
Compiling with Continuations, Continued

Andrew Kennedy
Microsoft Research Cambridge

akenn@microsoft.com

Abstract
We present a series of CPS-based intermediate languages suitable
for functional language compilation, arguing that they have practi-
cal benefits over direct-style languages based onA-normal form
(ANF) or monads. Inlining of functions demonstrates the bene-
fits most clearly: in ANF-based languages, inlining involves a re-
normalization step that rearranges let expressions and possibly in-
troduces a new ‘join point’ function, and in monadic languages,
commuting conversions must be applied; in contrast, inlining in our
CPS language is a simple substitution of variables for variables.

We present a contification transformation implemented by sim-
ple rewrites on the intermediate language. Exceptions are modelled
using so-called ‘double-barrelled’ CPS. Subtyping on exception
constructors then gives a very straightforward effect analysis for ex-
ceptions. We also show how a graph-based representation of CPS
terms can be implemented extremely efficiently, with linear-time
term simplification.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Compilers

General Terms Languages

Keywords Continuations, continuation passing style, monads, op-
timizing compilation, functional programming languages

1. Introduction
Compiling with continuations is out of fashion. So report the au-
thors of two classic papers on Continuation-Passing Style in recent
retrospectives:

“In 2002, then, CPS would appear to be a lesson aban-
doned.” (McKinley 2004; Shivers 1988)

“Yet, compiler writers abandoned CPS over the ten years
following our paper anyway.” (McKinley 2004; Flanagan
et al. 1993)

This paper argues for a reprieve for CPS: “Compiler writers,give
continuations a second chance.”

This conclusion is borne of practical experience. In the MLj
and SML.NET whole-program compilers for Standard ML, co-
implemented by the current author, we adopted a direct-style,
monadic intermediate language (Benton et al. 1998, 2004b).In
part, we were interested in effect-based program transformations,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’07, October 1–3, 2007, Freiburg, Germany.
Copyright c© 2007 ACM [This is the author’s version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution.]. . . $5.00

so monads were a natural choice for separating computationsfrom
values in both terms and types. But, given the history of CPS,prob-
ably there was also a feeling that “CPS is for call/cc”, something
that is not a feature of Standard ML.

Recently, the author has re-implemented all stages of the
SML.NET compiler pipeline to use a CPS-based intermediate lan-
guage. Such a change was not undertaken lightly, amounting to
roughly 25,000 lines of replaced or new code. There are many
benefits: the language is smaller and more uniform, simplifica-
tion of terms is more straightforward and extremely efficient, and
advanced optimizations such as contification are more easily ex-
pressed. We use CPS only because it is agood place to do opti-
mization; we are not interested in first-class control in the source
language (call/cc), or as a means of implementing other features
such as concurrency. Indeed, as SML.NET targets .NET IL, a call-
stack-based intermediate language with support for structured ex-
ception handling, the compilation process can be summarized as
“transform direct style (SML) into CPS; optimize CPS; transform
CPS back to direct style (.NET IL)”.

1.1 Some history

CPS. What’s special about CPS? As Appel (1992, p2) put it,
“Continuation-passing style is a program notation that makes ev-
ery aspect of control flow and data flow explicit”. An important
consequence is that fullβ-reduction (function inlining) is sound.
In contrast, for call-by-value languages based on the lambda cal-
culus, only the weakerβ-value rule is sound. For example,β-
reduction cannot be applied to(λx.0) (f y) becausef y may
have a side-effect or fail to terminate; but its CPS transform,
f y (λz.(λx.λk.k 0) z k) can be reduced without prejudice.
There are obvious drawbacks: the complexity of CPS terms; the
need to eliminateadministrativeredexes introduced by the CPS
transformation; and the cost of allocating closures for lambdas in-
troduced by the CPS transformation, unless some static anlysis is
first applied. In fact, these drawbacks are more apparent than real:
the complexity of CPS terms is really a benefit, assigning use-
ful names to all intermediate computations and control points; the
CPS transformation can be combined with administrative reduc-
tion; and by employing a syntactic separation of continuation- and
source-lambdas it is possible to generate good code directly from
CPS terms.

ANF. In their influential paper “The Essence of Compiling with
Continuations”, Flanagan et al. (1993) observed that “fully devel-
oped CPS compilers do not need to employ the CPS transformation
but can achieve the same results with a simple source-level transfor-
mation”. They proposed a direct-style intermediate language based
onA-normal forms, in which alet construct assigns names to every
intermediate computation. For example, the term above is repre-
sented aslet z = f y in (λx.0) z, to whichβ-reduction can be ap-
plied, obtaining the semantically equivalentlet z = f y in 0. This
style of language has become commonplace, not only in compilers,

but also to simplify the study of semantics for impure functional
languages (Pitts 2005,§7.4).

Monads. Very similar to ANF are so-calledmonadiclanguages
based on Moggi’s computational lambda calculus (Moggi 1991).
Monads also make sequencing of computations explicit through a
let x ⇐ M in N binding construct, the main difference from ANF
being thatlet constructs can themselves belet-bound. The sepa-
ration of computations from values also provides a place to hang
effectannotations (Wadler and Thiemann 1998) which compilers
can use to perform effect-based optimizing transformations (Ben-
ton et al. 1998).

1.2 The problem

A-Normal Form is put forward as a compiler intermediate language
with all the benefits of CPS (Flanagan et al. 1993,§6). Unfor-
tunately, the normal form is not preserved under useful compiler
transformations such as function inlining (β-reduction). Consider
the ANF term

M ≡ let x = (λy.let z = a b in c) d in e.

Now naiveβ-reduction produces

let x = (let z = a b in c) in e

which is not in normal form. The ‘fix’ is to define a more complex
notion ofβ-reduction that re-normalizeslet constructs (Sabry and
Wadler 1997), in this case producing the normal form

let z = a b in (let x = c in e).

In contrast, the CPS transform ofM , namely

(λy.λk.ab(λz.k c)) d (λx.k e),

simplifies by simpleβ-reduction to

a b (λz.(λx.k e) c).

As Sabry and Wadler explain in their study of the relationship be-
tween CPS and monadic languages, “the CPS language achieves
this normalization using the metaoperation of substitution which
traverses the CPS term to locatek and replace it by the contin-
uation thus effectively ‘pushing’ the continuation deep inside the
term” (Sabry and Wadler 1997,§ 8).

Monadic languages permitlet expressions to be nested, but
incorporate so-calledcommuting conversions(cc’s) such as

let y ⇐ (let x ⇐ M in N) in P
→ let x ⇐ M in (let y ⇐ N in P).

ANF can be seen as a monadic language in whichβ-reduction is
combined with cc-normalization ensuring that terms remainin cc-
normal form.

All of the above seems quite benign; except for two things:

1. Commuting conversions increase the complexity of simplifying
intermediate language terms. Reductions that strictly decrease
the size of the term can be applied exhaustively on CPS terms,
the number of reductions applied being linear in the size of the
term. The equivalent ANF or monadic reductions must neces-
sarily involve commuting conversions, which leads toO(n2)
reductions in the worst case. Moreover, as Appel and Jim (1997)
have shown, given a suitable term representation, shrinking re-
ductions on CPS can be applied in timeO(n); it is far from clear
how to amortize the cost of commuting conversions to obtain a
similar measure for ANF or monadic simplification.

2. Real programming languages include conditional expressions,
or, more generally, case analysis on datatype constructors.
These add considerable complexity to reductions on ANF or

monadic terms. Consider the term

let z = (λx.if x then a else b) c in M

This is in ANF, butβ-reduction produces

let z = (if c then a else b) in M,

which is not in normal form because it contains alet-bound
conditional expression. To reduce it to normal form, one must
either apply a standard commuting conversion that duplicates
the termM , producing

if c then let z = a in M else let z = b in M,

or introduce a ‘join-point’ function for termM , to give

let k z = M
in if c then let z = a in k z else let z = b in k z.

Observe thatk is simply a continuation! In our CPS language,
k is already available in the original term, being the (named)
continuation that is passed to the function to be inlined. The de-
sire to share subterms almost forces some kind of continuation
construct into the language. Better to start off with a language
that makes continuations explicit.

1.3 Contribution

Much of the above has been said before by others, though not al-
ways in the context of compilation; in this author’s opinion, the
most illuminating works are Appel (1992); Danvy and Filinski
(1992); Hatcliff and Danvy (1994); Sabry and Wadler (1997).One
contribution of this paper, then, is to draw together these observa-
tions in a form accessible to implementers of functional languages.

As is often the case, the devil is in the details, and so another
purpose of this paper is to advocate a certain style of CPS that
works very smoothly for compilation. Continuations arenamedand
mandatory(just as every intermediate value is named, so is every
control point), aresecond-class(they’re not general lambdas), can
representbasic blocksandloops, can beshared(typically, through
common continuations of branches), representexceptionalcontrol
flow (using double-barrelled CPS), and aretypeable(but can be
used in untyped form too). By refining the types of exception
values in the double-barrelled variant we get an effect system for
exceptions ‘for free’.

We make two additional contributions. Following Appel and
Jim (1997), we describe a graph-based representation of CPSterms
that supports the application of shrinkingβ-reductions in time lin-
ear in the size of the term. We improve on Appel and Jim’s selec-
tive use of back pointers for accessing variable binders, and em-
ploy the union-find data structure to give amortized near-constant-
time access to binders forall variable occurrences. This leads to ef-
ficient implementation ofη-reductions and other transformations.
We present benchmark results comparing our graph-CPS represen-
tation with (a) an earlier graphical representation of the original
monadic language used in our compiler, and (b) the original func-
tional representation of that language.

Lastly, we show how to transform functions into local continu-
ations using simple term rewriting rules. This approach to contif-
ication avoids the need for a global dominator analysis (Fluet and
Weeks 2001), and furthermore supports nested and first-class func-
tions.

