round-robin mutex protocol: dmaz =8N —6, L=N+1, |X);| =10 for all k except |X1|=N+1

10| 2.3-10%|| 0.01/0.06(0.05| 0.22| 0.50 92| 1038| 1123|| 107| 1898| 1948| 1210 9245
30| 7.2-.10%°|| 0.05(0.95/0.89|16.04|224.83|| 582(12798| 19495| 637|24122|24566|20072| 376609
200| 7.2-10%%|| 1.63| —| —| — —||20897] — —l|l21292] — — = _

E.: EVTMDD & Saturation E}: EVTMDD & breadth-first ~ M}: multiple MDDs & breadth-first
A,: ADD & Saturation Ay ADD & breadth-first

Generating an EF trace using EV "MDDs 77

INPUT: the MDD z encoding a set of states X, the EVTMDD (p, r) encoding ¢

(0]

OUTPUT: a (minimum) u-length trace j*', . .. ,j[“’] from a state in X;,,;+ to a state in X

1. Build the EVTMDD (0,) encoding 8, (1) =0ifi € X and 6, (i) =cc ifi € X \ X

2. Compute the EVTMDD (u, m) encoding Maz((p,r), (0,z))
W is the length of one of the shortest-paths we are seeking

3. If u = o0, exit: X does not contain reachable states

4. Otherwise, extract from (11, m) a state ji# = (j[L“’], . ,jg“]) on a O-labelled path from m to €

j[“] is a reachable state in A" at the desired minimum distance p from X,

5. Initialize v to u and iterate until v = O:

(a) For each statei € X such thatj[”] e 7(i) (use the backward function 7 —1)

e compute d(i) using (p, r) and stop on the firstisuch that 6(i) = v — 1
there exists at least one such state 1*

(b) Decrement v

(c) Letj[”] be i*

78

Markovian system models

Markov chains 79

A stochastic process { X (¢) : t > 0} is a collection of r.vs indexed by a time parameter ¢

We say that X (%) is the state of the process at time ¢

The possible values X (t) can ever assume for any ¢ is (a subset of) the state space X, cqch

{X(t) : t > 0} over adiscrete X}.cqch is a continuous-time Markov chain (CTMC) if

pr{X(t[nH]) — i | x () = i A x () =i A A X)) :1[01}

- pr{X(t[nHl) — i+t (gl :i[”]}

forany 0 < ¢t10 < ... < ¢ln=l < ¢lnl < ¢lnt1] gng §01 . jln=1 il jlet1 e o

Markov property:
“given the present state, the future is independent of the past”
“the most recent knowledge about the state Is all we need”

Markov chain description and analysis 80

A continuous-time Markov chain (CTMC) { X () : t > 0} with state space X;.cqch is described by
e its infinitesimal generator Q = R — diag(R - 1) = R — diag(h) ™! € Rl*reacr[X|¥rcacnl

e its initial probability vector 7w (0) € Rl¥reacnl
where

e R is the transition rate matrix: R i, j| is the rate of going to state j when in state i

e h is the expected holding time vector: hii] =1/ 5cr RILj]

e 7(0)[i] = Pr{chain s in state i at time 0, i.e., initially }

Transient probability vector 7w (¢) € Rl¥reacnl. m(t)]i] = Pr{X(t) =i}
dm(t
e 7(t) is the solution of % = 7r(¢) - Q with initial condition 7r(0)
Steady-state probability vector 77 € Rl*reacnl; mli] = limy_, oo Pr{X (t) =i}

e misthe solutionof 7-(Q =0 subjectto) ;. w|i] =1 QQ must be ergodic

Stationary solution of Markov models 81

For ergodic CTMCs: solve 7r-Q =0 subjectto » ;. mli|=1 rank(Q) =|Xreach| —1

reach

Direct methods are rarely applicable in practice Iterative methods are preferable as they avoid fill-in

Jacobi(in: 7D h, R; out: (")) is
1 repeat
forj = 0to |Xreach| — 1
m(e)[j] « hlj] 2 0<8<| X, gaen it m O] - R

(new),,;
W(old) - ﬂ.(new) :

until “converged”;

