Data Representation and Efficient Solution: A Decision Diagram Approach

Gianfranco Ciardo

University of California, Riverside

Decision diagrams: a static view

"Graph-based algorithms for boolean function manipulation"
Randy Bryant (Carnegie Mellon University)
IEEE Transactions on Computers, 1986

BDDs are a canonical representation of boolean functions $f:\{0,1\}^L \to \{0,1\}$

A BDD is an acyclic directed edge-labeled graph where:

• The only terminal nodes can be 0 and 1, and are at level 0

0.lvl = 1.lvl = 0

ullet A nonterminal node p is at a level k, with $L \geq k \geq 1$

- o.lvl = k
- ullet A nonterminal node p has two outgoing edges labelled 0 and 1, pointing to children p[0] and p[1]
- The level of the children is lower than that of p;

$$p[0].lvl < p.lvl, p[1].lvl < p.lvl$$

ullet A node p at level k encodes the function $v_p:\mathbb{B}^L \to \mathbb{B}$ defined recursively by

$$v_p(x_L, ..., x_1) = \begin{cases} p & \text{if } k = 0 \\ v_{p[x_k]}(x_L, ..., x_1) & \text{if } k > 0 \end{cases}$$

Instead of levels, we can also talk of variables:

- ullet The terminal nodes are associated with the range variable x_0
- ullet A nonterminal node is associated with a domain variable x_k , with $L \geq k \geq 1$

For canonical BDDs, we further require that

ullet There are no duplicates: if p.lvl=q.lvl and p[0]=q[0] and p[1]=q[1], then p=q

Then, if the BDD is quasi-reduced, there is no level skipping:

- ullet The only root nodes with no incoming arcs are at level L
- ullet The children p[0] and p[1] of a node p are at level p.lvl-1

Or, if the BDD is fully-reduced, there is maximum level skipping:

ullet There are no redundant nodes p satisfying p[0]=p[1]

Both versions are **canonical**, if functions f and g are encoded using BDDs:

- ullet Satisfiability, f
 eq 0, or equivalence, f = g
- ullet Conjunction, $f \wedge g$, disjunction, $f \vee g$, relational product: $O(|\mathcal{N}_f| \times |\mathcal{N}_g|)$, if fully-reduced $\sum_{L \geq k \geq 1} O(|\mathcal{N}_{f,k}| \times |\mathcal{N}_{g,k}|)$, if quasi-reduced

 \mathcal{N}_f = set of nodes in the BDD encoding f $\mathcal{N}_{f,k}$ = set of nodes at level k in the BDD encoding f

Assume a domain $\widehat{\mathcal{X}} = \mathcal{X}_L \times \cdots \times \mathcal{X}_1$, where $\mathcal{X}_k = \{0, 1, ..., n_k - 1\}$, for some $n_k \in \mathbb{N}$

An MDD is an acyclic directed edge-labeled graph where:

The only terminal nodes can be 0 and 1, and are at level 0

0.lvl = 1.lvl = 0

ullet A nonterminal node p is at a level k, with $L \geq k \geq 1$

- p.lvl = k
- ullet A nonterminal node p at level k has n_k outgoing edges pointing to children $p[i_k]$, for $i_k \in \mathcal{X}_k$
- The level of the children is lower than that of p;

$$p[i_k].lvl < p.lvl$$

ullet A node p at level k encodes the function $v_p:\widehat{\mathcal{X}} o \mathbb{B}$ defined recursively by

$$v_p(x_L, ..., x_1) = \begin{cases} p & \text{if } k = 0 \\ v_{p[x_k]}(x_L, ..., x_1) & \text{if } k > 0 \end{cases}$$

Instead of levels, we can also talk of variables:

- The terminal nodes are associated with the range variable x_0
- A nonterminal node is associated with a domain variable x_k , with $L \ge k \ge 1$

For canonical MDDs, we further require that

ullet There are no duplicates: if p.lvl=q.lvl=k and $p[i_k]=q[i_k]$ for all $i_k\in\mathcal{X}_k$, then p=q

Then, if the MDD is quasi-reduced, there is no level skipping:

- ullet The only root nodes with no incoming arcs are at level L
- ullet Each child $p[i_k]$ of a node p is at level p.lvl-1

Or, if the MDD is fully-reduced, there is maximum level skipping:

ullet There are no redundant nodes p satisfying $p[i_k]=q$ for all $i_k\in\mathcal{X}_k$

Assume a domain $\widehat{\mathcal{X}} = \mathcal{X}_L \times \cdots \times \mathcal{X}_1$, where $\mathcal{X}_k = \{0, 1, ..., n_k - 1\}$, for some $n_k \in \mathbb{N}$

Assume a range $\mathcal{X}_0 = \{0, 1, ..., n_0 - 1\}$, for some $n_0 \in \mathbb{N}$

(or an arbitray \mathcal{X}_0 ...)

An MTMDD is an acyclic directed edge-labeled graph where:

ullet The only terminal nodes are values from \mathcal{X}_0 and are at level 0

 $\forall i_0 \in \mathcal{X}_0, i_0.lvl = 0$

 \bullet A nonterminal node p is at a level k , with $L \geq k \geq 1$

- p.lvl = k
- ullet A nonterminal node p at level k has n_k outgoing edges pointing to children $p[i_k]$, for $i_k \in \mathcal{X}_k$
- The level of the children is lower than that of p;

ullet A node p at level k encodes the function $v_p:\widehat{\mathcal{X}} o \mathcal{X}_0$ defined recursively by

$$v_p(x_L, ..., x_1) = \begin{cases} p & \text{if } k = 0 \\ v_{p[x_k]}(x_L, ..., x_1) & \text{if } k > 0 \end{cases}$$

Instead of levels, we can also talk of variables:

- ullet The terminal nodes are associated with the range variable x_0
- ullet A nonterminal node is associated with a domain variable x_k , with $L \geq k \geq 1$

For canonical MTMDDs, we further require that

ullet There are no duplicates: if p.lvl=q.lvl=k and $p[i_k]=q[i_k]$ for all $i_k\in\mathcal{X}_k$, then p=q

Then, if the MTMDD is quasi-reduced, there is no level skipping:

- ullet The only root nodes with no incoming arcs are at level L
- ullet Each child $p[i_k]$ of a node p is at level p.lvl-1

Or, if the MTMDD is fully-reduced, there is maximum level skipping:

 \bullet There are no redundant nodes p satisfying $p[i_k] = q$ for all $i_k \in \mathcal{X}_k$

A function $f:\widehat{\mathcal{X}} o \mathcal{X}_0$ can be thought of as an \mathcal{X}_0 -valued one-dimensional vector of size $|\widehat{\mathcal{X}}|$

We also need to store functions $\widehat{\mathcal{X}} \times \widehat{\mathcal{X}} \to \mathcal{X}_0$, or two-dimensional matrices

We can use a decision diagram with 2L levels:

- Unprimed x_k for the rows, or from, variables
- Primed x'_k for columns, or to variables
- ullet Levels can be interleaved, $(x_L,x_L',...,x_1,x_1')$, or non-interleaved, $(x_L,...,x_1,x_L',...,x_1')$

We can use a (terminal-valued) matrix diagram (MxD), analogous to a BDD, MDD, or MTMDD:

- A non-terminal node P at level k, for $L \ge k \ge 1$, has $n_k \times n_k$ edges
- ullet $P[i_k,i_k']$ points to the child corresponding to the choices $x_k=i_k$ and $x_k'=i_k'$

In the matrices that we need to encode, it is often the case that the entry is 0 if $x_k \neq x_k'$

An identity pattern in an interleaved 2L-level MDD is

- $\bullet \ \ {\rm a \ node} \ p \ {\rm at \ level} \ k$
- $\bullet \text{ with } p[i_k] = p'_{i_k}$
- \bullet such that $p_{i_k}'[i_k'] = 0$ for $i_k' \neq i_k$
- ullet and $p'_{i_k}=q
 eq 0$ only for $i'_k=i_k$

In an identity-reduced primed level k, we skip the nodes $p_{i_k}^\prime$

An identity node in an MxD is

- ullet a node P
- such that $P[i_k,i_k']=0$ for all $i_k,i_k'\in\mathcal{X}_k,i_k\neq i_k'$
- ullet and $P[i_k,i_k]=q$ for all $i_k\in\mathcal{X}_k$

In an identity-reduced MxD, we skip these identity nodes

$$0 \equiv (x_2 = 0, x_1 = 0)$$

$$1 \equiv (x_2 = 0, x_1 = 1)$$

$$2 \equiv (x_2 = 1, x_1 = 0)$$

$$3 \equiv (x_2 = 1, x_1 = 1)$$

$$4 \equiv (x_2 = 2, x_1 = 0)$$

$$5 \equiv (x_2 = 2, x_1 = 1)$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$2 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$2 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$3 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0$$

$$4 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0$$

$$5 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 1 \quad 2$$

$$2 \quad 0 \quad 1 \quad 1$$

$$x_1 \quad x_1 \quad x_2 \quad x_2 \quad x_2 \quad x_3 \quad x_4 \quad x_4 \quad x_5 \quad$$

Assume a domain $\widehat{\mathcal{X}}=\mathcal{X}_L \times \cdots \times \mathcal{X}_1$, where $\mathcal{X}_k=\{0,1,...,n_k-1\}$, for some $n_k \in \mathbb{N}$

Assume the range ${\mathbb Z}$

(can generalize to an arbitrary set)

An EVMDD is an acyclic directed edge-labeled graph where:

ullet The only terminal node is Ω and is at level 0

$$\Omega . lvl = 0$$

 \bullet A nonterminal node p is at a level k , with $L \geq k \geq 1$

$$p.lvl = k$$

- ullet A nonterminal node p at level k has n_k outgoing edges
- For $i_k \in \mathcal{X}_k$, edge $p[i_k]$ points to child $p[i_k].child$, and has value $p[i_k].val \in \mathbb{Z}$
- The level of the children is lower than that of *p*;

$$p[i_k].child.lvl < p.lvl$$

ullet An edge (σ,p) , with p.lvl=k encodes the function $v_{(\sigma,p)}:\widehat{\mathcal{X}}\to\mathbb{Z}$ defined recursively by

$$v_{(\sigma,p)}(x_L,...,x_1) = \begin{cases} \sigma & \text{if } k = 0\\ \sigma + v_{p[x_k]}(x_L,...,x_1) & \text{if } k > 0 \end{cases}$$

For canonical EVMDDs, we first normalize each node p at level $k \geq 1$ in one of two ways:

• p[0].val = 0, or

EVMDDs

• $p[i_k].val \geq 0$ for all $i_k \in \mathcal{X}_k$, and $p[j_k] = 0$ for at least one $j_k \in \mathcal{X}_k$

EV⁺MDDs

Then, the usual reduction requirements apply:

• There are no duplicates: if p.lvl=q.lvl=k and $p[i_k]=q[i_k]$ for all $i_k\in\mathcal{X}_k$, then p=q

And, if the MDD is quasi-reduced, there is no level skipping:

- ullet The only root nodes with no incoming arcs are at level L, and have root edge values in $\mathbb Z$
- ullet Each child $p[i_k].child$ of a node p is at level p.lvl-1

Or, if the MDD is fully-reduced, there is maximum level skipping:

ullet There are no redundant nodes p satisfying $p[i_k].child = q$ and $p[i_k].val = 0$ for all $i_k \in \mathcal{X}_k$

For EVMDDs, the value of the incoming root edge is f(0, ..., 0)

For EV⁺MDDs, the value of the incoming root edge is $\min f$

The EV⁺MDDs normalization allows to store partial functions $\widehat{\mathcal{X}} \to \mathbb{Z} \cup \{\infty\}$

Assume a domain $\widehat{\mathcal{X}}=\mathcal{X}_L\times\cdots\times\mathcal{X}_1$, where $\mathcal{X}_k=\{0,1,...,n_k-1\}$, for some $n_k\in\mathbb{N}$

Assume the range $\mathbb{R}^{\geq 0} = [0, +\infty)$

(can generalize to an arbitrary set)

