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reduce algorithm
Aim is to construct a ROBDD from an OBDD.

I Adds integer labels id(n) to each node n of a BDD in a single
bottom-up pass

I Key property:
if nodes m and n are labelled, then
id(m) = id(n) iff m and n represent the same Boolean function.

I Rules for adding label to node n:
I remove duplicate terminals: if n terminal, set id(n) to val(n)
I remove redundant tests: if id(lo(n)) = id(hi(n)),

set id(n) to id(lo(n))
I remove duplicate nodes: if there exists a labelled node m such

that

 var(m) = var(n)
id(lo(m)) = id(lo(n))
id(hi(m)) = id(hi(n))

, set id(n) to id(m)

Use hash table with 〈var(n), id(lo(n)), id(hi(n))〉 keys for O(1)
search time

I otherwise, set id(n) to unused number

I ROBDD generated by using 1 node from each class of nodes
with the same label



reduce example
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apply algorithm I

I Let op be a symbol for any binary operation on boolean
formulas. (e.g. ∧, ∨, ⊕)

I Given BDDs Bf and Bg for boolean formulas f and g ,
apply(op,Bf ,Bg ) computes a BDD for f op g .

I Can also do negation if op is λx . x ⊕>.

I If BDD
@@

mx
B B ′

represents a Boolean formula f ,

then sub-BDD B represents f [0/x ], B ′ represents f [1/x ],
and have

f ≡ x .f [0/x ] + x .f [1/x ]

This is the Shannon expansion of Boolean formula f with
respect to the variable x

I While Sub-BDDs B and B ′ are drawn as distinct, in general
they share structure



apply algorithm II

I By applying Shannon expansion to f and g in f op g and
rearranging terms, we get a recursive characterisation of op.

f op g = x .(f [0/x ] op g [0/x ]) + x .(f [1/x ] op g [1/x ])

I This motivates a recursive algorithm for apply



apply algorithm III

apply(op,
@@

mx
B B ′

,
@@

mx
C C ′

) =
@@

mx
apply(op, B, C) apply(op, B ′, C ′)

apply(op,
@
@

mx
B B ′

, C ) =
@
@

mx
apply(op, B, C) apply(op, B ′, C)

where C is 1) a terminal node or 2) a non-terminal with var(root(C)) > x

apply(op, B ,
@@

mx
C C ′

) =
@@

mx
apply(op, B, C) apply(op, B, C ′)

where B is 1) a terminal node or 2) a non-terminal with var(root(B)) > x

apply(op, u , v ) = w where w = u op v



apply example

Compute apply(+,Bf ,Bg ) where Bf and Bg are:
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Recursive calls of apply
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Final result from apply execution
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apply remarks

I In general, result will not be an ROBDD, so need to use
reduce afterwards

I Or can incorporate aspects of reduce into apply so result is
always reduced

I Many calls can be identical, so calls memoized to improve
efficiency



Other operations

I restrict(0, x ,Bf ) computes ROBDD for f [0/x ]

1. For each node n labelled with an x , incoming edges are
redirected to lo(n) and n is removed.

2. Resulting BDD is reduced.

I exists(x ,Bf ) computes ROBDD for ∃x . f
I Uses identity (∃x . f ) ≡ f [0/x ] + f [1/x ] and restrict and

apply functions



Time complexities

Algorithm Input OBDD(s) Output OBDD Time-complexity

reduce B reduced B O(|B| · log |B|)
apply Bf , Bg (reduced) Bf op g (reduced) O(|Bf | · |Bg |)
restrict Bf (reduced) Bf [0/x] or Bf [1/x] (reduced) O(|Bf | · log |Bf |)
∃ Bf (reduced) B∃x1.∃x2....∃xn.f (reduced) NP-complete



Encoding CTL algorithms using BDDs I

I States represented using Boolean vectors 〈v1, . . . , vn〉, where
vi ∈ {0, 1}.

I Sets of states represented using BDDs on n variables x1, . . . xn

describing characteristic functions of sets.

I Set operations ∪,∩,¯ made effective using using the apply
and the Boolean operations +, ·, .̄

I Transition relations described using BDDs on 2n variables.
I If Boolean variables x1, . . . xn describe initial state and Boolean

variables x ′1, . . . x
′
n describe next state, then good ordering is

x1, x
′
1, x2, x

′
2, . . . xn, x

′
n.

I Translations of Boolean formulas describing state sets and
transition relations into BDDs make use of apply algorithm,
following structure of formulas

I This avoids the intractable exponential blow-up if instead one
tried to first construct a binary decision tree.



Encoding CTL algorithms using BDDs II

I Function application

pre∃(Y )
.

= {s ∈ S | ∃s ′ ∈ S . s → s ′ ∧ s ′ ∈ Y }

is represented by the BDD

exists(x̂ ′, apply(·,B→,BY ′)) ,

where
I B→ is the BDD representing the transition relation →
I BY ′ is the BDD representing set Y with the variables x1, . . . xn

renamed to x ′1, . . . x
′
n

I Function application

pre∀(Y )
.

= {s ∈ S | ∀s ′ ∈ S . s → s ′ ⇒ s ′ ∈ Y }

is represented using the identity

pre∀(Y ) = S − pre∃(S − Y )

and the representation of pre∃(S − Y ) and set complement.
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