2
3
4 “renormalize 7t
5
6
7 (new);

return 7

GaussSeidel(in: h, R; inout: 7r) is

1 repeat

2 forj = 0to | Xreach| — 1

3 7[j] < h[j] - ZO§i<|Xreach|7i7£j mli] - R[i, j];
4 “renormalize 77,

5 until “converged”;

6 return 7;

Gauss-Seidel converges faster than Jacobi but requires strict by-column access to the entries of R

State indexing options: potential) vs. actual 82

For Markov analysis, we can generate X,..qch first, using Xjn¢ and 7 : X — 2%

Once we know X,.cqch:

e Wecanrestrict 7 to 7 : Xregen — 2Xreach (if needed for further logical analysis)
e Wecanstore R: A XA — R or R: Xegen X Xpeaer, — R

e We can choose algorithms thatuse 7w : X — R or 7 : Xregern — R
Strictly explicit methods: using actual R and 7 works best
Strictly implicit methods: decision diagrams usually don’t work well to store 7 or 7t

Implicit methods have tradeoffs:
e Storing 7r instead of 7T is often unavoidable if we employ a full vector and P/C'\] > | Xreach]
e Symbolic storage of ﬁ is usually cheaper than that of R in terms of memory requirements
e However, using f{ In conjunction with 7t complicates indexing...

e ...forcing us to store) : X — {0,1,..., | Xreacn| — 1} U{null}, hence X,cqch

MxD-based vector-matrix multiplication algorithm

83

real[n] VectorMatrixMult(real[n] x, mxd_node A, evmdd_node v)) is n = |Xreach]|

local natural s; state index in X
local realln| y;
local sparse_real c;

1 s <+ 0;

2 foreachj = (jr,...,j1) € Xreach in lexicographic order do s =(j)
3 c — GetCol(L, A, Y, jr, ..., J1); build column j of A using sparse storage
4 yls] < ElementWiseMult(x, c); x uses full storage, € uses sparse storage
5 s<+— s+ 1;

6 returny;

sparse_real GetCol(level k, mxd_node M, evmdd_node ¢, natural jg, ..., j1) is

local sparse_real c,d;

1 if k = O then return [1]; a vector of size one, with its entry set to 1
2 if Clache contains entry (GetColCODE, M, ¢, ji, ..., j1 : €) then return c;
3 c+—0; initialize the result to all zero entries

4 for each iy, € X such that M [ik, jrx].val # 0 and ¢[ix].val # oo do
5 d «— GetCol(k — 1, M ik, jix].child, ¢lix].child, jx—1, ..., J1);
6 foreach i suchthatd|i] # 0 do

7 cli + ¢lir].val] — cli + ¢lix].val]l + Miy, jr|.val - di];
8 enter (GetColCODE, M, ¢, jk, ..., j1 : ¢) in Cache;
9

return C;

84

SMART

What is SMART? 85

e A package integrating logical and stochastic modeling formalisms into a single environment

e Multiple parametric models expressed in different formalisms can be combined in a study

e Easy addition of new formalisms and solution algorithms

e For the study of logical behavior:

o explicit (BFS exploration) state-space generation [Tools97]

o implicit (symbolic MDD Saturation) state-space generation [TACAS01,03]

O

@)

next-state function with Kronecker products or matrix diagrams [PNPM99, IPDSO01]

Saturation-based CTL symbolic model checking [CAVO03]

e For the study of stochastic and timing behavior

©)

O

@)

explicit (sparse storage) numerical solution of CTMCs and DTMCs

implicit (Kronecker) numerical solution of CTMCs [INFORMSJCO00]
structural-based approximations of large CTMC models [SIGMETRICSO0O]
explicit numerical solution of semi-regenerative models [PNPMO1]

simulation of arbitrary models

regenerative simulation with automatic detection of regeration points [PMCCS03]

structural caching to speed up simulation [PMCCS03]

SMART Language 86

Strongly-typed, computation-on-demand, language.

