Compiling with Continuations, Continued

Andrew Kennedy

Microsoft Research Cambridge
akenn@microsoft.com

Abstract

We present a series of CPS-based intermediate languagaklsui
for functional language compilation, arguing that theyéhavacti-
cal benefits over direct-style languages baseddemormal form
(ANF) or monads. Inlining of functions demonstrates theeden
fits most clearly: in ANF-based languages, inlining invehaere-
normalization step that rearranges let expressions arsilpn-
troduces a new ‘join point’ function, and in monadic langesg
commuting conversions must be applied; in contrast, ingjrin our
CPS language is a simple substitution of variables for bte@m

We present a contification transformation implemented by si
ple rewrites on the intermediate language. Exceptions adetted
using so-called ‘double-barrelled’ CPS. Subtyping on pxioa
constructors then gives a very straightforward effectysisfor ex-
ceptions. We also show how a graph-based representatioR8f C
terms can be implemented extremely efficiently, with lintiare
term simplification.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Processors — Compilers

General Terms Languages

Keywords Continuations, continuation passing style, monads, op-
timizing compilation, functional programming languages

1. Introduction

Compiling with continuations is out of fashion. So repon #u-
thors of two classic papers on Continuation-Passing Styledgent
retrospectives:

“In 2002, then, CPS would appear to be a lesson aban-
doned.” (McKinley 2004; Shivers 1988)

“Yet, compiler writers abandoned CPS over the ten years
following our paper anyway.” (McKinley 2004; Flanagan
et al. 1993)

This paper argues for a reprieve for CPS: “Compiler writgige
continuations a second chance.”

This conclusion is borne of practical experience. In the MLj
and SML.NET whole-program compilers for Standard ML, co-
implemented by the current author, we adopted a direcgstyl
monadic intermediate language (Benton et al. 1998, 2004b).
part, we were interested in effect-based program transftoms,

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesatrmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’07, October 1-3, 2007, Freiburg, Germany.

Copyright(© 2007 ACM [This is the author’s version of the work. It is pakteere by

permission of ACM for your personal use. Not for redistribnt]. . . $5.00

so monads were a natural choice for separating computdtioms
values in both terms and types. But, given the history of QiP&h)-
ably there was also a feeling that “CPS is for call/cc”, sdrimef
that is not a feature of Standard ML.

Recently, the author has re-implemented all stages of the
SML.NET compiler pipeline to use a CPS-based intermedaate |
guage. Such a change was not undertaken lightly, amouring t
roughly 25,000 lines of replaced or new code. There are many
benefits: the language is smaller and more uniform, simalific
tion of terms is more straightforward and extremely effitiemd
advanced optimizations such as contification are moreyeesil
pressed. We use CPS only because it goad place to do opti-
mization we are not interested in first-class control in the source
language (call/cc), or as a means of implementing otheufesat
such as concurrency. Indeed, as SML.NET targets .NET IL|la ca
stack-based intermediate language with support for stredtex-
ception handling, the compilation process can be sumnthaze
“transform direct style (SML) into CPS; optimize CPS; trimm
CPS back to direct style ((NET IL)".

1.1 Some history

CPS. What's special about CPS? As Appel (1992, p2) put it,
“Continuation-passing style is a program notation that esagv-
ery aspect of control flow and data flow explicit”. An importan
consequence is that ful-reduction (function inlining) is sound.
In contrast, for call-by-value languages based on the landad-
culus, only the weakep-value rule is sound. For examplg;
reduction cannot be applied (0x.0) (f y) becausef y may
have a side-effect or fail to terminate; but its CPS tramafor
f v (Az.(Az.\k.k 0) z k) can be reduced without prejudice.
There are obvious drawbacks: the complexity of CPS termes; th
need to eliminateadministrativeredexes introduced by the CPS
transformation; and the cost of allocating closures fordas in-
troduced by the CPS transformation, unless some statisiarik/
first applied. In fact, these drawbacks are more apparentrie:
the complexity of CPS terms is really a benefit, assigning use
ful names to all intermediate computations and control {goitne
CPS transformation can be combined with administrativeiced
tion; and by employing a syntactic separation of contiraratand
source-lambdas it is possible to generate good code dirfeoth
CPSterms.

ANF. In their influential paper “The Essence of Compiling with
Continuations”, Flanagan et al. (1993) observed thatyfdkvel-
oped CPS compilers do not need to employ the CPS transfamati
but can achieve the same results with a simple source-kavedfor-
mation”. They proposed a direct-style intermediate lagguaased
on A-normal forms, in which &t construct assigns names to every
intermediate computation. For example, the term abovepeere
sented agt z = f y in (Az.0) z, to whichg-reduction can be ap-
plied, obtaining the semantically equivaldet z = f y in 0. This
style of language has become commonplace, not only in censpil

but also to simplify the study of semantics for impure fuootl
languages (Pitts 20087.4).

Monads. Very similar to ANF are so-callechonadiclanguages
based on Moggi’s computational lambda calculus (Moggi 1991
Monads also make sequencing of computations explicit titrau

let z < M in N binding construct, the main difference from ANF
being thatlet constructs can themselves lee-bound. The sepa-
ration of computations from values also provides a placeatgh
effectannotations (Wadler and Thiemann 1998) which compilers
can use to perform effect-based optimizing transformati@en-

ton et al. 1998).

1.2 The problem

A-Normal Formis put forward as a compiler intermediate |aagu
with all the benefits of CPS (Flanagan et al. 19§8). Unfor-
tunately, the normal form is not preserved under useful ¢lemp
transformations such as function inlining-(eduction). Consider
the ANF term

M=letx=(A\yletz=abinc)dine.
Now naiveS-reduction produces
letx = (letz=abinc)ine

which is not in normal form. The ‘fix’ is to define a more complex
notion of 3-reduction that re-normalizést constructs (Sabry and
Wadler 1997), in this case producing the normal form

let z=abin (letx=cine).
In contrast, the CPS transform &f, namely
(Ay.Ak.ab(Az.k ¢)) d (A\z.k ¢e),
simplifies by simple3-reduction to
ab (Az.(Az.ke) c).
As Sabry and Wadler explain in their study of the relatiopdie-

monadic terms. Consider the term
let z = (Ax.if x then a else b) cin M
This is in ANF, but3-reduction produces
let z = (if ¢ then a else b) in M,

which is not in normal form because it containde&-bound
conditional expression. To reduce it to normal form, one tmus
either apply a standard commuting conversion that duggcat
the termM, producing

if cthenlet z=ain M elselet z =bin M,
or introduce a ‘join-point’ function for termd/, to give

letkz=M
inif cthenletz=aink zelseletz=>bink z.

Observe thak is simply a continuation! In our CPS language,
k is already available in the original term, being the (named)
continuation that is passed to the function to be inlinect dé&-
sire to share subterms almost forces some kind of contmuati
construct into the language. Better to start off with a lagg
that makes continuations explicit.

1.3 Contribution

Much of the above has been said before by others, though not al
ways in the context of compilation; in this author’s opinidhe
most illuminating works are Appel (1992); Danvy and Filinsk
(1992); Hatcliff and Danvy (1994); Sabry and Wadler (199he
contribution of this paper, then, is to draw together thdsseova-
tions in a form accessible to implementers of functionagjleages.

As is often the case, the devil is in the details, and so anothe
purpose of this paper is to advocate a certain style of CPS tha
works very smoothly for compilation. Continuations asenedand
mandatory(just as every intermediate value is named, so is every
control point), aresecond-clasg¢they’re not general lambdas), can
represenbasic blocksaandloops can beshared(typically, through
common continuations of branches), represxaeptionalcontrol

tween CPS and monadic languages, “the CPS language achieveg,, (using double-barrelled CPS), and aypeable(but can be

this normalization using the metaoperation of substitutichich
traverses the CPS term to locdteand replace it by the contin-
uation thus effectively ‘pushing’ the continuation deepide the
term” (Sabry and Wadler 199%,8).

Monadic languages permitt expressions to be nested, but
incorporate so-calledommuting conversiorn(gc'’s) such as

lety < (letz <= M in N)in P
—letx < Min (lety < Nin P).

ANF can be seen as a monadic language in witigleduction is
combined with cc-normalization ensuring that terms reniraicc-
normal form.

All of the above seems quite benign; except for two things:

. Commuting conversions increase the complexity of sifyipky
intermediate language terms. Reductions that strictlyedee
the size of the term can be applied exhaustively on CPS terms,
the number of reductions applied being linear in the sizénef t
term. The equivalent ANF or monadic reductions must neces-
sarily involve commuting conversions, which leads@¢n?)
reductions in the worst case. Moreover, as Appel and JimAL99
have shown, given a suitable term representation, shgmdn
ductions on CPS can be applied in ti@én); itis far from clear
how to amortize the cost of commuting conversions to obtain a
similar measure for ANF or monadic simplification.

. Real programming languages include conditional express
or, more generally, case analysis on datatype constructors
These add considerable complexity to reductions on ANF or

used in untyped form too). By refining the types of exception
values in the double-barrelled variant we get an effectesysor
exceptions ‘for free’.