2. Untyped CPS
We start by defining an untyped continuation-passing language
λU

CPS that supports non-recursive functions, the unit value, pairs,
and tagged values. Even for such a simple language, we can cover
many of the issues and demonstrate advantages over alternative,
direct-style languages.

Grammar
(terms) CTm 3 K, L ::= letval x = V in K

| let x = πi x in K
| letcont k x = K in L
| k x
| f k x
| case x of k1 8 k2

(values) CVal 3 V, W ::= () | (x, y) | ini x | λk x.K

Well-formed terms

(let)
Γ ` V ok Γ, x;∆ ` K ok

Γ;∆ ` letval x = V in K ok

(letc)
Γ, x;∆ ` K ok Γ;∆, k ` L ok

Γ;∆ ` letcont k x = K in L ok

(proj)
x ∈ Γ Γ, y;∆ ` K ok

Γ;∆ ` let y = πi x in K ok
i ∈ 1, 2

(appc)
k ∈ ∆, x ∈ Γ

Γ; ∆ ` k x ok
(app)

k ∈ ∆, f, x ∈ Γ

Γ;∆ ` f k x ok

(case)
x ∈ Γ, k1, k2 ∈ ∆

Γ;∆ ` case x of k1 8 k2 ok

Well-formed values

(pair)
x, y ∈ Γ

Γ ` (x, y) ok
(tag)

x ∈ Γ

Γ ` ini x ok
i ∈ 1, 2

(unit)
Γ ` () ok

(abs)
Γ, x; k ` K ok

Γ ` λk x.K ok

Well-formed programs

(prog)
{}; halt ` K ok

Figure 1. Syntax and scoping rules for untyped languageλU
CPS

In Section 3, we add recursive functions, types, polymorphism,
exceptions, and effect annotations. At that point, the language re-
sembles a practical CPS-based intermediate language of thesort
that could form the core of a compiler for SML, Caml, or Scheme.

Figure 1 presents the syntax of the untyped language. Here or-
dinary variables are ranged over byx, y, f , andg, and continuation
variables are ranged over byk andj. Indicesi range over 1,2. We
specify scoping of variables using well-formedness rules for values
and terms. HereΓ ` V ok means that valueV is well-formed in
the scope of a list of ordinary variablesΓ, andΓ;∆ ` K ok means
that termK is well-formed in the scope of a list of continuation
variables∆ and a list of ordinary variablesΓ. Complete programs
are well-formed in the context of a distinguished top-levelcontin-
uation halt. (For the typed variant of our language there will be
typing rules withΓ and∆ generalized to typing contexts.)

We describe the constructs of the language in turn.

• The expressionletval x = V in K binds a valueV to a
variable x in the termK. This is theonly way a valueV
can be used in a term; arguments to functions, case scrutinees,
components of pairs, and so on, must all be simple variables.
Even the unit value() must be bound to a variable before being
used (in the full language, the same holds even for constants
such as42). This means that there is no need for a general
notion of substitution: we only substitute variables for variables.
Notice also that there is no notion of redundant binding suchas
let x ⇐ y in K.

• The expressionlet x = πi y in K projects thei’th component
of a pairy and binds it to variablex in K.

• The expressionletcont k x = K in L introduces alocal
continuationk whose single argument isx and whose body
is K, to be used in termL. It corresponds to a labelled block in
traditional lower-level representations. In Section 3 we extend
local continuations with support for recursion, and so represent
loops directly.

• A continuation applicationk x corresponds to a jump (ifk is a
local continuation) or a return (ifk is the return continuation
of a function value). As with values, continuations must be
named: function application expressions and case constructs
do not have subterms, but instead mention continuations by
name. We need only ever substitute continuation variables for
continuation variables.

Local continuations can be applied more than once, as in

letcont j y = K in
letcont k1 x1 = (letval x = V1 in j x) in
letcont k2 x2 = (letval x = V2 in j x) in

case z of k1 8 k2

.

Herej is the common continuation, or ‘join point’ for branches
k1 andk2.

• The expressionf k x is the application of a functionf to an
argumentx and a continuationk whose parameter receives the
result of applying the function. Ifk is the return continuation
for the nearest enclosingλ, then the application is a ‘tail call’.
For example, consider the function value

λk x.(letcont j y = g k y in f j x).

Hereg is in tail position, andf is not. In effect, we are defining
λx.g(f(x)).

• The constructcase x of k1 8 k2 expectsx to be bound to
a tagged valueini y and then dispatches to the appropriate
continuationki, passingy as argument.

• Values include the unit value(), pairs(x, y) and tagged values
ini x. Function valuesλk x.K include a return continuationk
and argumentx. Note carefully the well-formedness rule (abs):
its continuation context includes only the return continuation k,
thus enforcing locality of continuations introduced byletcont.

The semantics is given by environment-style evaluation rules,
presented in Figure 2. As is conventional, we define a syntax of
run-time values, ranged over byr, supporting the unit value, pairs,
constructor applications, and closures. Environments mapvariables
to run-time values, and continuation variables to continuation val-
ues. Continuation values are represented in a closure form,which
gives the impression that they are first-class. An alternative would
be to model stack frames more directly and thereby demonstrate
that continuations are in fact just code pointers. For the purpose
of simply defining the meaning of programs we prefer the closure-
based semantics.

The functionJ·K ρ interprets a value expression in an environ-
mentρ. Terms are evaluated in an environmentρ; the only obser-
vations that we can make of programs are termination,i.e. the ap-
plication of the top-level continuationhalt to a unit value.

2.1 CPS transformation

To illustrate how the CPS-based language can be used for func-
tional language compilation, consider a fragment of Standard ML

Runtime values: r ::= () | (r1, r2) | ini r | 〈ρ, λk x.K〉
Continuation values: c ::= 〈ρ, λx.K〉
Environments: ρ ::= • | ρ, x 7→ r | ρ, k 7→ c

Interpretation of values:

J()K ρ = () J(x, y)K ρ = (ρ(x), ρ(y))
Jini V K ρ = ini (ρ(x)) Jλk x.KK ρ = 〈ρ, λk x.K〉

Evaluation Rules:

(e-let)
ρ, x 7→ JV K ρ ` K ⇓

ρ ` letval x = V in K ⇓

(e-letc)
ρ, k 7→ 〈ρ, λx.K〉 ` L ⇓

ρ ` letcont k x = K in L ⇓

(e-proj)
ρ, y 7→ ri ` K ⇓

ρ ` let y = πi x in K ⇓
ρ(x) = (r1, r2)

(e-appc)
ρ′, y 7→ ρ(x) ` K ⇓

ρ ` k x ⇓
ρ(k) = 〈ρ′, λy.K〉

(e-case)
ρ′, y 7→ r ` K ⇓

ρ ` case x of k1 8 k2 ⇓
ρ(x) = ini r
ρ(ki) = 〈ρ′, λy.K〉

(e-app)
ρ′, j 7→ ρ(k), y 7→ ρ(x) ` K ⇓

ρ ` f k x ⇓
ρ(f) = 〈ρ′, λj y.K〉

(e-halt)
ρ ` halt x ⇓

Figure 2. Evaluation rules forλU
CPS

J·K : ML → (Var → CTm) → CTm
JxK κ = κ(x)

J()K κ = letval x = () in κ(x)
Je1 e2K κ = Je1K (�z1.

Je2K (�z2.
letcont k x = κ(x) in z1 k z2))

J(e1,e2)K κ = Je1K (�z1.
Je2K (�z2.

letval x = (z1, z2) in κ(x)))
Jini eK κ = JeK (�z.letval x = ini z in κ(x))
J#i eK κ = JeK (�z.let x = πi z in κ(x))

Jfn x => eK κ = letval f = λk x.JeK (�z.k z) in κ(f)
Jlet val x = e1 in e2 endK κ =

letcont j x = Je2K κ in Je1K (�z.j z)

Jcase e of in1 x1 => e1| in2 x2 => e2K κ =
JeK (�z.letcont k1 x1 = Je1K κ in

letcont k2 x2 = Je2K κ in
case z of k1 8 k2)

Figure 3. Naive CPS transformation of toy ML intoλU
CPS

whose expressions (ranged over bye) have the following syntax:

ML 3 e ::= x | e e′ | fn x => e | (e,e′) | #i e | ()
| ini e | let val x = e in e′ end
| case e of in1 x1 => e1| in2 x2 => e2

We assume a datatype declared by

datatype (’a,’b) sum = in1 of ’a | in2 of ’b

Expressions in this language can be translated into untypedCPS
terms using the function shown in Figure 3. This is an adapta-

tion of the standard higher-order one-pass call-by-value transfor-
mation (Danvy and Filinski 1992). An alternative, first-order, trans-
formation is described by Danvy and Nielsen (2003).

The transformation works by taking a translation-time func-
tion κ as argument, representing the ‘context’ into which the trans-
lation of the source term is embedded. For our language, the con-
text’s argument is a variable, as all intermediate results are named.
Note some conventions used in Figure 3: translation-time lambda
abstraction is written using� and translation-time application is
writtenκ(. . .), to distinguish fromλ and juxtaposition used to de-
note lambda abstraction and application in the target language. Also
note that any object variables present in the target terms but not in
the source are assumed fresh with respect to all other bound vari-
ables.

The translation isone-passin the sense that it introduces no
‘administrative reductions’ (here,β-redexes for continuations) that
must be removed in a separate phase,exceptfor let constructs (to
avoid these also would require analysis of thelet expression; we
prefer to apply simplifying rewrites on the output of the transfor-
mation). However, the translation is naive in two ways. First, it in-
troducesη-redexes for continuations when translating tail function
applications. For example,Jfn x => f (x,y)K κ produces

letval g = λk x.(letval p = (x, y) in letcont j z = k z in f j p)

in κ(g)

whoseη-redex (highlighted) can be eliminated to obtain the more
compact

letval g = (λk x.letval p = (x, y) in f k p) in κ(g).

