BDD operations

Paul Jackson!

University of Edinburgh

Automated Reasoning
21st November 2013

1Diagrams from Huth & Ryan, LiCS, 2nd Ed.

reduce algorithm
Aim is to construct a ROBDD from an OBDD.
» Adds integer labels id(n) to each node n of a BDD in a single

bottom-up pass
» Key property:

if nodes m and n are labelled, then

id(m) = id(n) iff m and n represent the same Boolean function.

» Rules for adding label to node n:

>
>

>

remove duplicate terminals: if n terminal, set id(n) to val(n)
remove redundant tests: if id(lo(n)) = id(hi(n)),

set id(n) to id(lo(n))

remove duplicate nodes: if there exists a labelled node m such

{ var(m) = var(n) }
that < id(lo(m)) = id(lo(n)) 3, setid(n) to id(m)
id(hi(m)) = id(hi(n))

Use hash table with (var(n),id(lo(n)),id(hi(n))) keys for O(1)
search time

otherwise, set id(n) to unused number

» ROBDD generated by using 1 node from each class of nodes
with the same label

reduce example

(=)
Reduce

=

apply algorithm |

>

Let op be a symbol for any binary operation on boolean
formulas. (e.g. A, V, @)

Given BDDs Br and B, for boolean formulas f and g,
apply(op, Br, Bg) computes a BDD for f op g.

Can also do negation if op is Ax.x® T.

If BDD @\ represents a Boolean formula f,

B B’
then sub-BDD B represents [0/x], B’ represents f[1/x],
and have
f = X.fl0/x] + x.f[1/x]
This is the Shannon expansion of Boolean formula f with
respect to the variable x

While Sub-BDDs B and B’ are drawn as distinct, in general
they share structure

apply algorithm Il

» By applying Shannon expansion to f and g in f op g and
rearranging terms, we get a recursive characterisation of op.

fop g =Xx.(f[0/x] op g[0/x]) + x.(f[L/x] op g[1/x])

» This motivates a recursive algorithm for apply

apply algorithm Il

)
g
el

=
<
—_~~
[e]
o
N
N
N
N
SN—r
Il

A

B B’ C c’ apply(op, B, C) apply(op, B’, C’)
apply(op, QD\ : C) = ®\
Ve Ve
7 /
B B’ apply(op, B, C) apply(op, B', C)

where C is 1) a terminal node or 2) a non-terminal with var(root(C)) > x

apply(op, B 7 QD\) QD\
C c'

apply(op, B, C) apply(op, B, C')
where B is 1) a terminal node or 2) a non-terminal with var(root(B)) > x

apply(op, :) = where w = u op v

apply example

Compute apply(+, B, Bg) where B and B, are:

Ry Sy

I
Rs ! Rs S4

' P
' Pis
' Pid
' Pid
' Pis
' Pid
/ Pid
=
I
I

Ss

Recursive calls of apply

(6?275/3/) (Rlz,sz)
(Ra, 5/3) (Rs, S3) (th 53/)/,/ (Rs, Ss)
BB B
(Rs, Sa) (Rs, S5) (64,’/-;3) (R$753) (Rs,S3) (Re, Ss5)
(R5,/5/4) l‘\\

(Rs, Ss) (R, Sa) (Rs; Ss)

Final result from apply execution

apply remarks

» In general, result will not be an ROBDD, so need to use
reduce afterwards

» Or can incorporate aspects of reduce into apply so result is
always reduced
» Many calls can be identical, so calls memoized to improve
efficiency

Other operations

» restrict(0, x, Br) computes ROBDD for f[0/x]

1. For each node n labelled with an x, incoming edges are
redirected to lo(n) and n is removed.
2. Resulting BDD is reduced.
> exists(x, Br) computes ROBDD for 3x. f
» Uses identity (3x.f) = f[0/x]+ f[1/x] and restrict and
apply functions

Time complexities

Algorithm | Input OBDD(s) | Output OBDD Time-complexity
reduce B reduced B O(|B| - log|B|)
apply Bf, Bg (reduced) | By op ¢ (reduced) O(|Bf| - |Bgl)
restrict | By (reduced) Brio/x) or Brj1/x (reduced) | O(|Bs| - log |Br|)
3 By (reduced) B3, .3x,....3x,.f (reduced) NP-complete

Encoding CTL algorithms using BDDs |

> States represented using Boolean vectors (vi, ..., vy,), where
vi € {0, 1}.

> Sets of states represented using BDDs on n variables xi, ... x,
describing characteristic functions of sets.

» Set operations U, N,” made effective using using the apply
and the Boolean operations +, -, .

» Transition relations described using BDDs on 2n variables.

» |If Boolean variables xi, ... x, describe initial state and Boolean
variables xi, ... x/ describe next state, then good ordering is
X1y X{y X2y Xy« « Xy Xpy-

» Translations of Boolean formulas describing state sets and
transition relations into BDDs make use of apply algorithm,
following structure of formulas

» This avoids the intractable exponential blow-up if instead one
tried to first construct a binary decision tree.

Encoding CTL algorithms using BDDs ||

» Function application
pre5(Y) = {s€S|3Fse€S.s—s'AnseY}
is represented by the BDD
exists(%’, apply(-, B_, By/))

where
» B_, is the BDD representing the transition relation —

» By is the BDD representing set Y with the variables xi, . ..

renamed to xi,...x;

» Function application
pref(Y) = {seS|Vde€S.s—s=5eY}
is represented using the identity

preg(Y) = S —preg(S—Y)

Xn

and the representation of pre5(S — Y') and set complement.

	Section 1 Title