Five types of basic statements ...
e Declaration statements declare functions over some arguments (including constants)

e Definition statements declare functions and specify how to compute their value

e Model statements define parametric models (declarations, specifications, measures)
e Expression statements print values (may have side-effects)
e Option statements modify the behavior of SMART (precision, verbosity level)

Two compound statements that can be arbitrarily nested

e f Or statements define arrays or repeatedly evaluate parametric expressions
Useful for parametric studies

e conver ge statements specify numerical fixed-point iterations
Useful for approximate performance or reliability studies
Cannot appear within the declaration of a model

SMART Types

Basic predefined types are available in SMART

bool : thevaluestrueorf al se bool ¢ :=3 - 2 > 0;
| Nt : integers (machine-dependent) Int 1 :=

bl gi nt : arbitrary-size integers bigint | := 12345678901234567890+* 2;
r eal : floating-point values (machine-dependent) real x := sqgrt(2.3);
St ri ng: character-array values string s := "Mnday",

Composite types can be defined

aggregate: analogous to the Pascal “record” or C “struct” p:t:3
set: collection of homogeneous objects {1..8, 10, 25, 50}

array: collection of homogeneous objects indexed by set elements

A type can be further modified by a nature describing stochastic characteristics
const : (the default) a non-stochastic quantity
ph: a random variable with discrete or continuous phase-type distribution
r and: a random variable with arbitrary distribution
pr OC: a random variable that depends on the state of a model at a given time

Predefined formalism types can be used to define discrete state models (logical or stochastic)

Function declarations 88

Objects in SMART are functions, possibly recursive, that can be overloaded

real pi := 3.14; [// a constant, i.e., a O-argunent function
bool close(real a, real b) := abs(a-b) < 0.00001;
Int pow(int b, int e := cond(e==1, b, b*pow(b,e-1));

real pow(real b, int e) := cond(e==1, b, b*xpow(b,e-1));

pow 5, 3); /| expression, not declaration, prints 125, Int

pow0.5,3); // expression, not declaration, prints 0.125, real

Arrays

Arrays are declared using a f Or statement
An array’s dimensionality is determined by the enclosing iterators
Indices along each dimension belong to a finite set

We can define arrays with r eal indices

for (int i1 in{1..5}, real r in {1..1..0.5}) {
real res[i][r]:= MyModel (i,r).outl;
}

I €S is not a “rectangular” array of values:
e res[1][1. O]
eres[2][1.0], res[2][1.5], res[2][2.0]
e ...

eres[5][1.0], res[5][1.5], ..., res[5][5.0]

State-space generation and storage: model partition

SMART uses the #St at eSt or age option to choose between

e explicit techniques that store each state individually

(AVL, SPLAY, HASHI NG
O no restrictions on the model
O require time and memory at least linear in the number of reachable states

e implicit techniques that employ MDDs to symbolically store sets of states

(MDD_LOCAL _PRECGEN, MDD_SATURATI ON_LPREGEN, VDD_SATURATI ON)
o normally much more efficient

o require a Kronecker-consistent partition of the model, automatically checked by SMART
(global model behavior is the logical product of each submodel’s local behavior)

A PN partition is specified by giving class indices (contiguous, positive integers) to places:

partition(2:p); partition(l:r); partition(l:t, 2:q, 1:s);

or by simply enumerating (without index information) the places in each class

partition(p:q, r:s:t);

90

State-space generation and storage: dining philosopers

spn phils(int N :={
for (int i in {0..N1}) {
place idle[i],waitL[i],waitRi],hasL[i],hasRi],fork[i];
partition(l+div(i,2):idle[i]:waitL[i]:waitRi]:hasL[i]:hasRi]:fork[i]);
init(idle[i]:1, fork[i]:1);
trans Gof[i],GetL[i],GtRi],Stop[i];
}
for (int i in {0..N1}) {
arcs(idle[i]:CGo[i], CGo[i]:waitL[i], Go[i]:waitR[i],
wai tL[i]:GetL[i], waitRi]:CGetRi],
fork[i]:GetL[i], fork[mod(i+1,N]:CGetRi],
GetL[i]:hasL[i], GetRi]:hasRi], hasL[i]:Stop[i], hasRi]:Stop[i],
Stop[i]:idle[i], Stop[i]:fork[i], Stop[i]:fork[nod(i+1l, N)]);
}
bigint n.s := numstates(false);
}
StateStorage MDD _SATURATI ON
print("The nodel has ", phils(read int("N')).n_s, " states.\n");

Number of States MDD Nodes Mem. (bytes) CPU
philosophers S| Final Peak Final Peak | (secs)
100 | 4.97 %10 197 246 30,732 38,376 0.04