Second, the translation ofcase duplicates the context; consider,
for example,f(case x of in1 x1 => e1| in2 x2 => e2) whose
translation involves two calls tof .

The more sophisticated translation scheme of Figure 4 avoids
both these problems; again, this is based on Danvy and Filinski
(1992). The translation functionJ·K is as before, except (a) it in-
troduces ajoin point continuation to avoid context duplication for
case, and (b) for terms in tail position it uses an alternative trans-
lation functionL·M that takes an explicit continuation variable as
argument instead of a context.

2.2 Rewrites

After translating from source language to intermediate language,
most functional language compilers perform a number of optimiza-
tion phases that are implemented as transformations on intermedi-
ate language terms. Some phases are specific (for example, arity-
raising of functions, or hoisting expressions out of loops)but usu-
ally there is some set of general rewrites based on standard re-
ductions in the lambda-calculus. Figure 5 presents some general
rewrites for our CPS-based language. The rewrites look morecom-
plicated than the equivalent reductions in the lambda-calculus be-
cause the naming of intermediate values forces introduction and
elimination forms apart. For example,β-reduction on pairs, which
in the lambda calculus is simplyπi (e1, e2) → ei, has to support
an intervening contextC. In practice, the rewrites are not hard to im-
plement. In functional style, value bindings (e.g. pairs) are stored in
an environment which is accessed at the reduction site (e.g.a pro-
jection). In imperative style, bindings are accessed directly through
pointers, as we shall see in Section 4.1.

The payoff from this style of rewrite is theselectiveuse ofβ
rules. For example, in a lambda-calculus extended with alet con-
struct, one might perform the reductionlet p = (x, y) in M →
M [(x, y)/p] but this would be undesirable unless every substi-
tution of (x, y) for p in M produced a redex. In our language,
letval p = (x, y) in . . . k p . . . let z = π1 p in K reduces to

J·K : ML → (Var → CTm) → CTm

Jfn x => eK κ = letval f = λk x. LeM k in κ(f)

Jlet val x = e1 in e2 endK κ = letcont j x = Je2K κ in Le1M j

Jcase e of in1 x1 => e1| in2 x2 => e2K κ

= JeK (�z. letcont j x = κ(x) in letcont k1 x1 = Le1M j in letcont k2 x2 = Le2M j in case z of k1 8 k2)

L·M : ML → CVar → CTm
LxM k = k x

Le1 e2M k = Je1K (�x1.Je2K (�x2.x1 k x2))
Lfn x => eM k = letval f = λj x.LeM j in k f
L(e1,e2)M k = Je1K (�x1.Je2K (�x2.letval x = (x1, x2) in k x))

Lini eM k = JeK (�z.letval x = ini z in k x)
L()M k = letval x = () in k x

L#i eM k = JeK (�z.let x ⇐ πi z in k x)
Llet val x = e1 in e2 endM k = letcont j x = Le2M k in Le1M j

Lcase e of in1 x1 => e1| in2 x2 => e2M k = JeK (�z.letcont k1 x1 = Le1M k in letcont k2 x2 = Le2M k in case z of k1 8 k2)

Figure 4. Tail CPS transformation (changes and additions only shown)

C ::= [] | letval x = V in C | let x = πi y in C |
letval x = λk x.C in K | letcont k x = C in K |
letcont k x = K in C

DEAD-CONT letcont k x = L in K → L (k not free inK)
DEAD-VAL letval x = V in K → K (x not free inK)

β-CONT letcont k x = K in C[k y]
→ letcont k x = K in C[K[y/x]]

β-FUN letval f = λk x.K in C[f j y]
→ letval f = λk x.K in C[K[y/x, j/k]]

β-CASE letval x = ini y in C[case x of k1 8 k2]
→ letval x = ini y in C[ki y]

β-PAIR letval x = (x1, x2) in C[let y = πi x in K]
→ letval x = (x1, x2) in C[K[xi/y]]

β-CONT-L IN letcont k x = K in C[k y]
→ C[K[y/x]] (if k not free inC)

β-FUN-L IN letval f = λk x.K in C[f j y]
→ C[K[y/x, j/k]] (f 6= y, f not free inC)

η-CONT letcont k x = j x in K → K[j/k]
η-FUN letval f = λk x.g k x in K → K[g/f]
η-PAIR let xi = πi x in C[let xj = πj x

in C′[letval y = (x1, x2) in K]]
→ let xi = πi x in C[let xj = πj x

in C′[K[x/y]]] ({i, j} = {1, 2})

η-CASE letcont ki x1 = (letval y1 = ini x1 in k y1) in
C[letcont kj x2 = (letval y2 = inj x2 in k y2) in
C′[case x of k1 8 k2]]
→ letcont ki x1 = (letval y1 = ini x1 in k y1) in
C[letcont kj x2 = (letval y2 = inj x2 in k y2) in
C′[k x]] ({i, j} = {1, 2})

Figure 5. General rewrites forλU
CPS

letval p = (x, y) in . . . k p . . . K[x/z] which applies theβ-PAIR
rule toπ1 p but preserves other occurrences ofp.

It is easy to show that all rewrites preserve well-formedness of
terms. In particular, the scoping of local continuations isrespected.

The β-FUN and β-CONT reductions areinlining transforma-
tions for functions and continuations. The remainder of thereduc-
tions we callshrinking reductions, as they strictly decrease the size
of terms (Appel and Jim 1997). Theβ-CONT-L IN andβ-FUN-L IN
reductions are special cases ofβ-reduction forlinear uses of a vari-
able, in effect combining DEAD- andβ- reductions. Shrinking re-
ductions can be applied exhaustively on a term, and are typically
used to ‘clean up’ a term after some special-purpose global trans-
formation such as arity-raising or monomorphisation. Clearly the
number of such reductions will be linear in the size of the term;
moreover, using the representation of terms described in Section 4
it is possible to perform such reductions inlinear time.

2.3 Comparison with a monadic language

The original implementations of the MLj and SML.NET compil-
ers used monadic languages inspired by Moggi’s computational
lambda calculus (Moggi 1991). Figure 6 presents syntax for a
monadic languageλmon and selected reduction rules.

The defining feature of monadic languages is that sequencing
of computations is made explicit through thelet construct; val-
ues are converted into trivial computations using theval construct.
Monadic languages share with CPS languages the property that fa-
miliar β-reduction on functions is sound, as evaluation of the func-
tion argument is made explicit throughlet. But there are drawbacks,
as we outlined in the Introduction. (An orthogonal issue – asfor
CPS based languages – is whether values can appear anywhere ex-
cept insideval. In λmon, for ease of presentation, we permit values
to be embedded in applications, pairs, and so on, whereas forλU

CPS
we insist that they are named. The difference shows up in the re-
duction rules, which inλU

CPS make use of contexts. It should be
noted that the drawbacks of monadic languages that we are about
to discuss are unaffected by this choice.)

Problem 1: need for let/let commuting conversion. The basic
reductions listed in Figure 5 have corresponding reductions in CPS.
The let construct itself hasβ and η rules which correspond to
β-CONT and η-CONT for λU

CPS (consider the CPS transforms of
the terms). In contrast to CPS-based languages, though, monadic

Grammar
MTm 3 M, N ::= val v | let x ⇐ M in N | v w | πi v

| case v of in1 x1.M1 8 in2 x2.M2

MVal 3 v, w ::= x | λx.M | (v, w) | ini v | ()

Reductions
β-LET let x ⇐ val v in M → M [v/x]
η-LET let x ⇐ M in val x → M
CC-LET let x2 ⇐ (let x1 ⇐ M1 in M2) in N

→ let x1 ⇐ M1 in (let x2 ⇐ M2 in N)
CC-CASE let x ⇐ (case v of in1 x1.M1 8 in2 x2.M2) in N

→ let f ⇐ val λx.N
in case v of in1 x1.let x ⇐ M1 in f x

8 in2 x2.let x ⇐ M2 in f x

β-PAIR πi (v1, v2) → vi

β-FUN (λx.M) v → M [v/x]
β-CASE case ini v of in1 x1.M1 8 in2 x2.M2 → Mi[v/xi]

Figure 6. Syntax and selected rewrites for monadic languageλmon

languages include a so-calledcommuting conversion, expressing
associativity forlet:

CC-LET let x2 ⇐ (let x1 ⇐ M1 in M2) in N
→ let x1 ⇐ M1 in (let x2 ⇐ M2 in N)

This reduction plays a vital role in exposing further reductions.
Consider the source expression

#1 ((fn x => (g x,x)) y)

Its translation intoλmon is

let z2 ⇐ (λx.let z1 ⇐ g x in val (z1, x)) y in π1 z2.

Now suppose that we applyβ-FUN, to get

let z2 ⇐ (let z1 ⇐ g y in val (z1, y)) in π1 z2.

In order to make any further progress, we must use CC-LET to get

let z1 ⇐ g y in let z2 ⇐ val (z1, y) in π1 z2.

Now we can applyβ-LET andβ-PAIR to get let z1 ⇐ g y in z1

which further reduces byη-LET to g y.

Solution 1: Use CPS. Now take the original source expression
and translate it into our CPS-based language, withk representing
the enclosing continuation.

let f = λj1 x.
(letcont j2 z1 = (letval z2 = (z1, x) in j1 z2) in g j2 x)

in letcont j3 z3 = (let z4 = π1 z3 in k z4)
in f j3 y

Applying β-FUN-L IN gives the following, with substitutions high-
lighted:

letcont j3 z3 = (let z4 = π1 z3 in k z4)

in letcont j2 z1 = (letval z2 = (z1, y) in j3 z2) in g j2 y

and byβ-CONT-L IN on j3 we get

letcont j2 z1 =
(letval z2 = (z1, y) in let z4 = π1 z2 in k z4)

in g j2 y.