An (edge-valued) MxD is an acyclic directed edge-labeled graph where:

ullet The only terminal node is Ω and is at level 0

 $\Omega . lvl = 0$

ullet A nonterminal node P is at a level k, with $L \geq k \geq 1$

P.lvl = k

- ullet A nonterminal node P at level k has $n_k imes n_k$ outgoing edges
- $\bullet \ \, \text{For} \, i_k, i_k' \in \mathcal{X}_k \text{, edge} \, P[i_k, i_k'] \, \text{points to} \, \text{child} \, P[i_k, jk]. child, \, \text{and has value} \, P[i_k, i_k']. val \geq 0$
- ullet The level of the children is lower than that of P

 $P[i_k, i'_k].child.lvl < P.lvl$

ullet An edge (σ,P) , with P.lvl=k encodes the function $v_{(\sigma,P)}:\widehat{\mathcal{X}}\to\mathbb{Z}$ defined recursively by

$$v_{(\sigma,P)}(x_L,x_L',...,x_1,x_1') = \left\{ \begin{array}{ll} \sigma & \text{if } k = 0 \\ \\ \sigma \cdot v_{P[x_k,x_k']}(x_L,x_L'...,x_1,x_1') & \text{if } k > 0 \end{array} \right.$$

For canonical MxDs, we first normalize each node P in one of two ways:

- $\max\{P[i_k,i_k'].val:i_k,i_k'\in\mathcal{X}_k\}=1$, or
- $\min\{P[i_k, i'_k].val : i_k, i'_k \in \mathcal{X}_k, P[i_k, i'_k].val \neq 0\} = 1$

Then, the usual reduction requirements apply, there are no duplicates:

• If P.lvl = Q.lvl = k and $P[i_k] = Q[i_k]$ for all $i_k \in \mathcal{X}_k$, then P = Q

And, if the MxD is quasi-reduced, there is no level skipping:

- ullet The only root nodes with no incoming arcs are at level L, and have root edge values in $\mathbb Z$
- ullet Each child $P[i_k,i_k'].child$ of a node P is at level p.lvl-1

Or, if the MxD is fully-reduced, there is no redundant node P satisfying:

• $P[i_k,i_k'].child=Q$ and $P[i_k,i_k'].val=1$ for all $i_k,i_k'\in\mathcal{X}_k$

Or, if the MxD is identity-reduced, there are no identity nodes P satisfying:

- $P[i_k,i_k].child = Q$ and $P[i_k,i_k].val = 1$ for all $i_k \in \mathcal{X}_k$
- $P[i_k, i_k'].val = 0$ for all $i_k \neq i_k'$

Properties and applications

- Given a boolean expression, or a function, $f: \mathbb{B}^L \to \mathbb{B}$, there is a unique BDD encoding it (for a fixed variable order x_L, \ldots, x_1)
- Many functions have a very compact encoding as a BDD
- The constant functions 0 and 1 are represented by the nodes 0 and 1, respectively
- Given the BDD encoding of a boolean expression f: test whether $f \equiv 0$ or $f \equiv 1$ in O(1) time
- ullet Given the BDD encodings of boolean expressions f and g: test whether $f\equiv g$ in O(1) time
- The variable ordering affects the size of the BDD, consider $\mathbf{x}_L \Leftrightarrow \mathbf{y}_L \wedge \cdots \wedge \mathbf{x}_1 \Leftrightarrow \mathbf{y}_1$ with the order $(x_L, y_L, \dots, x_1, y_1)$ with the order $(x_L, \dots, x_1, y_L, \dots, y_1)$ $O(2^L)$ nodes
- The BDD encoding of some functions is large (exponential) for any order
 - the expression for bit 32 of the 64-bit result of the multiplication of two 32-bit integers
- Finding the optimal ordering that minimizes the BDD size is an NP-complete problem

An important application of BDDs and MDDs is to encode large sets to be manipulated symbolically

To encode a set $S \subseteq \widehat{\mathcal{X}}$, we simply store its indicator function $\chi_{\mathcal{S}}$ in a decision diagram:

$$\chi_{\mathcal{S}}(i_L,...,i_1) = 1 \Leftrightarrow (i_L,...,i_1) \in \mathcal{S}$$

 ϵ

note the shaded identity patterns!!!

 $\epsilon = \text{rate of } e$

$$\mathcal{X}_4: \{p^1, p^0\} \equiv \{0, 1\}$$

 $\mathcal{X}_4: \{p^1, p^0\} \equiv \{0, 1\} \qquad \mathcal{X}_3: \{q^0r^0, q^1r^0, q^0r^1\} \equiv \{0, 1, 2\} \qquad \mathcal{X}_2: \{s^0, s^1\} \equiv \{0, 1\} \qquad \mathcal{X}_1: \{t^0, t^1\} \equiv \{0, 1\}$

 $\alpha = \text{rate of } a$

 $\beta = \text{rate of } b$

 $\gamma = \mathrm{rate} \ \mathrm{of} \ c$

 $\delta = \text{rate of } d$

 $\epsilon = \text{rate of } e$

hidden identity patterns remain!!!

[Lai et al. 1992] defined edge-valued binary decision diagrams

Canonicity: all nodes have a value 0 associated to the 0-arc (only the EVBDD on the left is canonical)

In canonical form, the root edge has value $f(0, \dots, 0)$

[CiaSim FMCAD'02] defined edge-valued positive multiway decision diagrams

From BDD to MDD: the usual extension

∞-edge values: can store partial arithmetic functions

Canonization rule different from that of EVBDDs: essential to encode partial arithmetic functions

Canonicity: all edge values are non-negative and at least one is zero In canonical form, the root edge has value $\min_{\mathbf{i} \in \widehat{\mathcal{X}}} f(\mathbf{i})$

$$f(1,0,0) = \infty$$
 but $f(1,0,1) = 4$

To compute the index of a state, use edge values:

• Sum the values found on the corresponding path:

$$\psi(2,1,1,0) = \mathbf{6} + \mathbf{2} + \mathbf{1} + \mathbf{0} = \mathbf{9}$$

A state is unreachable if the path is not complete:

$$\psi(0, 2, 0, 0) = \mathbf{0} + \mathbf{0} + \infty = \infty$$

lexicographic, not discovery, order!!!

Decision diagrams: a dynamic view

To ensure canonicity, thus greater efficiency, all operations use a Unique Table (a hash table):

- ullet Search key: level p.lvl and edges $p[0],...,p[n_k-1]$ of a node p Return value: a $node_id$
- Alternative: one UT per level, no need to store p.lvl, but more fragmentation
- All (non-dead) nodes are referenced by the UT
- ullet Collision must be without loss, multiple nodes with different $node_id$ may have the same $hash_val$

With the UT, we avoid duplicate nodes

To achieve polynomial complexity, all operations use an Operation Cache (a hash table):

- Search key: op_code and operands $node_id_1, node_id_2,...$ Return value: $node_id$
- Alternative: one OC per operation type, no need to store op_code , but more fragmentation
- Before computing $op_code(node_id_1, node_id_2, ...)$, we search the OC
- If the search is successful, we avoid recomputing a result.
- Collision can be managed either without loss or with loss

With the OC, we visit every node combination instead of traveling every path

```
bdd\ Union(bdd\ p,bdd\ q) is
local bdd r;
 1 if p = \mathbf{0} or q = \mathbf{1} then return q;
 2 if q = \mathbf{0} or p = \mathbf{1} then return p;
 3 if p = q then return p;
 4 if UnionCache contains entry \langle \{p,q\}:r \rangle then return r;
 5 if p.lvl = q.lvl then
        r \leftarrow UniqueTableInsert(p.lvl, Union(p[0], q[0]), Union(p[1], q[1]));
 7 else if a.lvl > b.lvl then
        r \leftarrow UniqueTableInsert(p.lvl, Union(p[0], q), Union(p[1], q));
    else since a.lvl < b.lvl then
        r \leftarrow UniqueTableInsert(q.lvl, Union(p, q[0]), Union(p, q[1]));
11 enter \langle \{p,q\} : r \rangle in UnionCache;
12 return r;
```

Intersection(p,q) differs from Union(p,q) only in the terminal cases:

```
\begin{array}{ll} \textit{Union:} & \text{if } p = \mathbf{0} \text{ or } q = \mathbf{1} \text{ then return } q; & \textit{Intersection:} & \text{if } p = \mathbf{1} \text{ or } q = \mathbf{0} \text{ then return } q; \\ & \text{if } q = \mathbf{0} \text{ or } p = \mathbf{1} \text{ then return } p; & \text{if } q = \mathbf{1} \text{ or } p = \mathbf{0} \text{ then return } p; \end{array}
```

complexity: $O(|\mathcal{N}_p| \times |\mathcal{N}_q|)$

```
 \begin{array}{l} \mathit{mdd} \ \mathit{Union}(\mathit{lvl} \ k, \mathit{mdd} \ p, \mathit{mdd} \ q) \ \mathsf{is} \\ \\ \mathit{local} \ \mathit{mdd} \ r, r_0, \ldots, r_{n_k-1}; \\ \\ \mathit{1} \ \ \mathit{if} \ k = 0 \ \mathsf{then} \ \mathsf{return} \ p \lor q; \\ \\ \mathit{2} \ \ \mathit{if} \ p = q \ \mathsf{then} \ \mathsf{return} \ p; \\ \\ \mathit{3} \ \ \mathit{if} \ \mathit{Union} Cache \ \mathsf{contains} \ \mathsf{entry} \ \langle (k, \{p, q\}) = r \rangle \ \mathsf{then} \ \mathsf{return} \ r; \\ \\ \mathit{4} \ \mathsf{for} \ \mathit{i} = 0 \ \mathsf{to} \ n_k - 1 \ \mathsf{do} \\ \\ \mathit{5} \ \ r_i \leftarrow \mathit{Union}(k-1, p[i], q[i]); \\ \\ \mathit{6} \ \ \mathsf{end} \ \mathsf{for} \\ \\ \mathit{7} \ \ \mathit{r} \leftarrow \mathit{UniqueTableInsert}(k, r_0, \ldots, r_{n_k-1}); \\ \\ \mathit{8} \ \ \mathsf{enter} \ \langle (k, \{p, q\}) = r \rangle \ \mathsf{in} \ \mathit{Union} Cache; \\ \\ \mathit{9} \ \ \mathsf{return} \ r; \\ \end{array}
```

Intersection(k, p, q) differs from Union(k, p, q) only in the terminal case:

```
Union: if k=0 then return p\vee q; Intersection: if k=0 then return p\wedge q;
```

complexity:
$$O(\sum_{L>k>1} |\mathcal{N}_{p,k}| \times |\mathcal{N}_{q,k}|)$$

```
The if-then-else, or ITE, ternary operator is defined as ITE(f,g,h)=(f\wedge g)\vee (\neg f\wedge h)
```

Let $f[c/x_k]$ be the function obtained from f by substituting variable x_k with the constant $c \in \mathbb{B}$

Then, $f = ITE(x_k, f[1/x_k], f[0/x_k])$ is the Shannon expansion of f with respect to variable x_k

For any binary boolean operator \odot : $ITE(x,u,v)\odot ITE(x,y,z) = ITE(x,u\odot y,v\odot z)$

This is the basis for the recursive BDD operator Apply

```
 \begin{array}{l} bdd \; Apply(operator \odot, bdd \; p, bdd \; q) \; \text{is} \\ \\ local \; bdd \; \; r; \\ 1 \; \text{ if } p \in \{\textbf{0}, \textbf{1}\} \; \text{and} \; q \in \{\textbf{0}, \textbf{1}\} \; \text{then return} \; p \odot q; \\ 2 \; \text{ if } OperationCache \; \text{contains entry} \; \langle \odot, p, q : r \rangle \; \text{then return} \; r; \\ 3 \; \text{ if } p.lvl = q.lvl \; \text{then} \\ 4 \; \; \; r \leftarrow UniqueTableInsert(p.lvl, Apply(\odot, p[0], q[0]), Apply(\odot, p[1], q[1])); \\ 5 \; \text{ else if } p.lvl > q.lvl \; \text{then} \\ 6 \; \; \; r \leftarrow UniqueTableInsert(p.lvl, Apply(\odot, p[0], q), Apply(\odot, p[1], q)); \\ 7 \; \text{ else since } p.lvl < q.lvl \; \text{then} \\ 8 \; \; \; \; r \leftarrow UniqueTableInsert(q.lvl, Apply(\odot, p, q[0]), Apply(\odot, p, q[1])); \\ 9 \; \text{ enter} \; \langle \odot, p, q : r \rangle \; \text{in } OperationCache; \\ 10 \; \text{ return } \; r; \\ \end{array}
```