We make two additional contributions. Following Appel and
Jim (1997), we describe a graph-based representation of&ZRS
that supports the application of shrinkipigreductions in time lin-
ear in the size of the term. We improve on Appel and Jim’s selec
tive use of back pointers for accessing variable binderd, ean-
ploy the union-find data structure to give amortized nearstant-
time access to binders fafl variable occurrences. This leads to ef-
ficient implementation of)-reductions and other transformations.
We present benchmark results comparing our graph-CP Sseapre
tation with (a) an earlier graphical representation of thiginal
monadic language used in our compiler, and (b) the origimat-f
tional representation of that language.

Lastly, we show how to transform functions into local contin
ations using simple term rewriting rules. This approachdnti¢-
ication avoids the need for a global dominator analysisgFand
Weeks 2001), and furthermore supports nested and firsi-tlas-
tions.

2. Untyped CPS

We start by defining an untyped continuation-passing laggua
A&ps that supports non-recursive functions, the unit valuetspai
and tagged values. Even for such a simple language, we can cov
many of the issues and demonstrate advantages over dlternat
direct-style languages.

Grammar
(terms) CTm > K, L letval z =V in K
letx =mxzin K

letcontkxz =K in L

kx

fkx

case x of ki [ko
(values) CVals VW :u= ()| (z,y)|insx| ez K

Well-formed terms
(let) I'FVok T'z;AF K ok
I'; AFletval x = Vin K ok
D,z:AF Kok T;Akk Lok
I'; A b letcont ko = K in L ok
(proj) zel T,y; AF K ok
PO T AT lety = mxz in K ok
(appo) keAzel @)keA,f,xeF
PR T AT kzok EPPITAT fhaok
(case) xel ki, ko€ A
’F;Al—casexoszlﬂkgok

Well-formed values

(letc)

i€1,2

. z,ye’l zel .
PaN (0 yyok BT rin ok €12
I,x;kFH K ok
. \ s &y
Unit) o @) TS5 K ok

Well-formed programs

(Pro9) = iai F i ok

Figure 1. Syntax and scoping rules for untyped languages

In Section 3, we add recursive functions, types, polymanphi
exceptions, and effect annotations. At that point, the Uuagg re-
sembles a practical CPS-based intermediate language abthe
that could form the core of a compiler for SML, Caml, or Scheme

Figure 1 presents the syntax of the untyped language. Here or

dinary variables are ranged over byy, f, andg, and continuation
variables are ranged over iyyand. Indices: range over 1,2. We
specify scoping of variables using well-formedness rubesélues
and terms. Her& + V ok means that valu&” is well-formed in
the scope of a list of ordinary variabl€sandl'; A - K ok means
that term K is well-formed in the scope of a list of continuation
variablesA and a list of ordinary variableB. Complete programs
are well-formed in the context of a distinguished top-lex@htin-
uation halt. (For the typed variant of our language there will be
typing rules withl" and A generalized to typing contexts.)

We describe the constructs of the language in turn.

e The expressiorietval x = V in K binds a valueV' to a
variable z in the term K. This is theonly way a valueV’

e The expressioffet x = 7; y in K projects the’'th component
of a pairy and binds it to variable in K.

The expressioretcont k¥ * = K in L introduces docal
continuationk whose single argument is and whose body
is K, to be used in tern. It corresponds to a labelled block in
traditional lower-level representations. In Section 3 wteed
local continuations with support for recursion, and soespnt
loops directly.

A continuation applicatiort = corresponds to a jump (K is a
local continuation) or a return (i is the return continuation

of a function value). As with values, continuations must be
named: function application expressions and case cotstruc
do not have subterms, but instead mention continuations by
name. We need only ever substitute continuation varialies f
continuation variables.

Local continuations can be applied more than once, as in

letcont j y = K in
letcont k1 1 = (letval x = Vi in j x) in
letcont k2 z2 = (letval x = Va2 in j x) in
case z of k1 || k2

Herej is the common continuation, or ‘join point’ for branches
k1 andka.

The expressiorf k x is the application of a functiorf to an
argumentr and a continuatiot whose parameter receives the
result of applying the function. Ik is the return continuation
for the nearest enclosing, then the application is a ‘tail call’.
For example, consider the function value

Acz.(letcont jy=gkyin fjzx).

Hereg is in tail position, andf is not. In effect, we are defining
Az.g(f(x)).

The construcicase = of ki [k2 expectsz to be bound to
a tagged valuén; y and then dispatches to the appropriate
continuationk;, passingy as argument.

Values include the unit valu@, pairs(z, y) and tagged values
in; z. Function values\k x. K include a return continuatioh
and argument. Note carefully the well-formedness rule (abs):
its continuation context includes only the return contiiwrak,
thus enforcing locality of continuations introduced Ibycont.

The semantics is given by environment-style evaluatiors;ul
presented in Figure 2. As is conventional, we define a syntax o
run-time values, ranged over Ipy supporting the unit value, pairs,
constructor applications, and closures. Environmentsvagpbles
to run-time values, and continuation variables to contiilowaval-
ues. Continuation values are represented in a closure fohich
gives the impression that they are first-class. An altereatiould
be to model stack frames more directly and thereby demdastra
that continuations are in fact just code pointers. For theqse
of simply defining the meaning of programs we prefer the adesu
based semantics.

The function[-] p interprets a value expression in an environ-

can be used in a term; arguments to functions, case scrsfinee Mentp. Terms are evaluated in an environmenthe only obser-
components of pairs, and so on, must all be simple variables. Vations that we can make of programs are terminaiienthe ap-

Even the unit valu¢) must be bound to a variable before being

used (in the full language, the same holds even for constants
such as42). This means that there is no need for a general

notion of substitution: we only substitute variables forighles.
Notice also that there is no notion of redundant binding saagh
let x < yin K.

plication of the top-level continuatiomalt to a unit value.

2.1 CPS transformation

To illustrate how the CPS-based language can be used for func
tional language compilation, consider a fragment of Stechdlél_

Runtime values: r == () | (r1,72) | inir | {p, \k 2. K)
Continuation values: ¢ := (p, \x.K)
Environments: p:=e|p,xz+—1r|pk—c

Interpretation of values:

[0] » 0 [, 9)] p
[in: V] p ini (p(z)) [Mex.K] p

Evaluation Rules:

px—[V]pE K

(p(x), p(y))
(p, \kz.K)

[e] (\z.let z = m; z in k(x)
[fnz=>€] letval f = Mk z.[e] (N\z.k 2z
[let val z = e1 in eg end] k =

letcont j = = [e2] & in [e1] (Nz.j 2)

~—

in K(/)

[case e of inl x1 => e1| in2 2 => ez kK =
el (Az.letcont k1 21 = [e1] & in
letcont k2 z2 = [ez] & in
case z of k1 [| k2)

) eval s = Vin K |
gy Pk (p AT K)F LY
(e-letc) pFletcontkz=KinL|
: py—ri-K{ _
(e-prOJ) 0 F let y=TiT in K | p(II)) = (7”1,7‘2)
/, FK /
(e-appcy-Y :Fp 52 7 Lok = (0 K
) ., py—rEKJ p(x) =in;r
(e-case) phcasexof ki [k2l plki) = (', Ay.K)
'3 k), HEK ’ oy
(e-app)=7 H”j}@?;’;ﬁ £ o) = o A K)
(e-hal)— o ¥
Figure 2. Evaluation rules fondpg
Il ML — (Var — CTm) — CTm
[z] v = r(x)
[O] & = letvalz = () in k()
[erex] k = [e1] (Nz1.
Heg]] (XZQ.
letcont k x = k(z) in 21 k 22))
[Cer,ed] K = [er] Nzq.
[[62]] (XZQ.
letval © = (21, 22) in k(z)))
[inie] & = [e] (\z.letval z =in; z in k(z))
[#ie] k =)

Figure 3. Naive CPS transformation of toy ML intsps

whose expressions (ranged overd)yhave the following syntax:

ML>e == xlee |fnz=>e]| (e,e) |#ie] O
| ini e | let val z = e in €’ end
| case e of inl 1 => e1| in2 z2 => €2

We assume a datatype declared by

datatype (’a,’b) sum = inl of ’a | in2 of ’b

Expressions in this language can be translated into untgied

tion of the standard higher-order one-pass call-by-vataasfor-
mation (Danvy and Filinski 1992). An alternative, first-ergtrans-
formation is described by Danvy and Nielsen (2003).

The transformation works by taking a translation-time func
tion k as argument, representing the ‘context’ into which thegran
lation of the source term is embedded. For our language,dhe ¢
text's argument is a variable, as all intermediate resuisnamed.
Note some conventions used in Figure 3: translation-timebta
abstraction is written using and translation-time application is
written (. . .), to distinguish from\ and juxtaposition used to de-
note lambda abstraction and application in the target lagguAlso
note that any object variables present in the target termadiun
the source are assumed fresh with respect to all other boanid v
ables.

The translation isone-passn the sense that it introduces no
‘administrative reductions’ (herg-redexes for continuations) that
must be removed in a separate phaseeptfor let constructs (to
avoid these also would require analysis of ke expression; we
prefer to apply simplifying rewrites on the output of thenséor-
mation). However, the translation is naive in two ways. t-itsn-
troduces-redexes for continuations when translating tail function
applications. For examplgfn = => f (z,y)] x produces

letval g = Ak z.(letval p = (z,y) in letcont j z=k z in f jp)
in k(g)

whosen-redex (highlighted) can be eliminated to obtain the more
compact

letval g = (Ak z.letval p = (z,y) in f k p) in k(g).