Finally, use ofβ-PAIR and DEAD-VAL producesletcont j2 z1 =
k z1 in g j2 y which reduces byη-CONT to g k y. All reductions
were simple uses ofβ andη rules, without the need for the addi-
tional ‘administrative’ reduction CC-LET.

Problem 2: quadratic blowup. The CC-LET reduction seems in-
nocent enough. But observe that it isnot a shrinking reduction – so
it’s not immediately clear whether reduction will terminate. Fortu-
nately, the combination of CC-LET and shrinkingβ/η-reductions
of Figure 6doesterminate (Lindley 2005), and moreover there is
a formal correspondence between the reductions of the monadic
language and CPS (Hatcliff and Danvy 1994). Unfortunately,the
order in which conversions are applied is critical to the efficiency
of simplification by reduction. Consider the following termin λmon:

let fn ⇐ val (λxn.let yn ⇐ g xn in g yn) in
let fn−1 ⇐ val (λxn−1.let yn−1 ⇐ fn xn−1 in g yn−1) in

...
let f1 ⇐ val (λx1.let y1 ⇐ f2 x1 in g y1) inf1 a

If (linear) β-FUN is applied to all functions in this term, followed
by a sequence of CC-LET reductions, then no redexes remain
after O(n) reductions. If, however, the commuting conversions
are interleaved withβ-FUN, thenO(n2) reductions are required.
(There are other examples where it is better to apply commuting
conversions first.) Although this is a pathological example, the
‘simplifier’ was a major bottleneck in the MLj and SML.NET
compilers (Benton et al. 2004a), in part (we believe) because of
the need to perform commuting conversions.

Solution 2: Use CPS. It is interesting to note that monadic terms
can be translated into CPS in linear-time; shrinking reductions can
be applied exhaustively there in linear-time (see Section 4); and the
term can be translated back into CPS in linear-time. Therefore the
quadratic blowup we saw above is not fundamental, and there may
be some means of amortizing the cost of commuting conversions
so that exhaustive reductions can be peformed in linear time. Nev-
ertheless, it is surely better to have the term in CPS from thestart,
and enjoy the benefit of linear-time simplification.

Problem 3: need for let/case commuting conversion. Matters
become more complicated with conditionals or case constructs.
Consider the source expression

g′
(g((fn x => case x of in1 x1 => (x1,x3)| in2 x2 => g′′ x) y))

Its translation intoλmon is

let z ⇐ (λx.case x of in1 x1.val (x1, x3) 8 in2 x2.g
′′ x) y in

let z′ ⇐ g z in g′ z′.

This reduces byβ-FUN to

let z ⇐ (case y of in1 x1.val (x1, x3) 8 in2 x2.g
′′ y) in

let z′ ⇐ g z in g′ z′.

At this point, we want to ‘float’ thecase expression out of thelet.
The proof-theoretic commuting conversion that expresses this
rewrite is

let x ⇐ (case v of in1 x1.M1 8 in2 x2.M2) in N
→

case v of in1 x1.(let x ⇐ M1 in N) 8 in2 x2.(let x ⇐ M2 in N)

This can have the effect of exposing more redexes; unfortunately,
it also duplicatesN which is not so desirable. So instead, compil-
ers typically adopt a variation of this commuting conversion that
sharesM between the branches, creating a so-calledjoin point
function:

CC-CASE let x ⇐ (case v of in1 x1.M1 8 in2 x2.M2) in N
→ let f ⇐ val λx.N

in case v of in1 x1.let x ⇐ M1 in f x
8 in2 x2.let x ⇐ M2 in f x

Applying this to our example produces the result

let f ⇐ val (λz.let z′ ⇐ g z in g′ z′) in
case x of

in1 x1.(let z ⇐ val (x1, x3) in f z)
8 in1 x2.(let z ⇐ g′′ x in f z).

As observed earlier, join points such asf are just continuations.

Solution 3: Use CPS. Consider the CPS transformation of the
original source expression, withk being the enclosing return con-
tinuation.

letcont j′ z′ = g′ k z′ in
letcont j z = g j′ z in
letval f = λj′′ x.

(letcont k1 x1 = (letval z′′ = (x1, x3) in j′′ z′′) in
letcont k2 x2 = g′′ j′′ x in

case x of k1 8 k2)
in f j y

Applying β-FUN-L IN immediately produces the following term,
with substitutions highlighted:

letcont j′ z′ = g′ k z′ in
letcont j z = g j′ z in

letcont k1 x1 = (letval z′′ = (x1, x3) in j z′′) in

letcont k2 x2 = g′′ j y in

case y of k1 8 k2

There is no need to apply anything analogous to CC-CASE, or to
introduce a join point: the original term already had one, namely j,
which was substituted for the return continuationj′′ of the function.

The absence of explicit join points in monadic languages is
an annoyance in itself. By representing join points as ordinary
functions, it is necessary to perform a separate static analysis to
determine that such functions can be compiled efficiently asbasic
blocks.

Explicitly named local continuations in CPS have the advantage
that locality is immediate from the syntax, and preserved under
transformation; furthermore traditionalintra-proceduralcompiler
optimizations (such as those performed on SSA representations)
can be adapted to operate on functions in CPS form.

2.4 Comparison with ANF

Flanagan et al. (1993) propose an alternative to CPS which they call
A-Normal Form, or ANF for short. This is defined as the image
of the composition of the CPS, administrative normalization and
inverse CPS transformations.

CS •
CPS //

A

��

•

β-normalization

��
A(CS) • •

un-CPS
oo

The source languageCS is Core Scheme (corresponding to our
fragment of ML), and their CPS transformation composed withβ-
normalization is equivalent to our one-pass transformation J·K of
Figure 4.

The languageA(CS) corresponds precisely to CC-LET/CC-
CASE normal forms inλmon. We can express these normal forms
by a grammar:

ATm 3 A, B ::= R | let x ⇐ R in A
| case v of in1 x1.A1 8 in2 x2.A2

ACmp 3 R ::= v w | πi v | v
AVal 3 v, w ::= x | λx.A | (v, w) | ini v | ()

Instead of going via a CPS language, the transformation intoANF
can be performed in one pass, as suggested by the dotted lineA in
the diagram above.1 A similar transformation has been studied by
Danvy (2003).

As Flanagan et al. (1993) suggest, the “back end of anA-normal
form compiler can employ the same code generation techniques
that a CPS compiler uses”. However, as we mentioned in the In-
troduction, it is not so apparent whether ANF is ideally suited to
optimization. After all, it is not even closed under the usual rule
for β reduction(λx.A) v → A[v/x]. As Sabry and Wadler
(1997) later explained, it is necessary to combine substitution with
re-normalization to get a sound rule forβ-reduction: essentially the
repeated application of CC-LET. They do not consider conditionals
or case constructs, but presumably to maintain terms in ANF in it
is necessary to normalize with respect to CC-LET and CC-CASE
following function inlining.

It is clear, then, that ANF suffers all the same problems thataf-
fect monadic languages: the need for (non-shrinking) commuting
conversions, quadratic blowup of ‘linear’ reductions, andthe ab-
sence of explicit join points.

3. Typed CPS with exceptions
We now add types and other features to the language of Section2.
In the untyped world, we can model recursion using a call-by-value
fixed-point combinator. For a typed language, we must add ex-
plicit support for recursive functions – which, in any case,is more
practical. Moreover, we would like to express recursivecontinu-
ations too, in order to represent loops. Finally, to support excep-
tions, functions in the extended language taketwo continuations:
an exception-handler continuation, and a return continuation. This
is the so-calleddouble-barrelledcontinuation-passing style (Thi-
elecke 2002).

Figure 7 presents the syntax and typing rules for the extended
languageλT

CPS. Types of values are ranged over byτ , σ and include
unit, a type of exceptions, products, sums and functions. (To save
space, we omit constructs for manipulating exception values.) Con-
tinuation types have the form¬τ which is interpreted as ‘continua-
tions accepting values of typeτ ’. Note that for simplicity of presen-
tation we do not annotate terms with types; it is an easy exercise to
add sufficient annotations to determine unique typing derivations.
Typing judgments for values have the formΓ ` V : τ in which Γ
maps variables to value types. Judgments for terms have the form
Γ;∆ ` K ok in which the additional context∆ maps continua-
tion variables to continuation types. Complete programs are typed
in the context of a single top-level continuationhalt acceptingunit
values.

We consider each construct in turn.

• The letval construct is as before, with the obvious typing rule
and associated value typing rules. Likewise for projections.

• The letcont construct is generalized to support mutually recur-
sive continuations. These represent loops directly. Localcon-
tinuations are also used for exception handlers.

• The letfun construct introduces a set of mutually recursive
functions; each function takes a return continuationk, an excep-
tion handler continuationh, and an argumentx. As a language
construct, there is nothing special about the handler continua-
tion except that its type is fixed to be¬exn, and so a function
type τ → σ is constructed from the argument typeτ and the
type¬σ of the return continuation. What really distinguishes

1 Though, curiously, the ‘A-normalization algorithm’ in (Flanagan et al.
1993, Fig. 9) does not actually normalize terms, as it leaveslet-bound
conditionals alone.

