BDD operations

Paul Jackson ${ }^{1}$
University of Edinburgh

Automated Reasoning 21st November 2013

${ }^{1}$ Diagrams from Huth \& Ryan, LiCS, 2nd Ed.

reduce algorithm

Aim is to construct a ROBDD from an OBDD.

- Adds integer labels id(n) to each node n of a BDD in a single bottom-up pass
- Key property:
if nodes m and n are labelled, then
$\mathrm{id}(m)=\mathrm{id}(n)$ iff m and n represent the same Boolean function.
- Rules for adding label to node n :
- remove duplicate terminals: if n terminal, set id (n) to $\operatorname{val}(n)$
- remove redundant tests: if id $(\mathrm{lo}(n))=\mathrm{id}(\mathrm{hi}(n))$,
set id (n) to $\mathrm{id}(\mathrm{Io}(n))$
- remove duplicate nodes: if there exists a labelled node m such
that $\left\{\begin{array}{ccc}\operatorname{var}(m) & = & \operatorname{var}(n) \\ \operatorname{id}(\operatorname{lo}(m)) & = & \mathrm{id}(\operatorname{lo}(n)) \\ \operatorname{id}(\operatorname{hi}(m)) & = & \operatorname{id}(\operatorname{hi}(n))\end{array}\right\}$, set id (n) to $\mathrm{id}(m)$
Use hash table with $\langle\operatorname{var}(n), \mathrm{id}(\operatorname{lo}(n)), \mathrm{id}(\mathrm{hi}(n))\rangle$ keys for $\mathrm{O}(1)$ search time
- otherwise, set id (n) to unused number
- ROBDD generated by using 1 node from each class of nodes with the same label

reduce example

apply algorithm I

- Let op be a symbol for any binary operation on boolean formulas. (e.g. \wedge, \vee, \oplus)
- Given BDDs B_{f} and B_{g} for boolean formulas f and g, apply(op, B_{f}, B_{g}) computes a BDD for f op g.
- Can also do negation if op is $\lambda x \cdot x \oplus T$.
- If BDD

represents a Boolean formula f,
then sub-BDD B represents $f[0 / x], B^{\prime}$ represents $f[1 / x]$, and have

$$
f \equiv \bar{x} . f[0 / x]+x . f[1 / x]
$$

This is the Shannon expansion of Boolean formula f with respect to the variable x

- While Sub-BDDs B and B^{\prime} are drawn as distinct, in general they share structure

apply algorithm II

- By applying Shannon expansion to f and g in f op g and rearranging terms, we get a recursive characterisation of op.

$$
f \text { op } g=\bar{x} .(f[0 / x] \text { op } g[0 / x])+x .(f[1 / x] \text { op } g[1 / x])
$$

- This motivates a recursive algorithm for apply

apply algorithm III

C) =

where C is 1) a terminal node or 2) a non-terminal with $\operatorname{var}(\operatorname{root}(C))>x$

where B is 1) a terminal node or 2) a non-terminal with $\operatorname{var}(\operatorname{root}(B))>x$
apply(op, \square

$$
v
$$

$$
)=
$$

\square where $w=u$ op v

apply example

Compute apply $\left(+, B_{f}, B_{g}\right)$ where B_{f} and B_{g} are:

Recursive calls of apply

Final result from apply execution

apply remarks

- In general, result will not be an ROBDD, so need to use reduce afterwards
- Or can incorporate aspects of reduce into apply so result is always reduced
- Many calls can be identical, so calls memoized to improve efficiency

Other operations

- restrict $\left(0, x, B_{f}\right)$ computes ROBDD for $f[0 / x]$

1. For each node n labelled with an x, incoming edges are redirected to $\operatorname{lo}(n)$ and n is removed.
2. Resulting $B D D$ is reduced.

- exists $\left(x, B_{f}\right)$ computes ROBDD for $\exists x . f$
- Uses identity $(\exists x . f) \equiv f[0 / x]+f[1 / x]$ and restrict and apply functions

Time complexities

Algorithm	Input OBDD(s)	Output OBDD	Time-complexity
reduce	B	reduced B	$O(\|B\| \cdot \log \|B\|)$
apply	B_{f}, B_{g} (reduced)	$B_{f \text { op } g \text { (reduced) }}$	$O\left(\left\|B_{f}\right\| \cdot\left\|B_{g}\right\|\right)$
restrict	B_{f} (reduced)	$B_{f[0 / \times] \text { or } B_{f[1 / x]} \text { (reduced) }}$	$O\left(\left\|B_{f}\right\| \cdot \log \left\|B_{f}\right\|\right)$
\exists	B_{f} (reduced)	$B_{\exists x_{1} \cdot \exists x_{2} \ldots . . . \exists x_{n} . f \text { (reduced) }}$	NP-complete

Encoding CTL algorithms using BDDs I

- States represented using Boolean vectors $\left\langle v_{1}, \ldots, v_{n}\right\rangle$, where $v_{i} \in\{0,1\}$.
- Sets of states represented using BDDs on n variables $x_{1}, \ldots x_{n}$ describing characteristic functions of sets.
- Set operations $\cup, \cap,{ }^{-}$made effective using using the apply and the Boolean operations $+, \cdot,{ }^{-}$.
- Transition relations described using BDDs on $2 n$ variables.
- If Boolean variables $x_{1}, \ldots x_{n}$ describe initial state and Boolean variables $x_{1}^{\prime}, \ldots x_{n}^{\prime}$ describe next state, then good ordering is $x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, \ldots x_{n}, x_{n}^{\prime}$.
- Translations of Boolean formulas describing state sets and transition relations into BDDs make use of apply algorithm, following structure of formulas
- This avoids the intractable exponential blow-up if instead one tried to first construct a binary decision tree.

Encoding CTL algorithms using BDDs II

- Function application

$$
\operatorname{pre}_{\exists}(Y) \doteq\left\{s \in S \mid \exists s^{\prime} \in S . s \rightarrow s^{\prime} \wedge s^{\prime} \in Y\right\}
$$

is represented by the BDD

$$
\operatorname{exists}\left(\hat{x}^{\prime}, \operatorname{apply}\left(\cdot, B_{\rightarrow}, B_{Y^{\prime}}\right)\right)
$$

where

- B_{\rightarrow} is the BDD representing the transition relation \rightarrow
- B_{Y}, is the BDD representing set Y with the variables $x_{1}, \ldots x_{n}$ renamed to $x_{1}^{\prime}, \ldots x_{n}^{\prime}$
- Function application

$$
\operatorname{pre}_{\forall}(Y) \doteq\left\{s \in S \mid \forall s^{\prime} \in S . s \rightarrow s^{\prime} \Rightarrow s^{\prime} \in Y\right\}
$$

is represented using the identity

$$
\operatorname{pre}_{\forall}(Y)=S-\operatorname{pre}_{\exists}(S-Y)
$$

and the representation of $\operatorname{pre}_{\exists}(S-Y)$ and set complement.