Second, the translation afase duplicates the context; consider,
for example, f (case x of inl x1 => e1| in2 x5 => e2) whose
translation involves two calls tg.

The more sophisticated translation scheme of Figure 4 avoid
both these problems; again, this is based on Danvy and Kilins
(1992). The translation functioft] is as before, except (a) it in-
troduces goin point continuation to avoid context duplication for
case, and (b) for terms in tail position it uses an alternativegra
lation function (-) that takes an explicit continuation variable as
argument instead of a context.

2.2 Rewrites

After translating from source language to intermediateyleage,
most functional language compilers perform a number ohogt-
tion phases that are implemented as transformations omriate-
ate language terms. Some phases are specific (for examipfe, ar
raising of functions, or hoisting expressions out of loopsf usu-
ally there is some set of general rewrites based on stanaard r
ductions in the lambda-calculus. Figure 5 presents somergen
rewrites for our CPS-based language. The rewrites look wmre
plicated than the equivalent reductions in the lambdaubadcbe-
cause the naming of intermediate values forces introduciiod
elimination forms apart. For exampl@;reduction on pairs, which
in the lambda calculus is simply; (e1,e2) — e;, has to support
an intervening context. In practice, the rewrites are not hard to im-
plement. In functional style, value bindings (e.g. pairg)stored in
an environment which is accessed at the reduction site dgmp-
jection). In imperative style, bindings are accessed tirélerough
pointers, as we shall see in Section 4.1.

The payoff from this style of rewrite is thgelectiveuse of 3
rules. For example, in a lambda-calculus extended witht aon-
struct, one might perform the reductidet p = (z,y) in M —
M|(z,y)/p] but this would be undesirable unless every substi-
tution of (x,y) for p in M produced a redex. In our language,

terms using the function shown in Figure 3. This is an adapta- letval p = (z,y) in ...kp...let z=m pin K reduces to

I : ML — (Var — CTm) — CTm
letval f = Xkx. (e) k& in (f)

letcont j = = [ez] kin (e1) j

[fnz =>€] &

[let val z = e; in ez end] &

[case e of inl 1 => e1| in2 zo => €3] K

= [e] (\z./letcont j & = k() in letcont k1 x1 = (e1)) j in letcont ke z2 = (e2) j in case z of k1 || k2)

(case e of inl 21 => e1] in2 z2 => e

() kx
(e1 e2

(fnz=>e¢

(Cer,e2)

(ini e

([e;

(#i e

(let val z = e; in ez end

=
=S O

ML — CVar — CTm

[[61]] (Mxl.[[ez}] (X‘Z'Q.Cm k $2))

letval f =Xjz.(e) jink f

[ex] (\x1.[e2] (\zz.letval z = (z1,22) in k x))

[e] (\z.letval z = in; z in k x)

letval z = () ink x

le] Mzletz < m;zin k x)

letcont j = = (e2)) kin (e1) J

[e] (\z.letcont k1 x1 = (e1]) k in letcont ks 22 = (e2) k in case z of k1 [k2)

Figure 4. Tail CPS transformation (changes and additions only shown)

Cu=[|letvalz =V inC|letz=myinC|
letval x = Ak x.C in K | letcont k z = C in K |
letcont kx = K inC

DEAD-CONT letcont k x = L in K — L (k not free inK
DEAD-VAL letval z = V in K — K (z not free inK)
(3-CONT letcont k x = K in Clk y]

— letcont k z = K in C[Ky/z]]
3-FUN letval f = Akx.K in C[f j y]

— letval f = Mkxz.K in C[K[y/z, j/k]]
3-CASE letval x = in; y in C[case x of k1 || k2]

— letval z = in; y in Clk; y]
B-PAIR letval z = (z1,22) in Cllet y = m; z in K]

— letval z = (z1,z2) in C[K[z;/y]]
B-CONT-LIN letcont k z = K in Clk y]

— C[K][y/z]] (if k not free inC)
B-FUN-LIN letval f = Akx.K in C[f j y]

— C[Kly/=,j/k]] (f # v, f notfreeinC)
7-CONT letcontkz=jzin K — K[j/k]
n-FUN letval f =Xkzgkzin K — Klg/f]
n-PAIR letx; =mxzinClletz; = mjx

in C'[letval y = (z1, z2) in K]]
—letz; =mzinClletz; =mx
nCKz/ull (1} = {1,2))

1n-CASE letcont k; x1 = (letval y1 = in;z1 in k y1) in

Clletcont k;j z2 = (letval y2 = inj z2 in k y2) in
C'[case z of ki1 || k2]]

— letcont k; x1 = (letval y1 = in;z1 in k y1) in
Clletcont k;j x2 = (letval y2 = inj z2 in k y2) in

Clk=l]l ({i,5} ={1,2})

Figure 5. General rewrites foAZps

letval p = (z,y) in ...k p... K[z/z] which applies the3-PAIR
rule tom; p but preserves other occurrenceof

It is easy to show that all rewrites preserve well-formedras
terms. In particular, the scoping of local continuationsespected.

The g-FuN and 3-CoNT reductions arenlining transforma-
tions for functions and continuations. The remainder ofrduhic-
tions we callshrinking reductionsas they strictly decrease the size
of terms (Appel and Jim 1997). T CONT-LIN and3-FUN-LIN
reductions are special caseg®feduction folinear uses of a vari-
able, in effect combining BPAD- and 8- reductions. Shrinking re-
ductions can be applied exhaustively on a term, and arealyypic
used to ‘clean up’ a term after some special-purpose globabi
formation such as arity-raising or monomorphisation. @etne
number of such reductions will be linear in the size of thenter
moreover, using the representation of terms describeddtidhet
it is possible to perform such reductionslimear time

2.3 Comparison with a monadic language

The original implementations of the MLj and SML.NET compil-
ers used monadic languages inspired by Moggi's computtion
lambda calculus (Moggi 1991). Figure 6 presents syntax for a
monadic languag&mon and selected reduction rules.

The defining feature of monadic languages is that sequencing
of computations is made explicit through th& construct; val-
ues are converted into trivial computations usingwhleconstruct.
Monadic languages share with CPS languages the propettfatha
miliar 8-reduction on functions is sound, as evaluation of the func-
tion argument is made explicit throught. But there are drawbacks,
as we outlined in the Introduction. (An orthogonal issue fcas
CPS based languages — is whether values can appear anywhere e
cept insideval. In Amon, for ease of presentation, we permit values
to be embedded in applications, pairs, and so on, wherea/fgr
we insist that they are named. The difference shows up inghe r
duction rules, which imZs make use of contexts. It should be
noted that the drawbacks of monadic languages that we arg abo
to discuss are unaffected by this choice.)

Problem 1: need for let/let commuting conversion. The basic
reductions listed in Figure 5 have corresponding redustioiCPS.
The let construct itself hag3 and n rules which correspond to
B-CoNT and n-CoNT for AZss (consider the CPS transforms of
the terms). In contrast to CPS-based languages, thoughadimon

Grammar
MTm > M,N == valv|letz<=MinN |vw|mv
| case v of iny 1. M7 [ing x2.M>
MValsv,w == x| Xx. M| (v,w)|insv]()
Reductions
B-LET let z < valvin M — Mlv/x]
n-LET letx < Minvalz — M
CC-LET let 2 <= (let x1 <= M in M2) in N
— letx1 < M in (Iet T2 <= Ms in N)
CC-CASE let z <= (case v of iny x1.M1 [J in2 x2.M2) in N
— let f < val Axz.N
incasevofinyzi.letx <= M in f x
H ing r2.let £ <= Mo in f x
ﬂ-PAIR T ('Ul,'l)g) — U
B-FUN (Az.M)v — M[v/x]
B-CASE case in; v of inyz1. M [ing k2. M2 — M;[v/x;]

Figure 6. Syntax and selected rewrites for monadic langusags

languages include a so-calledmmuting conversigrexpressing
associativity foret:

CC-LET let zp < (let z1 <= My in M) in N

— letx1 < M in (|et$2 < Mos in N)

This reduction plays a vital role in exposing further redas.
Consider the source expression

#1 (Enz=> (gz,2)) y)
Its translation iNntO\mon IS
let zo <= (Az.let z1 <= g z inval (z1,2)) ¥ in 1 22.
Now suppose that we appl§-FuN, to get
let z2 <= (let 21 <= g y inval (z1,y)) in 71 22.
In order to make any further progress, we must use GC+b get
let z1 <= g y in let 22 < val (z1,y) in 71 22.

Now we can apply3-LET and3-PAIR to getlet z1 < gy in 21
which further reduces by-LETto g y.

