BDD operations

Paul Jackson¹

University of Edinburgh

Automated Reasoning 21st November 2013

reduce algorithm

Aim is to construct a ROBDD from an OBDD.

- Adds integer labels id(n) to each node n of a BDD in a single bottom-up pass
- Key property:

if nodes m and n are labelled, then

id(m) = id(n) iff m and n represent the same Boolean function.

- Rules for adding label to node n:
 - remove duplicate terminals: if n terminal, set id(n) to val(n)
 - remove redundant tests: if id(lo(n)) = id(hi(n)), set id(n) to id(lo(n))
 - remove duplicate nodes: if there exists a labelled node m such

that $\begin{cases} var(m) = var(n) \\ id(lo(m)) = id(lo(n)) \\ id(hi(m)) = id(hi(n)) \end{cases}$, set id(n) to id(m) Use hash table with $\langle var(n), id(lo(n)), id(hi(n)) \rangle$ keys for O(1) search time

- otherwise, set id(n) to unused number
- ROBDD generated by using 1 node from each class of nodes with the same label

reduce example

 $Reduce \implies$

◆□> ◆□> ◆注> ◆注> 注: のへで

apply algorithm I

- ► Let op be a symbol for any binary operation on boolean formulas. (e.g. ∧, ∨, ⊕)
- ▶ Given BDDs B_f and B_g for boolean formulas f and g, apply(op, B_f, B_g) computes a BDD for f op g.
- Can also do negation if op is $\lambda x. x \oplus \top$.

then sub-BDD B represents f[0/x], B' represents f[1/x], and have

$$f \equiv \overline{x}.f[0/x] + x.f[1/x]$$

This is the *Shannon expansion* of Boolean formula f with respect to the variable x

While Sub-BDDs B and B' are drawn as distinct, in general they share structure

apply algorithm II

By applying Shannon expansion to f and g in f op g and rearranging terms, we get a recursive characterisation of op.

$$f \text{ op } g = \overline{x}.(f[0/x] \text{ op } g[0/x]) + x.(f[1/x] \text{ op } g[1/x])$$

This motivates a recursive algorithm for apply

apply algorithm III

apply example

Compute apply $(+, B_f, B_g)$ where B_f and B_g are:

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト ● 回 ● の Q @

Recursive calls of apply

Final result from apply execution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- In general, result will not be an ROBDD, so need to use reduce afterwards
 - Or can incorporate aspects of reduce into apply so result is always reduced

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Many calls can be identical, so calls *memoized* to improve efficiency

Other operations

• restrict $(0, x, B_f)$ computes ROBDD for f[0/x]

- 1. For each node n labelled with an x, incoming edges are redirected to lo(n) and n is removed.
- 2. Resulting BDD is reduced.
- $exists(x, B_f)$ computes ROBDD for $\exists x. f$
 - Uses identity $(\exists x. f) \equiv f[0/x] + f[1/x]$ and restrict and apply functions

Time complexities

Algorithm	Input OBDD(s)	Output OBDD	Time-complexity
reduce	В	reduced B	$O(B \cdot \log B)$
apply	B_f , B_g (reduced)	$B_{f \text{ op } g}$ (reduced)	$O(B_f \cdot B_g)$
restrict	B_f (reduced)	$B_{f[0/x]}$ or $B_{f[1/x]}$ (reduced)	$O(B_f \cdot \log B_f)$
Э	B_f (reduced)	$B_{\exists x_1.\exists x_2\exists x_n.f}$ (reduced)	NP-complete

Encoding CTL algorithms using BDDs I

- ▶ States represented using Boolean vectors $\langle v_1, \ldots, v_n \rangle$, where $v_i \in \{0, 1\}$.
- Sets of states represented using BDDs on *n* variables x₁,...x_n describing characteristic functions of sets.
- Set operations ∪, ∩, ⁻ made effective using using the apply and the Boolean operations +, ·, ⁻.
- ▶ Transition relations described using BDDs on 2*n* variables.
 - ► If Boolean variables x₁,...x_n describe initial state and Boolean variables x'₁,...x'_n describe next state, then good ordering is x₁, x'₁, x₂, x'₂,...x_n, x'_n.
- Translations of Boolean formulas describing state sets and transition relations into BDDs make use of apply algorithm, following structure of formulas
 - This avoids the intractable exponential blow-up if instead one tried to first construct a binary decision tree.

Encoding CTL algorithms using BDDs II

Function application

$$\mathsf{pre}_\exists (Y) \doteq \{ s \in S \, | \, \exists s' \in S. \, s \to s' \land s' \in Y \}$$

is represented by the BDD

$$\texttt{exists}(\hat{x}',\texttt{apply}(\cdot,B_{
ightarrow},B_{Y'}))$$
 ,

where

- $B_{
 ightarrow}$ is the BDD representing the transition relation ightarrow
- ▶ B_{Y'} is the BDD representing set Y with the variables x₁,...x_n renamed to x'₁,...x'_n
- Function application

$$\mathsf{pre}_{\forall}(Y) \doteq \{s \in S \,|\, \forall s' \in S. \, s \to s' \Rightarrow s' \in Y\}$$

is represented using the identity

$$\operatorname{pre}_{\forall}(Y) = S - \operatorname{pre}_{\exists}(S - Y)$$

and the representation of $\text{pre}_{\exists}(S-Y)$ and set complement.