Grammar
(value types) τ, σ ::= unit | exn | τ × σ | τ + σ | τ → σ

(values) CVal 3 V, W ::= () | (x, y) | ini x
(terms) CTm 3 K, L ::= letval x = V in K | let x = πi x in K | letcont C in K | letfun F in K

| k x | f k h x | case x of k1 8 k2

(function def.) FunDef 3 F ::= f k h x = K
(cont. def.) ContDef 3 C ::= k x = K

Variables

(var)
x:τ ∈ Γ

Γ ` x : τ
(contvar)

k:¬τ ∈ ∆

∆ ` k : ¬τ

Well-typed terms

(letc)
{Γ, xi:τi;∆, k1:¬τ1, . . . , kn:¬τn ` Ki ok}16i6n Γ;∆, k1:¬τ1, . . . , kn:¬τn ` L ok

Γ;∆ ` letcont k1 x1 = K1, . . . , kn xn = Kn in L ok

(letrec)
{Γ, xi:τi, f1:τ1 → σ1, . . . , fn:τn → σn; ki:¬σi, hi:¬exn ` Ki ok}16i6n Γ, f1:τ1 → σ1, . . . , fn:τn → σn;∆ ` L ok

Γ;∆ ` letfun f1 k1 h1 x1 = K1, . . . , fn kn hn xn = Kn in L ok

(letv)
Γ ` V : τ Γ, x:τ ;∆ ` K ok

Γ;∆ ` letval x = V in K ok
(appc)

Γ ` x : τ ∆ ` k : ¬τ

Γ;∆ ` k x ok
(proj)

Γ ` x : τ1 × τ2 Γ, y:τi;∆ ` K ok

Γ; ∆ ` let y ⇐ πi x in K ok
i ∈ 1, 2

(case)
Γ ` x : τ1 + τ2 ∆ ` k1 : ¬τ1 ∆ ` k2 : ¬τ2

Γ;∆ ` case x of k1 8 k2 ok
(app)

Γ ` f : τ → σ ∆ ` k : ¬σ ∆ ` h : ¬exn Γ ` x : τ

Γ;∆ ` f k h x ok

Well-typed values Well-typed programs

(pair)
Γ ` x : τ Γ ` y : σ

Γ ` (x, y) : τ × σ
(tag)

Γ ` x : τi

Γ ` ini x : τ1 + τ2

i ∈ 1, 2 (unit)
Γ ` () : unit

(prog)
{}; halt:¬unit ` K ok

Figure 7. Syntax and typing rules for typed languageλT
CPS

exceptions is (a) their role in the translation from source lan-
guage into CPS, and (b) typical strategies for generating code.

• Continuation applicationk x is as before. Now there are four
possibilities fork: it may be a recursive or non-recursive occur-
rence of aletcont-bound continuation, compiled as a jump, it
may be the return continuation, or it may be a handler continu-
ation, which is interpreted asraisingan exception.

• Function applicationf k h x includes a handler continua-
tion argumenth. If k is the return continuation for the near-
est enclosing function, andh is its handler continuation, then
the application is a tail call. Ifk is a local continuation andh
is the handler continuation for the enclosing function, then
the application is a non-tail call without an explicit excep-
tion handler – so exceptions are propagated to the context.
Otherwise,h is an explicit handler for exceptions raised by
the function. (Other combinations are possible; for example in
letfun f k h x = C[g h h y] in K the function application is
essentiallyraise (g y) in a tail position.)

• Branching usingcase is as before.

3.1 CPS transformation

We can extend the fragment of ML described in Section 2.1 with
exceptions and recursive functions:

ML 3 e ::= . . . | raise e | e1 handle x => e2

| let fun d in e end
MLDef 3 d ::= f x = e

The revised CPS transformation is shown in Figure 8 (see (Kim
et al. 1998) for theselectiveuse of a double-barrelled CPS trans-
formation). BothJ·K andL·M take an additional argument: a contin-
uationh for the exception handler in scope. Thenraise e is trans-
lated as an application ofh. Fore1 handle x => e2 a local handler

continuationh′ is declared whose body is the translation ofe2; this
is then used as the handler passed to the translation function for e1.

3.2 Rewrites

The rewrites of Figure 5 can be adapted easily toλT
CPS, and extended

with transformations such as ‘loop unrolling’:

β-REC letfun f1 k1 h1 x1 = C[fi k h x]
f2 k2 h2 x2 = K2

. . . fn kn hn xn = Kn

in K
→ letfun f1 k1 h1 x1 = C[Ki[k/ki, h/hi, x/xi]]

f2 k2 h2 x2 = K2

. . . fn kn hn xn = Kn

in K
β-RECCONT letcont k1 x1 = C[ki x]

k2 x2 = K2

. . . kn xn = Kn

in K
→ letcont k1 x1 = C[Ki[x/xi]]

k2 x2 = K2

. . . kn xn = Kn

in K

There are no special rewrites for exception handling,e.g. corre-
sponding to(raise M) handle x.N → let x ⇐ M in N . Stan-
dardβ-reduction on functions and continuations gives us this for
free. For example, the CPS transform of

let fun f x = raise x in f y handle z => (z,z) end

is

letfun f k′ h′ x = h′ x
in letcont j z = (letval z′ = (z, z) in k z′) in f k j y

which reduces byβ-FUN andβ-CONT to letval z′ = (y, y) in k z′.

J·K : ML → CVar → (Var → CTm) → CTm
JxK h κ = κ(x)

Je1 e2K h κ = Je1K h (�x1.Je2K h (�x2.letcont k x = κ(x) in x1 k h x2))
Jfn x => eK h κ = letfun f k h′ x = LeM h′ k in κ(f)
J(e1,e2)K h κ = Je1K h (�x1.Je2K h (�x2.letval x = (x1, x2) in κ(x)))

Jini eK h κ = JeK h (�z.letval x = ini z in κ(x))
J()K h κ = letval x = () in κ(x)

J#i eK h κ = JeK h (�z.let x ⇐ πi z in κ(x))
Jlet val x = e1 in e2 endK h κ = letcont j x = Je2K h κ in Le1M h j

Jlet fun d in e endK h κ = letfun JdK in JeK h κ
Jraise eK h κ = JeK h (�z.h z)

Je1 handle x => e2K h κ = letcont j x = κ(x) in letcont h′ x = Le2M h j in Le1M h′ j
Jcase e of in1 x1 => e1| in2 x2 => e2K κ
= JeK h (�z.letcont j x = κ(x) letcont k1 x1 = Le1M h j in letcont k2 x2 = Le2M h j in case z of k1 8 k2)

J·K : MLDef → FunDef
Jf x = eK = f k h x = LeM h k

L·M : ML → CVar → CVar → CTm
LxM h k = k x

Le1 e2M h k = Je1K h (�x1.Je2K h (�x2.x1 k h x2))
Lfn x => eM h k = letval f = λj x.LeM h j in k f
L(e1,e2)M h k = Je1K h (�x1.Je2K h (�x2.letval x = (x1, x2) in k x))

Lini eM h k = JeK h (�z.letval x = ini z in k x)
L()M h k = letval x = () in k x

L#i eM h k = JeK h (�z.let x ⇐ πi z in k x)
Llet val x = e1 in e2 endM h k = letcont j x = Le2M h k in Le1M h j

Llet fun d in e endM h k = letfun JdK in LeM h k
Lraise eM h k = JeK h (�z.h z)

Le1 handle x => e2M h k = letcont h′ x = Le2M h k in Le1M h′ k
Lcase e of in1 x1 => e1| in2 x2 => e2M h k

= JeK h (�z.letcont k1 x1 = Le1M h k in letcont k2 x2 = Le2M h k in case z of k1 8 k2)

Figure 8. Tail CPS transformation forλT
CPS

Likewise, commuting conversions are not required, in contrast
with monadic languages, where in order to define well-behaved
conversions it is necessary to generalize the usualM handle x ⇒
N construct totry y ⇐ M in N1 unless x ⇒ N2, incorporating a
success ‘continuation’N1 (Benton and Kennedy 2001).

3.3 Other features

It is straightforward to extendλT
CPS with other features useful for

compiling full-scale programming languages such as Standard ML.

• Recursive types of the formµα.τ can be supported by adding
suitable introduction and elimination constructs: a valuefold x
and a termlet x = unfold y inK.

• Binary products and sums generalize to then-ary case. For opti-
mizing representations it is common for intermediate languages
to support functions with multiple arguments and results, and
constructors taking multiple arguments. This is easy: function
definitions have the formf k h x = K, and continuations have
the formk x = K and are used for passing multiple results
and forcase branches where the constructor takes multiple ar-
guments.

• Polymorphic types of the form∀α.τ can be added. Typing con-
texts are extended with a set of type variablesV. Then to sup-
port ML-style let-polymorphism, each value binding construct
(letval, letfun, and projection) must incorporate polymorphic

generalization. For example:

(letv)
V, α; Γ ` V : τ V; Γ, x:∀α.τ ; ∆ ` K ok

V; Γ;∆ ` letval x = V in K ok

For elimination, we simply adapt the variable rule (var) to
incorporate polymorphic specialization:

(var)
x:∀α.τ ∈ Γ

Γ ` x : τ [σ/α]

3.4 Effect analysis and transformation

The use of continuations in an explicit ‘handler-passing style’ lends
itself very nicely to an effect analysis for exceptions. Suppose, for
simplicity, that there are a finite number of exception constructors
ranged over byE. We make the following changes toλT

CPS:

• We introduceexception settypes of the form{E1, . . . , En},
representing exception values built with any of the construc-
tors E1, . . . , En. Set inclusion induces a subtype ordering on
exception types, with top typeexn representinganyexception,
and bottom type{} representingnoexception.

• The type of handler continuations in function definitions are
refined to describe the exceptions that the function is permitted
to throw. For example:

(1) letfun f k (h:¬{}) x = K in . . .
(2) letfun f k (h:¬exn) x = K in . . .
(3) letfun f k (h:¬{E, E′}) x = K in . . .

The type of (1) tells us thatK never raises an exception, in
(2) the function can raise any exception, and in (3) the function
might raiseE or E′.