Solution 1. Use CPS. Now take the original source expression
and translate it into our CPS-based language, Witbpresenting
the enclosing continuation.

let f = A\j1 .
(letcont j2 z1 = (letval z2 = (21,) in j1 22) in g j2 x)
in letcont j3 z3 = (let z4 = w1 23 in k 24)
infjsy
Applying 8-FUN-LIN gives the following, with substitutions high-
lighted:
letcont j3 z3 = (let z4 = 71 23 in k 24)
in letcont j2 z1 = (letval z2 = (21, gy) in ja 22)ingj2 y

and by3-CoNT-LIN on j3 we get

letcont j2 21 =
(letval z2 = (z1,y) inlet z4 = 1 22 in k 24)
ingj2y.
Finally, use of3-PaIR and DEAD-VAL producedetcont js 21 =
k z1 in g j2 y which reduces by)-ConT to g k y. All reductions
were simple uses of andy rules, without the need for the addi-
tional ‘administrative’ reduction CC-£T.

Problem 2: quadratic blowup. The CC-LET reduction seems in-
nocent enough. But observe that inist a shrinking reduction — so
it's not immediately clear whether reduction will termiaaFortu-
nately, the combination of CC#r and shrinking8/n-reductions

of Figure 6doesterminate (Lindley 2005), and moreover there is
a formal correspondence between the reductions of the nwnad
language and CPS (Hatcliff and Danvy 1994). Unfortunatisig,
order in which conversions are applied is critical to thecadficy

of simplification by reduction. Consider the following teim\mon:

let fr < val (Azp.let yn <= g xn in g yn) in
let fn—1 < val (Azn—1.let yp—1 < fn Tn-1in g yn—1) in

let f1 < val (Azq1det y1 < foziingyr)infia

If (linear) B-FuN is applied to all functions in this term, followed
by a sequence of CCHT reductions, then no redexes remain
after O(n) reductions. If, however, the commuting conversions
are interleaved withB-FUN, thenO(n?) reductions are required.
(There are other examples where it is better to apply conmguti
conversions first.) Although this is a pathological example
‘simplifier’ was a major bottleneck in the MLj and SML.NET
compilers (Benton et al. 2004a), in part (we believe) beeaafs
the need to perform commuting conversions.

Solution 2: Use CPS. It is interesting to note that monadic terms
can be translated into CPS in linear-time; shrinking reidnstcan

be applied exhaustively there in linear-time (see Sectjpartl the
term can be translated back into CPS in linear-time. Thesetfoe
guadratic blowup we saw above is not fundamental, and thase m
be some means of amortizing the cost of commuting convession
so that exhaustive reductions can be peformed in linear. fiee-
ertheless, it is surely better to have the term in CPS fronsthst,
and enjoy the benefit of linear-time simplification.

Problem 3: need for let/case commuting conversion. Matters
become more complicated with conditionals or case coristruc
Consider the source expression

¢’ (g((fn x => case of inl x;1 => (z1,x3) | in2 2 => ¢"" x))
Its translation intO\mon IS

let 2 <= (Az.case x of iny z1.val (z1,23) [in2z2.9") yin
let 2’ < gzing 2.

This reduces by-FuN to

let z < (case y of iny z1.val (x1,23) [in2 x2.g” y) in
let 2/ < gzing 2.

At this point, we want to ‘float’ thease expression out of thiet.
The proof-theoretic commuting conversion that expresses t
rewrite is

let z < (case v of iny x1.M; [ing z2.M2) in N
-

case v of iny z1.(let x <= My in N) [ing z2.(let © <= Ms in N)

This can have the effect of exposing more redexes; unfaielina
it also duplicatesV which is not so desirable. So instead, compil-
ers typically adopt a variation of this commuting convenstbat
sharesM between the branches, creating a so-cajted point
function:

CC-CASE let z < (case v of iny z1.M1 [ingx2.M2) in N
— let f < val A\x.N
incase v of inyx1.let x <= M; in f

[ingzo.let x <= Ma in f x

Applying this to our example produces the result

let f < val (Az.let 2’ < gzing 2')in
case x of
iny z1.(let z <= val (z1,z3) in f z)
Jinizz.(let z <= g" xin f 2).

As observed earlier, join points such Aare just continuations.

Solution 3: Use CPS. Consider the CPS transformation of the
original source expression, withbeing the enclosing return con-
tinuation.
letcont j' 2/ = ¢’ k 2" in
letcont j z =g j' zin
letval f = \j" z.
(letcont k1 z1 = (letval 2" = (z1,z3) in §” 2”") in
letcont ko x2 = g” 5" 2 in
case x of ki [| k2)
infjy
Applying 3-FUuN-LIN immediately produces the following term,
with substitutions highlighted:

letcont j' 2’ = ¢’ k 2’ in
letcont j z =g j' zin
letcont k1 1 = (letval 2"’ = (x1,23) in j 2”)in
letcont ko x2 = g"” j [y in
case 'y of ki || ko

There is no need to apply anything analogous to C&S; or to
introduce a join point: the original term already had onenely j,
which was substituted for the return continuatjdrof the function.

The absence of explicit join points in monadic languages is
an annoyance in itself. By representing join points as @myin
functions, it is necessary to perform a separate staticysisalo
determine that such functions can be compiled efficientlpassc
blocks.

Explicitly named local continuations in CPS have the adaget
that locality is immediate from the syntax, and preservedeun
transformation; furthermore traditionaitra-procedural compiler
optimizations (such as those performed on SSA represensati
can be adapted to operate on functions in CPS form.

2.4 Comparison with ANF

Flanagan et al. (1993) propose an alternative to CPS whighcll
A-Normal Form, or ANF for short. This is defined as the image
of the composition of the CPS, administrative normalizatémd
inverse CPS transformations.

05 5
A lﬁ-normalization
Y
A(CS) e
un-CPS

The source languag€'S is Core Scheme (corresponding to our
fragment of ML), and their CPS transformation composed wWith
normalization is equivalent to our one-pass transformafi$ of
Figure 4.

The languageA(CS) corresponds precisely to CCel/CC-
CAsE normal forms inA\mon. We can express these normal forms
by a grammar:

ATm> A, B = R|letz < RinA

| case v of in1 x1.A1 [ing x2. A2
ACmp> R = vw|mv]|v
AValsv,w == z|Az.A| (v,w) |ingv| ()

Instead of going via a CPS language, the transformationAiNB
can be performed in one pass, as suggested by the dotted Ime
the diagram above A similar transformation has been studied by
Danvy (2003).

As Flanagan et al. (1993) suggest, the “back end of arormal
form compiler can employ the same code generation techsique
that a CPS compiler uses”. However, as we mentioned in the In-
troduction, it is not so apparent whether ANF is ideally adito
optimization After all, it is not even closed under the usual rule
for 8 reduction(Az.A) v — Afv/z]. As Sabry and Wadler
(1997) later explained, it is necessary to combine sulbistitwvith
re-normalization to get a sound rule fésreduction: essentially the
repeated application of CCHT. They do not consider conditionals
or case constructs, but presumably to maintain terms in ANF i
is necessary to normalize with respect to CE¥land CC-CASE
following function inlining.

It is clear, then, that ANF suffers all the same problems &ffat
fect monadic languages: the need for (non-shrinking) cotimgu
conversions, quadratic blowup of ‘linear’ reductions, dhd ab-
sence of explicit join points.

3. Typed CPS with exceptions

We now add types and other features to the language of Sextion
In the untyped world, we can model recursion using a calixlye
fixed-point combinator. For a typed language, we must add ex-
plicit support for recursive functions — which, in any caisemore
practical. Moreover, we would like to express recursiomtinu-
ationstoo, in order to represent loops. Finally, to support excep-
tions, functions in the extended language take continuations:

an exception-handler continuation, and a return contionaf his

is the so-calledlouble-barrelledcontinuation-passing style (Thi-
elecke 2002).

Figure 7 presents the syntax and typing rules for the extéende
language\Zps Types of values are ranged overhy and include
unit, a type of exceptions, products, sums and functions. (Te sav
space, we omit constructs for manipulating exception \&ju@on-
tinuation types have the formr which is interpreted as ‘continua-
tions accepting values of type. Note that for simplicity of presen-
tation we do not annotate terms with types; it is an easy eeto
add sufficient annotations to determine unique typing déows.
Typing judgments for values have the foif— V' : 7 in whichT"
maps variables to value types. Judgments for terms havethe f
T'; A + K ok in which the additional contexA maps continua-
tion variables to continuation types. Complete progranastgred
in the context of a single top-level continuatibalt acceptingunit
values.

We consider each construct in turn.

e Theletval construct is as before, with the obvious typing rule
and associated value typing rules. Likewise for projecion

® Theletcont construct is generalized to support mutually recur-
sive continuations. These represent loops directly. Looal
tinuations are also used for exception handlers.

e The letfun construct introduces a set of mutually recursive
functions; each function takes a return continuatpan excep-
tion handler continuatioh, and an argument. As a language
construct, there is nothing special about the handler coati
tion except that its type is fixed to beexn, and so a function
type T — o is constructed from the argument typeand the
type —o of the return continuation. What really distinguishes

1Though, curiously, the A-normalization algorithm’ in (Flanagan et al.
1993, Fig. 9) does not actually normalize terms, as it ledeedound
conditionals alone.