Given an L-level BDD rooted at p^* encoding a set $\mathcal{X} \subseteq \widehat{\mathcal{X}}$ of states

Given a 2L-level BDD rooted at P^* , encoding a relation $\mathcal T$ over $\widehat{\mathcal X}$

The call $Relational Product(p^*, P^*)$ returns the root r of the BDD encoding the set of states:

$$\mathcal{Y} = \{\mathbf{j} : \exists \mathbf{i} \in \mathcal{X} \land \exists (\mathbf{i}, \mathbf{j}) \in \mathcal{T}\}$$

```
\begin{array}{l} \textit{bdd Relational Product}(\textit{bdd }p, \textit{bdd }P) \text{ is} & \textit{quasi-reduced version} \\ \\ \textit{local } \textit{bdd } r, r_1, r_2; \\ \textit{1 if } p = \mathbf{0} \text{ or } P = \mathbf{0} \text{ then return } \mathbf{0}; \\ \textit{2 if } p = \mathbf{1} \text{ and } P = \mathbf{1} \text{ then return } \mathbf{1}; \\ \textit{3 if } \textit{Relational Product Cache} \text{ contains entry } \langle p, P : r \rangle \text{ then return } r; \\ \textit{4 } r_0 \leftarrow \textit{Union}(\textit{Relational Product}(p[0], P[0][0]), \textit{Relational Product}(p[1], P[1][0])); \\ \textit{5 } r_1 \leftarrow \textit{Union}(\textit{Relational Product}(p[0], P[0][1]), \textit{Relational Product}(p[1], P[1][1])); \\ \textit{6 } r \leftarrow \textit{Unique Table Insert}(p.lvl, r_0, r_1); \\ \textit{7 enter } \langle p, P : r \rangle \text{ in } \textit{Relational Product Cache}; \\ \end{array}
```

The above algorithm assumes that:

- ullet the order of the variables for ${\mathcal X}$ is $(x_L,...,x_1)$
- the order of the variables for \mathcal{T} is $(x_L, x_L'..., x_1, x_1')$

```
edge Min(level\ k, edge\ (\alpha, p), edge\ (\beta, q))
                                                                                               edge is a pair (int, node)
local node p', q', r;
local int \mu, \alpha', \beta';
local local i_k:
  1 if \alpha = \infty then return (\beta, q);
 2 if \beta = \infty then return (\alpha, p);
 3 \mu \leftarrow \min(\alpha, \beta);
 4 if k=0 then return (\mu,\Omega);
                                                                                                 the only node at level 0 is \Omega
 5 if MinCache contains entry \langle k, p, q, \alpha - \beta : \gamma, r \rangle then return (\gamma + \mu, r);
 6 r \leftarrow NewNode(k);
                                                                  create new node at level k with edges set to (\infty, \Omega)
  7 for i_k = 0 to n_k - 1 do
     p' \leftarrow p.child[i_k];
      \alpha' \leftarrow \alpha - \mu + p.val[i_k];
     q' \leftarrow q.child[i_k];
     \beta' \leftarrow \beta - \mu + q.val[i_k];
     r[i_k] \leftarrow Min(k-1, (\alpha', p'), (\beta', q'));
                                                                                                         continue downstream
13 Unique Table Insert(k, r);
14 enter \langle k, p, q, \alpha - \beta : \mu, r \rangle in MinCache;
15 return (\mu, r);
```

i ₃	0	0	0	0	1	1	1	1	2	2	2	2
\mathbf{i}_2	0	0	1	1	0	0	1	1	0	0	1	1
\mathbf{i}_1	0	1	0	1	0	1	0	1	0	1	0	1
_												
$\mid f \mid$	0	∞	2	∞	2	∞	∞	1	3	∞	∞	2
$\left egin{array}{c} f \ g \end{array} ight $	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	∞	$\frac{2}{\infty}$	∞	2 2	$\frac{1}{4}$	∞	$\frac{1}{\infty}$	3 1	$\frac{1}{3}$	∞	2 3

Structured system analysis

A structured discrete-state model is specified by

- ullet a potential state space $\widehat{\mathcal{X}} = \mathcal{X}_L imes \cdots imes \mathcal{X}_1$
 - o the "type" of the (global) state
 - $\circ~\mathcal{X}_k$ is the (discrete) local state space for the $k^{ ext{th}}$ submodel
 - \circ if \mathcal{X}_k is finite, we can map it to $\{0,1,\ldots,n_k-1\}$

 n_k might be unknown a priori

- ullet a set of initial states $\mathcal{X}_{init} \subseteq \widehat{\mathcal{X}}$
 - \circ often there is a single initial state \mathbf{x}_{init}
- ullet a set of events ${\mathcal E}$ defining a disjunctively-partitioned next-state function or transition relation
 - $\circ \ \mathcal{T}_{\alpha}: \widehat{\mathcal{X}} o 2^{\widehat{\mathcal{X}}}$ $\mathbf{j} \in \mathcal{T}_{\alpha}(\mathbf{i})$ iff state \mathbf{j} can be reached by firing event α in state \mathbf{i}
 - $\circ \ \mathcal{T}: \widehat{\mathcal{X}} \to 2^{\widehat{\mathcal{X}}} \qquad \mathcal{T}(\mathbf{i}) = \bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha}(\mathbf{i})$
 - \circ naturally extended to sets of states $\mathcal{T}_{\alpha}(\mathcal{X}) = \bigcup_{\mathbf{i} \in \mathcal{X}} \mathcal{T}_{\alpha}(\mathbf{i})$ and $\mathcal{T}(\mathcal{X}) = \bigcup_{\mathbf{i} \in \mathcal{X}} \mathcal{T}(\mathbf{i})$
 - $\circ \ \alpha$ is enabled in \mathbf{i} iff $\mathcal{T}_{\alpha}(\mathbf{i}) \neq \emptyset$, otherwise it is disabled
 - \circ ${f i}$ is absorbing, or dead, ${f i}$ if ${f T}({f i})=\emptyset$

L-level BDD encodes a set of states $\mathcal S$ as a subset of the potential state space $\widehat{\mathcal X}=\{0,1\}^L$

 $\mathbf{i} \equiv (i_L,...,i_1) \in \mathcal{S} \iff$ the corresponding path from the root leads to terminal 1

2L-level BDD encodes the transition relation $\mathcal{T}\subseteq\widehat{\mathcal{X}}\times\widehat{\mathcal{X}}$

 $(\mathbf{i},\mathbf{j})\equiv(i_L,j_L,...,i_1,j_1)\in\mathcal{T} \iff$ the system can go from \mathbf{i} to \mathbf{j} in one step

We can also think of it as the next-state function $\mathcal{T}:\widehat{\mathcal{X}} o 2^{\widehat{\mathcal{X}}}$

 $\mathbf{j} \in \mathcal{T}(\mathbf{i}) \iff$ the system can go from \mathbf{i} to \mathbf{j} in one step

Standard method

Alternative All method

```
ExploreBdd(\mathcal{X}_{init}, \mathcal{T}) \text{ is}
1 \ \mathcal{S} \leftarrow \mathcal{X}_{init}; \qquad known \text{ states}
2 \ \mathcal{U} \leftarrow \mathcal{X}_{init}; \qquad unexplored \text{ states}
3 \text{ repeat}
4 \quad \mathcal{X} \leftarrow \mathcal{T}(\mathcal{U}); \qquad potentially \text{ new states}
5 \quad \mathcal{U} \leftarrow \mathcal{X} \setminus \mathcal{S}; \qquad truly \text{ new states}
6 \quad \mathcal{S} \leftarrow \mathcal{S} \cup \mathcal{U};
7 \text{ until } \mathcal{U} = \emptyset;
8 \text{ return } \mathcal{S};
```

```
\begin{array}{l} \textit{AllExploreBdd}(\mathcal{X}_{init}, \mathcal{T}) \text{ is} \\ \\ \textit{1} \;\; \mathcal{S} \leftarrow \mathcal{X}_{init}; \\ \textit{2} \;\; \text{repeat} \\ \textit{3} \quad \mathcal{O} \leftarrow \mathcal{S}; \\ \textit{4} \quad \mathcal{S} \leftarrow \mathcal{O} \cup \mathcal{T}(\mathcal{O}); \\ \textit{5} \;\; \text{until} \;\; \mathcal{O} = \mathcal{S}; \\ \textit{6} \;\; \text{return} \;\; \mathcal{S}; \end{array}
```

Explicit generation of the state space \mathcal{X}_{reach} adds one state at a time

• memory O(states), increases linearly, peaks at the end

Symbolic generation of the state space \mathcal{X}_{reach} with decision diagrams adds sets of states instead

ullet memory O(decision diagram nodes), grows and shrinks, usually peaks well before the end

If the initial state is $\mathbf{x}_{init} = (N, 0, 0, 0, 0)$, \mathcal{X}_{reach} contains $\frac{(N+1)(N+2)(2N+3)}{6}$ states

A self-modifying Petri net with inhibitor arcs, guards, and priorities is a tuple

$$(\mathcal{P}, \mathcal{E}, \mathbf{D}^-, \mathbf{D}^+, \mathbf{D}^\circ, G, \succ, \mathbf{x}_{init})$$

- ullet ${\mathcal P}$ and ${\mathcal E}$ places and events
- ullet $\mathbf{D}^-, \mathbf{D}^+ : \mathcal{E} imes \mathcal{P} imes \mathbb{N}^{|\mathcal{P}|} \! o \! \mathbb{N}$
- $\mathbf{D}^{\circ}: \mathcal{E} \times \mathcal{P} \times \mathbb{N}^{|\mathcal{P}|} \to \mathbb{N} \cup \{\infty\}$
- $G: \mathcal{E} \times \mathbb{N}^{|\mathcal{P}|} \to \{true, false\}$
- $\bullet \succ \subset \mathcal{E} \times \mathcal{E}$
- ullet $\mathbf{x}_{init}: \mathbb{N}^{|\mathcal{P}|}$

state-dependent input, output arc cardinalities

state-dependent inhibitor arc cardinalities

state-dependent guards

acyclic (preselection) priority relation

initial state

Event α is enabled in a state $\mathbf{i} \in \mathbb{N}^{|\mathcal{P}|}$, written $\alpha \in \mathcal{E}(\mathbf{i})$, iff

$$\forall p \in \mathcal{P}, \ \mathbf{D}_{\alpha,p}^{-}(\mathbf{i}) \leq i_p \land \mathbf{D}_{\alpha,p}^{\circ}(\mathbf{i}) > i_p \land G_{\alpha}(\mathbf{i}) \land \forall \beta \in \mathcal{E}, \ \beta \succ \alpha \Rightarrow \beta \notin \mathcal{E}(\mathbf{i})$$

If $\mathbf{i} \stackrel{\alpha}{\rightharpoonup} \mathbf{j}$, the new state \mathbf{j} satisfies $\forall p \in \mathcal{P}, \ j_p = i_p - \mathbf{D}_{\alpha,p}^-(\mathbf{i}) + \mathbf{D}_{\alpha,p}^+(\mathbf{i})$ (deterministic effect)

We can store

- ullet any set of markings $\mathcal{X}\subseteq\widehat{\mathcal{X}}=\{0,1\}^{|\mathcal{P}|}$ of a safe PN with a $|\mathcal{P}|$ -level BDD
- ullet any relation over $\widehat{\mathcal{X}}$, or function $\widehat{\mathcal{X}} o 2^{\widehat{\mathcal{X}}}$, such as \mathcal{T} , with a $2|\mathcal{P}|$ -level BDD

We can encode $\mathcal T$ using $4|\mathcal E|$ boolean functions, each corrresponding to a very simple BDD

•
$$APM_{\alpha} = \prod_{p: \mathbf{F}^- p, \alpha = 1} (x_p = 1)$$

• $NPM_{\alpha} = \prod_{p: \mathbf{F}^- p, \alpha = 1} (x_p = 0)$

• $ASM_{\alpha} = \prod_{p: \mathbf{F}^+ p, \alpha = 1} (x_p = 1)$

• $NSM_{\alpha} = \prod_{p: \mathbf{F}^+ p, \alpha = 1} (x_p = 0)$

(all predecessor places of α are marked)