1,000 | 9.18x10%% 1,997 2.496 311,532 389,376 0.45
10,000 | 4.26x10%%° | 19,997 | 24,496 | 3,119,532 | 3,821,376 | 314.13

CTL model checking: operations

An object of type St at eset , a set of global model states, is stored as an MDD

All MDDs for a model instance are stored in one MDD forest with shared nodes for efficiency

e Atom builders:
o NOSt at es, returns the empty set
o1 nitial stat e, returns the initial state or states of the model
o r eachabl e, returns the set of reachable states in the model
o potenti al (e), returns the states of X satisfying condition e
® Set operators:
o uni on(P,Q),returns P U Q
olntersection(P,Q),returns PN Q
o conpl ement (P), returns X \ P
o di fference(P,Q),returns P\ Q
o i ncludes(P,Q),returnstrueiff P O Q
oeq(P,Q),retunstrueiff P = 9

92

CTL model checking: operations (cont.) 03

e Temporal logic operators (future and past CTL operators):
o EX(P) and EXbar (P), AX(P) and AXbar (P)
o EF(P) and EFbar (P), AF(P) and AFbar (P)
o E P) and EGbar (P) , A P) and AGbar (P)
o EU P, Q) and EUbar (P, Q) , AU P, Q) and AUbar (P, Q)

e Execution trace output:
o EFtrace('R,P), prints a witness for EF(P) starting from a state in R
o EG race(R,P), prints a witness for EG(P) starting from a state in R
o EUtrace(R,P, Q), prints a witness for EU(P, Q) starting from a state in R
o di st (P, Q), returns the length of a shortest path from P to O

e Utility functions:
o car d(P) , returns the number of states in P (as a bi gi nt)

o printset (P), prints the states in P (up to a given maximum)

SMART uses EVMDDs for efficient witness generation. . .

...and Saturation for efficient CTL model checking

Example: the dining philosophers (Petri net)

A

WaitRight,

A

A
GoEat3

GoEatz‘
WaitLefft3

WaitL(—:fft2 WaitRight2

NN subnets connected in a circular fashion

A

"WaitRight,

94

Example: the dining philosophers (SMART code)

spn phils(int N :={
for (int i in {0..N1}) {
place ldle[i], WaitL[i], WaitR[i], HasL[i], HasR[i], Fork[i];
partition(i+1l:ldle[i]:VWaitL[i]:WaitR[i]:HasL[i]:HasR[i]:Fork[i]);
trans GoEat[i], GetL[i], GetR[i], Release[i];
init(ldle[i]:1, Fork[i]:1);
}
for (int i in {0..N1}) {
arcs(ldle[i]:CGoEat[i], CGoEat[i]:WaitL[i], CGoEat[i]:VWAItRi],
Wai tL[i]:GetL[i], Fork[i]:GetL[i], GetL[i]:HasL[i],
WaitRi]:GtRi], Fork[rmod(i+1, N)]:GetRi], GetRi]:HasRi],
HasL[i]: Release[i], HasR i]: Release[i], Release[i]:ldle[i],
Rel ease[i]:Fork[i], Release[i]:Fork[nod(i+1, N]);
}

bi gi nt num : = card(reachabl e);

stateset g := EF(initialstate); bi gint nung := card(g);
stateset b := difference(reachable, g); bool out .= printset(b);
b
StateStorage MDD _SATURATI ON
int N:=read_ int("nunber of philosophers"); print("N=", N, "\n");
print("Reachable states: ",phils(N.num"\'n");
print("Good states: ", phils(N) . nung, "\ n");

print("The bad states are:"); phils(N).out;

95

Example: the dining philosophers (results) 96

Readi ng i nput.

N=50
Reachabl e states: 22,291, 846, 172, 619, 859, 445, 381, 409, 012, 498
Good st at es: 22,291, 846, 172, 619, 859, 445, 381, 409, 012, 496

The bad states are:

State 0 : { WAitR[0]:1 HasL[O0]:1 WAitR[1]:1 HasL[1]:1 WAitR[2]:1 HasL[2]:1 Wit
State 1 : { WaitL[O0]:1 HasR[0]:1 WAitL[1]:1 HasR 1]:1 WaitL[2]:1 HasR[2]:1 Wit
true

Done.