Grammar
(value types) T, O
(values) CVals VW
(terms) CTm > K, L

01 (@y)|iniz

(function def.) FunDef > F = fkhax=K
(cont. def.) ContDef 5C := kzr=K
Variables
T'Fa:7 ArFk:—-r

Well-typed terms
) {F, Ti:Tis A, k)liﬁTh ey kn:ﬁTn [KZ' Ok}lgign

unit | exn | TXo | T4+0 | T—0o

letvalz =V in K | letx =m2in K | letcont Cin K | letfun F in K
| kz | fkhax | casex of ky || ko

A ki, .

. kn:—m B L ok

(letc I'; A+ letcont k1 21 = Ka, ..

{0, ziims, frim1 — 01, ...

. kn xn = K, in L ok

s fniTn — On; kim0, hii—mexn B K ok}igicn

T, fim — o1,..., fniTn — on; A F Lok

(letrec)

I'tV:.r o AF K ok

F;A}_letfunf&kthml:K1,...
'Fa:7 Abk:-7

7fnknhn$n:Kn in L ok

Fxz:m x7me T y7; AF K ok

'k (z,y):Txo0

(proj) —

).
(M) = AT jevals = Vin Kok PO T AT haok T,AFlety < main K ok €1,2
(Case\f‘l—x:ﬁ—FTz Abki:- 1 Abky:m (a)F}—f:T—Mf AFk:-0c AFh:-exn T'Fax:7
) ;A - case « of ki | k2 ok PP TAF fkhaok
Well-typed values Well-typed programs
. IFx:7 T'Fy:0o I'txz:7; . .
(pair) O F— o 1 (€02 W5 (PO e inie - K ok

Figure 7. Syntax and typing rules for typed languaykss

exceptions is (&) their role in the translation from soue- |
guage into CPS, and (b) typical strategies for generatidg.co

Continuation applicatiot x is as before. Now there are four
possibilities fork: it may be a recursive or non-recursive occur-
rence of aetcont-bound continuation, compiled as a jump, it
may be the return continuation, or it may be a handler continu
ation, which is interpreted asising an exception.

Function applicationf k& h x includes a handler continua-
tion argumenth. If k is the return continuation for the near-
est enclosing function, antl is its handler continuation, then
the application is a tail call. Ik is a local continuation and

is the handler continuation for the enclosing function,nthe
the application is a non-tail call without an explicit exeep

tion handler — so exceptions are propagated to the context.

Otherwise,h is an explicit handler for exceptions raised by
the function. (Other combinations are possible; for exanipl
letfun fkhxz =Clg hhy] in K the function application is
essentiallyraise (g y) in a tail position.)

e Branching usingase is as before.

3.1 CPS transformation

We can extend the fragment of ML described in Section 2.1 with
exceptions and recursive functions:

ML >e == ...|raisee|e; handle z=>e¢2
| let fund in e end
MLDef 5d == fzx=e

The revised CPS transformation is shown in Figure 8 (see (Kim
et al. 1998) for theselectiveuse of a double-barrelled CPS trans-
formation). Both[-] and(-) take an additional argument: a contin-
uationh for the exception handler in scope. Thesise ¢ is trans-
lated as an application @f Fore; handle x => e2 alocal handler

continuation®’ is declared whose body is the translatioregfthis
is then used as the handler passed to the translation farfotie; .
3.2 Rewrites

The rewrites of Figure 5 can be adapted easilyZe;, and extended
with transformations such as ‘loop unrolling’:

ﬁ-REC letfun f1 ki hix1 = C[fL kh :C]
fokahaxo = Ko
fnknhnxn:Kn
in K
— letfun f1 k1 h1x1 :C[Kl[k/k“h/hz,m/ml]]
fokahaxo = Ko
fnknhnmn:l{n
in K
B-RECCONT letcont k1 z1 = Clk;]
ko x2 = Ko
oo knzn =K,
in K
— letcont kix1 = C[KL[‘Z'/J?L]]
kg T = K2
oo knzn =K,
in K

There are no special rewrites for exception handliag, corre-
sponding to(raise M) handle z.N — let z < M in N. Stan-
dard 3-reduction on functions and continuations gives us this for
free. For example, the CPS transform of

let fun f x =raise x in f y handle z => (z,%) end
is
letfun fK' W z=h =
in letcont j 2 = (letval 2’ = (2,2) ink 2')in fkjy

which reduces by-FuN and3-ConNTtoletval 2" = (y,y) in k 2’

Il : ML— CVar — (Var — CTm) — CTm
hk

[= k(z
[er e2] he = [ei] h (A\z1.Je2] h (Az2.letcont k x = k(x) in 1 k h x2))
[fnx=>e] hx = letfun fkh'z = (e) W' kinx(f)
[Cer,ed] he = [er] h (Az1.[e2] h (Nzz.letval z = (z1,z2) in k(x)))
[inie] he = [e] h(Az.letval z =in; z in k(z))
[O]he = letval z = () in k()
[#ie] he = [e] h(Nzlet z < m; z in k(z))
[let valz =e; inez end] hx = letcont j z = [ez] hkin (e1) hj
[let fund ineend] hk = letfun [d] in [e] h&
[raisee] hx = [e] h(\z.h 2)
[e1 handle z => ex] hx = letcont j x = k(x) in letcont A’ = = (e2) hjin (e1) h'j

[case e of inl 1 => e1] in2 22 => €3] K
= [e] h (\z.letcont j = = k(z) letcont k1 1 = (e1]) hj in letcont ko z2 = (e2) hj in case z of ki [k2)

-

[: MLDef — FunDef
[fz=e€e] = fkhxz=(e)hk
() : ML — CVar — CVar — CTm
(z) hE = k=
(ex e2x) hk = [ei] h (Ax1.[e2] h Nx2.21 k h x2))
(fnz=>e) hk = letval f=XAjz.(e)hjink f
(Cer,e2)) hk = [e1] h (\z1.[e2] h (Axs.letval x = (21, 22) in k)
(ini e) hk = [e] h(\zletval x =in; z in k z)
(O)hk = letvalz=()inkx
#ie) hk = [e] h(\zdetxz < m zink)
(let val z =e1 inez end) hk = letcont j xz = (e2) hkin (ei) hj
(let fundineend) hk = letfun [d] in (e) hk
(raisee) hk = [e] h(N\z.h 2)

(ex handle x => e2)) hk
(case e of inl z1 =>e1| in2 x2 => e2) hk
= [e] h (\z.letcont k1 x1 = (e1)) hk in letcont k2 x2 = (e2) hk in case z of ki [k2)

letcont b’ & = (e2) hkin (el) h' k

Figure 8. Tail CPS transformation fokZps

Likewise, commuting conversions are not required, in @sitr

with monadic languages, where in order to define well-bethave

conversions it is necessary to generalize the uddidlandle x =
N construct tatry y <= M in Ny unless © = N», incorporating a
success ‘continuationV; (Benton and Kennedy 2001).

3.3 Other features

It is straightforward to extendZss with other features useful for
compiling full-scale programming languages such as Stainda.

¢ Recursive types of the forma.T can be supported by adding
suitable introduction and elimination constructs: a vdhlé =
and a ternlet x = unfold y inK.

Binary products and sums generalize tosthary case. For opti-
mizing representations it is common for intermediate |aups
to support functions with multiple arguments and resultsl a
constructors taking multiple arguments. This is easy: tionc
definitions have the fornf £ hz = K, and continuations have

the formk T = K and are used for passing multiple results
and forcase branches where the constructor takes multiple ar-

guments.

Polymorphic types of the foriia.— can be added. Typing con-
texts are extended with a set of type variablesThen to sup-
port ML-style let-polymorphism, each value binding constr

(letval, letfun, and projection) must incorporate polymorphic

generalization. For example:
V,a;T'EV:r V;T z:Va.r; A+ K ok
V;T5 A letval . =V in K ok

For elimination, we simply adapt the variable rule (var) to
incorporate polymorphic specialization:

(letv)

var Vot el
(var) I'tz:7[o/q]

3.4 Effect analysis and transformation

The use of continuations in an explicit ‘handler-passiytestends
itself very nicely to an effect analysis for exceptions. Sage, for
simplicity, that there are a finite number of exception carcbrs
ranged over byE. We make the following changes Mps

¢ We introduceexception setypes of the form{E,..., E,},
representing exception values built with any of the comstru
tors F1, ..., E,. Set inclusion induces a subtype ordering on
exception types, with top typexn representingany exception,
and bottom typd } representingno exception.

e The type of handler continuations in function definitions ar
refined to describe the exceptions that the function is pgezchi
to throw. For example:

(1) letfun fk(h:={})z=Kin...
(2) letfun fk(hi—exn)z = Kin ...
(3) letfun fk(h:={E,E'})z =K in ...

The type of (1) tells us thak never raises an exception, in
(2) the function can raise any exception, and in (3) the fonct
might raiseF or E’.