(no predecessor place of α is marked)

(all successor places of α are marked)

(no successor place of α is marked)

The topological image computation for a transition lpha on a set of states $\mathcal U$ can be expressed as

$$\mathcal{T}_{\alpha}(\mathcal{U}) = (((\mathcal{U} \div APM_{\alpha}) \cdot NPM_{\alpha}) \div NSM_{\alpha}) \cdot ASM_{\alpha}$$

where "÷" indicates the cofactor operator and "·" indicates boolean conjunction

Given

- a boolean function f over (x_L, \ldots, x_1)
- ullet a literal $x_k=i_k$, with $L\geq k\geq 1$ and $i_k\in\mathbb{B}$

the cofactor $f \div (x_k = i_k)$ is defined as

• $f(x_L, \ldots, x_{k+1}, i_k, x_{k-1}, \ldots, x_1)$

The extension to multiple literals, $f \div (x_{k_c} = i_{k_c}, \dots, x_{k_1} = i_{k_1})$, is recursively defined as

•
$$f(x_L, \ldots, x_{k_c+1}, i_{k_c}, x_{k_c-1}, \ldots, x_1) \div (x_{k_{c-1}} = i_{k_{c-1}}, \ldots, x_{k_1} = i_{k_1})$$

Thus, $\mathcal T$ is stored in a disjunctively partition form as $\mathcal T=\bigcup_{lpha\in\mathcal E}\mathcal T_lpha$

For a Petri net where \mathcal{T} is stored in a disjunctively partitioned form, the effect of

$$\mathcal{X} \leftarrow \mathcal{T}(\mathcal{U});$$
 $\mathcal{U} \leftarrow \mathcal{X} \setminus \mathcal{S};$

is exactly achieved with the statements

$$\mathcal{X} \leftarrow \emptyset;$$
 for each $\alpha \in \mathcal{E}$ do $\mathcal{X} \leftarrow \mathcal{X} \cup \mathcal{T}_{\alpha}(\mathcal{U});$ $\mathcal{U} \leftarrow \mathcal{X} \setminus \mathcal{S};$

However, if we do not require strict breadth-first order, we can use chaining

```
for each lpha \in \mathcal{E} do \mathcal{U} \leftarrow \mathcal{U} \cup \mathcal{T}_{lpha}(\mathcal{U}); \mathcal{U} \leftarrow \mathcal{U} \setminus \mathcal{S};
```

```
BfSsGen(\mathcal{X}_{init}, \{\mathcal{T}_{\alpha}: \alpha \in \mathcal{E}\})
1 \ \mathcal{S} \leftarrow \mathcal{X}_{init};
2 \ \mathcal{U} \leftarrow \mathcal{X}_{init};
3 \ \text{repeat}
4 \ \mathcal{X} \leftarrow \emptyset;
5 \ \text{for each } \alpha \in \mathcal{E} \text{ do}
6 \ \mathcal{X} \leftarrow \mathcal{X} \cup \mathcal{T}_{\alpha}(\mathcal{U});
7 \ \mathcal{U} \leftarrow \mathcal{X} \setminus \mathcal{S};
8 \ \mathcal{S} \leftarrow \mathcal{S} \cup \mathcal{U};
9 \ \text{until} \ \mathcal{U} = \emptyset;
10 \ \text{return } \mathcal{S};
```

```
ChSsGen(\mathcal{X}_{init}, \{\mathcal{T}_{\alpha} : \alpha \in \mathcal{E}\})
1 \ \mathcal{S} \leftarrow \mathcal{X}_{init};
2 \ \mathcal{U} \leftarrow \mathcal{X}_{init};
3 \ \text{repeat}
4 \quad \text{for each } \alpha \in \mathcal{E} \text{ do}
5 \quad \mathcal{U} \leftarrow \mathcal{U} \cup \mathcal{T}_{\alpha}(\mathcal{U});
6 \quad \mathcal{U} \leftarrow \mathcal{U} \setminus \mathcal{S};
7 \quad \mathcal{S} \leftarrow \mathcal{S} \cup \mathcal{U};
8 \ \text{until} \ \mathcal{U} = \emptyset;
9 \ \text{return } \mathcal{S};
```

```
AllBfSsGen(\mathcal{X}_{init}, \{\mathcal{T}_{\alpha} : \alpha \in \mathcal{E}\})
1 \ \mathcal{S} \leftarrow \mathcal{X}_{init};
2 \ \text{repeat}
3 \ \mathcal{O} \leftarrow \mathcal{S};
4 \ \mathcal{X} \leftarrow \emptyset;
5 \ \text{for each } \alpha \in \mathcal{E} \text{ do}
6 \ \mathcal{X} \leftarrow \mathcal{X} \cup \mathcal{T}_{\alpha}(\mathcal{O});
7 \ \mathcal{S} \leftarrow \mathcal{O} \cup \mathcal{X};
8 \ \text{until} \ \mathcal{O} = \mathcal{S};
9 \ \text{return } \mathcal{S};
```

```
AllChSsGen(\mathcal{X}_{init}, \{\mathcal{T}_{\alpha}: \alpha \in \mathcal{E}\})

1 \mathcal{S} \leftarrow \mathcal{X}_{init};

2 repeat

3 \mathcal{O} \leftarrow \mathcal{S};

4 for each \alpha \in \mathcal{E} do

5 \mathcal{S} \leftarrow \mathcal{S} \cup \mathcal{T}_{\alpha}(\mathcal{S});

6 until \mathcal{O} = \mathcal{S};

7 return \mathcal{S};
```

		Time (sec)				Memory (MB)				
N	$ \mathcal{X}_{reach} $	Bf	All B f	Ch	AllCh	Bf	AllBf	Ch	AllCh	final
Dining Philosophers: $L\!=\!N/2$, $ \mathcal{X}_k \!=\!34$ for all k										
50	2.2×10 ³¹	37.6	36.8	1.3	1.3	146.8	131.6	2.2	2.2	0.0
100	5.0×10^{62}	644.1	630.4	5.4	5.3	>999.9	>999.9	8.9	8.9	0.0
1000	9.2×10^{626}	_		895.4	915.5	_		895.2	895.0	0.3
Slot	ted Ring Net	twork:	L=N, $ $	$ \mathcal{X}_k = 1$	$15\mathrm{for}\;\mathrm{all}$	k				
5	5.3×10^4	0.2	0.3	0.1	0.1	0.8	1.1	0.3	0.2	0.0
10	8.3×10^9	21.5	24.1	2.1	1.2	39.0	45.0	5.7	3.3	0.0
15	1.5×10^{15}	745.4	771.5	18.5	8.9	344.3	375.4	35.1	20.2	0.0
Rou	nd Robin Mı	utual Ex	clusion:	L = N	$+1, \mathcal{X}_k $	$ \!=\!10$ for	all k exc	ept $ \mathcal{X}_1 $	-N+1	-
10	2.3×10 ⁴	0.2	0.3	0.1	0.1	0.6	1.2	0.1	0.1	0.0
20	4.7×10^7	2.7	4.4	0.3	0.3	5.9	12.8	0.5	0.5	0.0
50	1.3×10 ¹⁷	263.2	427.6	2.9	2.8	126.7	257.7	4.3	3.8	0.1
FMS	$L = 19$, $ \lambda $	$ \mathcal{L}_k = N$	+1 for a	II k exc	ept $ \mathcal{X}_{17} $	$ =4, \mathcal{X}_1 $	$ 2 =3, \lambda $	$ \mathcal{L}_7 = 2$		
5	2.9×10 ⁶	0.7	0.7	0.1	0.1	2.6	2.2	0.4	0.2	0.0
10	2.5×10^9	7.0	5.8	0.5	0.3	18.2	14.7	2.3	1.3	0.0
25	8.5×10^{13}	677.2	437.9	12.9	5.1	319.7	245.3	42.7	21.2	0.1

Given a Kripke structure $(\widehat{\mathcal{X}}, \mathcal{X}_{init}, \mathcal{T}, \mathcal{A}, \mathcal{L})$

CTL has state formulas and path formulas

- State formulas:
 - \circ if $a \in \mathcal{A}$, a is a state formula (a is an atomic proposition, true or false in each state)
 - \circ if p and p' are state formulas, $\neg p$, $p \lor p'$, $p \land p'$ are state formulas
 - \circ if q is a path formula, Eq, Aq are state formulas
- Path formulas:
 - \circ if p and p' are state formulas, Xp, Fp, Gp, pUp', pRp' are path formulas
 - Note: unlike CTL*, a state formula is not also a path formula

In CTL, operators occur in pairs:

• a path quantifier, E or A, must always immediately precede a temporal operator, X, F, G, U, R

Of course, CTL expressions can be nested: $p \lor E \neg p \cup (\neg p \land AXp)$

A CTL formula p identifies a set of model states (those satisfying p)

CTL semantics

EX, EU, and EG form a complete set of CTL operators, since:

$$\begin{array}{ll} \mathsf{AX}p = \neg\mathsf{EX}\neg p & \mathsf{EF}p = \mathsf{E}[true\ \mathsf{U}\ p] & \mathsf{E}[p\mathsf{R}q] = \neg\mathsf{A}[\neg p\mathsf{U}\neg q] \\ \mathsf{AF}p = \neg\mathsf{EG}\neg p & \mathsf{A}[p\ \mathsf{U}\ q] = \neg\mathsf{E}[\neg q\ \mathsf{U}\ \neg p\ \land\ \neg q]\ \land\ \neg\mathsf{EG}\neg q & \mathsf{A}[p\mathsf{R}q] = \neg\mathsf{E}[\neg p\mathsf{U}\neg q] \\ \mathsf{AG}p = \neg\mathsf{EF}\neg p & \mathsf{AG}p = \neg\mathsf{EF}\neg p & \mathsf{AG}p = \neg\mathsf{E}[\neg p\mathsf{U}\neg q] \end{array}$$

An algorithm to label all states that satisfy $\mathsf{EX}p$

We assume that all states satisfying p have been correctly labeled already

```
BuildEX(p) \text{ is} \\ 1 \ \mathcal{X} \leftarrow \{\mathbf{i} \in \mathcal{X}_{reach} : p \in labels(\mathbf{i})\}; \\ 2 \text{ while } \mathcal{X} \neq \emptyset \text{ do} \\ 3 \text{ pick and remove a state } \mathbf{j} \text{ from } \mathcal{X}; \\ 4 \text{ for each } \mathbf{i} \in \mathcal{T}^{-1}(\mathbf{j}) \text{ do} \\ 5 \ labels(\mathbf{i}) \leftarrow labels(\mathbf{i}) \cup \{\mathsf{EX}p\}; \end{cases}
```

An algorithm to label all states that satisfy $\mathsf{E}[p\mathsf{U}q]$

We assume that all states satisfying p and all states satisfying q have been correctly labeled already

```
BuildEU(p,q) \text{ is} \\ 1 \ \mathcal{X} \leftarrow \{\mathbf{i} \in \mathcal{X}_{reach} : q \in labels(\mathbf{i})\}; \\ 2 \text{ for each } \mathbf{i} \in \mathcal{X} \text{ do} \\ 3 \quad labels(\mathbf{i}) \leftarrow labels(\mathbf{i}) \cup \{\mathsf{E}[p \mathsf{U}q]\}; \\ 4 \text{ while } \mathcal{X} \neq \emptyset \text{ do} \\ 5 \quad \text{pick and remove a state } \mathbf{j} \text{ from } \mathcal{X}; \\ 6 \quad \text{for each } \mathbf{i} \in \mathcal{T}^{-1}(\mathbf{j}) \text{ do} \\ 7 \quad \text{if } \mathsf{E}[p \mathsf{U}q] \not\in labels(\mathbf{i}) \text{ and } p \in labels(\mathbf{i}) \text{ then} \\ 8 \quad labels(\mathbf{i}) \leftarrow labels(\mathbf{i}) \cup \{\mathsf{E}[p \mathsf{U}q]\}; \\ 9 \quad \mathcal{X} \leftarrow \mathcal{X} \cup \{\mathbf{i}\}; \\ \end{cases}
```