• Now that handlers are annotated with more precise types, the
function types must reflect this too. We writeτ→σ′

σ for the
type of functions thateitherreturn a result of typeσ or raise an
exception of typeσ′ <: exn. Subtyping on function types and
continuation types is specified by the following rules:

τ2 <: τ1 σ1 <: σ2 σ′
1 <: σ′

2

τ1→
σ′

1 σ1 <: τ2→
σ′

2 σ2

σ2 <: σ1

¬σ1 <: ¬σ2

Exception effects enable effect-specific transformations(Benton
and Buchlovsky 2007). Suppose that the type off is τ →{E1} σ.
Then we can apply a ‘dead-handler’ rewrite on the following:

letcont h:¬{E1, E2} x = (case x of E1.k1 8 E2.k2) in f k h y
→ letcont h:¬{E1} x = (case x of E1.k1) in f k h y

In fact, there is nothing exception-specific about this rewrite: it is
just employing refined types for constructed values. The useof
continuations has given us exception effects ‘for free’.

4. Implementing CPS
Many compilers for functional languages represent intermediate
language terms in a functional style, as instances of an algebraic
datatype of syntax trees, and manipulate them functionally. For ex-
ample, the languageλU

CPScan be implemented by an SML datatype,
here using integers for variables, with all bound variablesdistinct:

type Var = int and CVar = int
datatype CVal =
Unit | Pair of Var * Var | Inj of int * Var

| Lam of CVar * Var * CTm
and CTm =
LetVal of Var * CVal * CTm

| LetProj of Var * int * Var * CTm
| LetCont of CVar * Var * CTm * CTm
| AppCont of CVar * Var
| App of Var * CVar * Var
| Case of Var * CVar * CVar

Rewrites such as those of Figure 5 are then implemented by a
function that maps terms to terms, applying as many rewritesas
possible in a single pass. Here is a typical fragment that applies the
β-PAIR and DEAD-VAL reductions:

fun simp census env S K =
case K of

LetVal(x, V, L) =>
if count(census,x) = 0 (* Dead-Val *)
then simp census env S L
else LetVal(x, simpVal census env S V,

simp census (addEnv(env,x,V)) S L)

| LetProj(x, 1, y, L) =>
let val y’ = applySubst S y
in case lookup(env, y’) of

(* Beta-Pair *)
Pair(z,_) =>
simp census env (extendSubst S (x,z)) L

| _ =>
LetProj(x, 1, y’, simp census env S L)

end

In addition to the termK itself, the simplifier functionsimp
takes a parameterenv that tracksletval bindings, a parameterS
used to substitute variables for variables and a parametercensus
that maps each variable to the number of occurrences of the vari-
able, computed prior to applying the function.

Thecensus becomes out-of-date as reductions are applied, and
this may cause reductions to be missed until the census is recalcu-
lated andsimp applied again. For example, theβ-PAIR reduction
may trigger a DEAD-VAL in an enclosingletval binding (consider
letval x = (y1, y2) in . . . let z = π1 x in . . . wherex occurs only
once). Maintaining accurate census information as rewrites are per-
formed can increase the number of reductions performed in a single
pass (Appel and Jim 1997), but even with up-to-date census infor-
mation, it is not possible to perform shrinking reductions exhaus-
tively in a single pass, so a number of iterations may be required be-
fore all redexes have been eliminated. In the worst case, this leads
to O(n2) behaviour.

What’s more, each pass essentially copies the entire term, leav-
ing the original term to be picked up by the garbage collector. This
can be expensive. (Nonetheless, the simplicity of our CPS lan-
guage, with substitutions only of variables for variables,and the
lack of commuting conversions as are required in ANF or monadic
languages, leads to a very straightforward simplifier algorithm.)

4.1 Graphical representation of terms

An alternative is to represent the term using agraph, and to perform
rewrites by destructive update of the graph. Appel and Jim (1997)
devised a representation for which exhaustive applicationof the
shrinkingβ-reductions of Figure 5 takes time linear in the size of
the term. We improve on their representation to support efficientη-
reductions and other transformations. The representationhas three
ingredients.

1. The term structure itself is a doubly-linked tree. Every subterm
has an up-link to its immediately enclosing term. This supports
constant time replacement, deletion, and insertion of subterms.

2. Each bound variable contains a link to one of its free occur-
rences, or is null if the variable is dead, and the free occurrences
themselves are connected together in a doubly-linked circular
list. This permits the following operations to be performedin
constant time:

• Determining whether a bound variable has zero, one, or
more than one occurrence, and if it has only one occurrence,
locating that occurrence.

• Determining whether a free variable is unique.

• Merging two occurrence lists.

Furthermore, we separate recursive and non-recursive usesof
variables; in essence, instead ofletfun f k h x = K in L we
write let f = rec g k h x.K[g/f] in L. This lets us detect
DEAD-? andβ-?-L IN reductions.

3. Free occurrences are partitioned into same-binder equivalence
classes by using theunion-find data structure (Cormen et al.
2001)2. The representative in each equivalence class (that is, the
root of the union-find tree) is linked to its binding occurrence.

This supports amortized near-constant time access to the binder
(thefind operation) and merging of occurrence lists (theunion
operation).

Substitution of variablex for variabley is implemented in near-
constant time by (a) merging the circular lists of occurrences so
that x now points to the merged list, and (b) applying aunion
operation so that the occurrences ofy are now associated with the
binder forx.

Consider the following value term, with doubly-linked tree
structure and union-find structure implicit but with binder-to-free

2 Readers familiar with type inference may recall that union-find underpins
the almost-linear time algorithm for term unification (Baader and Nipkow
1998).

pointer shown as a dotted arrow and circular occurrence lists shown
as solid arrows:

λ k x

((
.

let p
""
= (x dd , y)

in . . . p
vv ((

. . . p hh

((RRRRRRR . . .

. . . let z

= π1 p ``
 @

@@
in

. . . z hh 66. . . z
((vv

. . . p;;

TT

Now suppose that we wish to applyβ-PAIR to the projectionπ1p.
Using thefind operation on the union-find structure we can locate
the pair(x, y) in near constant time. Now we substitutex for z by
disconnectingz’s binder from its circular list and connectingx’s
occurrence list in its place, and merging the two lists, in constant
time. At the same time, we apply theunionoperation to merge the
binder equivalence classes (not shown).

λ k x

((
.

let p
""
= (x , y)

in . . . p
vv ((

. . . p hh

((RRRRRRR . . .

. . . let z = π1 p ``
 @

@@
in

. . . x
��

CC

. . . x66ii
��

UU,
,
,
,
,
,
,
,
,

. . . p99

UU

Finally we remove the projection itself, deleting the occurrence ofp
from the circular list, again in constant time:

λ k x

((
.

let p

""
= (x , y)

in . . . p
vv ((

. . . p jj

**UUUUUUUUUUU . . .

. . . x
��

;;

. . . x66ii
��

XX2
2
2
2
2

. . . p88

]]

One issue remains: the classical union-find data structure does not
support deletion. There are recent techniques that extend union-find
with amortized near-constant time deletion (Kaplan et al. 2002).
However, the representation is non-trivial, and might add unaccept-
able overhead to the union and find operations, so we chose instead
a simpler solution: do nothing! Deleted occurrences remainin the
union-find data structure, possibly as root nodes, or as nodes on the
path to the root. In theory, the efficiency of rewriting is then depen-
dent on the ‘peak’ size of the term, not its current size, but we have
not found this to be a problem in practice.

Each of the shrinking reductions of Figure 5 can be imple-
mented in almost-constant time using our graph representation. To
put these together and apply them exhaustively on a term, we fol-
low Appel and Jim (1997):

• First sweep over the term, detecting redexes and collectingthem
in a worklist.

• Then pull items off the worklist one at a time (in any order),
applying the appropriate rewrite, and adding new redexes to
the worklist that are triggered by the rewrite. For example,
the removal of a free occurrence (as can happen for multiple
variables when applying DEAD-VAL) can induce a DEAD-?
reduction (if no occurrences remain) or aβ-?-L IN reduction
(if only a single occurrence remains).

In the current implementation, the worklist is representedas a
queue, but it should be possible to thread it through the termitself.
Shrinking reductions could then be performed with constantspace
overhead.

4.2 Comparison with Appel/Jim

The representation of Appel and Jim (1997) did not make use of
union-find to locate binders. Instead, (a) the circular listof variable
occurrences included the bound occurrence, thus giving constant
time access to the binder in the case that the free variable isunique,
and (b) forletval-bound variables, each free occurrence contained
an additional pointer to its binder. When performing a substitution
operation, these binder links must be updated, using time linear in
the number of occurrences; fortunately, for any particularvariable
this can happen only once during shrinking reductions, asletval-
bound variables cannot become rebound. Thus the cost is amortized
across the shrinking reductions.

Unfortunately the lack of binder occurrences for non-letval-
bound variables renders less efficient other optimizationssuch as
η-reduction. Take an instance ofη-PAIR:

let x1 = π1 x in C[let x2 = π2 x in C′[letval y = (x1, x2) in K]]
→ let x1 = π1 x in C[let x2 = π2 x in C′[K[x/y]]]

Just to locate the binder forx1 andx2 would take time linear in the
number of occurrences.

Our use of union-find gives us efficient implementation of all
shrinking reductions, and of other transformations too; moreover,
when analysing efficiency we need not be concerned whether vari-
ables areletval-bound or not.

4.3 Performance results

We have modified the SML.NET compiler to make use of a typed
CPS intermediate language only mildly more complex than that
shown in Figure 7. It employs the graphical representation of terms
described above; in particular, thesimplifier performs shrinking
reductions exhaustively on a term representing the whole program,
and it is invoked a total of 15 times during compilation.