¢ Now that handlers are annotated with more precise types, the
function types must reflect this too. We write=° & for the
type of functions thagitherreturn a result of type or raise an
exception of typer’ <: exn. Subtyping on function types and
continuation types is specified by the following rules:

! !
T2 <:T1 o1 <:02 o1 <: 03 o9 <: 01

-0 <: 02

! ’
71— 01 <: T9—72 02

Exception effects enable effect-specific transformati(®esnton

and Buchlovsky 2007). Suppose that the typg a6 - —1#1} 4.
Then we can apply a ‘dead-handler’ rewrite on the following:

letcont h:—{FE1, E2} = (case z of E1.k1 || E2.k2)in fkhy
— letcont h:—{E1} x = (case z of E1.k1)in fkhy

In fact, there is nothing exception-specific about this rawit is
just employing refined types for constructed values. Theafse
continuations has given us exception effects ‘for free’.

4. Implementing CPS

Many compilers for functional languages represent inteliate
language terms in a functional style, as instances of arbedge
datatype of syntax trees, and manipulate them functiorfadlyex-
ample, the languagklsscan be implemented by an SML datatype,
here using integers for variables, with all bound variablistinct:

type Var = int and CVar = int
datatype CVal =

Unit | Pair of Var * Var | Inj of int * Var
| Lam of CVar * Var * CTm
and CTm
LetVal of Var * CVal * CTm
LetProj of Var * int * Var * CTm
LetCont of CVar * Var * CTm * CTm
AppCont of CVar * Var
App of Var * CVar * Var
Case of Var * CVar * CVar

Rewrites such as those of Figure 5 are then implemented by a
function that maps terms to terms, applying as many rewees
possible in a single pass. Here is a typical fragment thdtegpine
B-PAIR and DEAD-VAL reductions:

fun simp census env S K
case K of
LetVal(x, V, L) =>
if count(census,x) = 0 (* Dead-Val *)
then simp census env S L
else LetVal(x, simpVal census env S V,
simp census (addEnv(env,x,V)) S L)

LetProj(x, 1, y, L) =>
let val y’ applySubst S y
in case lookup(env, y’) of
(* Beta-Pair *)
Pair(z,_) =>
simp census env (extendSubst S (x,z)) L
| _ =>
LetProj(x, 1, y’, simp census env S L)
end

In addition to the ternX itself, the simplifier functionsimp
takes a parametesnv that tracksletval bindings, a parametes
used to substitute variables for variables and a parameterus
that maps each variable to the number of occurrences of tie va
able, computed prior to applying the function.

The census becomes out-of-date as reductions are applied, and
this may cause reductions to be missed until the censusaktec
lated andsimp applied again. For example, thiePaIR reduction
may trigger a EAD-VAL in an enclosingetval binding (consider
letval z = (y1,y2) in ...let z = w1z in ... wherez occurs only
once). Maintaining accurate census information as resvate per-
formed can increase the number of reductions performedimgées
pass (Appel and Jim 1997), but even with up-to-date cendos in
mation, it is not possible to perform shrinking reductionbaus-
tively in a single pass, so a number of iterations may be reduie-
fore all redexes have been eliminated. In the worst case|ehds
to O(n?) behaviour.

What's more, each pass essentially copies the entire teaw, |
ing the original term to be picked up by the garbage colledtbis
can be expensive. (Nonetheless, the simplicity of our CRS la
guage, with substitutions only of variables for variablasd the
lack of commuting conversions as are required in ANF or manad
languages, leads to a very straightforward simplifier afgor.)

4.1 Graphical representation of terms

An alternative is to represent the term usingraph, and to perform
rewrites by destructive update of the graph. Appel and J@8T)
devised a representation for which exhaustive applicatiothe
shrinking 8-reductions of Figure 5 takes time linear in the size of
the term. We improve on their representation to supportieffte-
reductions and other transformations. The representhtsrthree
ingredients.

1. The term structure itself is a doubly-linked tree. Evarlterm
has an up-link to its immediately enclosing term. This sufgpo
constant time replacement, deletion, and insertion ofesuix.

. Each bound variable contains a link to one of its free occur
rences, or is null if the variable is dead, and the free oetwwes
themselves are connected together in a doubly-linked leircu
list. This permits the following operations to be perfornied
constant time:

e Determining whether a bound variable has zero, one, or
more than one occurrence, and if it has only one occurrence,
locating that occurrence.

e Determining whether a free variable is unique.
e Merging two occurrence lists.

Furthermore, we separate recursive and non-recursivealises
variables; in essence, insteadleffun fkhx = K in L we
write let f = rec gkhxz.K[g/f] in L. This lets us detect
DEAD-+ and3-+-LIN reductions.

. Free occurrences are partitioned into same-binder alguive
classes by using thenion-find data structure (Cormen et al.
2001¥. The representative in each equivalence class (that is, the
root of the union-find tree) is linked to its binding occurrence.

This supports amortized near-constant time access totidemi
(the find operation) and merging of occurrence lists (thmgon
operation).

Substitution of variabler for variabley is implemented in near-
constant time by (a) merging the circular lists of occuremneo
that z now points to the merged list, and (b) applyinguaion
operation so that the occurrencesyadre now associated with the
binder forz.

Consider the following value term, with doubly-linked tree
structure and union-find structure implicit but with binderfree

2Readers familiar with type inference may recall that urfiod-underpins
the almost-linear time algorithm for term unification (Baaénd Nipkow
1998).

pointer shown as a dotted arrow and circular occurrencedistwn
as solid arrows:

Now suppose that we wish to applitPAIR to the projectionr; p.
Using thefind operation on the union-find structure we can locate
the pair(x, y) in near constant time. Now we substitutdor z by
disconnecting:'s binder from its circular list and connectings
occurrence list in its place, and merging the two lists, instant
time. At the same time, we apply thmionoperation to merge the
binder equivalence classes (not shown).

Ak

Finally we remove the projection itself, deleting the ocence ofp
from the circular list, again in constant time:

Ak mo
let p. = (_\

. SN
in ... p

T,y)
. \&_/7_96/7 p
One issue remains: the classical union-find data structes dot
support deletion. There are recent techniques that extgind-find
with amortized near-constant time deletion (Kaplan et 802).
However, the representation is non-trivial, and might adalacept-
able overhead to the union and find operations, so we chasahs
a simpler solution: do nothing! Deleted occurrences renrathe
union-find data structure, possibly as root nodes, or asshodé¢he
path to the root. In theory, the efficiency of rewriting isthdepen-
dent on the ‘peak’ size of the term, not its current size, beihave
not found this to be a problem in practice.

Each of the shrinking reductions of Figure 5 can be imple-
mented in almost-constant time using our graph representdio
put these together and apply them exhaustively on a termolwe f
low Appel and Jim (1997):

¢ First sweep over the term, detecting redexes and colletiiérg
in a worklist.

e Then pull items off the worklist one at a time (in any order),
applying the appropriate rewrite, and adding new redexes to
the worklist that are triggered by the rewrite. For example,
the removal of a free occurrence (as can happen for multiple
variables when applying BAD-VAL) can induce a BAD-x
reduction (if no occurrences remain) orBax-LIN reduction
(if only a single occurrence remains).

In the current implementation, the worklist is represenésda
queue, but it should be possible to thread it through the teseif.
Shrinking reductions could then be performed with consspace
overhead.

4.2 Comparison with Appel/Jim

The representation of Appel and Jim (1997) did not make use of
union-find to locate binders. Instead, (a) the circulardfstariable
occurrences included the bound occurrence, thus givingtaoh
time access to the binder in the case that the free variablédsie,
and (b) forletval-bound variables, each free occurrence contained
an additional pointer to its binder. When performing a sitinsbdn
operation, these binder links must be updated, using tingatiin
the number of occurrences; fortunately, for any particutaiable
this can happen only once during shrinking reductiondeaal-
bound variables cannot become rebound. Thus the cost igiaetbr
across the shrinking reductions.

Unfortunately the lack of binder occurrences for rietval-
bound variables renders less efficient other optimizatirch as
n-reduction. Take an instance @fPAIR:

mizin Cllet zo = ma z in C'[letval y = (21, x2) in K]
mizin Cllet z2 = ma z in C'[K[z/y]]]

let 21
— let 21

Just to locate the binder far, andz2 would take time linear in the
number of occurrences.

Our use of union-find gives us efficient implementation of all
shrinking reductions, and of other transformations toorenser,
when analysing efficiency we need not be concerned whethier va
ables ardetval-bound or not.

4.3 Performance results

We have modified the SML.NET compiler to make use of a typed
CPS intermediate language only mildly more complex tham tha
shown in Figure 7. It employs the graphical representatfdarms
described above; in particular, tremplifier performs shrinking
reductions exhaustively on a term representing the whalgrpm,
and it is invoked a total of 15 times during compilation.

Table 1 presents some preliminary benchmark results show-
ing average time spent in simplification, time spent in moapm
phisation, and time spent in unit-removal (e.g. transfaiomaof
unit*int values toint). We compare (a) the released version of
SML.NET, implementing a monadic intermediate languagelL(MI
and functional-style simplification algorithm, (b) the Agfdim-
style graph representation adapted to MIL terms implentehte
Lindley (Benton et al. 20044a; Lindley 2005), and (c) the neap-
based CPS representation with union-find. Tests were run on a
3Ghz Pentium 4 PC with 1GB of RAM running Windows Vista.
The SML.NET compiler is implemented in Standard ML and com-
piled using the MLton optimizing compiler, which generakégh
quality code from both functional and imperative codindesty- so
giving both techniques a fair shot.

