
BDD operations

Paul Jackson1

University of Edinburgh

Automated Reasoning
21st November 2013

1Diagrams from Huth & Ryan, LiCS, 2nd Ed.

reduce algorithm
Aim is to construct a ROBDD from an OBDD.

I Adds integer labels id(n) to each node n of a BDD in a single
bottom-up pass

I Key property:
if nodes m and n are labelled, then
id(m) = id(n) iff m and n represent the same Boolean function.

I Rules for adding label to node n:
I remove duplicate terminals: if n terminal, set id(n) to val(n)
I remove redundant tests: if id(lo(n)) = id(hi(n)),

set id(n) to id(lo(n))
I remove duplicate nodes: if there exists a labelled node m such

that

 var(m) = var(n)
id(lo(m)) = id(lo(n))
id(hi(m)) = id(hi(n))

, set id(n) to id(m)

Use hash table with 〈var(n), id(lo(n)), id(hi(n))〉 keys for O(1)
search time

I otherwise, set id(n) to unused number

I ROBDD generated by using 1 node from each class of nodes
with the same label

reduce example

0 1#0 #10 1 0 1

x3 x3

x2x2

x1

#0 #1 #0 #1

#2 #2

#3 #2

#4

=⇒

x3

x2

x1

#2

#3

#4

Reduce

apply algorithm I

I Let op be a symbol for any binary operation on boolean
formulas. (e.g. ∧, ∨, ⊕)

I Given BDDs Bf and Bg for boolean formulas f and g ,
apply(op,Bf ,Bg) computes a BDD for f op g .

I Can also do negation if op is λx . x ⊕>.

I If BDD
@@

mx
B B ′

represents a Boolean formula f ,

then sub-BDD B represents f [0/x], B ′ represents f [1/x],
and have

f ≡ x .f [0/x] + x .f [1/x]

This is the Shannon expansion of Boolean formula f with
respect to the variable x

I While Sub-BDDs B and B ′ are drawn as distinct, in general
they share structure

apply algorithm II

I By applying Shannon expansion to f and g in f op g and
rearranging terms, we get a recursive characterisation of op.

f op g = x .(f [0/x] op g [0/x]) + x .(f [1/x] op g [1/x])

I This motivates a recursive algorithm for apply

apply algorithm III

apply(op,
@@

mx
B B ′

,
@@

mx
C C ′

) =
@@

mx
apply(op, B, C) apply(op, B ′, C ′)

apply(op,
@
@

mx
B B ′

, C) =
@
@

mx
apply(op, B, C) apply(op, B ′, C)

where C is 1) a terminal node or 2) a non-terminal with var(root(C)) > x

apply(op, B ,
@@

mx
C C ′

) =
@@

mx
apply(op, B, C) apply(op, B, C ′)

where B is 1) a terminal node or 2) a non-terminal with var(root(B)) > x

apply(op, u , v) = w where w = u op v

apply example

Compute apply(+,Bf ,Bg) where Bf and Bg are:

0 1 0 1

x4

x3

x1

x4

x3

x2

x1

R5 R6

R4

R2

R1

R3

+

S1

S3

S4 S5

S2

Recursive calls of apply

(R1, S1)

x1

x2 x3

(R3, S3)

(R2, S3) (R3, S2)

x4 x3

(R5, S4) (R6, S5) (R4, S3) (R6, S3)

(R4, S3) (R4, S3)

x4

(R5, S4) (R6, S5)

(R6, S5)

x4

(R6, S5)

x4

(R5, S4) (R6, S4)(R6, S5)

Final result from apply execution

0 1

x4

x3

x2

x1

apply remarks

I In general, result will not be an ROBDD, so need to use
reduce afterwards

I Or can incorporate aspects of reduce into apply so result is
always reduced

I Many calls can be identical, so calls memoized to improve
efficiency

Other operations

I restrict(0, x ,Bf) computes ROBDD for f [0/x]

1. For each node n labelled with an x , incoming edges are
redirected to lo(n) and n is removed.

2. Resulting BDD is reduced.

I exists(x ,Bf) computes ROBDD for ∃x . f
I Uses identity (∃x . f) ≡ f [0/x] + f [1/x] and restrict and

apply functions

Time complexities

Algorithm Input OBDD(s) Output OBDD Time-complexity

reduce B reduced B O(|B| · log |B|)
apply Bf , Bg (reduced) Bf op g (reduced) O(|Bf | · |Bg |)
restrict Bf (reduced) Bf [0/x] or Bf [1/x] (reduced) O(|Bf | · log |Bf |)
∃ Bf (reduced) B∃x1.∃x2....∃xn.f (reduced) NP-complete

Encoding CTL algorithms using BDDs I

I States represented using Boolean vectors 〈v1, . . . , vn〉, where
vi ∈ {0, 1}.

I Sets of states represented using BDDs on n variables x1, . . . xn

describing characteristic functions of sets.

I Set operations ∪,∩,¯ made effective using using the apply
and the Boolean operations +, ·, .̄

I Transition relations described using BDDs on 2n variables.
I If Boolean variables x1, . . . xn describe initial state and Boolean

variables x ′1, . . . x
′
n describe next state, then good ordering is

x1, x
′
1, x2, x

′
2, . . . xn, x

′
n.

I Translations of Boolean formulas describing state sets and
transition relations into BDDs make use of apply algorithm,
following structure of formulas

I This avoids the intractable exponential blow-up if instead one
tried to first construct a binary decision tree.

Encoding CTL algorithms using BDDs II

I Function application

pre∃(Y)
.

= {s ∈ S | ∃s ′ ∈ S . s → s ′ ∧ s ′ ∈ Y }

is represented by the BDD

exists(x̂ ′, apply(·,B→,BY ′)) ,

where
I B→ is the BDD representing the transition relation →
I BY ′ is the BDD representing set Y with the variables x1, . . . xn

renamed to x ′1, . . . x
′
n

I Function application

pre∀(Y)
.

= {s ∈ S | ∀s ′ ∈ S . s → s ′ ⇒ s ′ ∈ Y }

is represented using the identity

pre∀(Y) = S − pre∃(S − Y)

and the representation of pre∃(S − Y) and set complement.

	Section 1 Title