Table 1 presents some preliminary benchmark results show-
ing average time spent in simplification, time spent in monomor-
phisation, and time spent in unit-removal (e.g. transformation of
unit*int values toint). We compare (a) the released version of
SML.NET, implementing a monadic intermediate language (MIL)
and functional-style simplification algorithm, (b) the Appel/Jim-
style graph representation adapted to MIL terms implemented by
Lindley (Benton et al. 2004a; Lindley 2005), and (c) the new graph-
based CPS representation with union-find. Tests were run on a
3Ghz Pentium 4 PC with 1GB of RAM running Windows Vista.
The SML.NET compiler is implemented in Standard ML and com-
piled using the MLton optimizing compiler, which generateshigh
quality code from both functional and imperative coding styles – so
giving both techniques a fair shot.

As can be seen from the figures, the graph-based simplifier for
the monadic language is significantly faster than the functional sim-
plifier – and although all times are small, bear in mind that the
simplifier is run many times during compilation. Unit removal is
roughly comparable in performance across implementations. Inter-
estingly, the graph-based CPS implementation of monomorphisa-
tion runs up to twice as slowly as the functional monadic imple-
mentation. We conjecture that this is because monomorphisation
necessarily copies (and specializes) terms, and CPS terms tend to
be larger than MIL terms, and the graph representation is larger
still.

These figures come with a caveat: the comparison is somewhat
“apples and oranges”. There are differences between the MIL, g-
MIL and g-CPS representations that are unrelated to monads or

Table 1. Optimization times (in seconds)
Benchmark Lines Phase MIL g-MIL g-CPS

raytrace 2,500 Simp 0.12 0.01 0.01
mlyacc 6,200 Simp 0.44 0.02 0.02
smlnet 80,000 Simp 7.29 0.29 0.15

Mono 0.75 n/a 1.41
Deunit 0.76 1.3 0.6

hamlet 20,000 Simp 0.97 0.08 0.04
Mono 0.15 n/a 0.19
Deunit 0.12 0.16 0.14

CPS. Future work is to make a fairer comparison, implementing
a functional version of the CPS terms, and perhaps also a precise
monadic analogue.

5. Contification
Our CPS languages make a syntactic distinction between functions
and local continuations. The former are typically compiledas heap-
allocated closures or as known functions, whilst the lattercan al-
ways be compiled as inline code with continuation applications
compiled as jumps. For efficiency it is therefore desirable to trans-
form functions into continuations, a process that has been termed
contification(Fluet and Weeks 2001).

Functions can be contified when they always return to the same
place. Consider the following code written in the subset of SML
studied in Section 2:

let fun f x = ...
in g (case d of in1 d1 => f y | in2 d2 => f d2) end

If f returns at all, it must pass control tog. Here, this is obvious,
but for more complex examples it is not so apparent. Now consider
its CPS transform:

letval f = (λk x.· · · k · · ·) in
letcont k0 w = g r w in
letcont j1 d1 = f k0 y in
letcont j2 d2 = f k0 d2 in
case d of j1 8 j2

It is clear thatf is always passed the same continuationk0 – and
so, unless it diverges, it must return throughk0 and so pass control
to g. We can transformf into a local continuation, as follows:

letcont k0 w = g r w in
letcont j x = · · · k0 · · · in
letcont j1 d1 = j y in
letcont j2 d2 = j d2 in
case d of j1 8 j2

We have done three things: (a) we have replaced the functionf by
a continuationj, deleting the return continuation at both definition
and call sites, (b) we have substituted the argumentk0 for the
formal k in the body off , and (c) we have movedj so that it is
in the scope ofk0.

Fluet and Weeks (2001) use the dominator tree of a program’s
call graph to contify programs that consist of a collection of
mutually-recursive first-order functions. They show that their al-
gorithm isoptimal: no contifiable functions remain after applying
the transformation. Their dominator-based analysis can beadapted
to our CPS languages, and is simpler to describe in this context be-
cause all function definitions and uses have a named continuation
(Fluet and Weeks use named continuations only for non-tail calls).
When applied to top-level functions, the transformation issimpler
too, but in the presence of first-class functions and generalblock
structure the transformation becomes significantly more complex
to describe.

We prefer an approach based on incremental transformation,in
essence repeatedly applying the rewrite illustrated aboveuntil no
further rewrites are possible. We consider first the case of non-
recursive functions, then generalize to mutually-recursive func-
tions, and conclude by relating our technique to dominator-based
contification.

5.1 Non-recursive functions

In the untyped languageλU
CPS without recursion, it is particularly

straightforward to spot contifiable functions: they are those for
which all occurrences are applications with the same continuation
argument. We define the following rewrite:

CONT (f not free inC, D andD minimal):
letval f = λk x.K in C[D[f k0 x1, . . . , f k0 xn]]

→
C[letcont j x = K[k0/k] in D[j x1, . . . , j xn]]

HereC is a single-hole context as presented in Figure 5 andD is a
multi-hole context whose formalization we omit.

The CONT rewrite combines three actions: (a) the functionf
is replaced by a continuationj, with each application replaced
by a continuation application; (b) the common continuationk0 is
substituted for the formal continuation parameterk in the bodyK
of f ; and (c) the new continuationj is pulled into the scope
of the continuationk0. The multi-hole contextD is the smallest
context enclosing all uses off , which ensures thatj is in scope
after transformation. The analysis is trivial (just check call sites for
common continuation arguments), yet iterating this transformation
leads to optimal contification, in the sense of Fluet and Weeks
(2001). Here is an example adapted fromloc. cit.§5.2,

letval h = λkh xh.· · · in
letval g1 = λk1 x1.· · ·h k1 z1 · · · k1 z8 · · · in
letval g2 = λk2 x2.· · ·h k2 z2 · · · in
letval f = λkf xf .· · · g1 kf z3 · · · g2 kf z4 · · · g2 kf z5 · · · in
letval m = λkm xm.· · · f j1 z6 · · · f j2 z7 in . . .

We can immediately see thatg1 and g2 (but not h) are always
passed the same continuationkf , and so we can apply CONT to
contify them both:

letval h = λkh xh.· · · in
letval f = λkf xf .

(letcont kg1 x1 = · · ·h kf z1 · · · kf z8 · · · in
letcont kg2 x2 = · · ·h kf z2 · · · in
· · · kg1 z3 · · · kg2 z4 · · · kg2 z5 · · ·) in

letval λmkm.xm· · · f j1 z6 · · · f j2 z7 = in . . .

Now h can be contified as it is always passedkf :

letval f = λkf xf .
(letcont kh xh = · · · in
letcont kg1 x1 = · · · kh z1 · · · kf z8 in
letcont kg2 x2 = · · · kh z2 · · · in
· · · kg1 z3 · · · kg2 z4 · · · kg2 z5 · · ·) in

letval λmkm.xm· · · f j1 z6 · · · f j2 z7 = in . . .

5.2 Recursive functions

Generalizing to recursive functions and continuations is alittle
trickier. Suppose we have aλT

CPS term of the form

letfun f1 k1 h1 x1 = K1

· · · fn kn hn xn = Kn

in K.

A set of functionsF ⊆ {f1, . . . , fn} can be contified collectively,
written Contifiable(F), if there is some pair of continuationsk0

andh0 such that each occurrence off ∈ F is either a tail call

within F or is a call with continuation argumentsk0 andh0. In-
tuitively, each function (eventually) returns to the same place (k0),
or throws an exception that is caught by the same handler (h0),
though control may pass tail-recursively through other functions
in F . There may be many such subsetsF ; we assume thatF is in
fact strongly-connected with respect to tail calls contained within it
(or is a trivial singleton with no tail calls). Then for a given letfun
term there is a unique partial partition of the functions into disjoint
subsets satisfyingContifiable(−).

Let F = {f1, . . . , fm}. Define a translation on function appli-
cations

(f k h x)? =

{

ji x if f = fi ∈ F

f k h x otherwise

and extend this to all terms. Assuming thatContifiable(F) holds,
there are two possibilities.

1. All applications of the formf k0 h0 x for f ∈ F are in the
termK. Then we can apply the following rewrite, which is the
direct analogue of CONT.

RECCONT (f1, . . . , fm not free inC, andK minimal):
letfun f1 k1 h1 x1 = K1

· · · fn kn hn xn = Kn

in C[K]
→

letfun fm+1 km+1 hm+1 xm+1 = Km+1

· · · fn kn hn xn = Kn

in C[letcont j1 x1 = K?
1 [k0/k1, h0/h1]

· · · jm xm = K?
m[k0/km, h0/hm]

in K?]

2. Otherwise, all applications of the formf k0 h0 x for f ∈ F
are in the body of one of the functions outside ofF ; without
loss of generality we assume this isfn.

RECCONT2 (f1, . . . , fm not free inC, andKn minimal):
letfun f1 k1 h1 x1 = K1

· · · fn−1 kn−1 hn−1 xn−1 = Kn−1

fn kn hn xn = C[Kn]
in K
→

letfun fm+1 km+1 hm+1 xm+1 = Km+1

· · · fn−1 kn−1 hn−1 xn−1 = Kn−1

fn kn hn xn =
C[letcont j1 x1 = K?

1 [k0/k1, h0/h1]
· · · jm xm = K?

m[k0/km, h0/hm]
in Kn

?]
in K

For an example of the latter, more complex, transformation,
consider the following SML code:

let fun unif(Ap(a,xs),Ap(b,ys)) = (unif(a,b);unifV(xs,ys))
| unif(Ar(a,b),Ar(c,d)) = unifV([a,b],[c,d])

and unifV(x::xs,y::ys) = (unif(x,y);unifV(xs,ys))
| unifV([],[]) = ()

in unif end

The functionunifyV can be contified into the definition ofunif: it
tail-calls itself, and its uses insideunif have the same continuation.

5.3 Comparing dominator-based contification

The dominator-based approach of Fluet and Weeks (2001) can be
recast in our CPS language as follows. (For simplicity we do not
consider exception handler continuations here). First construct a
continuation flow graphfor the whole program. Nodes consist of
continuation variables and a distinguishedroot node. Then for each

function f with return continuationk, if f is passed around as a
first-class value then create an edge fromroot to k; otherwise, for
each applicationf j x create an edge fromj to k. Finally, for each
local continuationk create an edge fromroot to k.