As can be seen from the figures, the graph-based simplifier for
the monadic language is significantly faster than the fonetisim-
plifier — and although all times are small, bear in mind tha th
simplifier is run many times during compilation. Unit rembisa
roughly comparable in performance across implementatioter-
estingly, the graph-based CPS implementation of mononigaph
tion runs up to twice as slowly as the functional monadic enpl
mentation. We conjecture that this is because monomottidrisa
necessarily copies (and specializes) terms, and CPS terdsad
be larger than MIL terms, and the graph representation gefar
still.

These figures come with a caveat: the comparison is somewhat
“apples and oranges”. There are differences between the ML
MIL and g-CPS representations that are unrelated to monads o

Table 1. Optimization times (in seconds)

Benchmark Lines Phase MIL g-MIL g-CPS
raytrace 2,500 Simp 0.12 0.01 0.01
mlyacc 6,200 Simp 0.44 0.02 0.02
smlnet 80,000 Simp 7.29 0.29 0.15
Mono 0.75 nla 1.41
Deunit 0.76 1.3 0.6
hamlet 20,000 Simp 0.97 0.08 0.04
Mono 0.15 n/a 0.19
Deunit 0.12 0.16 0.14

CPS. Future work is to make a fairer comparison, implemgntin
a functional version of the CPS terms, and perhaps also &prec

monadic analogue.

5. Contification

Our CPS languages make a syntactic distinction betweetidmsc
and local continuations. The former are typically comp#sdeap-
allocated closures or as known functions, whilst the |atter al-
ways be compiled as inline code with continuation applarati
compiled as jumps. For efficiency it is therefore desirablgdns-
form functions into continuations, a process that has beenedd
contification(Fluet and Weeks 2001).

Functions can be contified when they always return to the same

place. Consider the following code written in the subset BiLS
studied in Section 2:

let fun f x = ...
in g (case d of inl1 d1 => f y | in2 d2 => f d2) end

If £ returns at all, it must pass control go Here, this is obvious,
but for more complex examples it is not so apparent. Now clansi
its CPS transform:

letval f = (Akz.---k---)in
letcont ko w =g r win
letcont j1 di = f ko y in
letcont jo d2 = f ko d2 in
case d of j1 || jo

It is clear thatf is always passed the same continuatigr- and
S0, unless it diverges, it must return throughand so pass control
to g. We can transfornf into a local continuation, as follows:

letcont ko w =g r w in
letcont jx=---ko---in
letcont j1 di = j y in
letcont j2 d2 = j d2 in
case d of j1 || jo

We have done three things: (a) we have replaced the fungtipn

a continuatiory, deleting the return continuation at both definition

and call sites, (b) we have substituted the argumignfor the
formal k in the body of f, and (c) we have moveg so that it is
in the scope ofyo.

Fluet and Weeks (2001) use the dominator tree of a program’s

call graph to contify programs that consist of a collectiodn o
mutually-recursive first-order functions. They show tHait al-
gorithm isoptimat no contifiable functions remain after applying
the transformation. Their dominator-based analysis caadapted
to our CPS languages, and is simpler to describe in this xobée
cause all function definitions and uses have a named cotittnua
(Fluet and Weeks use named continuations only for non-adig)c
When applied to top-level functions, the transformatiosimpler
too, but in the presence of first-class functions and geridoak
structure the transformation becomes significantly morapiex
to describe.

We prefer an approach based on incremental transformétion,
essence repeatedly applying the rewrite illustrated aloo¥ié no
further rewrites are possible. We consider first the caseoof n
recursive functions, then generalize to mutually-remersiunc-
tions, and conclude by relating our technique to dominhéased
contification.

5.1 Non-recursive functions

In the untyped languag&Zss without recursion, it is particularly
straightforward to spot contifiable functions: they aresthdor
which all occurrences are applications with the same coation
argument. We define the following rewrite:

CONT (f not free inC, D andD minimal):

letval f = Akx.K in C[D[f ko 1, .., f ko xx]]
—
Clletcont j z = K[ko/k] in D[j x1,...,] xa]]

HereC is a single-hole context as presented in Figure 5Arisl a
multi-hole context whose formalization we omit.

The CONT rewrite combines three actions: (a) the functipn
is replaced by a continuatiof, with each application replaced
by a continuation application; (b) the common continuatigris
substituted for the formal continuation parameten the body K
of f; and (c) the new continuation is pulled into the scope
of the continuationky. The multi-hole contexD is the smallest
context enclosing all uses gf, which ensures that is in scope
after transformation. The analysis is trivial (just cheel sites for
common continuation arguments), yet iterating this tramsftion
leads to optimal contification, in the sense of Fluet and Week
(2001). Here is an example adapted frlwo. cit. §5.2,

letval h = A\kp xp.- - - in
letval g1 = Ak1x1.---h ki z1---k1 zg---in
letval gz = Aksxo.---h ko z2---1in

letval f = Akpay.-- g1 kyzs- g2 kfza---gakyszs---in
letval m = XNkw, Ty f j1 26+ f J2 z7in. ..
We can immediately see thgt and g2 (but noth) are always

passed the same continuatibp, and so we can apply @\T to
contify them both:

letval h = Akp xp.-- - in

letval f = Ak xy.
(letcont kg1 x1 = -+-h kg 21+ kg 28+ in
letcont kgz 2 = ---h ky z2---in
kQIZJkQQZAIngZS)'n

letval Am k@ f j1 26+ f j2 27 = in...

Now h can be contified as it is always passed

letval f = Akysxy.

(letcont kh xp = - - in
letcont kg1 x1 =---kh 21---ky 25 in
letcont kg z2 = -+ -kh z2---in
cookgr z3--kgo za---kga z5---) in
letval \mkmy @y f J1 26+ f J2 27 = in...

5.2 Recursive functions

Generalizing to recursive functions and continuations itk
trickier. Suppose we haveXpsterm of the form

fikihiz1 = K

letfun

in K.

A set of functionsF’ C {f1,..., f»} can be contified collectively,
written Contifiable(F'), if there is some pair of continuatiorks
and ho such that each occurrence ff € F' is either a tail call

within F' or is a call with continuation arguments and k. In-
tuitively, each function (eventually) returns to the sartexe o),
or throws an exception that is caught by the same handig, (
though control may pass tail-recursively through othercfioms
in F'. There may be many such subsétswe assume thaF is in
fact strongly-connected with respect to tail calls corgdimithin it
(or is a trivial singleton with no tail calls). Then for a givétfun
term there is a unique partial partition of the functiongidisjoint
subsets satisfyinGontifiable(—).

Let ¥ = {f1,..., fm}. Define a translation on function appli-
cations
k h = .
(f z) {f k h x otherwise

and extend this to all terms. Assuming tliaintifiable(F') holds,
there are two possibilities.

1. All applications of the formf ko ho x for f € F are in the
term K. Then we can apply the following rewrite, which is the
direct analogue of ONT.

RECCONT (f1, ..., fm not free inC, and K’ minimal):
letfun f1 ki hiz1 = K1
in C[K]
—
letfun fm+l k7rl+1 hm+1 Im+1 = Km+1
in C[Ietcont J1 x1 = Kl* [k‘o/lﬁ7 ho/hl]
Jm Tm = K:,L[ko/k‘m,ho/hm]
in K*]
2. Otherwise, all applications of the forfh ko ho « for f € F
are in the body of one of the functions outside Fof without
loss of generality we assume thisfis.

RECCONT2 (f1,. .., fm not free inC, and K, minimal):
letfun fl ki hixz1 = K1
fnfl kn—1hn—1xn_1=Kp_1
in K
—
letfun fm+1 km+1 hm+1 Tm+1 = Kerl
fnfl kn—1hno1xn_1=Kn_1
fn kn hn ITn =
C[Ietcont jl T = K{[ko/kh ho/h1]
in K,
in K

For an example of the latter, more complex, transformation,
consider the following SML code:

let fun unif(Ap(a,xs),Ap(b,ys)) = (unif(a,b);unifV(xs,ys))
unif (Ar(a,b),Ar(c,d)) = unifV([a,b], [c,d])
unifV(x::xs,y::ys) = (unif(x,y);unifV(xs,ys))
unifv([], 1) O

end

and

in unif

The functiorunifyV can be contified into the definition ahif: it
tail-calls itself, and its uses insiad&if have the same continuation.

5.3 Comparing dominator-based contification

The dominator-based approach of Fluet and Weeks (2001)e&an b
recast in our CPS language as follows. (For simplicity we db n
consider exception handler continuations here). Firssttaot a
continuation flow grapHor the whole program. Nodes consist of
continuation variables and a distinguishedt node. Then for each

function f with return continuatiork, if f is passed around as a
first-class value then create an edge framat to k; otherwise, for
each applicatiorf j x create an edge fromto k. Finally, for each
local continuatiork create an edge fromoot to k.

The non-recursive GNT rewrite has the effect of merging two
nodes in the graph, as follows:

Rl - %

The recursive RCCONT and RECCONT2 rewrites are similar,
except that in place of we have a strongly-connected component

{k1,... km}.

Conversely, any part of the flow graph matching the left-hsiole
of this diagram corresponds to a contifiable subset of fonstin a
letfun to which the RECCoNT or RECCONT2 rules can be applied.