An algorithm to label all states that satisfy EGp

We assume that all states satisfying p have been correctly labeled already

```
BuildEG(p) is
  1 \mathcal{X} \leftarrow \{\mathbf{i} \in \mathcal{X}_{reach} : p \in labels(\mathbf{i})\};
                                                                                                                          initialize \mathcal{X} with the states satisfying p
  2 build the set \mathcal{C} of SCCs in the subgraph of \mathcal{T} induced by \mathcal{X};
  3 \mathcal{Y} \leftarrow \{\mathbf{i} : \mathbf{i} \text{ is in a SCC of } \mathcal{C}\};
  4 for each \mathbf{i} \in \mathcal{Y} do
              labels(\mathbf{i}) \leftarrow labels(\mathbf{i}) \cup \{\mathsf{EG}p\};
  6 while \mathcal{Y} \neq \emptyset do
              pick and remove a state j from \mathcal{Y};
             for each \mathbf{i} \in \mathcal{T}^{-1}(\mathbf{j}) do
                                                                                                                                        state i can transition to state j
                    if EGp \not\in labels(\mathbf{i}) and p \in labels(\mathbf{i}) then
                           labels(\mathbf{i}) \leftarrow labels(\mathbf{i}) \cup \{\mathsf{EG}p\};
10
                           \mathcal{Y} \leftarrow \mathcal{Y} \cup \{\mathbf{i}\};
11
```

This algorithm relies on finding the (nontrivial) strongly connected components (SCCs) of a graph

All sets of states and relations over sets of states are encoded using BDDs

An algorithm to build the BDD encoding the set of states that satisfy $\mathsf{EX}p$

Assume that the BDD encoding the set \mathcal{P} of states satisfying p has been built already

```
BuildEX symbolic(\mathcal{P}) is
```

1 $\mathcal{X} \leftarrow RelationalProduct(\mathcal{P}, \mathcal{T}^{-1});$

perform one backward step in the transition relation

2 return \mathcal{X} ;

Two algorithms to build the BDD encoding the set of states that satisfy $\mathsf{E}[p\mathsf{U}q]$ Assume that the BDDs encoding the sets $\mathcal P$ and $\mathcal Q$ of states satisfying p and q have been built already

```
BuildEUsymbolic(\mathcal{P},\mathcal{Q}) is
  1 \mathcal{X} \leftarrow \emptyset:
  2 \mathcal{U} \leftarrow \mathcal{Q};
                                                                         initialize the unexplored set \mathcal{U} with the states satisfying q
  3 repeat
  4 \mathcal{X} \leftarrow \mathsf{Unjon}(\mathcal{X}, \mathcal{U});
                                                                                                 currently known states satisfying E[pUq]
     \mathcal{Y} \leftarrow RelationalProduct(\mathcal{U}, \mathcal{T}^{-1});
                                                                                 perform one backward step in the transition relation
  6 \mathcal{Z} \leftarrow Intersection(\mathcal{Y}, \mathcal{P});
                                                                                                     discard the states that do not satisfy p
  7 \mathcal{U} \leftarrow Difference(\mathcal{Z}, \mathcal{X});
                                                                                                          discard the states that are not new
  8 until \mathcal{U} = \emptyset:
  9 return \mathcal{X};
BuildEUsymbolicAll(\mathcal{P},\mathcal{Q}) is
  1 \mathcal{X} \leftarrow \mathcal{Q}:
                                                                   initialize the currently known result with the states satisfying q
  2 repeat
      \mathcal{O} \leftarrow \mathcal{X};
                                                                                                                        save the old set of states
  4 \mathcal{Y} \leftarrow RelationalProduct(\mathcal{X}, \mathcal{T}^{-1});
                                                                                 perform one backward step in the transition relation
  5 \mathcal{Z} \leftarrow Intersection(\mathcal{Y}, \mathcal{P});
                                                                                                     discard the states that do not satisfy p
       \mathcal{X} \leftarrow Union(\mathcal{Z}, \mathcal{X});
                                                                                                             add to the currently known result
  7 until \mathcal{O} = \mathcal{X}:
  8 return \mathcal{X}:
```

An algorithm to build the BDD encoding the set of states that satisfy EGp

Assume that the BDDs encoding the set \mathcal{P} of states satisfying p has been built already

```
BuildEGsymbolic(\mathcal{P}) \text{ is} \\ 1 \ \mathcal{X} \leftarrow \mathcal{P}; \\ 2 \text{ repeat} \\ 3 \quad \mathcal{O} \leftarrow \mathcal{X}; \\ 4 \quad \mathcal{Y} \leftarrow RelationalProduct(\mathcal{X}, \mathcal{T}^{-1}); \\ 5 \quad \mathcal{X} \leftarrow Intersection(\mathcal{X}, \mathcal{Y}); \\ 6 \text{ until } \mathcal{O} = \mathcal{X}; \\ 7 \text{ return } \mathcal{X}; \\ \end{cases} \text{ initialize } \mathcal{X} \text{ with the states satisfying } p
```

This algorithm starts with a larger set of states and reduces it

This algorithm is **not** based on finding the strongly connected components of ${\mathcal T}$

Locality and the Saturation algorithm

A decomposition of a discrete-state model is Kronecker-consistent if:

ullet ${\mathcal T}$ is disjunctively partitioned according to a set of events ${\mathcal E}$

$$\mathcal{T}(\mathbf{i}) = igcup_{lpha \in \mathcal{E}} \mathcal{T}_lpha(\mathbf{i})$$

• $\widehat{\mathcal{X}} = X_{L>k>1}\mathcal{X}_k$, a global state **i** consists of L local states

$$\boxed{\mathbf{i}=(i_L,\ldots,i_1)}$$

• and, most importantly, we can write

$$\mathcal{T}_{\alpha}(\mathbf{i}) = \times_{L \geq k \geq 1} \mathcal{T}_{k,\alpha}(i_k)$$

Define the (potential) incidence matrix $\mathbf{T}[\mathbf{i},\mathbf{j}]=1 \Leftrightarrow \mathbf{j} \in \mathcal{T}(\mathbf{i})$

$$\mathbf{T} = \sum_{\alpha \in \mathcal{E}} \mathbf{T}_{\alpha} = \sum_{\alpha \in \mathcal{E}} \bigotimes_{L > k > 1} \mathbf{T}_{k, \alpha}$$

We encode the next state function with $L \cdot |\mathcal{E}|$ small matrices $\mathbf{T}_{k,\alpha} \in \mathbb{B}^{|\mathcal{X}_k \times \mathcal{X}_k|}$

for Petri nets, any partition of the places into L subsets will do! (even with inhibitor, reset, or probabilistic arcs)

$$\mathcal{X}_5 = ?$$

$$\mathcal{X}_4 = ?$$

$$\mathcal{X}_3 = ?$$

$$\mathcal{X}_2 = ?$$

$$\mathcal{X}_1 = ?$$

1	EVENTS -	→		r	
L	$\mathbf{T}_{5,a}$:?	Ι	Ι	Ι	$\mathbf{T}_{5,e}$:?
E > E L	$\mathbf{T}_{4,a}$: ?	$\mathbf{T}_{4,b}$: ?	$\mathbf{T}_{4,c}$: ?	Ι	Ι
LS →	I	$\mathbf{T}_{3,b}$:?	$\mathbf{T}_{3,c}$:?	I	$\mathbf{T}_{3,e}$:?
	$\mathbf{T}_{2,a}$: ?	Ι	I	$\mathbf{T}_{2,d}$: ?	I
	I	I	I	$\mathbf{T}_{1,d}$: ?	$\mathbf{T}_{1,e}$:?
,					

Top(a):5 Top(b):4 Top(c):4 Top(d):2 Top(e):5Bot(a): 2 Bot(b): 3 Bot(c): 3 Bot(d): 1 Bot(e): 1

we determine a priori from the model whether $\mathbf{T}_{k,lpha}\!=\!\mathbf{I}$

60

 $\mathcal{X}_5: \{p^1, p^0\} \equiv \{0, 1\} \quad \mathcal{X}_4: \{q^0, q^1\} \equiv \{0, 1\} \quad \mathcal{X}_3: \{r^0, r^1\} \equiv \{0, 1\} \quad \mathcal{X}_2: \{s^0, s^1\} \equiv \{0, 1\} \quad \mathcal{X}_1: \{t^0, t^1\} \equiv \{0, 1\}$

	<u>EVENTS -</u>	\rightarrow				
L	$\mathbf{T}_{5,a}$: $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	I	Ι	Ι	$\mathbf{T}_{5,e}$: $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$	
E V E L	$\mathbf{T}_{4,a}$: $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	$egin{aligned} \mathbf{T}_{4,b} &: \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{aligned}$	$\mathbf{T}_{4,c}$: $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$	Ι	Ι	
S →	Ι	$\mathbf{T}_{3,b}: \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$	$\mathbf{T}_{3,c}: \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	Ι	$\mathbf{T}_{3,e}$: $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$	
	$\mathbf{T}_{2,a} : \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	$\mathbf{T}_{2,a}$: $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ \mathbf{I}		$\mathbf{T}_{2,d}$: $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$	I	
	Ι	I	I	$\mathbf{T}_{1,d}$: $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	$\mathbf{T}_{1,e}$: $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$	

Top(a):5 Top(b):4 Top(c):4 Top(d):2 Top(e):5

Bot(a):2 Bot(b):3 Bot(c):3 Bot(d):1 Bot(e):1

$$\mathcal{X}_4 = ?$$

$$\mathcal{X}_3 = ?$$

$$\mathcal{X}_2 = ?$$

$$\mathcal{X}_1 = ?$$

ı	<u>EVENTS</u>	\rightarrow				
L	$\mathbf{T}_{4,a}:?$	I	I	I	$\mathbf{T}_{4,e}:?$	
\sim \sim	$\mathbf{T}_{3,a}:?$	$\mathbf{T}_{3,b}:?$	$\mathbf{T}_{3,c}:?$	Ι	$\mathbf{T}_{3,e}:?$	
	$\mathbf{T}_{2,a}:?$	Ι	Ι	$\mathbf{T}_{2,d}:?$	I	
	I	I	I	$\mathbf{T}_{1,d}:?$	$\mathbf{T}_{1,e}:?$	

 $Top(a): 4 \quad Top(b): 3 \quad Top(c): 3 \quad Top(d): 2 \quad Top(e): 4$ $Bot(a): 2 \ Bot(b): 3 \ Bot(c): 3 \ Bot(d): 1 \ Bot(e): 1$

Top(b) = Bot(b) = Top(c) = Bot(c) = 3: we can merge b and c into a single local event l

we determine automatically from the model whether $\mathbf{T}_{k,lpha}\!=\!\mathbf{I}$

$$\mathbf{T} = \sum_{\alpha \in \{a,b,c,d,e\}}$$

62

$$\mathcal{X}_4: \{p^1, p^0\} \equiv \{0, 1\}$$

$$\mathcal{X}_4: \{p^1, p^0\} \equiv \{0, 1\} \qquad \mathcal{X}_3: \{q^0 r^0, q^1 r^0, q^0 r^1\} \equiv \{0, 1, 2\} \qquad \mathcal{X}_2: \{s^0, s^1\} \equiv \{0, 1\} \qquad \mathcal{X}_1: \{t^0, t^1\} \equiv \{0, 1\}$$

$$\mathcal{X}_2: \{s^0, s^1\} \equiv \{0, 1\}$$

$$\mathcal{X}_1: \{t^0, t^1\} \equiv \{0, 1\}$$

ı	$EVENTS \to$				
LE>ELS →	$\mathbf{T}_{4,a}$: $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	Ι	I	Ι	$\mathbf{T}_{4,e}$: $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$
	$\mathbf{T}_{3,a}: \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\mathbf{T}_{3,b} : \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	$\mathbf{T}_{3,c}: \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	Ι	$\mathbf{T}_{3,e}: \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
	$\mathbf{T}_{2,a}$: $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	I	I	$\mathbf{T}_{2,d}$: $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$	I
	I	I	I	$\mathbf{T}_{1,d}: \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	$\mathbf{T}_{1,e}$: $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$

Top(a):4 Top(b):3 Top(c):3 Top(d):2 Top(e):4

Bot(a):2 Bot(b):3 Bot(c):3 Bot(d):1 Bot(e):1

The Kronecker encoding of \mathcal{T} evidences locality:

- ullet If $\mathbf{T}_{k,\alpha}=\mathbf{I}$, we say that event lpha and submodel k are independent
- If $\forall j_k \in \mathcal{X}_k$, $\mathbf{T}_{k,\alpha}[i_k,j_k]=0$, the state of submodel k affects the enabling of event α
- If $\exists j_k \neq i_k, \mathbf{T}_{k,\alpha}[i_k,j_k] = 1$, the firing of event α can change the state of submodel k
- ullet In the last two cases, we say that event lpha depends on submodel k and vice versa

Most events in a globally-asynchronous locally-synchronous model are highly localized:

- Let $Top(\alpha)$ and $Bot(\alpha)$ be the highest and lowest levels on which α depends
- $\bullet \ \{ \mathit{Top}(\alpha),...,\mathit{Bot}(\alpha) \} \ \text{is the range (of levels) for event α, often much smaller than $\{L,...,1\}$}$

standard 2L-level MDD encoding of $\mathcal T$ does not exploit locality

need Kronecker or identity-reduced 2L-level MDD encoding

Locality takes into account the range of levels to which \mathcal{T}_{α} must be applied:

If
$$\mathbf{i} \in \mathcal{X}_{reach}$$
, $\mathbf{j} \in \mathcal{T}_{\alpha}(\mathbf{i})$, $\underline{Top(\alpha)} = k \land \underline{Bot(\alpha)} = h$: $\mathbf{j} = (i_L, ..., i_{k+1}, \underline{j_k}, ..., \underline{j_h}, i_{h-1}, ..., i_1)$

In addition, it enables in-place updates of a node p at level k:

If
$$\mathbf{i'} = (i'_L, ..., i'_{k+1}, \frac{\mathbf{i_k}}{\mathbf{i_k}}, ..., i_1) \in \mathcal{X}_{reach}$$
: $\mathbf{j'} \in \mathcal{T}_{\alpha}(\mathbf{i'}) \wedge \mathbf{j'} = (i'_L, ..., i'_{k+1}, \frac{\mathbf{j_k}}{\mathbf{j_k}}, ..., \frac{\mathbf{j_h}}{\mathbf{j_h}}, i_{h-1}, ..., i_1)$

$$Top(\alpha) = Bot(\alpha)$$

Local event α : $i_k \xrightarrow{\alpha} j_k$

$$Top(\alpha) > Bot(\alpha)$$

Synchronizing event $\alpha: (i_k, ..., i_h) \xrightarrow{\alpha} (j_k, ..., j_h)$

locality and in-place-updates save huge amounts of computation

An MDD node p at level k is **saturated** if it encodes a fixed point w.r.t. any α s.t. $Top(\alpha) \leq k$ (this implies that all nodes reachable from p are also saturated)

- build the L-level MDD encoding of \mathcal{X}_{init} (if $|\mathcal{X}_{init}| = 1$, there is one node per level)
- \bullet saturate each node at level 1: fire in them all events α s.t. $Top(\alpha)=1$
- saturate each node at level 2: fire in them all events α s.t. $Top(\alpha) = 2$ (if this creates nodes at level 1, saturate them immediately upon creation)
- saturate each node at level 3: fire in them all events α s.t. $Top(\alpha) = 3$ (if this creates nodes at levels 2 or 1, saturate them immediately upon creation)
- ...
- saturate the root node at level L: fire in it all events α s.t. $Top(\alpha) = L$ (if this creates nodes at levels $L-1, L-2, \ldots, 1$, saturate them immediately upon creation)

States are **not** discovered in breadth-first order

This can lead to enormous time and memory savings for asynchronous systems

Traditional approaches apply the global next-state function \mathcal{T} once to each node at each iteration and make extensive use of the unique table and operation caches

- We exhaustively fire each event α in each node p at level $k=Top(\alpha)$, from k=1 up to L
- We must consider redundant nodes as well, thus we prefer quasi-reduced MDDs
- ullet Once node p at level k is saturated, we never fire any event lpha with k=Top(lpha) on p again
- The recursive Fire calls stop at level $Bot(\alpha)$, although the Union calls can go deeper
- Only saturated nodes are placed in the unique table and in the union and firing caches
- Many (most?) nodes we insert in the MDD will still be present in the final MDD
- ullet Firing lpha in p benefits from having saturated the nodes below p

usually enormous memory and time savings but Saturation is **not** optimal for all models

```
\operatorname{mdd} Saturate(\operatorname{level} k, \operatorname{mdd} p) is
 local mdd r, r_0, ..., r_{n_k-1};
  1 if p = \mathbf{0} then return \mathbf{0};
  2 if p = 1 then return 1;
  3 if Cache contains entry \langle SaturateCODE, p:r \rangle then return r;
  4 for i = \text{to } n_k - 1 \text{ do } r_i \leftarrow Saturate(k-1, p[i]);
                                                                                    first, be sure that the children are saturated
  5 repeat
                                                                                                       \mathcal{E}_k = \{\alpha : Top(\alpha) = k\}
          choose e \in \mathcal{E}_k, i, j \in \mathcal{X}_k, s.t. r_i \neq \mathbf{0} and \mathcal{T}_e[i][j] \neq \mathbf{0};
          r_i \leftarrow Or(r_i, RelProdSat(k-1, r_i, \mathcal{T}_e[i][j]));
  8 until r_0, ..., r_{n_k-1} do not change;
  9 r \leftarrow UniqueTableInsert(k, r_0, ..., r_{n_k-1});
 10 enter \langle SaturateCODE, p:r \rangle in Cache;
 11 return r;
\mathsf{mdd}\; RelProdSat(\mathsf{level}\; k, \mathsf{mdd}\; q, \mathsf{mdd2}\; F) is
 local mdd r, r_0, ..., r_{n_k-1};
  1 if q = \mathbf{0} or F = \mathbf{0} then return \mathbf{0};
  2 if Cache contains entry \langle RelProDsatCODE, q, F : r \rangle then return r;
  3 for each i, j \in \mathcal{X}_k s.t. q[i] \neq \mathbf{0} and F[i][j] \neq \mathbf{0} do r_j \leftarrow Or(r_j, RelProdSat(k-1, q[i], F[i][j]));
  4 r \leftarrow Saturate(k, UniqueTableInsert(k, r_0, ..., r_{n_k-1}));
  5 enter \langle RelProdSatCODE, q, F : r \rangle in Cache;
  6 return r.
```

Time and memory to generate \mathcal{X}_{reach} using Saturation in SMART vs. breadth–first iterations in NuSMV

		Peak m	Peak memory (kB)		e (sec)
N	$ \mathcal{X}_{reach} $	SMART	NuSMV	SMART	NuSMV
Dining	Philosophers:	L = N			
50	2.23×10^{31}	22	10,819	0.15	5.9
200	2.47×10^{125}	93	72,199	0.68	12,905.7
10,000	4.26×10^{6269}	4,686	_	877.82	_
Slotted	Ring Network:	L = N			
10	8.29×10 ⁹	28	10,819	0.13	5.5
15	1.46×10^{15}	80	13,573	0.39	2,039.5
200	8.38×10^{211}	120,316		902.11	
Round	Robin Mutual E	xclusion:	L = N + 1		
20	4.72×10^7	20	7,306	0.07	8.0
100	2.85×10^{32}	372	26,628	3.81	2,475.3
300	1.37×10 ⁹³	3,109		140.98	_
Flexibl	e Manufacturinç	System:	L=19		
10	4.28×10 ⁶	26	11,238	0.05	9.4
20	3.84×10^9	101	31,718	0.20	1,747.8
250	3.47×10^{26}	69,087	_	231.17	

EV⁺MDDs and the distance function

Given a model $(\widehat{\mathcal{X}}, \mathcal{X}_{init}, \mathcal{T})$, we can define the distance function $\delta : \widehat{\mathcal{X}} \to \mathbb{N} \cup \{\infty\}$

$$\delta(\mathbf{i}) = \min\{d : \mathbf{i} \in \mathcal{T}^d(\mathcal{X}_{init})\}\$$

thus
$$\delta(\mathbf{i}) = \infty \Leftrightarrow \mathbf{i} \notin \mathcal{X}_{reach}$$

Build
$$\mathcal{X}^{[d]} = \{\mathbf{i} : \delta(\mathbf{i}) = d\}$$
, for $d = 0, 1, ..., d_{max}$

$DistanceMddForestEQ(\mathcal{X}_{init}, \mathcal{T})$ is

- 1 $d \leftarrow 0$; $\mathcal{X}_{reach} \leftarrow \mathcal{X}_{init}$;
- 2 $\mathcal{X}^{[0]} \leftarrow \mathcal{X}_{init}$;
- 3 repeat
- 4 $\mathcal{X}^{[d+1]} \leftarrow \mathcal{T}(\mathcal{X}^{[d]}) \setminus \mathcal{X}_{reach};$
- 5 $d \leftarrow d+1; \quad \mathcal{X}_{reach} \leftarrow \mathcal{X}_{reach} \cup \mathcal{X}^{[d]};$
- 6 until $\mathcal{X}^{[d]} = \emptyset$;

Build
$$\mathcal{Y}^{[d]} = \{\mathbf{i} : \delta(\mathbf{i}) \leq d\}$$
, for $d = 0, 1, ..., d_{max}$

$Distance MddForestLE(\mathcal{X}_{init},\mathcal{T})$ is

- 1 $d \leftarrow 0$;
- 2 $\mathcal{Y}^{[0]} \leftarrow \mathcal{X}_{init}$;
- 3 repeat
- 4 $\mathcal{Y}^{[d+1]} \leftarrow \mathcal{T}(\mathcal{Y}^{[d]}) \cup \mathcal{Y}^{[d]};$
- 5 $d \leftarrow d + 1$;
- 6 until $\mathcal{Y}^{[d]} = \mathcal{Y}^{[d-1]}$;

This is breadth-first symbolic state space generation

$$\mathcal{X}_{reach} = \{\mathbf{i} \in \widehat{\mathcal{X}} : \delta(\mathbf{i}) < \infty\} = \bigcup_{d=0}^{d_{max}} \mathcal{X}^{[d]} = \mathcal{Y}^{[d_{max}]}$$
 is a a by-product of this process!

With an MDD forest: node merging can be poor at the top

With an ADD: node merging can be poor at the bottom

The first EVMDD is canonical (all nodes have a value 0 associated to the 0-arc)

The second and third EVMDDs are not normalized

This encoding is truly "implicit" or "symbolic"

If (ρ, r) encodes f, then $\rho = \min\{f(\mathbf{i}) : \mathbf{i} \in \widehat{\mathcal{X}}\}$

 $\mathsf{EV}^+\mathsf{MDDs}$ can canonically represent all functions $\widehat{\mathcal{X}} o \mathbb{Z} \cup \{\infty\}$

EVBDDs [Lai et al. 1992] cannot represent certain partial functions

It is easy to build the distance function $\delta:\widehat{\mathcal{X}}\to\mathbb{N}\cup\{\infty\}$ using a breadth-first iteration

$$\delta(\mathbf{i}) = \min\{d : \mathbf{i} \in \mathcal{T}^d(\mathcal{X}_{init})\} \qquad \qquad \text{thus} \quad \delta(\mathbf{i}) = \infty \iff \mathbf{i} \not\in \mathcal{X}_{reach}$$

To use Saturation instead, think of δ as the fixed-point of the iteration $\delta^{[m+1]} = \Phi(\delta^{[m]})$ where

$$\delta^{[m+1]}(\mathbf{i}) = \min \left(\delta^{[m]}(\mathbf{i}), \min \left\{ 1 + \delta^{[m]}(\mathbf{j}) \mid \exists \alpha \in \mathcal{E} : \mathbf{i} \in \mathcal{T}_{\alpha}(\mathbf{j}) \right\} \right)$$

initialized with $\delta^{[0]}(\mathbf{i})=0$ if $\mathbf{i}\in\mathcal{X}_{init}$ and $\delta^{[0]}(\mathbf{i})=\infty$ otherwise