The non-recursive CONT rewrite has the effect of merging two
nodes in the graph, as follows:

��>
>>

>>
>

//76540123k0
//76540123k //

@@������

��>
>>

>>
>@@������

=⇒
��?

??
??

?

//76540123k0
//

??������

��?
??

??
???������

The recursive RECCONT and RECCONT2 rewrites are similar,
except that in place ofk we have a strongly-connected component
{k1, . . . , km}.

��>
>>

>>
> 76540123k1

//

//76540123k0
//

;;xxxxxx

##F
FF

FF
F

/.-,()*+ki

��
OO

OO
��

//??������ 76540123km
//

=⇒
��?

??
??

?

//76540123k0
//

??������

��?
??

??
???������

Conversely, any part of the flow graph matching the left-hand-side
of this diagram corresponds to a contifiable subset of functions in a
letfun to which the RECCONT or RECCONT2 rules can be applied.

It is immediately clear that exhaustive rewriting terminates,
as the flow graph decreases in size with each rewrite, eventually
producing a graph with no occurrences of the pattern above.

The algorithm described by Fluet and Weeks (2001) contifiesk
if it is strictly dominated by some continuationj whose immediate
dominator isroot. It can be shown that if a rooted graph contains
such a pair of nodesj andk, then some part of the graph matches
the pattern above. Hence exhaustive rewriting has the same effect
as as optimal contification based on dominator trees.

6. Related work and conclusion
The use of continuation-passing style for functional languages has
its origins in Scheme compilers (Steele 1978; Kranz et al. 1986).
It later formed the basis of the Standard ML of New Jersey com-
piler (Appel 1992; Shao and Appel 1995).

In early compilers, lambdas originating from the CPS transfor-
mation were not distinguished from lambdas present in the source,
so some effort was expended at code generation time to determine
which lambdas could be stack-allocated and which could be heap-
allocated. Later compilers made a syntactic distinction between
true functions and ‘second-class’ continuations introduced by CPS;
and sometimes transformed one into the other (Kelsey and Hudak
1989), though contification was not studied formally.

A number of more recent compilers use what has been called
almost CPS. The Sequentialized Intermediate Language (SIL) em-
ployed by Tolmach and Oliva (1998) is a monadic-style language in
which aletcont-like feature is used to introduce join points. Some-
what closer to our CPS language is the First Order Language (FOL)
of the MLton compiler (Fluet and Weeks 2001). It goes furtherthan
SIL in making use of named local continuations in all branch con-
structs and non-tail calls. However, functions are not parameterized
on return (or handler) continuations, and there is special syntax for
tail calls and returns. This non-uniform treatment of continuations
complicates transformations – inlining of non-tail functions must
replace all ‘return points’ with jumps, and the contification analy-
sis and transformation must treat tail and non-tail calls differently.

We have found the uniform treatment of continuations in our
CPS language to be a real benefit, not only as a simplifying force in
implementation, but also in thinking about compiler optimizations:

contification, in particular, is difficult to characterize in the absence
of a notion of continuation passing.

As far as we are aware, we are the first to implement linear-
time shrinking reductions in the style of Appel and Jim (1997). An
earlier term-graph implementation by Lindley was for a monadic
language and had worst-caseO(n2) behaviour due to commuting
conversions (Benton et al. 2004a; Lindley 2005). Shivers and Wand
(2005) have proposed a rather different graph representation for
lambda terms, with the goal of sharing subterms afterβ-reduction.
Their representation does bear some resemblance to ours, though,
with up-links from subterms to enclosing terms, and circular lists
that connect the sites where a term is substituted for a variable.

This paper would not be complete without a mention of Static
Single Assignment form (SSA), the currently fashionable interme-
diate representation for imperative languages. As is well known,
SSA is in some sense equivalent to CPS (Kelsey 1995) and to
ANF (Appel 1998). Its focus isintra-proceduraloptimization (as
with ANF, it’s necessary to renormalize when inlining functions,
in contrast to CPS) and there is a large body of work on such op-
timizations. Future work is to transfer SSA-based optimizations to
CPS. We conjecture that CPS is a good fit for both functional and
imperative paradigms.

Acknowledgments
I would like to thank Nick Benton, Olivier Danvy, Sam Lindley,
Simon Peyton Jones and Claudio Russo for fruitful discussions on
compiler intermediate languages. Georges Gonthier suggested the
use of union-find in the graphical representation of terms.

References
Andrew W. Appel. Compiling with Continuations. Cambridge University

Press, 1992.

Andrew W. Appel. SSA is functional programming.SIGPLAN Notices, 33
(4):17–20, 1998.

Andrew W. Appel and Trevor Jim. Shrinking lambda expressions in linear
time. Journal of Functional Programming, 7(5):515–540, 1997.

Franz Baader and Tobias Nipkow.Term Rewriting and All That. Cambridge
University Press, 1998.

Nick Benton and Peter Buchlovsky. Semantics of an effect analysis for
exceptions. InACM SIGPLAN International Workshop on Types in
Language Design and Implementation (TLDI), pages 15–26, 2007.

Nick Benton and Andrew Kennedy. Exceptional syntax.Journal of Func-
tional Programming, 11(4):395–410, 2001.

Nick Benton, Andrew Kennedy, and George Russell. CompilingStandard
ML to Java bytecodes. In3rd ACM SIGPLAN International Conference
on Functional Programming. ACM Press, September 1998.

Nick Benton, Andrew Kennedy, Sam Lindley, and Claudio Russo. Shrink-
ing reductions in SML.NET. In16th International Workshop on Imple-
mentation and Application of Functional Languages (IFL), 2004a.

Nick Benton, Andrew Kennedy, and Claudio Russo. Adventuresin interop-
erability: The SML.NET experience. In6th International Conference on
Principles and Practice of Declarative Programming (PPDP), 2004b.

Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, second edition, 2001.

Olivier Danvy. A new one-pass transformation into monadic normal form.
In 12th International Conference on Compiler Construction (CC’03),
2003.

Olivier Danvy and Andrzej Filinski. Representing control:A study of the
CPS transformation.Mathematical Structures in Computer Science, 2
(4):361–391, 1992.

Olivier Danvy and Lasse R. Nielsen. A first-order one-pass CPS transfor-
mation.Theor. Comput. Sci., 308(1-3):239–257, 2003.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations (with retrospective). In
McKinley (2004), pages 502–514.

Matthew Fluet and Stephen Weeks. Contification using dominators. In
ICFP’01: Proceedings of the Sixth ACM SIGPLAN International Con-
ference on Functional Programming, pages 2–13. ACM Press, Septem-
ber 2001.

John Hatcliff and Olivier Danvy. A generic account of continuation-passing
styles. InPrinciples of Programming Languages (POPL), pages 458–
471, 1994.

Haim Kaplan, Nira Shafrir, and Robert E. Tarjan. Union-find with deletions.
In SODA ’02: Proceedings of the thirteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 19–28, Philadelphia, PA, USA, 2002.
Society for Industrial and Applied Mathematics. ISBN 0-89871-513-X.

Richard Kelsey. A correspondence between continuation passing style
and static single assignment form. InIntermediate Representations
Workshop, pages 13–23, 1995.

Richard A. Kelsey and Paul Hudak. Realistic compilation by program
transformation. InPrinciples of Programming Languages (POPL).
ACM, January 1989.

Jung-taek Kim, Kwangkeun Yi, and Olivier Danvy. Assessing the overhead
of ML exceptions by selective CPS transformation. InACM SIGPLAN
Workshop on ML, pages 112–119, 1998. Also appears as BRICS techni-
cal report RS-98-15.

David A. Kranz, Richard A. Kelsey, Jonathan A. Rees, Paul Hudak, and
James Philbin. ORBIT: an optimizing compiler for scheme. InProceed-
ings of the ACM SIGPLAN symposium on Compiler Construction, pages
219–233, June 1986.

Sam Lindley.Normalisation by evaluation in the compilation of typed func-
tional programming languages. PhD thesis, University of Edinburgh,
2005.

Kathryn S. McKinley, editor.20 Years of the ACM SIGPLAN Conference
on Programming Language Design and Implementation 1979-1999, A
Selection, 2004. ACM.

Eugenio Moggi. Notions of computation and monads.Information and
Computation, 93:55–92, 1991.

A. M. Pitts. Typed operational reasoning. In B. C. Pierce, editor, Advanced
Topics in Types and Programming Languages, chapter 7, pages 245–289.
The MIT Press, 2005.

Amr Sabry and Philip Wadler. A reflection on call-by-value.ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 19(6):916–
941, November 1997. ISSN 0164-0925.

Zhong Shao and Andrew W. Appel. A type-based compiler for Standard
ML. In Proc. 1995 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 116–129, La Jolla, CA,
Jun 1995.

Olin Shivers. Higher-order control-flow analysis in retrospect: lessons
learned, lessons abandoned (with retrospective). In McKinley (2004),
pages 257–269.

Olin Shivers and Mitchell Wand. Bottom-upβ-reduction: Uplinks andλ-
DAGs. In European Symposium on Programming (ESOP), pages 217–
232, 2005.

Guy L. Steele. RABBIT: A compiler for SCHEME. Technical Report AI-
TR-474, MIT, May 1978.

Hayo Thielecke. Comparing control constructs by double-barrelled CPS.
Higher-Order and Symbolic Computation, 15(2/3):141–160, 2002.

Andrew P. Tolmach and Dino Oliva. From ML to Ada: Strongly-typed
language interoperability via source translation.Journal of Functional
Programming, 8(4):367–412, 1998.

Philip Wadler and Peter Thiemann. The marriage of effects and monads. In
ACM SIGPLAN International Conference on Functional Programming
(ICFP), 1998.