It is immediately clear that exhaustive rewriting termagt
as the flow graph decreases in size with each rewrite, evntua
producing a graph with no occurrences of the pattern above.

The algorithm described by Fluet and Weeks (2001) contifies
if it is strictly dominated by some continuatignivhose immediate
dominator isroot. It can be shown that if a rooted graph contains
such a pair of nodeg andk, then some part of the graph matches
the pattern above. Hence exhaustive rewriting has the séew e
as as optimal contification based on dominator trees.

6. Related work and conclusion

The use of continuation-passing style for functional laaggs has

its origins in Scheme compilers (Steele 1978; Kranz et V).9

It later formed the basis of the Standard ML of New Jersey com-
piler (Appel 1992; Shao and Appel 1995).

In early compilers, lambdas originating from the CPS transf
mation were not distinguished from lambdas present in thiecgop
so some effort was expended at code generation time to daterm
which lambdas could be stack-allocated and which could be-he
allocated. Later compilers made a syntactic distinctiotwben
true functions and ‘second-class’ continuations intredlicy CPS;
and sometimes transformed one into the other (Kelsey andidud
1989), though contification was not studied formally.

A number of more recent compilers use what has been called
almost CPSThe Sequentialized Intermediate Language (SIL) em-
ployed by Tolmach and Oliva (1998) is a monadic-style laggLia
which aletcont-like feature is used to introduce join points. Some-
what closer to our CPS language is the First Order Langua@k)(F
of the MLton compiler (Fluet and Weeks 2001). It goes furtihan
SIL in making use of named local continuations in all branch-c
structs and non-tail calls. However, functions are notipatarized
on return (or handler) continuations, and there is spegiabs for
tail calls and returns. This non-uniform treatment of couditions
complicates transformations — inlining of non-tail fucts must
replace all ‘return points’ with jumps, and the contificatianaly-
sis and transformation must treat tail and non-tail caltecéntly.

We have found the uniform treatment of continuations in our
CPS language to be a real benefit, not only as a simplifyingefor
implementation, but also in thinking about compiler optiations:

contification, in particular, is difficult to characterizethe absence
of a notion of continuation passing.

As far as we are aware, we are the first to implement linear-

time shrinking reductions in the style of Appel and Jim (19%h
earlier term-graph implementation by Lindley was for a ntdioa
language and had worst-caSén?) behaviour due to commuting
conversions (Benton et al. 2004a; Lindley 2005). Shiveds\&and
(2005) have proposed a rather different graph representéoir
lambda terms, with the goal of sharing subterms afteeduction.
Their representation does bear some resemblance to oougitth
with up-links from subterms to enclosing terms, and circliks
that connect the sites where a term is substituted for ahlaria

This paper would not be complete without a mention of Static

Single Assignment form (SSA), the currently fashionabterime-
diate representation for imperative languages. As is wat,

SSA is in some sense equivalent to CPS (Kelsey 1995) and to

ANF (Appel 1998). Its focus isntra-proceduraloptimization (as
with ANF, it's necessary to renormalize when inlining funais,

in contrast to CPS) and there is a large body of work on such op-

timizations. Future work is to transfer SSA-based optirtiire to

CPS. We conjecture that CPS is a good fit for both functiond! an

imperative paradigms.

Acknowledgments

I would like to thank Nick Benton, Olivier Danvy, Sam Lindley
Simon Peyton Jones and Claudio Russo for fruitful discussan
compiler intermediate languages. Georges Gonthier stejéise
use of union-find in the graphical representation of terms.

References

Andrew W. Appel. Compiling with Continuations Cambridge University
Press, 1992.

Andrew W. Appel. SSA is functional programmin§IGPLAN Notices33
(4):17-20, 1998.

Andrew W. Appel and Trevor Jim. Shrinking lambda expressimninear
time. Journal of Functional Programming/(5):515-540, 1997.

Franz Baader and Tobias NipkoWerm Rewriting and All ThatCambridge
University Press, 1998.

Nick Benton and Peter Buchlovsky. Semantics of an effectyaisafor
exceptions. INACM SIGPLAN International Workshop on Types in
Language Design and Implementation (TLOdages 15-26, 2007.

Nick Benton and Andrew Kennedy. Exceptional syntdaurnal of Func-
tional Programming11(4):395-410, 2001.

Nick Benton, Andrew Kennedy, and George Russell. Compitendard
ML to Java bytecodes. 18rd ACM SIGPLAN International Conference
on Functional ProgrammingACM Press, September 1998.

Nick Benton, Andrew Kennedy, Sam Lindley, and Claudio RusSiarink-
ing reductions in SML.NET. Ir16th International Workshop on Imple-
mentation and Application of Functional Languages (IF2)04a.

Nick Benton, Andrew Kennedy, and Claudio Russo. Adventiré@sterop-
erability: The SML.NET experience. Bth International Conference on
Principles and Practice of Declarative Programming (PPDP)04b.

Thomas Cormen, Charles Leiserson, Ronald Rivest, andofifStein.
Introduction to AlgorithmsMIT Press, second edition, 2001.

Olivier Danvy. A new one-pass transformation into monadiocnmal form.
In 12th International Conference on Compiler ConstructiorC{@3),
2003.

Olivier Danvy and Andrzej Filinski. Representing contrél:study of the
CPS transformation Mathematical Structures in Computer Scien2e
(4):361-391, 1992.

Olivier Danvy and Lasse R. Nielsen. A first-order one-pas$ @Bnsfor-
mation. Theor. Comput. S¢i308(1-3):239-257, 2003.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and MatthiasiBefi.
The essence of compiling with continuations (with retrasipe). In
McKinley (2004), pages 502-514.

Matthew Fluet and Stephen Weeks. Contification using dotmisa In
ICFP’01: Proceedings of the Sixth ACM SIGPLAN InternatioGan-
ference on Functional Programminpages 2—13. ACM Press, Septem-
ber 2001.

John Hatcliff and Olivier Danvy. A generic account of contition-passing
styles. InPrinciples of Programming Languages (PORpages 458—
471, 1994.

Haim Kaplan, Nira Shafrir, and Robert E. Tarjan. Union-finithwdeletions.
In SODA ’'02: Proceedings of the thirteenth annual ACM-SIAMsym
sium on Discrete algorithmpages 19-28, Philadelphia, PA, USA, 2002.
Society for Industrial and Applied Mathematics. ISBN 0-828613-X.

Richard Kelsey. A correspondence between continuatiosipgasstyle
and static single assignment form. Intermediate Representations
Workshoppages 1323, 1995.

Richard A. Kelsey and Paul Hudak. Realistic compilation lbggoam
transformation. InPrinciples of Programming Languages (POPL)
ACM, January 1989.

Jung-taek Kim, Kwangkeun Yi, and Olivier Danvy. Assessimg overhead
of ML exceptions by selective CPS transformation.AGM SIGPLAN
Workshop on MLpages 112-119, 1998. Also appears as BRICS techni-
cal report RS-98-15.

David A. Kranz, Richard A. Kelsey, Jonathan A. Rees, Paul akuénd
James Philbin. ORBIT: an optimizing compiler for schemePtaceed-
ings of the ACM SIGPLAN symposium on Compiler Construcfiages
219-233, June 1986.

Sam Lindley.Normalisation by evaluation in the compilation of typeddun
tional programming languagesPhD thesis, University of Edinburgh,
2005.

Kathryn S. McKinley, editor.20 Years of the ACM SIGPLAN Conference
on Programming Language Design and Implementation 197818
Selection2004. ACM.

Eugenio Moggi. Notions of computation and monadsformation and
Computation 93:55-92, 1991.

A. M. Pitts. Typed operational reasoning. In B. C. PiercétoedAdvanced
Topics in Types and Programming Languaggsapter 7, pages 245-289.
The MIT Press, 2005.

Amr Sabry and Philip Wadler. A reflection on call-by-valuBCM Trans-
actions on Programming Languages and Systems (TOR1A&):916—
941, November 1997. ISSN 0164-0925.

Zhong Shao and Andrew W. Appel. A type-based compiler fon&iad
ML. In Proc. 1995 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLOdages 116-129, La Jolla, CA,
Jun 1995.

Olin Shivers. Higher-order control-flow analysis in refest: lessons
learned, lessons abandoned (with retrospective). In MeKi(2004),
pages 257-269.

Olin Shivers and Mitchell Wand. Bottom-up-reduction: Uplinks anch-
DAGs. InEuropean Symposium on Programming (ESQRpes 217—
232, 2005.

Guy L. Steele. RABBIT: A compiler for SCHEME. Technical Repal-
TR-474, MIT, May 1978.

Hayo Thielecke. Comparing control constructs by doublediied CPS.
Higher-Order and Symbolic Computatiob5(2/3):141-160, 2002.

Andrew P. Tolmach and Dino Oliva. From ML to Ada: Stronglypéd
language interoperability via source translatiaglournal of Functional
Programming 8(4):367-412, 1998.

Philip Wadler and Peter Thiemann. The marriage of effeatsraonads. In
ACM SIGPLAN International Conference on Functional Pragraing
(ICFP), 1998.