		Time (in seconds)					Final nodes			Peak nodes				
N	$ \mathcal{S} $	E_s	E_b	M_b	A_s	A_b	E_sE_b	M_b	A_sA_b	E_s	E_b	M_b	A_s	A_b
Dining philosophers: $d_{max} = 2N$, $L = N/2$, $ \mathcal{X}_k = 34$ for all k														
10	1.9·10 ⁶	0.01	0.06	0.05	0.12	0.46	21	255	170	21	605	644	238	4022
30	6.4·10 ¹⁸	0.02	0.86	0.70	7.39	56.80	71	2545	1710	71	7225	7364	2788	140262
1000	9.2·10 ⁶²⁶	0.48			_	_	2496	_	_	2496	_	_		
Kanban system: $d_{max} = 14N$, $L = 4$, $ \mathcal{X}_k = (N+3)(N+2)(N+1)/6$ for all k														
5	2.5·10 ⁶	0.02	0.14	0.12	0.24	1.55	9	444	133	57	1132	1156	776	13241
12	5.5·10 ⁹	0.34	4.34	3.45	11.08	129.46	16	2368	518	218	5633	5805	5585	165938
50	1.0·10 ¹⁶	179.48	_	_	_	_	58	_	_	2802	_			
Flex. manuf. syst.: $d_{max} = 14N$, $L = 19$, $ \mathcal{X}_k = N+1$ for all k except $ \mathcal{X}_{17} = 4$, $ \mathcal{X}_{12} = 3$, $ \mathcal{X}_2 = 2$														
5	2.9·10 ⁶	0.01	0.42	0.34	0.88	11.78	149	5640	2989	211	15205	15693	4903	179577
10	2.5·10 ⁹	0.04	2.96	2.40	5.79	608.92	354	28225	11894	536	76676	78649	17885	1681625
140	2.0·10 ²³	20.03	_	_	_	_	32012	_	_	52864				_
Round–robin mutex protocol: $d_{max} = 8N - 6$, $L = N + 1$, $ \mathcal{X}_k = 10$ for all k except $ \mathcal{X}_1 = N + 1$														
10	2.3·10 ⁴	0.01	0.06	0.05	0.22	0.50	92	1038	1123	107	1898	1948	1210	9245
30	7.2·10 ¹⁰	0.05	0.95	0.89	16.04	224.83	582	12798	19495	637	24122	24566	20072	376609
200	7.2·10 ⁶²	1.63		_	_		20897	_		21292	_	_		

 E_s : EV⁺MDD & Saturation E_b : EV⁺MDD & breadth-first M_b : multiple MDDs & breadth-first

 A_s : ADD & Saturation A_b : ADD & breadth-first

INPUT: the MDD x encoding a set of states \mathcal{X} , the EV⁺MDD (ρ, r) encoding δ

OUTPUT: a (minimum) μ -length trace $\mathbf{j}^{[0]},\ldots,\mathbf{j}^{[\mu]}$ from a state in \mathcal{X}_{init} to a state in \mathcal{X}

- 1. Build the EV⁺MDD (0,x) encoding $\delta_x(\mathbf{i})=0$ if $\mathbf{i}\in\mathcal{X}$ and $\delta_x(\mathbf{i})=\infty$ if $\mathbf{i}\in\widehat{\mathcal{X}}\setminus\mathcal{X}$
- 2. Compute the EV⁺MDD (μ, m) encoding $Max((\rho, r), (0, x))$ μ is the length of one of the shortest-paths we are seeking
- 3. If $\mu = \infty$, exit: \mathcal{X} does not contain reachable states
- 4. Otherwise, extract from (μ,m) a state $\mathbf{j}^{[\mu]}=(j_L^{[\mu]},\ldots,j_1^{[\mu]})$ on a 0-labelled path from m to Ω $\mathbf{j}^{[\mu]}$ is a reachable state in $\mathcal X$ at the desired minimum distance μ from $\mathcal X_{init}$
- 5. Initialize ν to μ and iterate until $\nu=0$:
 - (a) For each state $\mathbf{i} \in \widehat{\mathcal{X}}$ such that $\mathbf{j}^{[\nu]} \in \mathcal{T}(\mathbf{i})$ (use the backward function \mathcal{T}^{-1})
 - compute $\delta(\mathbf{i})$ using (ρ,r) and stop on the first \mathbf{i} such that $\delta(\mathbf{i})=\nu-1$ there exists at least one such state \mathbf{i}^*
 - (b) Decrement ν
 - (c) Let $\mathbf{j}^{[
 u]}$ be \mathbf{i}^*

Markovian system models

A stochastic process $\{X(t):t\geq 0\}$ is a collection of r.v.'s indexed by a time parameter t

We say that X(t) is the state of the process at time t

The possible values X(t) can ever assume for any t is (a subset of) the state space \mathcal{X}_{reach}

 $\{X(t): t \geq 0\}$ over a discrete \mathcal{X}_{reach} is a continuous-time Markov chain (CTMC) if

$$\Pr\left\{X(t^{[n+1]}) = \mathbf{i}^{[n+1]} \mid X(t^{[n]}) = \mathbf{i}^{[n]} \land X(t^{[n-1]}) = \mathbf{i}^{[n-1]} \land \dots \land X(t^{[0]}) = \mathbf{i}^{[0]}\right\}$$

$$= \Pr\left\{X(t^{[n+1]}) = \mathbf{i}^{[n+1]} \mid X(t^{[n]}) = \mathbf{i}^{[n]}\right\}$$

 $\text{for any } 0 \leq t^{[0]} \leq \ldots \leq t^{[n-1]} \leq t^{[n]} \leq t^{[n+1]} \text{ and } \mathbf{i}^{[0]}, \ldots, \mathbf{i}^{[n-1]}, \mathbf{i}^{[n]}, \mathbf{i}^{[n+1]} \in \mathcal{X}_{reach}$

Markov property:

"given the present state, the future is independent of the past" "the most recent knowledge about the state is all we need" A continuous-time Markov chain (CTMC) $\{X(t):t\geq 0\}$ with state space \mathcal{X}_{reach} is described by

- its infinitesimal generator $\mathbf{Q} = \mathbf{R} \operatorname{diag}(\mathbf{R} \cdot \mathbf{1}) = \mathbf{R} \operatorname{diag}(\mathbf{h})^{-1} \in \mathbb{R}^{|\mathcal{X}_{reach}| \times |\mathcal{X}_{reach}|}$
- its initial probability vector

$$\pi(0) \in \mathbb{R}^{|\mathcal{X}_{reach}|}$$

where

ullet R is the transition rate matrix:

- $\mathbf{R}[\mathbf{i},\mathbf{j}]$ is the rate of going to state \mathbf{j} when in state \mathbf{i}
- h is the expected holding time vector:

$$\mathbf{h}[\mathbf{i}] = 1/\sum_{\mathbf{j} \in \mathcal{X}_{reach}} \mathbf{R}[\mathbf{i}, \mathbf{j}]$$

• $\pi(0)[\mathbf{i}] = \Pr \{ \text{chain is in state } \mathbf{i} \text{ at time } 0, \text{ i.e., initially} \}$

Transient probability vector $\boldsymbol{\pi}(t) \in \mathbb{R}^{|\mathcal{X}_{reach}|}$:

$$\pi(t)[\mathbf{i}] = \Pr\left\{X(t) = \mathbf{i}\right\}$$

• $\pi(t)$ is the solution of $\frac{d\pi(t)}{dt} = \pi(t) \cdot \mathbf{Q}$ with initial condition $\pi(0)$

Steady-state probability vector $oldsymbol{\pi} \in \mathbb{R}^{|\mathcal{X}_{reach}|}$:

$$\pi[\mathbf{i}] = \lim_{t \to \infty} \Pr\left\{X(t) = \mathbf{i}\right\}$$

ullet π is the solution of $\pi \cdot \mathbf{Q} = \mathbf{0}$ subject to $\sum_{\mathbf{i} \in \mathcal{X}_{reach}} \pi[\mathbf{i}] = 1$

Q must be ergodic

```
For ergodic CTMCs: solve \pi \cdot \mathbf{Q} = \mathbf{0} subject to \sum_{\mathbf{i} \in \mathcal{X}_{reach}} \pi[\mathbf{i}] = 1 rank(\mathbf{Q}) = |\mathcal{X}_{reach}| - 1
```

Direct methods are rarely applicable in practice
Iterative methods are preferable as they avoid fill-in

```
\begin{array}{ll} Jacobi(\text{in: }\boldsymbol{\pi}^{(old)},\mathbf{h},\mathbf{R};\text{ out: }\boldsymbol{\pi}^{(new)})\text{ is} \\ 1 & \text{repeat} \\ 2 & \text{for }\mathbf{j}=0\text{ to }|\mathcal{X}_{reach}|-1 \\ 3 & \boldsymbol{\pi}^{(new)}[\mathbf{j}]\leftarrow\mathbf{h}[\mathbf{j}]\cdot\sum_{0\leq\mathbf{i}<|\mathcal{X}_{reach}|,\mathbf{i}\neq\mathbf{j}}\boldsymbol{\pi}^{(old)}[\mathbf{i}]\cdot\mathbf{R}[\mathbf{i},\mathbf{j}]; \\ 4 & \text{"renormalize }\boldsymbol{\pi}^{(new)}\text{"}; \\ 5 & \boldsymbol{\pi}^{(old)}\leftarrow\boldsymbol{\pi}^{(new)}; \\ 6 & \text{until "converged"}; \\ 7 & \text{return }\boldsymbol{\pi}^{(new)}; \end{array}
```

```
\begin{aligned} & GaussSeidel(\text{in: }\mathbf{h},\mathbf{R};\text{ inout: }\boldsymbol{\pi})\text{ is} \\ & 1 & \text{repeat} \\ & 2 & \text{for }\mathbf{j} = 0\text{ to }|\mathcal{X}_{reach}| - 1 \\ & 3 & \boldsymbol{\pi}[\mathbf{j}] \leftarrow \mathbf{h}[\mathbf{j}] \cdot \sum_{0 \leq \mathbf{i} < |\mathcal{X}_{reach}|, \mathbf{i} \neq \mathbf{j}} \boldsymbol{\pi}[\mathbf{i}] \cdot \mathbf{R}[\mathbf{i},\mathbf{j}]; \\ & 4 & \text{"renormalize }\boldsymbol{\pi}"; \\ & 5 & \text{until "converged"}; \\ & 6 & \text{return }\boldsymbol{\pi}; \end{aligned}
```

Gauss-Seidel converges faster than Jacobi but requires strict by-column access to the entries of ${f R}$

For Markov analysis, we can generate \mathcal{X}_{reach} first, using $|\mathcal{X}_{init}|$ and $|\mathcal{T}:\widehat{\mathcal{X}}| o 2^{\widehat{\mathcal{X}}}$

Once we know \mathcal{X}_{reach} :

- ullet We can restrict ${\mathcal T}$ to ${\mathcal T}: {\mathcal X}_{reach} o 2^{{\mathcal X}_{reach}}$ (if needed for further logical analysis)
- ullet We can store $\ \widehat{\mathbf{R}}:\widehat{\mathcal{X}} imes\widehat{\mathcal{X}} o\mathbb{R}$ or $\ \mathbf{R}:\mathcal{X}_{reach} imes\mathcal{X}_{reach} o\mathbb{R}$
- ullet We can choose algorithms that use $\widehat{m{\pi}}:\widehat{\mathcal{X}} o\mathbb{R}$ or $m{\pi}:\mathcal{X}_{reach} o\mathbb{R}$

Strictly **explicit** methods: using actual ${f R}$ and ${f \pi}$ works best

Strictly **implicit** methods: decision diagrams usually don't work well to store $\hat{\pi}$ or π

Implicit methods have tradeoffs:

- ullet Storing π instead of $\widehat{\pi}$ is often unavoidable if we employ a full vector and $|\widehat{\mathcal{X}}|\gg |\mathcal{X}_{reach}|$
- ullet Symbolic storage of \widehat{R} is usually cheaper than that of R in terms of memory requirements
- ullet However, using $\overline{\mathbf{R}}$ in conjunction with π complicates indexing...
- ullet …forcing us to store $\psi:\widehat{\mathcal{X}} o \{0,1,\ldots,|\mathcal{X}_{reach}|-1\} \cup \{\mathsf{null}\}$, hence \mathcal{X}_{reach}

```
\mathsf{real}[n] \ VectorMatrixMult(\mathsf{real}[n] \ \mathbf{x}, \, \mathsf{mxd\_node} \ A, \, \mathsf{evmdd\_node} \ \psi) is
                                                                                                                         n = |\mathcal{X}_{reach}|
 local natural s:
                                                                                                                           state index in x
 local real [n] y;
 local sparse_real c;
  1 s \leftarrow 0:
  2 for each \mathbf{j} = (j_L, ..., j_1) \in \mathcal{X}_{reach} in lexicographic order do
                                                                                                                                  s = \psi(\mathbf{i})
        \mathbf{c} \leftarrow GetCol(L, A, \psi, j_L, ..., j_1);
                                                                                        build column \mathbf{j} of A using sparse storage
  4 \mathbf{y}[s] \leftarrow ElementWiseMult(\mathbf{x}, \mathbf{c});
                                                                                       x uses full storage, c uses sparse storage
  5 s \leftarrow s + 1:
  6 return y;
sparse_real GetCol(\text{level }k, \text{ mxd\_node }M, \text{ evmdd\_node }\phi, \text{ natural }j_k, ..., j_1) is
 local sparse_real c, d;
  1 if k = 0 then return [1];
                                                                                        a vector of size one, with its entry set to 1
  2 if Cache contains entry \langle GetColCODE, M, \phi, j_k, ..., j_1 : \mathbf{c} \rangle then return \mathbf{c};
  3 \mathbf{c} \leftarrow \mathbf{0}:
                                                                                                initialize the result to all zero entries
  4 for each i_k \in \mathcal{X}_k such that M[i_k, j_k].val \neq 0 and \phi[i_k].val \neq \infty do
           \mathbf{d} \leftarrow GetCol(k-1, M[i_k, j_k].child, \phi[i_k].child, j_{k-1}, ..., j_1);
          for each i such that \mathbf{d}[i] \neq 0 do
                \mathbf{c}[i + \phi[i_k].val] \leftarrow \mathbf{c}[i + \phi[i_k].val] + M[i_k, j_k].val \cdot \mathbf{d}[i];
  8 enter \langle GetColCODE, M, \phi, j_k, ..., j_1 : \mathbf{c} \rangle in Cache;
  9 return c:
```

SMART

- A package integrating logical and stochastic modeling formalisms into a single environment
- Multiple parametric models expressed in different formalisms can be combined in a study
- Easy addition of new formalisms and solution algorithms
- For the study of logical behavior:
 - explicit (BFS exploration) state-space generation [Tools97]
 - implicit (symbolic MDD Saturation) state-space generation [TACAS01,03]
 - o next-state function with Kronecker products or matrix diagrams [PNPM99, IPDS01]
 - Saturation-based CTL symbolic model checking [CAV03]
- For the study of stochastic and timing behavior
 - explicit (sparse storage) numerical solution of CTMCs and DTMCs
 - implicit (Kronecker) numerical solution of CTMCs [INFORMSJC00]
 - structural-based approximations of large CTMC models [SIGMETRICS00]
 - explicit numerical solution of semi-regenerative models [PNPM01]
 - simulation of arbitrary models
 - regenerative simulation with automatic detection of regeration points [PMCCS03]
 - structural caching to speed up simulation [PMCCS03]

Strongly-typed, computation-on-demand, language.

Five types of basic statements . . .

- **Declaration statements** declare functions over some arguments (including constants)
- Definition statements declare functions and specify how to compute their value
- Model statements define parametric models (declarations, specifications, measures)
- Expression statements print values (may have side-effects)
- Option statements modify the behavior of SMART (precision, verbosity level)

Two compound statements that can be arbitrarily nested

- for statements define arrays or repeatedly evaluate parametric expressions Useful for parametric studies
- converge statements specify numerical fixed-point iterations
 Useful for approximate performance or reliability studies
 Cannot appear within the declaration of a model

Basic predefined types are available in SMART

```
bool: the values true or false bool c := 3 - 2 > 0; int: integers (machine-dependent) int i := -12; bigint: arbitrary-size integers bigint i := 12345678901234567890 * 2; real: floating-point values (machine-dependent) real x := sqrt(2.3); string: character-array values string s := "Monday";
```

Composite types can be defined

```
aggregate: analogous to the Pascal "record" or C "struct" p:t:3 set: collection of homogeneous objects \{1...8,10,25,50\}
```

array: collection of homogeneous objects indexed by set elements

A type can be further modified by a nature describing stochastic characteristics

const: (the default) a non-stochastic quantity

ph: a random variable with discrete or continuous phase-type distribution

rand: a random variable with arbitrary distribution

proc: a random variable that depends on the state of a model at a given time

Predefined formalism types can be used to define discrete state models (logical or stochastic)

Objects in SMART are functions, possibly recursive, that can be overloaded

```
real pi := 3.14;  // a constant, i.e., a 0-argument function
bool close(real a, real b) := abs(a-b) < 0.00001;
int pow(int b, int e) := cond(e==1, b, b*pow(b,e-1));
real pow(real b, int e) := cond(e==1, b, b*pow(b,e-1));</pre>
```

```
pow(5,3);  // expression, not declaration, prints 125, int
pow(0.5,3); // expression, not declaration, prints 0.125, real
```

Arrays are declared using a for statement

An array's dimensionality is determined by the enclosing iterators

Indices along each dimension belong to a finite set

We can define arrays with real indices

```
for (int i in {1..5}, real r in {1..i..0.5}) {
  real res[i][r]:= MyModel(i,r).out1;
}
```

res is not a "rectangular" array of values:

- res[1][1.0]
- res[2][1.0], res[2][1.5], res[2][2.0]
- . . .
- res[5][1.0], res[5][1.5], ..., res[5][5.0]

SMART uses the #StateStorage option to choose between

- explicit techniques that store each state individually (AVL, SPLAY, HASHING)
 - no restrictions on the model
 - require time and memory at least linear in the number of reachable states
- implicit techniques that employ MDDs to symbolically store sets of states
 (MDD_LOCAL_PREGEN, MDD_SATURATION_PREGEN, MDD_SATURATION)
 - normally much more efficient
 - require a Kronecker-consistent partition of the model, automatically checked by SMART (global model behavior is the logical product of each submodel's local behavior)

A PN partition is specified by giving class indices (contiguous, positive integers) to places:

```
partition(2:p); partition(1:r); partition(1:t, 2:q, 1:s);
```

or by simply enumerating (without index information) the places in each class

```
partition(p:q, r:s:t);
```

```
spn phils(int N) := {
  for (int i in {0..N-1}) {
    place idle[i], waitL[i], waitR[i], hasL[i], hasR[i], fork[i];
    partition(1+div(i,2):idle[i]:waitL[i]:waitR[i]:hasL[i]:hasR[i]:fork[i]);
    init(idle[i]:1, fork[i]:1);
    trans Go[i],GetL[i],GetR[i],Stop[i];
  for (int i in \{0...N-1\}) {
    arcs(idle[i]:Go[i], Go[i]:waitL[i], Go[i]:waitR[i],
         waitL[i]:GetL[i], waitR[i]:GetR[i],
         fork[i]:GetL[i], fork[mod(i+1,N)]:GetR[i],
         GetL[i]:hasL[i], GetR[i]:hasR[i], hasL[i]:Stop[i], hasR[i]:Stop[i],
         Stop[i]:idle[i], Stop[i]:fork[i], Stop[i]:fork[mod(i+1, N)]);
  bigint n_s := num_states(false);
};
# StateStorage MDD SATURATION
print("The model has ", phils(read int("N")).n s, " states.\n");
```

Number of	States	MDD	Nodes	Mem.	CPU	
philosophers	$ \mathcal{S} $	Final	Peak	Final	Peak	(secs)
100	4.97×10 ⁶²	197	246	30,732	38,376	0.04
1,000	9.18×10^{626}	1,997	2,496	311,532	389,376	0.45
10,000	4.26×10^{6269}	19,997	24,496	3,119,532	3,821,376	314.13

An object of type stateset, a set of global model states, is stored as an MDD

All MDDs for a model instance are stored in one MDD forest with shared nodes for efficiency

• Atom builders:

- o nostates, returns the empty set
- o initialstate, returns the initial state or states of the model
- o reachable, returns the set of reachable states in the model
- \circ potential (e), returns the states of $\widehat{\mathcal{X}}$ satisfying condition e

• Set operators:

- \circ union (\mathcal{P},\mathcal{Q}), returns $\mathcal{P}\cup\mathcal{Q}$
- \circ intersection(\mathcal{P},\mathcal{Q}), returns $\mathcal{P}\cap\mathcal{Q}$
- \circ complement (\mathcal{P}), returns $\widehat{\mathcal{X}}\setminus\mathcal{P}$
- \circ difference(\mathcal{P},\mathcal{Q}), returns $\mathcal{P}\setminus\mathcal{Q}$
- \circ includes (\mathcal{P},\mathcal{Q}), returns true iff $\mathcal{P}\supseteq\mathcal{Q}$
- \circ eq(\mathcal{P},\mathcal{Q}), returns true iff $\mathcal{P}=\mathcal{Q}$

• Temporal logic operators (future and past CTL operators):

```
\circ EX(\mathcal{P}) and EXbar(\mathcal{P}), AX(\mathcal{P}) and AXbar(\mathcal{P})
```

$$\circ$$
 EF(\mathcal{P}) and EFbar(\mathcal{P}), AF(\mathcal{P}) and AFbar(\mathcal{P})

- \circ EG(\mathcal{P}) and EGbar(\mathcal{P}), AG(\mathcal{P}) and AGbar(\mathcal{P})
- \circ EU(\mathcal{P},\mathcal{Q}) and EUbar(\mathcal{P},\mathcal{Q}), AU(\mathcal{P},\mathcal{Q}) and AUbar(\mathcal{P},\mathcal{Q})

Execution trace output:

- \circ EFtrace (\mathcal{R},\mathcal{P}), prints a witness for EF (\mathcal{P}) starting from a state in \mathcal{R}
- \circ EGtrace (\mathcal{R},\mathcal{P}), prints a witness for EG (\mathcal{P}) starting from a state in \mathcal{R}
- \circ <code>EUtrace</code> ($\mathcal{R},\mathcal{P},\mathcal{Q}$) , prints a witness for <code>EU(\mathcal{P},\mathcal{Q})</code> starting from a state in \mathcal{R}
- \circ dist(\mathcal{P},\mathcal{Q}), returns the length of a shortest path from \mathcal{P} to \mathcal{Q}

Utility functions:

- \circ card ($\mathcal P$), returns the number of states in $\mathcal P$ (as a <code>bigint</code>)
- \circ printset (${\cal P}$) , prints the states in ${\cal P}$ (up to a given maximum)

SMART uses EV⁺MDDs for efficient witness generation...

... and Saturation for efficient CTL model checking

N subnets connected in a circular fashion

```
spn phils(int N) := {
  for (int i in {0..N-1}) {
    place Idle[i], WaitL[i], WaitR[i], HasL[i], HasR[i], Fork[i];
    partition(i+1:Idle[i]:WaitL[i]:WaitR[i]:HasL[i]:HasR[i]:Fork[i]);
    trans GoEat[i], GetL[i], GetR[i], Release[i];
    init(Idle[i]:1, Fork[i]:1);
  for (int i in {0..N-1}) {
    arcs(Idle[i]:GoEat[i], GoEat[i]:WaitL[i], GoEat[i]:WaitR[i],
      WaitL[i]:GetL[i], Fork[i]:GetL[i], GetL[i]:HasL[i],
      WaitR[i]:GetR[i], Fork[mod(i+1, N)]:GetR[i], GetR[i]:HasR[i],
     HasL[i]:Release[i], HasR[i]:Release[i], Release[i]:Idle[i],
     Release[i]:Fork[i], Release[i]:Fork[mod(i+1, N)]);
  bigint num := card(reachable);
  stateset g := EF(initialstate); bigint numg := card(g);
  stateset b := difference(reachable,g); bool out := printset(b);
};
# StateStorage MDD SATURATION
int N := read_int("number of philosophers"); print("N=",N,"\n");
print("Reachable states: ",phils(N).num,"\n");
print("Good states: ",phils(N).numg,"\n");
print("The bad states are:"); phils(N).out;
```

```
Reading input.
N=50
Reachable states: 22,291,846,172,619,859,445,381,409,012,498
Good states: 22,291,846,172,619,859,445,381,409,012,496
The bad states are:
State 0 : { WaitR[0]:1 HasL[0]:1 WaitR[1]:1 HasL[1]:1 WaitR[2]:1 HasL[2]:1 WaitR[2]:1 WaitR
```